
A NOVEL COMPRESSION ALGORITHM BASED ON

SPARSE SAMPLING OF 3-D LASER RANGE SCANS

a thesis

submitted to the department of electrical and

electronics engineering

and the institute of engineering and sciences

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Oğuzcan Dobrucalı

July 2010



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Billur Barshan (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Erdal Arıkan

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Gözde Bozdağı Akar

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Levent Onural
Director of Institute of Engineering and Sciences

ii



ABSTRACT

A NOVEL COMPRESSION ALGORITHM BASED ON

SPARSE SAMPLING OF 3-D LASER RANGE SCANS

Oğuzcan Dobrucalı

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Billur Barshan

July 2010

3-D models of environments can be very useful and are commonly employed in

areas such as robotics, art and architecture, environmental planning and docu-

mentation. A 3-D model is typically comprised of a large number of measure-

ments. When 3-D models of environments need to be transmitted or stored,

they should be compressed efficiently to use the capacity of the communication

channel or the storage medium effectively. In this thesis, we propose a novel

compression technique based on compressive sampling, applied to sparse rep-

resentations of 3-D laser range measurements. The main issue here is finding

highly sparse representations of the range measurements, since they do not have

such representations in common domains, such as the frequency domain. To

solve this problem, we develop a new algorithm to generate sparse innovations

between consecutive range measurements acquired while the sensor moves. We

compare the sparsity of our innovations with others generated by estimation and

filtering. Furthermore, we compare the compression performance of our lossy

compression method with widely used lossless and lossy compression techniques.

The proposed method offers small compression ratio and provides a reasonable

compromise between reconstruction error and processing time.
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ÖZET

ÜÇ BOYUTLU LAZER UZAKLIK TARAMALARININ

SEYREK ÖRNEKLENMESİNE DAYALI YENİ BİR VERİ

SIKIŞTIRMA YÖNTEMİ

Oğuzcan Dobrucalı

Elektrik ve Elektronik Mühendisliğı Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Billur Barshan

Temmuz 2010

Robotbilim, sanat ve mimarlık, çevre planlaması ve dökümantasyonu gibi çeşitli

alanlarda ortamların üç boyutlu modellerinden yararlanılır. Üç boyutlu model-

lerin çok fazla sayıda ölçüm içermesinden dolayı, bu modellerin bir yerden bir

yere iletilmesi veya bir yerde saklanması gerektiğinde, haberleşme kanalının veya

veri depolama alanının kapasitesini verimli kullanmak için verilerin öncelikle

etkili bir biçimde sıkıştırılmaları gerekir. Bu tezde, üç boyutlu lazer uzaklık

taramalarını sıkıştırmak için, sıkıştırmalı algılamaya dayanan yeni bir yöntem

önerilmektedir. Taramaların frekans alanı gibi yaygın kullanılan alanlarda

çok seyrek gösterimlerinin olmamasından dolayı, bunların çok seyrek şekilde

temsil edilmesi, bu tezde ele alınan ana sorunlardan biridir. Bu sorunun

çözümü için taramaları, lazer uzaklık algılayıcısının hareket yönünde peş peşe

alınan ölçümler arasında oluşturulan seyrek değişimlerle temsil eden bir yöntem

geliştirilmiştir. Oluşturulan değişimlerin seyrekliği, diğer kestirme ve süzgeçleme

yöntemleriyle hesaplanan değişimlerle karşılaştırılmıştır. Ayrıca önerilen kayıplı

sıkıştırma yönteminin başarımı, yaygın kullanılan kayıpsız ve kayıplı sıkıştırma
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yöntemlerinin başarımlarıyla karşılaştırılmıştır. Sonuç olarak, önerilen yöntem

kısa sürede ve az kayıpla, büyük oranda sıkıştırma sağlamaktadır.

Anahtar Kelimeler: üç boyutlu lazer taraması, üç boyutlu modelleme, üç boyutlu

haritalama, sıkıştırmalı algılama, sıkıştırmalı örnekleme, sensör verisi sıkıştırma,

SICK LMS lazer uzaklık ölçer.
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I also extend my thanks to TÜBİTAK for funding my graduate studies through

an MSc. scholarship.

vii



Contents

1 Introduction 1

2 Background on Compressive Sensing 7

2.1 Determining the Sparsifying Basis . . . . . . . . . . . . . . . . . . 11

2.2 Determining the Measurement Model . . . . . . . . . . . . . . . . 12

3 The Proposed Method 15

3.1 The Sparsifying Model . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 The Measurement Model . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 The Reconstruction Model . . . . . . . . . . . . . . . . . . . . . . 33

4 Comparing Compression Performance of the Proposed Method

with Some Well-Known Compression Techniques 36

4.1 Implementation and Comparison with Well-Known Lossless Tech-

niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Implementation and Comparison with Well-Known Lossy Tech-

niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

viii



4.3 Implementation and Comparison with the Proposed Method . . . 46

5 Conclusions and Future Work 56

Appendix 59

A Well-Known Dictionaries for Forming a Sparsifying Basis 59

B Methods for Generating Sparse Innovations 62

ix



List of Figures

1.1 (a) The front view of SICK LMS200, (b) its measurement princi-

ple, and (c) its field of view (reprinted from [1]). . . . . . . . . . . 3

2.1 The operation scheme of the single pixel camera (reprinted from [2]). 13

3.1 (a)–(d): Sample data sets collected at the University of Osnabrück

AVZ building, and (e)–(h): their reconstructions. . . . . . . . . . 16

3.2 The percentage of the number of non-zero values to the total num-

ber of values in the projections of the 3-D scan illustrated in Fig-

ure 3.1(b) onto the bases formed by using (a) Fourier, (b) Gabor,

and (c) Haar dictionaries. . . . . . . . . . . . . . . . . . . . . . . 17

3.3 The percentage of the number of non-zero values to the total num-

ber of values in the innovations, when the methods referred as

(a)–(f) are applied to the 3-D scan illustrated in Figure 3.1(b),

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 The percentage of the number of non-zero values to the total num-

ber of values in the sparse representations generated at the spar-

sifying model for the 3-D scan illustrated in Figure 3.1(b). . . . . 20

3.5 The operation scheme of the proposed method. . . . . . . . . . . 20

x



3.6 Illustration of (a) the amplitude and phase shifts, and (b) the offset. 21

3.7 The amplitude of E2 with respect to (a) first- and (b) second-order

approximation to δ for the data set illustrated in Figure 3.1(b). . 23

3.8 Illustrations of the difference sequences obtained for the 3-D scans

given in Figure 3.1(a)–(d). . . . . . . . . . . . . . . . . . . . . . . 23

3.9 The frequencies of appearance of different values in vn. . . . . . . 24

3.10 The average of the sample autocorrelation estimate of vn with

±2σR and ±3σR standard error boundaries. . . . . . . . . . . . . 27

3.11 The flowchart of the sparsifying model algorithm. . . . . . . . . . 28

3.12 The percentage of the number of non-zero values to the total num-

ber of values in the sparse representations generated at the spar-

sifying model for the 3-D scan illustrated in Figure 3.1(b) with

white Gaussian noise with zero mean and 0, 1, 2, 3, 4, 5, 10, 20,

and 30 cm standard deviation, respectively. . . . . . . . . . . . . . 29

3.13 The RMS of the reconstruction error with respect to the number

of non-zero values in the sparse data, when the 2-D scans from

all 3-D scans in the first data set are sampled using compressive

sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.14 The measurement size M in SC and CS with respect to the number

of non-zero values of a signal in <361. . . . . . . . . . . . . . . . . 32

3.15 The flowchart of the measurement model algorithm. . . . . . . . . 32

3.16 The length of the measurements for the data set illustrated in

Figure 3.1(b), when (a) the measurement model and (b) RLE are

employed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xi



3.17 The flowchart of the reconstruction model algorithm. . . . . . . . 35

4.1 Two-channel filterbank structure. . . . . . . . . . . . . . . . . . . 44

4.2 (a) The analysis and (b) the synthesis structures of a 3-level

wavelet transform. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Distortion images for the 3-D scans given in Figure 3.1(a)–(d). . . 49

4.4 The path of the motion and the positions where 3-D scans are

acquired at Dagstuhl Castle. . . . . . . . . . . . . . . . . . . . . . 51

4.5 (a)–(d): Sample data sets collected at Dagstuhl Castle and (e)–

(h): their reconstructions. . . . . . . . . . . . . . . . . . . . . . . 52

4.6 The average correlation coefficients between the 2-D scans in the

(a) first and (b) second data sets, respectively. . . . . . . . . . . . 53

xii



List of Tables

4.1 Compression ratio (CR), the time required for encoding (tenc) and

decoding (tdec) when the raw 3-D scans in the first data set are

compressed using Huffman and arithmetic coding. . . . . . . . . . 39

4.2 Compression ratio (CR), the time required for encoding (tenc) and

decoding (tdec) when the raw 3-D scans in the first data set are

compressed using ZLIB and GZIP. . . . . . . . . . . . . . . . . . . 40

4.3 CR, tenc, and tdec when the differences between consecutive scans

in the first data set are compressed using Huffman and arithmetic

coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 CR, D, tenc, and tdec when the first data set is compressed using

JPEG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 CR, D, tenc, and tdec when the first data set is compressed using

1-level, 2-level, and 3-level wavelet transforms. . . . . . . . . . . . 45

4.6 CR, D, tenc, tdec, number of cases when the signal is encoded

with {ε , δ, ∆, m} using compressive sampling (kSHIFT+CS),

{ε , δ, ∆, m} using simple coding (kSHIFT+SC), only {ε , δ, ∆}

(kSHIFT), and the number of cases when the signal is not encoded

(kNOCODING), when the first data set is compressed using the pro-

posed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xiii



4.7 CR, D, tenc, and tdec when the first data set is compressed by

different lossless and lossy methods. . . . . . . . . . . . . . . . . . 50

4.8 CR, D, tenc, and tdec when the second data set is compressed with

different lossless and lossy methods. . . . . . . . . . . . . . . . . . 54

4.9 The average percentages of kSHIFT+CS, kSHIFT+SC, kSHIFT, and

kNOCODING, when both data sets are compressed using the pro-

posed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.10 Average signal-to-noise ratio (SNR), CR, D, tenc, tdec, number of

cases when the signal is encoded with {ε , δ, ∆, m} using com-

pressive sampling (kSHIFT+CS), {ε , δ, ∆, m} using simple coding

(kSHIFT+SC), only {ε , δ, ∆} (kSHIFT), and the number of cases

when the signal is not encoded (kNOCODING), when the first data

set is compressed under the presence of additive white Gaussian

noise indicated with its mean and variance. . . . . . . . . . . . . . 55

xiv



Dedicated to my family



Chapter 1

Introduction

Many techniques have been developed to build 3-D models of environments.

3-D modeling techniques allow describing environments including objects with

indefinite shapes or patterns, although these techniques can be complex and

computationally expensive [3]. The main advantage of using 3-D models of envi-

ronments is that they are more descriptive and have richer information content

than 2-D models in terms of the features extracted from the environments, re-

sulting in less ambiguity in distinguishing features [4]. 3-D models are used in

fields varying from robot motion planning and navigation [3, 5, 6, 7], art and

architecture [8, 9, 10, 11, 12] to industry/urban planning, water management,

and forestry documentation [13, 14, 15]. 3-D models can be obtained using a

variety of sensors measuring range or intensity. A commonly used approach in

constructing these models is using laser range finders that measure the range

between the sensor and the objects along the path of the beam emitted by the

sensor. These sensors can supply range measurements within their field of view,

as the laser beam is rotated by the sensor. There are several approaches to ob-

tain 3-D models with these sensors: The first is using a conventional 3-D laser

scanner. However, since these products are very expensive, this approach is not

frequently employed. Another approach is acquiring 3-D range measurements by
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translating a 2-D laser range finder that horizontally or vertically scans a field

of view of 180◦. A third alternative is to acquire the 3-D range information by

rotating the 2-D laser range finder around a fixed axis. In the latter two, multi-

ple 2-D laser range finders can be employed where each sensor scans either the

horizontal or the vertical axis [6]. The most commonly used laser range finders

are the products of SICK AG [16].

Most of the works using 3-D models are in the area of localization and map-

ping for mobile robots. For instance, Brenneke et al. in [3] proposed a technique

for simultaneous localization and mapping (SLAM) in outdoor environments.

They applied the existing 2-D mapping algorithms to one horizontal layer of a

3-D model. Besides that, maps are obtained and used in 3-D SLAM applica-

tions [17, 18, 19]. In order to build either 2-D or 3-D maps from sequentially

acquired scans, iterative closest point algorithm (ICP) is employed, integrated

with odometry measurements [6]. ICP algorithm is also used in the registration

of scans of not only planar surfaces, but also curves and non-planar surfaces, as

in [20]. Besides ICP, semantic information of the range measurements, which is

the gradient between the neighbouring measurements, is also used for the same

purpose [7]. Apart from deterministic methods for the registration of 3-D objects,

parametric methods such as expectation-maximization (EM) [4] and maximum-

likelihood (ML) [21] estimation are employed. Moreover, non-parametric meth-

ods, such as the k-means clustering algorithm [22], are also used for the same

purpose. In addition to modeling with laser scanners only, other devices, such

as panoramic cameras, are used integrated with laser scanners [23]. Besides the

techniques for modeling indoor environments, especially for robot navigation,

terrains are modeled using airborne laser scanners for obtaining terrestrial in-

formation as in [24] and [25]. Apart from modeling the environments above the

sea level, 3-D models of seafloor are also obtained using autonomous underwater

vehicles equipped with a camera, a sonar, and oceanographic sensors [26]. In
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summary, many techniques to acquire and process 3-D measurements have been

developed, and new techniques are continuously being introduced.

In this thesis, we consider an indoor environment scanned in 3-D with laser

range finders. The sensor used in this study is the SICK LMS200 sensor, shown

in Figure 1.1(a). This 2-D device measures the range between itself and the ob-

jects within its field of view, based on the time-of-flight principle. The sweeping

laser beam is aligned by the rotating mirror, as illustrated in Figure 1.1(b). The

laser has a maximum range of 80 m, field of view of 180◦ (Figure 1.1(c)), range

resolution as low as 1 mm, and a selectable angular resolution of either 0.25◦,

0.5◦, or 1◦. The measurements have a systematic error of ±4 cm, as well as some

statistical error that changes with the measurement range, the ambient temper-

ature and illumination, and the reflectivity of the objects in the environment.

The sampling frequency of the measurements is 75 Hz [1]. The advantages of

using a laser beam is reliable detection of object presence and the independence

of the measurements from the amount of ambient light and the colors of the

objects. A major disadvantage is that, for proper operation of the sensor, the

environment should not contain highly reflective or transparent materials, such

as glass. SICK LMS200 is used in various tasks, such as determining volumes

and positions of objects, classification of objects, collision prevention for vehicles,

and surveillance [1].

(a) (b) (c)

Figure 1.1: (a) The front view of SICK LMS200, (b) its measurement principle,
and (c) its field of view (reprinted from [1]).

The scan data collected by any sensor usually needs to be transmitted to

a station where the data are processed and analyzed. If there are several such
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sensors in the environment, such a system can be categorized as a wireless sen-

sor network (WSN), which is a network composed of a number of sensor nodes

expanding over a sensor field. The measurements taken at the nodes are trans-

mitted to the sink (i.e., the station) through the WSN. Establishing a WSN over

a field to monitor some specific properties is advantageous, since adding nodes to

the network, or removing nodes from the network is easy and inexpensive. De-

spite this advantage, communication between the nodes and the sink in WSNs

has limited capabilities in terms of bandwidth, transmission speed, and memory

space [27]. Moreover, the scan data of a 3-D model, which is likely to be com-

prised of hundreds of thousands of range measurements, also needs to be stored

in a medium, where the amount of allocated memory is required to be as small

as possible. Thus, the data must be written to the medium efficiently in terms

of the memory space, as well as the speed in reading and writing operations for

the data. This way, fast and accurate autonomous search and scan systems can

be developed.

To satisfy all of the requirements mentioned above, the scan data must be

compressed before it is transmitted or stored. The amount of data stored in the

data storage medium can be increased, and the elapsed time required to transmit

the data through the communication channel can be reduced by lowering the

size of the data. Although there are many compression techniques developed for

different types of data, determining the optimum data compression technique

with respect to the following criteria is still an open research field:

An important aspect of data compression is the compression ratio (CR),

which is the ratio of the size of the compressed output to the size of the original

data. The CR is between zero and one (or zero and 100%) for compression

operation, and larger than one for expansion operation. The closer the CR is to

zero, the greater the amount of compression [28].
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Salamon in [28] points out that any data compression method is not perfect;

thus compressing any number of bits into one bit, which may be a fictional case,

is such a success that even compressing two bits into one bit can be considered

as “perfect.” Therefore, a compression method can be considered efficient when

the size of the original data is reduced by more than one half. In other words,

an efficient compression method, at least halves the storage and communication

costs [29].

CRs as low as about 20% are commonly observed, and can be even lower.

The CRs for some compression methods used in UNIX operating systems are

reported based on several observations on compressing different types of files:

18% for binary, 36% for C source, 38% for text, 42% for Huffman coding, 43% for

Pascal source, and 73% for arithmetic coding. Finally, CRs as low as 2% have

been reported for specific applications [29].

The amount of distortion is the second aspect in data compression [30]. The

size of the data is lowered by employing either lossless compression techniques

in which the whole information in the data is encoded, or lossy compression

techniques in which the essential part of the information is encoded. Although

distortion, which is the difference between the data and its reconstruction using

the compressed data, is observed in lossy compression, lossy compression methods

are usually preferred, since they result in lower CRs than lossless compression

methods. The distortion can be measured in various ways depending on the type

of data, and is required to be as low as possible. Let x = {xi}Ni=1 and x̂ = {x̂i}Ni=1

represent the data sequence and its reconstruction, respectively. Then, some

widely used measures of distortion between x and x̂ are as follows [30]:

• the mean squared error (MSE) between x and x̂ is 1
N

∑N
i=1(xi − x̂i)2,

• the root mean squared error (RMSE) between x and x̂ is
√

1
N

∑N
i=1(xi − x̂i)2,

• the signal-to-noise ratio (SNR) is
∑N
i=1 x

2
i∑N

i=1(xi−x̂i)2
,
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• the peak-signal-to-noise ratio (PSNR) is
(max{xi}Ni=1)

2∑N
i=1(xi−x̂i)2

.

Speed is another aspect in data compression. It is a measure of how fast the

data is compressed (encoding speed) and reconstructed from the compressed data

(decoding speed) by using a given compression technique. Speed is inversely pro-

portional to the time required for encoding and decoding the data, and required

to be as high as possible.

In this thesis, we propose an effective compression method that can be applied

to 3-D laser range measurements as the data is being acquired. To the best of

our knowledge, solutions that reduce the cost of transmission and storage of the

measurements in 3-D model acquisition do not exist. The main contribution of

this thesis is to provide a model to generate sparse representations of laser range

measurement sequences. These representations include an incredibly small num-

ber of non-zero values compared to the number of measurements in the original

sequences. Then, the sparse representations are compressed by applying sparse

sampling techniques that have been applied in sampling parametric signals [31],

and are based on compressive sensing. The proposed method can be considered

as a kind of difference encoding and is a causal system because it generates sparse

representations based on current and previous measurements. Therefore, it can

compress even an infinite number of range measurement sequences, in theory.

The rest of this thesis is organized as follows: Compressive sensing is reviewed

in Chapter 2. The method is described in detail in Chapter 3 and compared with

widely used compression techniques in terms of the CR, distortion, and speed, in

Chapter 4. Two sets of experimental data, independently acquired at different

institutions, are used for this purpose. Conclusions and directions for future work

are provided in the last chapter. A few of the well-known sparsifying dictionaries

used in compressive sensing are reviewed in Appendix A. Methods for sparsifying

the scan data are described in Appendix B.
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Chapter 2

Background on Compressive

Sensing

Before compressive sensing technique was proposed, classical sampling had been

ruled by the Shannon/Nyquist sampling theorem, which requires sampling a sig-

nal at a minimum rate of twice its bandwidth, in order not to lose the information

content of the signal. Oversampling results in more accurate representation of

the signal despite that it is costly. In compressive sensing, the signal is suc-

cessfully reconstructed with fewer samples than the Shannon/Nyquist sampling

theorem requires. Compressive sensing uses a linear sampling model with an

optimization procedure for reconstructing the original signal [2].

The signals considered here are range measurement sequences taken within

the sensor’s field of view, as column vectors in <N , where N can be very large. As

stated above, compressive sensing focuses on representing the sampled signal with

fewer number of measurements, which are actually linear functions of the original

signal. To achieve this, compressive sensing relies on sparsity and incoherence

properties. Sparsity property requires the signals to have sparse representations

in proper domains. Sparse signals can be represented with a lower sampling
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frequency than the Nyquist rate. Furthermore, sparsity enables discrete-time

signals to be represented with shorter length than their finite length. In other

words, signals can be briefly represented when they are sparsely expressed using

a proper basis Ψ. Incoherence property states that the sparse representation of

the signal on basis Ψ must be extended in the domain in which the signal is

sampled [32].

The first step in compressive sensing is to represent the signal using a proper

basis onto which the representation is sparse. The basis should contain a set of

orthonormal vectors that form a set of waveforms such as the wavelet basis [32].

Let x = [x1, . . . , xN ]T be the column vector that represents the N samples of the

signal in <N . Ψ = [Ψ1, . . . ,ΨN ] stands for the basis matrix with orthonormal

basis vectors {Ψi}Ni=1. Here, it is assumed that the basis vectors are column

vectors in <N so that Ψ is an N ×N matrix. Thus, we can represent the signal

as x =
∑N

i=1 siΨi = Ψs, where s = [s1, . . . , sN ]T in which si =< x,Ψi > for

i = {1, . . . , N} [2], and < ·, · > denotes the inner product of two vectors. Note

that x and s are different representations of the same signal in different domains:

the time domain and the Ψ domain, respectively. If the projection of the signal

onto the basis Ψ is sparse, only a small number of coefficients in s denoted by

K will have large values, whereas the majority denoted by (N − K) will be

close to zero. When K � N , s is referred as K-sparse. The sparsity property

defined here is motivated by the assumption that most signals are compressible

with the choice of a proper basis Ψ. The approximation of signals with K-sparse

representation is the basis of transform coding [2].

At the end of the first step, there are two possible ways to sample the signal:

sample-then-compress framework and linear measurement framework. The first

method is an inefficient way since this method requires acquiring all values in

the signal, and then determining K large values among all values. The second

method, which is the one used in this thesis, proposes a linear measurement
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model without implementing the intermediate step involved in the first method.

The linear measurement model computes M measurements, where M � N . We

assume that the measurement model Φ = [ΦT
1 , . . . ,Φ

T
M ]T is an M×N matrix, and

is composed of basis vectors {Φj}Mj=1, each of which is a column vector in <N . Let

the measurement vector be denoted as y = [y1, . . . , yM ]T composed of {yj}Mj=1,

where yj =< x,Φj >. Thus, the measurement vector can be defined as y =

Φx = ΦΨs = Θs, which has fewer dimensions than the original signal, referred

as the undersampled case [32]. Based on the elements of compressive sensing

described so far, the objective of compressive sensing can be briefly summarized

as determining a measurement model Φ, and a sparsifying basis Ψ, that allow the

reconstruction of the signal x, which is not damaged despite the dimensionality

reduction. More briefly, the objective of compressive sensing is determining Θ [2].

The solution to the determination of Θ must satisfy two important properties:

Restricted Isometric Property (RIP) and incoherence. RIP requires that ζ, a

constant between zero and one, should be close to zero by the following statement:

(1− ζ)‖x‖2
2 ≤ ‖Θx‖2

2 ≤ (1 + ζ)‖x‖2
2 (2.1)

where ‖ · ‖2 is the two-norm of the corresponding vector. The above statement

expresses that any vector multiplied by Θ cannot be in the null space of Θ,

so Θ must preserve the length of the vectors multiplied by itself. The second

requirement for Θ is the incoherence property, which indicates uncorrelatedness

between the sparsifying basis Ψ and the measurement model Φ [32]. Incoherence

states that basis vectors in the measurement model cannot sparsely represent the

basis vectors in the sparsifying basis [2]. Coherence (i.e., the opposite of inco-

herence) between Φ and Ψ can be referred as a measurable quantity, computed

by

µ(Φ,Ψ) =
√
N max

1≤i≤N, 1≤j≤M
| < Ψi,Φj > | (2.2)
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where µ indicates coherence, varying between one and
√
N [32]. Low levels

of coherence are always preferable for building Θ, so that we have maximal

incoherence when µ is one.

One remaining issue in the design of the compressive sensing structure is

determining a lower bound for M , which is the number of measurements obtained

by the measurement model. Since the dimension of the sampled signal N and

the number of non-zero entries in the sparse representation K are both known,

the minimum value of M can be computed from either

M ≥ c1K ln

(
N

K

)
[2] (2.3)

or

M ≥ c2µ
2(Φ,Ψ)K ln(N) [32] (2.4)

where c1 and c2 are small positive constants. In Equation (2.3), the minimum

number of measurements, which is also the minimum number of basis vectors in

the measurement model, is claimed to be proportional to the natural logarithm

of the ratio of the size of the sampled signal N to the sparsity K. Furthermore,

in Equation (2.4), fewer samples in the measurement model are claimed to be

sufficient as the coherence decreases. Both Equation (2.3) and (2.4) demonstrate

the following facts about compressive sensing [32]:

• No information is lost after sampling as soon as a set of M samples that

satisfy Equation (2.3) or (2.4) is acquired in the measurement model.

• The sampled signal can be recovered without any knowledge of where the

zero entries are located in the sparse representation.

After a measurement vector y, which has far smaller dimension than the

original signal x, is obtained, the next step is the reconstruction of the original

signal and its sparse representation s from the measurement vector. At the end

of sampling, we have y = Θs where s is to be estimated, given y and Θ. Since
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Θ is an M × N matrix with M � N , there are infinitely many s̃ that satisfy

y = Θs̃. Therefore, optimization techniques are employed to obtain the optimum

reconstruction of s. The basic idea is to reach the minimum-norm solution to s,

which reduces any part of the null space of Θ in the solution that is desired to

be as sparse as possible. The optimal solution to s is stated as:

ŝ = arg min ‖s̃‖1 such that y = Θs̃ (2.5)

where ‖ · ‖1 is the one-norm of the corresponding vector. Furthermore, if the

sparse representation is reconstructed from noisy measurements, the following

optimization can be considered:

ŝ = arg min ‖s̃‖1 such that ‖y −Θs̃‖2 ≤ ρ (2.6)

where ρ is the bound on the noise in the measurement vector y [33, 34]. Apart

from the one-norm solution, a two-norm solution is available in regularized min-

imization for reconstruction [35]. In this case, ŝ = arg min ‖y −Θs̃‖2
2 + c0‖s̃‖1,

where c0 is a small positive constant. One way to solve the given optimization

problems is to apply basis pursuit algorithms [36]. As soon as the sparse repre-

sentation of the signal s is estimated as ŝ, the original signal x is reconstructed

as x̂ = Ψŝ with a small distortion between x and x̂. In this thesis, we use the

solution given by Equation (2.5) because the measurement model Φ employed

here provides a noiseless measurement vector y.

2.1 Determining the Sparsifying Basis

As stated above, the first step in compressive sensing is to determine the best

sparsifying basis Ψ for efficient representation of the original signal x. Thus,

the projection of x onto this basis should represent x with fewer parameters

than x has, and allow the reconstruction of x with small error. Any sparsifying

basis is composed of a set of basis vectors that are actually waveforms. In the
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literature, these waveforms are called atoms, and the set of atoms that comprise

the sparsifying basis is called a dictionary [36]. Although there are some readily

available dictionaries, such as wavelet packets, cosine packets, Gabor dictionary,

Fourier dictionary, chirplets, and warplets, dictionaries can also be designed and

tailored according to the signal features. In this thesis, Fourier, Gabor, and

Haar dictionaries are tested with the experimental scan data, in order to acquire

sufficiently sparse representations. Detailed information on these dictionaries can

be found in Appendix A.

2.2 Determining the Measurement Model

An interesting application of compressive sensing is the single pixel camera, re-

ported in [37]. In the single pixel camera, image data are considered as compress-

ible signals, so that the images are sampled without taking their projections onto

a sparsifying basis. In the implementation of sampling, light is projected onto a

digital micromirror device (DMD) having an array of N micromirrors, as shown

in Figure 2.1. According to the measurement model used, a random number

generator (RNG) selects a set of micromirrors to focus the reflected light onto a

photodiode. The measurement model is generated in three different ways: raster

scan, basis scan, and compressive sampling. As a result, different combinations

of M pixels out of N are measured by the photodiode. In the raster scan, the

photodiode measures N pixels one at a time (i.e., M = N), where Φ is the N×N

identity matrix. In the basis scan, the photodiode measures M pixels, which are

determined according to the Walsh basis, one at a time. In this model, Φ is the

N ×N Walsh matrix including binary coefficients [38]. In compressive sampling,

the photodiode measures M different linear combinations of N pixels, using ran-

dom test functions. It is shown that the smallest distortion on images occurs

with the smallest number of measurements, which is achieved when compressive

sampling is used as the measurement model.
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Figure 2.1: The operation scheme of the single pixel camera (reprinted from [2]).

To construct a measurement model using random test functions, as in the

compressive sampling model, Candes and Baraniuk propose two alternative

methods that are actually somewhat related to each other. Candes suggests

in [32] that any random measurement model, which is composed of basis vectors

chosen uniformly on the unit sphere, is incoherent with any sparsifying basis with

large probability, so that the coherence is expected to be about
√

2 lnN . Support-

ing this suggestion, Baraniuk suggests in [2] that a measurement model, where

all elements in the model matrix are selected independently from a Gaussian

distribution with zero mean and 1
N

variance, is incoherent with any sparsifying

basis with high probability.

Based on the compressive sampling model, we construct the measurement

model with the number of basis vectors computed by taking c1 = 1 in Equa-

tion (2.3) such that

M = d K ln

(
N

K

)
e (2.7)

where d.e denotes the ceiling function. Following Baraniuk’s suggestion in [2],

the elements in Φ are chosen independently from a Gaussian distribution with

zero mean and 1
N

variance. Then, the row vectors in Φ are orthonormalized by

applying the Gram-Schmidt process. Using this measurement model without a

sparsifying basis, as in the single pixel camera, where Θ = Φ and Ψ is N × N

identity matrix, is advantageous in reconstructing the original signal because
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RIP is satisfied, since Φ has no null space with high probability where ζ is zero

in Equation (2.1). Moreover, the incoherence property is satisfied where µ(Φ,Ψ)

is found likely to be around
√

2 lnN .
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Chapter 3

The Proposed Method

We can use compressive sensing to compress any signal using an appropriate spar-

sifying basis and an incoherent measurement model. This approach is commonly

applied in various fields, such as magnetic resonance imaging in medicine [39]

and interferometric imaging in astronomy [40]. Although forming the measure-

ment model is a straightforward process, forming the sparsifying basis is a more

challenging problem. The main objective in this problem is to find a projection

of the signal onto the sparsifying basis, which contains sufficiently sparse critical

information to recover the signal with small error [33].

Two different experimental data sets are considered as benchmarks in this

thesis. Both of them are comprised of many 3-D scans. Each 3-D scan is acquired

by collecting 2-D scans as the sensor is rotated in numerous steps around a

horizontal axis above the ground level. Each 2-D scan in the data sets is obtained

as the laser beam emitted by the sensor is swept within the sensor’s field of

view in 0.5◦ intervals. The first data set contains 29 3-D scans collected at

different locations in the University of Osnabrück AVZ building in Osnabrück,

Germany [41]. The sensor is rotated in 471 steps to acquire the 2-D scans forming

a 3-D scan in this set. The second set is comprised of 82 3-D scans taken at
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different locations in the Dagstuhl Castle in Saarland, Germany [42]. Each 3-D

scan in this set is acquired by rotating the sensor in 225 steps. As a consequence,

every 3-D scan from the first and the second data set constitutes 471 and 225 2-D

scans, respectively. The 2-D scans are sequentially acquired as vectors in <361

(i.e., N = 361). The 3-D scans in the first set are used in this chapter, where

different features such as a mannequin, a human being, banisters at the top of

the stairs, and chairs are observed, as illustrated in Figure 3.1(a)–(d). In these

images, the intensity values are directly proportional to the range measurements

such that the white color indicates the maximum range measurement whereas

the black color indicates the minimum range measurement.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.1: (a)–(d): Sample data sets collected at the University of Osnabrück
AVZ building, and (e)–(h): their reconstructions.

To apply the sampling model described in Chapter 2, we first consider the

projections of a 3-D scan, illustrated in Figure 3.1(b), onto some of the well-

known sparsifying bases. The 2-D scans forming the 3-D scan are projected one
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at a time onto N ×N sparsifying bases formed by using the Fourier, Gabor, and

Haar dictionaries. According to the parameterization described in Appendix A:

• Fourier dictionary is formed by N cosine waveforms with frequencies ω = lπ
N

where l = {1
2
, 3

2
, . . . , N − 1

2
},

• Gabor dictionary is formed by N waveforms with no delay, unit standard

deviation of the Gaussian envelope of the waveforms, and different frequen-

cies uniformly selected from [0, π),

• Haar dictionary is formed by N wavelets with 1
32

dilation and l
32

translation

for l = {0, 1, . . . , N − 1}.

The percentages of the number of non-zero values to the total number of values in

these projections are plotted in Figure 3.2(a)–(c), respectively. It is observed that

the average percentages are around 74.7%, 61.3%, and 88.7%, in the respective

parts. It is remarkable that the projections onto the bases described above are not

sufficiently sparse, thus both the CR and distortion would be high if compressive

sampling were applied to these projections [33].

(a) (b) (c)

Figure 3.2: The percentage of the number of non-zero values to the total number
of values in the projections of the 3-D scan illustrated in Figure 3.1(b) onto the
bases formed by using (a) Fourier, (b) Gabor, and (c) Haar dictionaries.

During the process of data acquisition, 2-D scans acquired consecutively have

similarities as well as differences. The differences may be caused by changes tak-

ing place in a dynamic environment, as well as by the translational or rotational
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motion of the sensor because at each step, a different cross-section of the 3-D envi-

ronment is observed. Since we observe that the raw 2-D scans do not have highly

sparse representations in the domains listed above, we attempt to represent them

with sparse innovations exploiting the correlation between two consecutively ac-

quired scans, when the sensor is rotated by a small amount before acquiring the

next scan. Thus, we define the innovations between:

(a) two consecutive scans,

(b) each scan and its estimate using linear regression [43] based on the last two

scans,

(c) each scan and its estimate using second-order polynomial fitting [43] based

on the last three scans,

(d) each scan and its estimate adding the previous scan to a difference esti-

mate using a second-order Wiener filter [43] under the assumption that the

differences between consecutive scans form a stationary random sequence,

(e) each scan and its estimate adding the previous scan to a difference estimate

using a 1-D random walk on the previous difference,

(f) each scan and its estimate using a linear Kalman filter with the constant

velocity kinematic state model [44], which is also called a polynomial filter,

because the mesh points in consecutive scans form piecewise polynomial

functions.

The implementation details of the methods (a)–(f) are provided in Appendix B.

The percentages of the number of non-zero values to the total number of values

in the innovations, when these methods are applied to the 3-D scan illustrated

in Figure 3.1(b), are plotted in Figure 3.3. The average percentages are around

43.7%, 92.5%, 99.5%, 71.5%, 27.3%, and 50.9%, respectively. According to these

figures, on the average, we obtain the most sparse innovations in (e), but even
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this is not found to be sufficient. In this thesis, we propose a method to generate

much more sparse innovations with the number of non-zero values being 6.5% of

the total number of values on the average, as plotted in Figure 3.4, for the 3-D

scan illustrated in Figure 3.1(b).

(a) (b) (c)

(d) (e) (f)

Figure 3.3: The percentage of the number of non-zero values to the total number
of values in the innovations, when the methods referred as (a)–(f) are applied
to the 3-D scan illustrated in Figure 3.1(b), respectively.

The proposed method is composed of encoder and decoder parts, where the

encoder consists of sparsifying, measurement, reconstruction stages, and the de-

coder involves only the reconstruction stage, as depicted in Figure 3.5. The

sparsifying model generates sparse innovations for each scan in the sparsifying

stage, and the measurement model samples the innovations with the minimum

number of samples in the measurement stage. Finally, the reconstruction model

rebuilds each scan from the samples encoded by the measurement model in the re-

construction stage. In the following subsections, these three models are described

in more detail.
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Figure 3.4: The percentage of the number of non-zero values to the total number
of values in the sparse representations generated at the sparsifying model for the
3-D scan illustrated in Figure 3.1(b).

Figure 3.5: The operation scheme of the proposed method.
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3.1 The Sparsifying Model

In the sparsifying model, we generate the innovations between consecutive scans

as follows: Suppose rn is the nth 2-D scan that is currently acquired, and rn−1

is the previous one. First, rn−1 is generated at the encoder by employing the

reconstruction procedure in Section 3.3 that the decoder follows, to adapt the

sparsifying parameters according to the reconstruction at the decoder. Then,

rn−1 is approximated to rn by shifting rn−1 along the vertical and horizontal

axes by amplitude (ε) and phase (δ) shifts, respectively. An example illustrating

ε and δ is shown in Figure 3.6(a).

(a) (b)

Figure 3.6: Illustration of (a) the amplitude and phase shifts, and (b) the offset.

Assume that the individual range measurements in rn and rn−1 are denoted

by rn[i] and rn−1[i] for i = 1, 2, . . . , N , respectively. We define an error function

E2 =
∑N

i=1 [rn[i]− (rn−1[i+ δ] + ε)]2 and set its partial derivatives with respect

to ε and δ to zero to find the optimal values of ε and δ. First, we determine ε

from

∂E2

∂ε
=

N∑
i=1

[−2rn[i] + 2 (rn−1[i+ δ] + ε)] = 0 (3.1)

When we neglect the δ term in Equation (3.1), we get a solution for ε:

ε =
1

N

N∑
i=1

(rn[i]− rn−1[i]) (3.2)
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In other words, ε corresponds to the average amplitude difference between rn

and rn−1. Then, we determine δ from

∂E2

∂δ
=

N∑
i=1

(
−2rn[i]

∂rn−1[i+ δ]

∂δ
+ 2 (rn−1[i+ δ] + ε)

∂rn−1[i+ δ]

∂δ

)
= 0 (3.3)

The rn−1[i + δ] term in Equation (3.3) can be expanded using a Taylor series

expansion around i, such that rn−1[i + δ] = rn−1[i] + r′n−1[i]δ + 1
2
r′′n−1[i]δ2 + . . .,

where r′n−1[i] and r′′n−1[i] are the first- and second-order differences of the sequence

rn−1 at i, respectively. Assuming that δ is very small compared to N , we use

only the first two terms of the expansion and obtain the following first-order

approximation to δ:

δ =

∑N
i=1 r

′
n−1[i] (rn[i]− rn−1[i]− ε)∑N

i=1 r
′
n−1[i]2

(3.4)

If we use the first three terms of the expansion to obtain a more precise

expression for δ, the second-order approximation to δ is one of the roots of the

following equation, which minimizes E2:

∂E2

∂δ
= δ3

N∑
i=1

r′′n−1[i] + 3δ2

N∑
i=1

r′n−1[i]r′′n−1[i] + 2δ
N∑
i=1

(
εr′′n−1[i] + r′n−1[i]2

+rn−1[i]r′′n−1[i]− rn[i]r′′n−1[i]
)

+ 2
N∑
i=1

r′n−1[i] (ε+ rn−1[i]− rn[i]) = 0

(3.5)

The value of E2 for the 3-D scan illustrated in Figure 3.1(b) is plotted in

Figure 3.7 with respect to both approximations to δ. We observe that the first-

and second-order approximations to δ result in nearly the same values of E2.

Moreover, computing the first-order approximation to δ requires much less time

than computing the second-order approximation. Therefore, it seems sufficient

to use the first-order approximation to δ as given by Equation (3.4).

Shifting rn−1 along the vertical and the horizontal axes by ε and δ, respec-

tively, we obtain an approximation r̂n to rn. Then, the difference sequence is

ṽn
∆
= rn − r̂n. Here, ṽn is a sparse signal representing discontinuities in the
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(a) (b)

Figure 3.7: The amplitude of E2 with respect to (a) first- and (b) second-order
approximation to δ for the data set illustrated in Figure 3.1(b).

scanned environment. To illustrate this fact, the difference sequences obtained

for the 3-D scans given in Figure 3.1(a)–(d) are shown in Figure 3.8(a)–(d), re-

spectively. In these figures, the darker features correspond to larger differences.

Note that most of the dark features in these images occur where there is a sudden

change in the measured range.

(a) (b) (c) (d)

Figure 3.8: Illustrations of the difference sequences obtained for the 3-D scans
given in Figure 3.1(a)–(d).

If there is any remaining offset level in ṽn as in the example given in Fig-

ure 3.6(b), ṽn is further shifted to the zero level either in the positive or the

negative vertical direction by the offset value (∆) indicated in the figure to im-

prove the sparsity. Here, ∆ is the most frequently appearing value in ṽn. After

shifting the amplitude of ṽn by ∆, we eventually obtain a highly sparse inno-

vation vn. The frequencies of the different values appearing in vn’s generated
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during the compression of every 3-D scan in the first data set is given in Fig-

ure 3.9. According to the figure, the frequency of zeroes is much higher than the

other values, verifying the sparsity of vn.

Figure 3.9: The frequencies of appearance of different values in vn.

After we obtain the innovation sequence vn, we need to test whether con-

secutive innovation sequences, delayed in time by τ , are correlated with each

other or not. We apply a whiteness test in the autocorrelation domain for this

purpose. We assume that the innovation sequence vn of two consecutive 2-D

scans consists of N random variables vn[i] where i = 1, . . . , N and the consec-

utive random variables in time form a white and stationary random sequence.

Similarly, an innovation sequence vn+τ , delayed in time by τ , is comprised of the

elements vn+τ [i]. Then, the autocorrelation sequence of the ith random variable

in vn[i] is given by Rv[i](τ) = E {vn[i]vn+τ [i]} where E{·} denotes the expectation

operator. If the sequence is indeed white, ideally, the autocorrelation sequence

Rv[i](τ) should be an impulse sequence whose value is σ2
v for τ = 0 and zero for

τ 6= 0.

When only a limited (finite) number of observations of vn[i] are available, a

biased sample autocorrelation estimate of vn[i] can be made as follows:

R̂v[i](τ) =
1

N0

N0−τ∑
n=1

vn[i]vn+τ [i] (3.6)
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where N0 is the number of available observations of vn[i] in time. (Here, N0

is same as the number of 2-D scans that constitute a 3-D scan). With finite

and fixed number of samples N0, the sample autocorrelation estimate will have

some fluctuations around the ideal (zero) that need to be tested for statistical

significance. If N0 is sufficiently large (N0 ≥ 16), it can be shown that [45] the

distribution of the sample autocorrelation estimates around the true value for

nonzero τ is well approximated by a Gaussian distribution with zero mean and

standard error given by

σ̂R̂(τ) =
1√
N0

R̂v[i](0) for τ 6= 0 (3.7)

To smoothen the autocorrelation estimate R̂v[i](τ), we average N sample au-

tocorrelation estimates for i = 1, . . . , N to get:

R̂v(τ) =
1

N

N∑
i=1

R̂v[i](τ)

=
1

N

N∑
i=1

1

N0

N0−τ∑
n=1

vn[i]vn+τ [i]

=
1

N

1

N0

N0−τ∑
n=1

N∑
i=1

vn[i]vn+τ [i]

=
1

N

1

N0

N0−τ∑
n=1

vT
nvn+τ (3.8)

According to the central limit theorem, R̂v(τ) is also normally distributed with

zero mean because it is the average of N autocorrelation estimates, each of

which is Gaussian with finite mean and variance. Therefore, the expected value

E{R̂v(τ)} of R̂v(τ) is zero for τ 6= 0. Then, the variance of R̂v(τ) for τ 6= 0 is

25



derived using Equation (3.8) as follows:

σ2
R

= E

{
R̂

2

v(τ)

}
− E2

{
R̂v(τ)

}
= E

{
R̂

2

v(τ)

}

= E

 1

N2

1

N2
0

(
N0−τ∑
n=1

vT
nvn+τ

)2


=
1

N2

1

N2
0

N0−τ∑
n=1

[
E
{(

vT
nvn+τ

)2
}

+ 2

N0−τ∑
m=1, m6=n

E
{
vT
nvn+τv

T
mvm+τ

}]

=
1

N2

1

N2
0

N0−τ∑
n=1

[
E
{(

vT
nvn+τ

)2
}

+ 2

N0−τ∑
m=1, m6=n

E
{
vT
nvn+τ

}
E
{
vT
mvm+τ

}]
(3.9)

The last step follows from the assumption of uncorrelatedness of vn in time, and

furthermore, E
{
vT
nvn+τ

}
= E

{
vT
mvm+τ

}
= 0. Therefore, the second term in

Equation (3.9) does not contribute to σ2
R

and the equation reduces to:

σ2
R

=
1

N2

1

N2
0

N0−τ∑
n=1

E
{(

vT
nvn+τ

)2
}

(3.10)

According to the σ2
R

found in Equation (3.10), using the innovation sequences

of the first data set, we estimate the standard error σR of the distribution of

R̂v(τ) for τ 6= 0. If vn is indeed comprised of N random variables that form

a white and stationarity random sequence in time, R̂v(τ) must be zero mean

white Gaussian, and 95.4% and 99.6% of R̂v(τ) for τ 6= 0 must lie within ±2σR

and ±3σR, respectively. R̂v(τ) is estimated using the observations of the inno-

vation sequences acquired during the compression of all 3-D scans, and plotted

in Figure 3.10. According to the figure, it is observed that vn is indeed a white

sequence in time, since 97.5% and 98.5% of Rv(τ) when τ 6= 0 lie within ±2σR

and ±3σR, respectively.

Under the additional assumption that the elements vn[i], i = 1, . . . , N of each

innovation sequence vn are uncorrelated with each other as well (i.e., in the

direction of the 2-D scan) the standard error in Equation (3.10) becomes:

σ̂R(τ) =
1√
N

1√
N0

R̂v[i](0) for τ 6= 0 (3.11)
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Figure 3.10: The average of the sample autocorrelation estimate of vn with ±2σR
and ±3σR standard error boundaries.

Thus, averaging N independent autocorrelation estimates reduces the variance

by a factor of 1
N

and reduces the standard error by a factor of 1√
N

.

Consequently, rn is represented with ε, δ, ∆, and vn. When rn and rn−1 are

highly correlated, vn becomes very small, so rn is represented without vn in that

case. On the other hand, when rn and rn−1 are not sufficiently correlated, vn

does not become a sparse sequence. This time, rn is not encoded. The degree of

correlation between rn and rn−1 is measured by comparing the RMSE between

rn and r̂n with an experimentally determined threshold that is ten times the

maximum allowable distortion that can be tolerated in the reconstruction of rn.

The threshold is 200 cm, since 20 cm is determined to be the upper bound on

the distortion in the reconstructions. (When the distortion is over 20 cm, it is

observed that the objects in the reconstructed 3-D scans are hardly recognized

visually.) When rn is encoded, the algorithm followed in the sparsifying model

is briefly delineated in the flowchart in Figure 3.11.

Finally, the performance of the sparsifying basis under additive white Gaus-

sian noise is analyzed. The 2-D scans in the 3-D scan illustrated in Figure 3.1(b)

27



Figure 3.11: The flowchart of the sparsifying model algorithm.

are sparsified after zero mean white Gaussian noise is added to them. The per-

centage of the non-zero values in the representations, when no noise is added to

the 3-D scan, is given in Figure 3.12(a). In this case, 6.5% of the values in the

representations are non-zero on the average, the lowest achieved so far. When

the standard deviation of the noise is 1, 2, 3, 4, 5, 10, 20, and 30 cm, the per-

centages of the number of non-zero values to the total number of values in the

sparse representations are given in Figure 3.12(b)–(i), respectively. The aver-

age percentages of non-zero values in these cases are 5.1%, 4.5%, 7.3%, 11.8%,

13.7%, 20.3%, 73.7%, and 81.9%, respectively. As the sparsity of the representa-

tions mentioned above are compared with each other, it is observed that under

the presence of noise with standard deviation up to 3 cm, the sparsifying model

maintains its performance that is observed in the case without any added noise.

Besides that, the model provides representations with acceptable sparsity, under

the presence of noise with standard deviation as much as 10 cm. Beyond this

level of noise, the representations cannot be considered as sparse.

28



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.12: The percentage of the number of non-zero values to the total number
of values in the sparse representations generated at the sparsifying model for the
3-D scan illustrated in Figure 3.1(b) with white Gaussian noise with zero mean
and 0, 1, 2, 3, 4, 5, 10, 20, and 30 cm standard deviation, respectively.
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Note that the method proposed here has some similarities with optical flow

techniques used for motion estimation in image and video processing [46, 47]. In

optical flow, spatial and temporal shifts are used to estimate the relative motion

between the scene and the camera (the observer). The solution of the following

partial differential equation is required:

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0 (3.12)

where Vx and Vy are the x and y components of the velocity of the optical flow of

the intensity I(x, y, t), and ∂I
∂x

, ∂I
∂y

, and ∂I
∂t

are the partial derivatives of the image

at (x, y, t) in the corresponding directions. In our method, two spatial shifts δ

and ε (and ∆) are involved whose time derivatives correspond to Vx and Vy in

the optical flow equation, respectively.

3.2 The Measurement Model

The measurement model gets the minimum number of samples from vn by using

either simple coding (SC) or compressive sampling (CS). Simple coding encodes

vn with the pairs of location and amplitude of the non-zero values in vn. The

measurement size M in this case, increases proportionally with the number of

non-zero values K, where M = 2K. Despite this, the reconstruction error is

zero when vn is rebuilt from the measurements taken with SC. Compressive

sampling measures arbitrary linear combinations of the values in vn. In this

case, the measurement model is determined as described in Section 2.2, and M

is determined using Equation (2.7). Then, vn is encoded with the multiplication

Φvn. Furthermore, the resulting reconstruction error, which arises when vn is

rebuilt from the measurements taken with CS, increases with K. This fact is

illustrated in Figure 3.13 with the graph of the average RMS of the observed

reconstruction error with respect to K, during the compression of all 3-D scans
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in the first data set. The measurements obtained from vn using either SC or CS

are kept in a column vector m in <M .

Figure 3.13: The RMS of the reconstruction error with respect to the number of
non-zero values in the sparse data, when the 2-D scans from all 3-D scans in the
first data set are sampled using compressive sampling.

The measurement size M for the measurements m taken using either SC

or CS is illustrated in Figure 3.14. According to the figure, SC seems to be

advantageous over CS in terms of M and the reconstruction error, when K is

below the level indicated by K∗ in the figure. Here, K∗ is the value of K that

makes M for SC equal to M for CS. Consequently, we apply SC when K ≤ K∗,

and apply CS, otherwise. We include a special character (i.e., π) at the beginning

of m when SC is applied to inform the decoder that we are using SC instead of CS.

Besides, when K > N
2

, vn cannot be considered sparse, since the reconstruction

error would be very high if vn were sampled using CS. In that case, rn is not

encoded. When rn is encoded, the algorithm followed in the measurement model

is given in the flowchart in Figure 3.15.

At the output of the measurement model, rn is represented with {ε, δ, ∆, m}

if it is encoded. Otherwise, rn is left as it is, which is indicated by the impulses

with amplitude N in Figure 3.16(a), where the lengths of the representations for
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Figure 3.14: The measurement size M in SC and CS with respect to the number
of non-zero values of a signal in <361.

Figure 3.15: The flowchart of the measurement model algorithm.
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each 2-D scan in the 3-D scan illustrated in Figure 3.1(b) are shown. Here, one

can consider whether it may be possible to achieve measurements with shorter

lengths using a simpler method, such as run length encoding (RLE) [48]. RLE

first determines the sets in the input data, each of which is formed by the rep-

etition of a single character. Then, it encodes each set with its length and the

character repeated in this set. This simple method is commonly used in encoding

fax images of typical office documents. The lengths of measurements when RLE

is employed to encode vn for the same 3-D scan are given in Figure 3.16(b). As

the two parts of Figure 3.16 are compared, it is seen that the measurement model

of the proposed method provides more efficient measurements than RLE.

(a) (b)

Figure 3.16: The length of the measurements for the data set illustrated in
Figure 3.1(b), when (a) the measurement model and (b) RLE are employed.

3.3 The Reconstruction Model

The reconstruction model rebuilds rn from the output generated by the encoder.

When rn is encoded, the output is composed of {ε, δ,∆,m}, and its length is

(M + 3), which is less than N . If rn is not encoded, the output is rn with

length N . Therefore, the reconstruction procedure starts with determining the

length of the encoder output. If the length is N , the output is stored directly as

the reconstruction of rn. Otherwise, the rest of the reconstruction procedure is

applied to the output.
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In the reconstruction procedure, the output is then decomposed into ε, δ, ∆,

and m. After this step, rn−1, which is previously reconstructed, is shifted along

the vertical and horizontal axes by ε and δ, respectively. The resultant signal

r̂n is the approximation to rn. Afterwards, ṽn is rebuilt from m and ∆. In this

step, if the first value of m is π, then vn is rebuilt, decoding the rest of m with

respect to the SC scheme, which involves filling an empty signal in <N with the

values of location and amplitude pairs given in the measurements. Otherwise,

vn is rebuilt, decoding m with respect to the CS scheme, which involves solving

Equation (2.5), where y = m, Θ = Φ, and ŝ = vn, following the procedure

in [33]. In our implementation, vn is determined using the MATLAB function

“perform l1 recovery” written by Peyre [49]. Then, ṽn is obtained by shifting the

amplitude of vn by −∆. Eventually, rn is reconstructed by adding ṽn to r̂n. The

algorithm followed in the reconstruction model is summarized in the flowchart

in Figure 3.17.

The reconstruction model is used at the decoder, as well as at the encoder to

estimate the reconstructions generated by the decoder.
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Figure 3.17: The flowchart of the reconstruction model algorithm.
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Chapter 4

Comparing Compression

Performance of the Proposed

Method with Some Well-Known

Compression Techniques

In this chapter, we compare the compression performance of the proposed method

with some well-known and widely used lossless and lossy compression tech-

niques. The 3-D scans referred as scan 01, scan 02, . . . etc., are compressed

by applying each technique to the 2-D scans forming the 3-D scans individu-

ally. For each technique in the comparison, we compare the overall CR, the

average distortion (D) that is the average RMSE between the 2-D scans and

their reconstructions defined in Chapter 1, and the time required for encoding

(tenc) and decoding (tdec) the 3-D scans. These values are found by averaging

over the values obtained for all 3-D scans, including 4, 930, 899 (= 29 3-D scans×

471 2-D scans×361 measurements) range measurements in the first data set, and

6, 660, 450 (= 82 3-D scans×225 2-D scans×361 measurements) range measure-

ments in the second data set.
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The following implementations are executed on a computer platform with

2 GHz Intel Core2 Duo processor including 2 GB RAM. All executable tasks are

run in MATLAB environment installed on Microsoft Windows Vista operating

system.

4.1 Implementation and Comparison with Well-

Known Lossless Techniques

In this section, the 3-D scans in the first data set are compressed using four

different lossless techniques, which are Huffman, arithmetic, ZLIB, and GZIP

coding techniques.

Huffman coding maps every character in the input data to distinct binary pat-

terns based on the frequency of appearance of the characters. It is the optimal

lossless coding technique since the characters that appear more frequently are

mapped to shorter patterns than the characters that appear less frequently, and

the two characters that appear least frequently are mapped to two different pat-

terns having the same length [30]. Arithmetic coding maps blocks of characters,

instead of single characters, to distinct binary patterns based on how frequently

the blocks appear. It is observed that arithmetic coding can sometimes be more

efficient than Huffman coding, depending on the nature of the signal to be en-

coded [30]. The 3-D scans are encoded by Huffman and arithmetic coding using

the huffmanenco and arithenco functions in MATLAB Communications Toolbox,

respectively.

ZLIB and GZIP are two popular compression techniques that are variations

of LZ77 [50], which is a widely used compression method that encodes repeated

strings in the input data with pairs of distance and length. Distance is the

separation between the beginning of the last location and the previous location of
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the repeated string in the data. Length is the size of the corresponding repeated

string. Two independent Huffman trees are used in compressing distance and

length information, respectively. ZLIB is a general purpose coding library, and

can be used in any operating system. ZLIB is reported to provide satisfactory

compression on various types of data with optimum use of system resources.

ZLIB is also claimed to be able to compress the input data at most by 99.9% in

theory [51]. GZIP is a coding technique that is designed to be used instead of

compress, which is a compression utility used in UNIX operating systems. The

files that have been compressed using GZIP carry the suffix “.gz” [52]. The 3-D

scans are encoded by ZLIB and GZIP using the functions written by Kleder [53]

and Hopkins [54], respectively.

The compression performances of the lossless methods mentioned here are

tabulated in Table 4.1 and 4.2. According to the values in the table, arithmetic

coding can be said to be efficient in terms of the CR, however it is slow com-

pared to the other techniques except Huffman coding. On the other hand, these

techniques compress less than arithmetic coding. Despite the high average CR

when Huffman coding is applied to the raw scan data, the CR can be lowered by

coding the differences between consecutive 2-D scans, since the range of the dis-

tinct characters in the differences is narrower than in the raw scan data. With

this approach, both the CR and tenc of Huffman coding is reduced to about

12% and 49 seconds, respectively. However, coding the differences instead of the

raw scan data may not lower the CR for other compression techniques because

their compression performance is not directly related to the range of the distinct

characters in the input data, as in Huffman coding. For instance, the average

CR for arithmetic coding increases to 16.4%. The compression performances for

Huffman coding and arithmetic coding in this case are given in Table 4.3.
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Huffman coding arithmetic coding
3-D scan CR (%) tenc (s) tdec (s) CR (%) tenc (s) tdec (s)

scan 01 41.8 157.4 603.1 4.2 31.6 40.1
scan 02 42.2 182.3 682.8 10.9 36.9 48.0
scan 03 43.0 219.6 798.1 11.3 37.7 49.0
scan 04 40.8 160.5 638.4 11.3 36.5 47.6
scan 05 40.6 156.5 605.1 11.3 35.9 46.7
scan 06 40.2 125.5 510.6 11.3 35.2 45.8
scan 07 40.6 138.0 538.4 11.1 36.7 48.1
scan 08 39.5 123.7 487.0 10.9 38.0 50.1
scan 09 41.2 152.6 600.7 10.9 38.5 50.4
scan 10 41.6 153.5 592.7 11.1 39.7 51.9
scan 11 41.7 186.0 687.7 12.0 38.3 49.4
scan 12 40.5 128.3 488.4 11.2 37.2 48.8
scan 13 41.7 170.2 608.1 11.2 38.4 50.3
scan 14 42.8 196.7 685.8 11.3 38.3 49.6
scan 15 43.3 203.4 709.5 11.4 40.3 52.7
scan 16 42.1 172.6 623.5 11.1 38.0 49.7
scan 17 42.6 187.9 664.9 11.4 38.2 49.7
scan 18 41.7 151.8 568.2 11.4 39.9 52.1
scan 19 40.2 126.6 482.2 11.1 37.4 48.7
scan 20 41.1 135.5 518.1 11.1 38.0 49.2
scan 21 41.3 138.2 525.7 11.2 37.1 48.6
scan 22 40.8 147.4 542.9 11.2 36.9 48.1
scan 23 42.2 191.2 659.7 11.4 37.4 48.8
scan 24 42.1 202.8 691.2 12.0 38.0 48.9
scan 25 43.0 169.8 630.3 11.5 38.0 49.2
scan 26 41.5 166.5 597.2 11.7 37.4 48.6
scan 27 42.7 179.5 645.5 11.9 38.3 49.3
scan 28 42.1 178.2 632.1 11.9 37.9 48.8
scan 29 43.1 200.4 698.0 11.9 39.1 50.5

average: 41.7 165.6 610.6 11.1 37.6 48.9

Table 4.1: Compression ratio (CR), the time required for encoding (tenc) and
decoding (tdec) when the raw 3-D scans in the first data set are compressed using
Huffman and arithmetic coding.
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ZLIB GZIP
3-D scan CR (%) tenc (s) tdec (s) CR (%) tenc (s) tdec (s)

scan 01 66.3 0.4 0.2 76.7 0.6 0.3
scan 02 67.3 0.4 0.2 76.7 0.5 0.3
scan 03 68.9 0.4 0.2 76.7 0.5 0.3
scan 04 62.5 0.4 0.2 76.7 0.5 0.3
scan 05 63.4 0.4 0.2 76.7 0.5 0.3
scan 06 60.8 0.4 0.2 76.7 0.5 0.3
scan 07 64.6 0.4 0.2 76.7 0.5 0.3
scan 08 60.6 0.4 0.2 76.7 0.5 0.3
scan 09 63.2 0.4 0.2 76.7 0.6 0.4
scan 10 64.2 0.4 0.2 76.7 0.5 0.3
scan 11 70.1 0.4 0.2 76.7 0.5 0.3
scan 12 61.8 0.4 0.2 76.7 0.5 0.3
scan 13 65.2 0.4 0.2 76.7 0.5 0.3
scan 14 65.2 0.4 0.2 76.7 0.5 0.3
scan 15 65.8 0.4 0.2 76.7 0.5 0.3
scan 16 63.3 0.4 0.2 76.7 0.5 0.3
scan 17 65.9 0.4 0.2 76.7 0.5 0.3
scan 18 64.3 0.4 0.2 76.7 0.5 0.3
scan 19 61.7 0.4 0.2 76.7 0.5 0.3
scan 20 64.9 0.4 0.2 76.7 0.5 0.3
scan 21 60.6 0.4 0.2 76.7 0.5 0.3
scan 22 66.8 0.4 0.2 76.7 0.6 0.3
scan 23 64.1 0.4 0.2 76.7 0.5 0.4
scan 24 68.9 0.4 0.2 76.7 0.5 0.3
scan 25 72.8 0.5 0.2 76.7 0.5 0.3
scan 26 64.5 0.4 0.2 76.7 0.5 0.3
scan 27 68.7 0.4 0.2 76.7 0.5 0.3
scan 28 67.6 0.4 0.2 76.7 0.5 0.3
scan 29 70.9 0.4 0.2 76.7 0.5 0.3

average: 65.3 0.4 0.2 76.7 0.5 0.3

Table 4.2: Compression ratio (CR), the time required for encoding (tenc) and
decoding (tdec) when the raw 3-D scans in the first data set are compressed using
ZLIB and GZIP.
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Huffman coding arithmetic coding
3-D scan CR (%) tenc (s) tdec (s) CR (%) tenc (s) tdec (s)

scan 01 11.5 672.7 12.3 7.8 40.8 50.8
scan 02 12.2 27.8 14.1 12.8 44.2 55.9
scan 03 11.4 24.3 12.0 13.1 44.7 56.7
scan 04 11.4 25.7 12.5 13.2 43.9 55.5
scan 05 11.1 23.4 11.4 13.3 43.9 55.7
scan 06 11.5 24.5 12.1 13.1 43.8 55.6
scan 07 11.7 25.3 12.6 12.8 43.4 55.3
scan 08 11.3 24.1 11.9 12.5 42.5 54.7
scan 09 11.4 25.8 12.7 12.4 43.5 55.8
scan 10 12.1 27.6 13.9 12.8 43.9 56.0
scan 11 13.3 31.5 16.7 14.5 44.8 55.7
scan 12 11.5 25.1 12.5 12.9 43.5 55.3
scan 13 11.9 25.9 13.0 13.0 44.7 56.9
scan 14 11.9 26.5 13.4 13.2 45.0 57.2
scan 15 11.5 25.3 12.6 13.4 45.2 57.2
scan 16 11.7 25.2 12.6 12.9 44.8 56.8
scan 17 11.9 25.9 13.0 13.3 45.1 57.3
scan 18 11.7 25.7 12.9 13.4 45.4 57.4
scan 19 11.4 24.9 12.2 21.0 47.4 61.8
scan 20 11.7 25.4 12.8 21.6 47.7 62.4
scan 21 11.0 23.0 11.2 21.7 47.3 62.1
scan 22 13.7 29.8 16.1 21.7 46.8 61.5
scan 23 12.8 26.5 13.8 22.0 47.8 62.4
scan 24 13.7 29.3 15.8 23.3 48.3 62.0
scan 25 12.0 24.8 12.6 22.2 48.7 63.2
scan 26 13.8 31.0 16.7 22.8 48.1 62.2
scan 27 13.5 33.0 17.6 23.1 49.0 63.0
scan 28 14.1 32.2 17.5 23.1 49.3 63.4
scan 29 14.0 30.8 16.8 23.1 49.2 63.5

average: 12.0 49.0 14.0 16.4 45.6 58.4

Table 4.3: CR, tenc, and tdec when the differences between consecutive scans in
the first data set are compressed using Huffman and arithmetic coding.
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4.2 Implementation and Comparison with Well-

Known Lossy Techniques

Besides the lossless compression techniques, we also apply two lossy compression

methods to the 3-D scans in the first data set: JPEG and the wavelet transform.

In this case, we analyze the compression performance also in terms of D, which

indicates the average distortion on each sample in the reconstructions.

Since the 2-D scans forming a 3-D scan are basically cross-sectional intensity

images of the scanned environment where the intensity values represent the depth

information, JPEG compression is applied first. JPEG refers to a family of image

compression standards including both lossless and lossy techniques. Lossy JPEG

techniques are based on the discrete cosine transform (DCT) applied on 8 × 8

blocks of pixels in the image data. The CR for lossy JPEG is claimed to be

as low as about 5% in compressing colored images, when the distortion in the

reconstructed images is not visually recognizable [55]. In colored images, each

pixel is represented with three channels, each of which holds an 8-bit intensity

value that corresponds to an unsigned integer between 0 and 255. On the other

hand, range measurements in the 2-D scans from the experimental data sets are

unsigned integers between 0 and 8000 cm that can be represented with 16-bits.

Therefore, before encoding a 2-D scan using JPEG, each range measurement is

encoded with three channels such that the most significant eight bits are placed in

the first channel, the least significant eight bits are placed in the second channel,

and the third channel is left blank. Then, the 2-D scan, which is now a 1 × N

image with three channels, is duplicated eight times to form an 8×N image, since

JPEG divides the image into 8× 8 blocks before applying DCT. Eventually, the

resultant image data is encoded by lossy JPEG using MATLAB imwrite function.

The compression performance of JPEG is given in Table 4.4. According to the
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table, JPEG can be considered as a fast technique with about 9% CR, but a

large distortion of 164.6 cm.

JPEG
3-D scan CR (%) D (cm) tenc (s) tdec (s)

scan 01 8.8 142.2 4.0 7.2
scan 02 9.0 149.8 3.7 6.7
scan 03 8.7 131.0 3.5 6.8
scan 04 8.9 103.0 3.8 6.7
scan 05 8.8 137.5 4.1 7.4
scan 06 8.8 137.3 4.6 7.3
scan 07 8.7 140.1 4.7 7.2
scan 08 8.6 135.9 6.4 8.0
scan 09 8.6 135.1 4.3 7.7
scan 10 9.0 149.0 4.3 7.5
scan 11 9.5 186.6 4.9 7.8
scan 12 8.6 156.4 6.4 9.3
scan 13 8.8 174.7 4.4 8.1
scan 14 8.9 179.0 5.0 8.2
scan 15 9.1 172.8 4.8 7.7
scan 16 8.7 169.2 3.7 7.0
scan 17 8.9 158.9 3.6 6.8
scan 18 9.0 136.6 3.8 6.7
scan 19 8.6 97.9 3.6 6.9
scan 20 8.7 107.5 3.8 6.8
scan 21 8.7 127.9 3.8 6.8
scan 22 9.2 179.0 3.7 6.9
scan 23 8.8 207.3 3.6 7.2
scan 24 9.1 293.6 3.8 7.2
scan 25 8.8 120.6 3.5 6.7
scan 26 9.0 268.7 3.7 6.9
scan 27 9.8 176.6 4.0 7.3
scan 28 9.9 252.7 3.6 7.3
scan 29 9.8 246.6 3.4 7.2

average: 9.0 164.6 4.2 7.3

Table 4.4: CR, D, tenc, and tdec when the first data set is compressed using JPEG.

Besides JPEG, the wavelet transform, which is also widely used in image

compression, is applied to the raw scan data. The wavelet transform analyzes

the input signal at separate bandwidths by applying the input signal to a specific

filterbank that is a set of low-pass and high-pass filters connected together in a
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network. The basic structure is a two-channel filterbank, which is formed by

analysis and synthesis parts, as depicted in Figure 4.1. There are generally pairs

of low-pass (H0) and high-pass (H1) filters in the analysis part, where the input

signal is divided into the high frequency (xH) and low frequency (xL) compo-

nents with half the length of the input signal, after they are downsampled by

2. The signal is then reconstructed from the summation of these components

in the synthesis part, where the components are first upsampled by 2, then ap-

plied to the synthesis filter pairs (F0 and F1) [56]. Every 2-D scan in the 3-D

scans is compressed using up to 3-level wavelet transform with Haar filterbank,

for which the function dwt in MATLAB Wavelet Toolbox is employed. The raw

scan data is decomposed into a number of frequency components ranging from

low frequencies to high frequencies denoted by xL and xH in 1-level transform;

xLL, xLH , xHL, xHH in 2-level transform; xLLL, xLLH , xLHL, xLHH , xHLL, xHLH ,

xHHL, xHHH in 3-level transform as placed in the analysis part given in Fig-

ure 4.2(a). For the reconstruction, only the lowest frequency components, which

are xL, xLL, xLLL in 1-level, 2-level, and 3-level transforms, respectively, are

used in the synthesis part given in Figure 4.2(b). Therefore, there appears some

distortion on the reconstructions. According to the compression performances

given in Table 4.5, the CR decreases exponentially for the wavelet transform as

the level increases. On the other hand, the distortion increases simultaneously.

Furthermore, the wavelet transform is very fast, such that the time required for

encoding or decoding does not exceed one second.

Figure 4.1: Two-channel filterbank structure.
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1-level transform 2-level transform 3-level transform
3-D CR D tenc tdec CR D tenc tdec CR D tenc tdec

scan (%) (cm) (s) (s) (%) (cm) (s) (s) (%) (cm) (s) (s)
scan 01 50.2 18.0 0.3 0.3 25.2 25.1 0.6 0.6 12.7 33.5 0.8 1.0
scan 02 50.2 22.0 0.3 0.3 25.2 31.4 0.6 0.6 12.7 38.2 0.8 1.0
scan 03 50.2 24.5 0.3 0.3 25.2 31.2 0.5 0.6 12.7 35.5 0.8 1.0
scan 04 50.2 24.1 0.3 0.3 25.2 34.2 0.5 0.6 12.7 43.8 0.8 0.9
scan 05 50.2 19.0 0.3 0.3 25.2 27.9 0.5 0.6 12.7 36.4 0.8 1.0
scan 06 50.2 18.5 0.3 0.3 25.2 25.1 0.5 0.6 12.7 31.8 0.8 0.9
scan 07 50.2 12.5 0.3 0.3 25.2 17.2 0.6 0.6 12.7 23.0 0.8 1.0
scan 08 50.2 9.2 0.3 0.3 25.2 13.0 0.5 0.6 12.7 17.0 0.8 0.9
scan 09 50.2 9.3 0.3 0.3 25.2 14.7 0.6 0.6 12.7 19.6 0.8 1.0
scan 10 50.2 16.4 0.3 0.3 25.2 25.2 0.5 0.6 12.7 34.7 0.8 1.0
scan 11 50.2 33.3 0.3 0.3 25.2 44.7 0.5 0.6 12.7 54.5 0.8 1.0
scan 12 50.2 15.3 0.3 0.3 25.2 21.3 0.5 0.6 12.7 26.4 0.8 0.9
scan 13 50.2 15.1 0.3 0.3 25.2 20.5 0.5 0.6 12.7 25.9 0.8 0.9
scan 14 50.2 15.7 0.3 0.3 25.2 25.9 0.6 0.6 12.7 31.9 0.8 0.9
scan 15 50.2 22.1 0.3 0.3 25.2 31.6 0.5 0.6 12.7 40.0 0.8 1.0
scan 16 50.2 15.5 0.3 0.3 25.2 22.1 0.5 0.6 12.7 29.0 0.8 0.9
scan 17 50.2 19.9 0.3 0.3 25.2 27.1 0.6 0.7 12.7 31.3 0.9 1.0
scan 18 50.2 22.6 0.3 0.3 25.2 29.9 0.5 0.6 12.7 35.6 0.8 0.9
scan 19 50.2 22.6 0.3 0.3 25.2 28.5 0.5 0.6 12.7 32.3 0.8 0.9
scan 20 50.2 15.2 0.3 0.3 25.2 21.2 0.5 0.6 12.7 27.2 0.8 0.9
scan 21 50.2 20.4 0.3 0.3 25.2 27.7 0.5 0.6 12.7 32.6 0.8 0.9
scan 22 50.2 22.1 0.3 0.3 25.2 31.8 0.5 0.6 12.7 40.4 0.8 0.9
scan 23 50.2 17.5 0.3 0.3 25.2 25.3 0.5 0.6 12.7 32.7 0.8 0.9
scan 24 50.2 26.9 0.3 0.3 25.2 37.2 0.5 0.6 12.7 47.3 0.8 0.9
scan 25 50.2 22.1 0.3 0.3 25.2 28.9 0.5 0.6 12.7 35.3 0.8 0.9
scan 26 50.2 27.4 0.3 0.3 25.2 36.9 0.5 0.6 12.7 45.9 0.8 0.9
scan 27 50.2 43.1 0.3 0.3 25.2 61.1 0.5 0.6 12.7 76.1 0.8 0.9
scan 28 50.2 35.8 0.3 0.3 25.2 51.1 0.5 0.6 12.7 63.1 0.8 0.9
scan 29 50.2 33.3 0.3 0.3 25.2 46.9 0.5 0.6 12.7 60.9 0.8 0.9

average: 50.2 21.3 0.3 0.3 25.2 29.8 0.5 0.6 12.7 37.3 0.8 0.9

Table 4.5: CR, D, tenc, and tdec when the first data set is compressed using
1-level, 2-level, and 3-level wavelet transforms.
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(a) (b)

Figure 4.2: (a) The analysis and (b) the synthesis structures of a 3-level wavelet
transform.

4.3 Implementation and Comparison with the

Proposed Method

In this case, the 3-D scans in the first data set are encoded using the proposed

method which is a lossy technique. In the implementation, small fluctuations

in the compression performance are observed, such that at most ±2% variations

appear in the CR, since the measurement model in CS is determined arbitrarily

in each trial. Recall that in the proposed method, each 2-D scan in a 3-D scan

is encoded with one of the following:

• ε, δ, ∆, and m taken using CS (referred as SHIFT+CS),

• ε, δ, ∆, and m taken using SC (referred as SHIFT+SC),

• ε, δ, and ∆ (referred as SHIFT),

• as itself (referred as NOCODING).

The number of occurrence of each type of code for a given 3-D scan is denoted by

kSHIFT+CS, kSHIFT+SC, kSHIFT, and kNOCODING, respectively. Thus, these numbers

change as the CR fluctuates. Moreover, the distortion also changes in this situa-

tion. Therefore, every 3-D scan is encoded using the proposed method ten times,
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then the average values of the CR, D, tenc, tdec, kSHIFT+CS, kSHIFT+SC, kSHIFT,

and kNOCODING are obtained as given in Table 4.6. According to the table, it

is observed that the compression performance changes with respect to the com-

plexity of the features in the scanned environment. For instance, the proposed

method compresses the 3-D scans illustrated in Figure 3.1(a)–(d) (referred as

scan 14, 20, 22, and 28 in the tables, respectively) by about 88%, 90%, 86%, and

85%, respectively. Here, the second scanned environment has less detail than

the others, so that 60% of the 2-D scans in this 3-D scan are encoded with only

{ε, δ, ∆}, and the CR is lower than the others. On the average, all 3-D scans are

compressed by 89% with about 13 cm distortion in reconstruction. In this case,

16% of the 2-D scans is encoded with ε, δ, ∆, and m obtained using CS; 24% of

them is encoded with ε, δ, ∆, and m obtained using SC; 57% of the 2-D scans is

encoded with ε, δ, and ∆. Only 3% of them is not encoded. Consequently, it is

observed that the CR depends on the correlation between consecutive 2-D scans

that is somehow related to the details in the scanned environment. The higher

the correlation and the less the detail, the lower the CR.

Moreover, the distortion D is dependent on the information provided by the

code of rn. At first, rn is defined with the relative vertical and horizontal shifts

(ε and δ) to r̂n. When the RMSE between rn and r̂n is greater than 20 cm,

rn is defined with additional information provided by sampling vn through the

measurement model. Therefore, D is restricted to 20 cm, which is the maxi-

mum distortion that can be tolerated in the reconstruction. For instance, when

the 3-D scans illustrated in Figure 3.1(a)–(d) are compressed using the proposed

method, the resulting average distortions are about 15, 13, 14, and 11 cm, respec-

tively. Their reconstructions are shown in Figure 3.1(e)–(h) for comparison with

their originals. Moreover, the differences between these 3-D scans and their re-

constructions are illustrated in Figure 4.3(a)–(d) to provide a visual comparison

between the distortions obtained for these 3-D scans. According to the figures,

the distortion becomes significant in those 2-D scans that are encoded with only

{ε, δ,∆}, as indicated by the darker horizontal stripes in the images.
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3-D CR D tenc tdec kSHIFT+CS kSHIFT+SC kSHIFT kNOCODING

scan (%) (cm) (s) (s)
scan 01 8.1 12.1 11.7 10.4 52 95 315 10
scan 02 13.0 13.4 22.7 21.8 110 104 243 14
scan 03 9.7 13.0 17.6 15.9 73 104 283 11
scan 04 11.0 12.2 23.4 21.8 93 144 226 8
scan 05 9.3 13.0 16.4 15.8 71 114 276 11
scan 06 8.8 12.2 12.3 12.2 58 147 257 9
scan 07 11.6 15.2 21.0 19.6 102 46 311 13
scan 08 9.4 14.2 14.2 13.8 77 34 349 12
scan 09 7.5 14.3 10.1 10.1 54 27 379 11
scan 10 11.1 15.1 23.6 23.9 91 56 311 14
scan 11 14.2 11.6 21.2 20.3 107 136 211 17
scan 12 12.3 15.4 16.9 17.0 101 88 267 15
scan 13 10.5 14.0 10.7 10.2 72 94 290 15
scan 14 11.6 15.2 12.3 11.8 84 105 268 15
scan 15 10.3 13.8 10.7 10.2 73 126 260 12
scan 16 11.0 16.6 13.1 12.7 88 47 321 16
scan 17 9.3 12.4 8.8 8.4 57 131 270 12
scan 18 8.3 11.4 7.4 6.9 45 145 270 12
scan 19 7.3 14.0 8.5 8.2 56 47 360 9
scan 20 9.5 12.5 11.1 10.6 73 103 284 11
scan 21 6.5 9.9 5.6 5.1 34 158 274 5
scan 22 14.6 14.4 24.5 22.7 109 83 258 21
scan 23 11.4 14.2 19.7 17.3 77 100 276 19
scan 24 14.0 12.4 19.4 18.4 80 138 226 26
scan 25 8.5 11.4 13.4 12.2 54 143 264 10
scan 26 13.5 10.8 13.3 12.6 61 131 250 30
scan 27 15.9 8.8 21.2 20.5 101 234 118 18
scan 28 15.1 10.5 16.5 15.8 72 227 145 27
scan 29 13.7 10.0 15.1 13.9 67 187 192 26

average: 10.9 12.9 15.3 14.5 76 113 267 15

Table 4.6: CR, D, tenc, tdec, number of cases when the signal is encoded with
{ε , δ, ∆, m} using compressive sampling (kSHIFT+CS), {ε , δ, ∆, m} using simple
coding (kSHIFT+SC), only {ε , δ, ∆} (kSHIFT), and the number of cases when the
signal is not encoded (kNOCODING), when the first data set is compressed using
the proposed method.
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(a) (b) (c) (d)

Figure 4.3: Distortion images for the 3-D scans given in Figure 3.1(a)–(d).

The average compression performances of the methods implemented so far

are summarized in Table 4.7 for the first data set. When the proposed method

is compared with the lossless methods considered here, the proposed method is

2–4 times faster than the variations of Huffman and arithmetic coding, but much

slower than ZLIB and GZIP. However, the proposed method compresses the 3-D

scans more than all of these methods. When the proposed method is compared

with the lossy methods implemented here, the proposed method is much slower

than all the methods. However, it results in the least distortion among all the

lossy methods. For lossy compression, there always exists a trade-off between

reducing the size of the input data, and minimizing the distortion on the re-

constructions [30]. Consequently, being a lossy method, the proposed method

provides a reasonably good compromise between the CR, accuracy of the recon-

structions, and speed when its performance is compared with the performances

of the well-known techniques considered in this thesis.

To evaluate the performance of the proposed method further, the second data

set is compressed using all of the lossless and lossy methods considered so far.

This set is comprised of 82 3-D scans that are taken sequentially at different

locations depicted in Figure 4.4, while a robot platform equipped with SICK

LMS200 is translated along a hall inside the Dagstuhl Castle in Germany [42].

Besides furniture, features such as buildings outside the hall are observed in this

data set, as illustrated in Figure 4.5(a)–(d), because of the windows along the left

and the right sides of the hall. Due to the details observed in these scans, it can
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method CR (%) D (cm) tenc (s) tdec (s)

lo
ss

le
ss

m
et

h
o
d
s Huffman coding on rn 41.7 0 165.6 610.6

Huffman coding on (rn − rn−1) 12.0 0 49.0 14.0
arithmetic coding on rn 11.1 0 37.6 48.9
arithmetic coding on (rn − rn−1) 16.4 0 45.6 58.4
ZLIB 65.3 0 0.4 0.2
GZIP 76.7 0 0.5 0.3

lo
ss

y
m

et
h
o
d
s JPEG 9.0 164.6 4.2 7.3

1-level wavelet transform 50.2 21.3 0.3 0.3
2-level wavelet transform 25.2 29.8 0.5 0.6
3-level wavelet transform 12.7 37.3 0.8 0.9
proposed method 10.9 12.9 15.3 14.5

Table 4.7: CR, D, tenc, and tdec when the first data set is compressed by different
lossless and lossy methods.

be claimed that the similarity between consecutive 2-D scans in the second data

set is less than in the first data set. To prove this, we assume that N discrete

range measurements in a 2-D scan are individual stationary random variables.

Let rn[i] and rn+τ [i] be the ith range measurements in the 2-D scans rn and

rn+τ of a 3-D scan, respectively. The correlation coefficient between rn[i] and

rn+τ [i], denoted by Rr[i](τ), is a measure of similarity that takes values between

−1 and 1.

Rr[i](τ) =
cov(rn[i], rn+τ [i])

std(rn[i]) std(rn+τ [i])
=

E {(rn[i]−mi)(rn+τ [i]−mi)}√
E {(rn[i]−mi)2}E {(rn+τ [i]−mi)2}

(4.1)

where mi is the average of ith measurements in the 2-D scans, and cov(·, ·), std(·)

denote the covariance and the standard deviation, respectively. Consequently,

the similarity between rn and rn+τ is measured from the average of the correlation

coefficients between rn[i] and rn+τ [i] for i = 1, . . . , N that is denoted by Rr(τ).

Rr(τ) is determined from the biased estimates of Rr[i](τ) for i = 1, . . . , N as

follows:

Rr(τ) =
1

N

N∑
i=1

1
N0

∑N0−τ
n=1 (rn[i]−mi) (rn+τ [i]−mi)√

1
N0

∑N0−τ
n=1 (rn[i]−mi)

2 1
N0

∑N0−τ
n=1 (rn+τ [i]−mi)

2
(4.2)

where N0 is the number of 2-D scans comprising a 3-D scan and N is the number

of range measurements in a 2-D scan. Rr(τ) for the first and second data sets
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are plotted in Figure 4.6. If we consider Rr(1) as a measure of similarity between

two consecutive scans, using Equation (4.2), it is estimated as 0.9521 and 0.9102

for the first and the second data sets, respectively. In other words, consecutive

2-D scans are less similar to each other in the second data set, and this data set is

slightly more challenging than the first in terms of the compression performance.

Figure 4.4: The path of the motion and the positions where 3-D scans are ac-
quired at Dagstuhl Castle.

The average CR, D, tenc, and tdec are given in Table 4.8, after the 82 3-D

scans in the second data set are compressed using all of the methods, including

the proposed method. According to the table, Huffman coding, ZLIB, and GZIP

fail in compressing the scan data. For the lossless methods, only arithmetic cod-

ing compresses the data set by 73% on the average. Among the lossy methods,

JPEG compresses the scan data at most with large distortion, being similar to

our observation for the first data set. Here, the proposed method compresses

the data set by 68% on the average, where 4.9% of the 2-D scans are encoded

with ε, δ, ∆, and m obtained using CS; 17.3% of them is encoded with ε, δ,

∆, and m using SC; 13.8% of them is encoded with only ε, δ, and ∆; 64% of

them is not encoded. On the other hand, the proposed method demonstrates
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 4.5: (a)–(d): Sample data sets collected at Dagstuhl Castle and (e)–(h):
their reconstructions.
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(a) (b)

Figure 4.6: The average correlation coefficients between the 2-D scans in the (a)
first and (b) second data sets, respectively.

a fast and effective performance with an error of about 5 cm and an encod-

ing time of almost 2 seconds. In conclusion, it is again demonstrated with this

experimental data that the proposed method provides satisfactory compression

with acceptable distortion and speed. The comparison between the average per-

centages of kSHIFT+CS, kSHIFT+SC, kSHIFT, and kNOCODING, when both data sets

are compressed using the proposed method, is provided in Table 4.9. The table

demonstrates how the similarities between the 2-D scans in a 3-D scan affects

the compression performance of the proposed method, where the size of the 3-D

scans in the first and the second data sets are reduced by 89% and 68%, on the

average, respectively.

Finally, the compression performance of the proposed method is observed

under the presence of additive white Gaussian noise. In this part, the 3-D scans

in the first data set are compressed after zero mean white Gaussian noise is

added to them. For different noise levels, each 3-D scan is compressed ten times

using the proposed method, then the average SNR, CR, D, tenc, tdec, kSHIFT+CS,

kSHIFT+SC, kSHIFT, and kNOCODING values are obtained, as given in Table 4.10.

Here, SNR is the ratio of the power of the 3-D scan to the power of the noise.

According to the table, it is observed that the proposed method maintains its

performance with CR around 10% and D about 13 cm, under the presence of

noise with standard deviation up to 10 cm. Notice that, the sparsifying model
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method CR (%) D (cm) tenc (s) tdec (s)

lo
ss

le
ss

m
et

h
o
d
s Huffman coding on rn 683.3 0 101.8 363.1

Huffman coding on (rn − rn−1) 253.6 0 12.6 34.2
arithmetic coding on rn 27.1 0 21.8 25.7
arithmetic coding on (rn − rn−1) 35.8 0 16.4 19.1
ZLIB 140.8 0 0.3 0.1
GZIP 143.8 0 0.3 0.2

lo
ss

y
m

et
h
o
d
s JPEG 10.0 743.6 1.5 3.6

1-level wavelet transform 50.2 204.4 0.2 0.2
2-level wavelet transform 25.2 283.0 0.4 0.3
3-level wavelet transform 12.7 353.8 0.5 0.5
proposed method 32.0 4.8 1.9 1.7

Table 4.8: CR, D, tenc, and tdec when the second data set is compressed with
different lossless and lossy methods.

kSHIFT+CS kSHIFT+SC kSHIFT kNOCODING

first data set 16.0% 24.0% 57.0% 3.0%
second data set 4.9% 17.3% 13.8% 64.0%

Table 4.9: The average percentages of kSHIFT+CS, kSHIFT+SC, kSHIFT, and
kNOCODING, when both data sets are compressed using the proposed method.

also performs properly, when the standard deviation of the noise is below the

same level. The method provides acceptable compression when the standard

deviation remains below 30 cm. Beyond that level, the method cannot perform

effective compression. In other words, the method can operate with SNR larger

than 23 dB, and works properly with SNR larger than 30 dB.

In this study, it is also investigated whether the compression performance

will improve when 2-D scans are encoded with either SHIFT+CS, SHIFT+SC,

or NOCODING. In this case, we cannot benefit from encoding a 2-D scan with

only three values (ε, δ and ∆). On the other hand, the distortion will fall, since it

becomes significant along the 2-D scans that are encoded with {ε, δ,∆}. For the

first data set, the CR increases from about 11% to 16%, and D remains almost

unchanged on the average. For the second data set, the CR increases from about

32% to 32.6%, and D decreases from 4.8 cm to 3.5 cm. As a consequence, the

compression performance does not improve significantly.
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added SNR CR D tenc tdec kSHIFT+CS kSHIFT+SC kSHIFT kNOCODING

noise (dB) (%) (cm) (s) (s)
none – 10.9 12.9 15.3 14.5 76 113 267 15
N (0, 1) 52.7 10.8 12.9 12.1 10.9 74 115 268 15
N (0, 4) 46.6 10.8 12.9 14.6 13.5 73 115 268 14
N (0, 9) 43.1 10.5 12.8 11.3 10.2 70 117 270 14
N (0, 10) 42.7 10.6 12.7 11.3 10.2 70 118 269 14
N (0, 16) 40.6 10.3 12.6 11.1 9.9 66 120 271 14
N (0, 25) 38.7 10.2 12.6 10.5 9.4 64 121 272 14
N (0, 100) 32.7 11.2 12.5 10.2 9.1 62 117 276 16
N (0, 400) 26.6 20.0 13.4 23.4 22.3 147 0 286 38
N (0, 900) 23.1 27.5 13.5 14.2 13.3 88 0 287 96
N (0, 2500) 18.7 88.1 6.7 2.5 0.4 0 0 56 415
N (0, 10000) 12.7 100.0 0.0 2.9 0.4 0 0 0 471

Table 4.10: Average signal-to-noise ratio (SNR), CR, D, tenc, tdec, number of
cases when the signal is encoded with {ε , δ, ∆, m} using compressive sam-
pling (kSHIFT+CS), {ε , δ, ∆, m} using simple coding (kSHIFT+SC), only {ε , δ, ∆}
(kSHIFT), and the number of cases when the signal is not encoded (kNOCODING),
when the first data set is compressed under the presence of additive white Gaus-
sian noise indicated with its mean and variance.

Another modification we have considered in the algorithm is combining ε and

∆ into one vertical shift value in the encoder. Thus, rn can now be represented

with only two parameters that are the vertical and the horizontal shift values.

In this case, the CR is reduced by 0.3% and 0.1% on the average for the first and

the second data sets, respectively.

Furthermore, we also analyze whether ε and δ can be encoded using difference

encoding to reduce the CR even further. Therefore, the correlations between

consecutive values of ε and δ, generated while encoding a 3-D scan, are observed.

Although consecutive values of δ are found to be somewhat correlated with each

other, consecutive values of ε are not. Consequently, it will not much reduce the

CR, when ε and δ are further encoded using difference encoding.
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Chapter 5

Conclusions and Future Work

In this thesis, we consider a task that can be vital for 3-D representation of indoor

environments, using the SICK LMS200 laser range finder. The task involves

compressing the 2-D range scans forming the 3-D model simultaneously with the

acquisition of the scans, to be able to use the capacity of the communication

channel or the data storage medium effectively during tranmission or storage of

the scan data. From this perspective, we propose a compression technique based

on compressive sensing for correlated 2-D scans acquired sequentially.

In general, the proposed technique involves sampling the sparse signal effi-

ciently. Each sparse signal is obtained from the difference between the current

scan and its estimate, which is generated by shifting the previous scan along

the horizontal and vertical axes by certain amounts. The amount of displace-

ments along these axes are formulized with respect to the current and previous

scans. Then, the amplitude of the difference signal is offset to improve the spar-

sity. Compression is achieved by sampling the sparse signal using either simple

coding or compressive sampling. Therefore, the proposed method is a kind of

difference encoding technique.

The compression performance of the proposed method relies on the similarity

between consecutive 2-D scans in the input data. The higher the correlation
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between consecutive 2-D scans and the less the detail in the scanned environment,

the lower the CR. For instance, the proposed method compresses a 3-D scan in the

first data set which includes approximately 170 thousand range measurements

(about 1.36 MB data1), within 15 seconds and by about 89% on the average,

with the average distortion per measurement being about 13 cm. Moreover, the

proposed method maintains this performance under the presence of zero mean

white Gaussian noise added to the scan data when the SNR is larger than 30 dB.

However, for the second data set where the similarity is somewhat less than in

the first one, the proposed method compresses a 3-D scan from this set which

includes approximately 81 thousand range measurements (about 650 KB data),

within two seconds and by about 68% on the average, with the average distortion

per measurement being about 5 cm. The amount of distortion seems to be

reasonable with the provided compression ratio, since the measurements acquired

from the laser range finder have already ±4 cm systematic error, besides the

statistical error. Therefore, the proposed method is fast and efficient according

to the criteria described in Chapter 1. The proposed method is recommended

for applications where both the CR and speed are crucial. However, a lossless

compression technique, such as arithmetic coding, can be used in applications

where the accuracy of the range measurements is more important.

In summary, the proposed method provides acceptable CR compared with the

alternative compression techniques that we have considered, and as it provides

a reasonably good compromise between reconstruction accuracy and speed, it

can be properly used for 3-D representation of environments [57]. The proposed

method can be improved by coding the encoder output further via lossless coding

techniques such as arithmetic coding or LZ77 [50], to reduce the CR even more.

Moreover, our future work involves hardware implementation of the proposed

method on FPGAs so that the method can be used in real-time applications.

1Each range measurement is stored within 8 byte variables in MATLAB environment.
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We will also extend its application to other types of data sets comprised of

measurement sequences, such as video data.
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Appendix A

Well-Known Dictionaries for

Forming a Sparsifying Basis

This section includes brief descriptions of some of the well-known and widely

used dictionaries employed in forming the sparsifying basis. The dictionaries

reviewed in this section are the Dirac, Fourier, Gabor, and Haar dictionaries.

A fundamental dictionary in the time domain is the Dirac dictionary, which

is parameterized by γ ∈ {0, 1, . . . , L−1}, where L is the number of atoms. Then,

the atoms in the Dirac dictionary are defined as ψγ(t) = 1(t− γ), where t is the

continuous or discrete-time variable and 1(t − γ) is the unit impulse sequence

in discrete time or the Dirac delta function in continuous time. This function is

zero except when t = γ [36]. A linear combination of atoms may also be referred

to as atoms for a modified dictionary. It is remarkable that apart from all atoms

in the Dirac dictionary being orthogonal to each other, all linear combinations of

these atoms are also orthogonal. Therefore, it is trivial to obtain an orthonormal

basis from these linear combinations.

A fundamental dictionary in the frequency domain is the Fourier dictionary,

which is parameterized by γ = {ω, v}, where ω indicates the frequency within

59



[0, 2π), and v indicates the type of the waveform (v = 0 indicates a cosine,

whereas v = 1 indicates a sine waveform). The atoms in the Fourier dictionary

are expressed with either ψ(ω,0) = cos(ωt) or ψ(ω,1) = sin(ωt) for a specific value

of v. For L waveforms in the dictionary, the frequency sequence parameterizing

discrete waveforms is defined as ω = lπ
L

, where l = {1
2
, 3

2
, . . . , L− 1

2
}. The atoms

are orthogonal to each other. The Fourier dictionary is efficient and effective in

representing smooth signals, but its efficiency fails in representing signals with

singularities [36].

Gabor dictionaries can represent the signal in both the time and the frequency

domains. A Gabor dictionary is parameterized by γ = {ω, t0, θ, σE}, where ω

indicates the frequency within [0, π), t0 indicates the location of the center of

the waveform on the time axis, θ indicates the phase, and σE indicates the

standard deviation of the Gaussian envelope of the waveform. Atoms in Gabor

dictionaries are expressed as ψγ(t) = e
−(t−t0)2

σ2
E cos[ω(t− t0) + θ], where t is again

the continuous or the discrete-time variable.

A popular dictionary that scales the signal in the time domain is the Haar

dictionary. This dictionary is also known as the Haar filter bank that is

commonly employed with the wavelet transform, since it is easy and practi-

cal to implement. Haar dictionary is composed of waveforms, represented by

ψ( t−b
a

) and referred as wavelets. In the definition of wavelets, the dilation

parameter a specifies the frequency of the wavelet, where large values indi-

cate low frequencies, and small values indicate high frequencies. Furthermore,

the translation parameter b specifies the location of the wavelet on the time

axis. Therefore, these parameters characterize time-frequency localization of

wavelets. A basic Haar wavelet with a = 1 and b = 0 is the waveform such

that ψ{1,0}(t) = {1 for t ∈ [0, 1
2
); −1 for t ∈ [1

2
, 1); 0 elsewhere}. In discrete time,

a and b take discrete values, such that a = a0 for fixed a0 ≥ 1, besides b = lb0a0

for fixed b0 > 0, where l = {0, 1, . . . , L − 1} for L atoms in the dictionary. The
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possible values of b depend on the values used in a, so that narrow wavelets, with

high frequencies must be translated in small steps on the time axis to cover the

whole time domain. In contrast, wider wavelets, with low frequencies are trans-

lated in large steps for the same reason. It is remarkable that translated wavelets

with constant rate are orthogonal to each other. To obtain orthonormal wavelets,

a wavelet function can be defined with a scalar factor such as |a|− 1
2ψ( t−b

a
) [58].

In any wavelet dictionary, like the Haar dictionary, wavelets are formed as

linear combinations of translated mother wavelets at fixed dilation. Like wavelets,

mother wavelets are characterized by dilation and translation parameters. In the

Haar dictionary, the basic mother wavelet with one dilation, and zero translation

is expressed as ψ(t){1,0} = {1 for t ∈ [0, 1); 0 elsewhere} [58]. Therefore, one

can propose that signals can be represented by using mother wavelets instead

of wavelets; indeed it is the representation of the signal at a certain resolution.

Let Wa and Va denote two spaces spanned by wavelets and mother wavelets,

respectively, at fixed dilation, a. These spaces intersect only at the origin, and

they form the upper space Va+1. Based on this information, it can be stated that

a signal can be represented on a basis composed of either wavelets or mother

wavelets. These representations are the projections of the signal onto spaces Wa

and Va, respectively. Thus, the projection of the signal cannot include all of the

information on the signal; part of the information can be projected onto Va, and

the remaining part onto Wa. As a consequence, the reconstruction of the signal

from projections will be close to, but not exactly equal to the signal. In the upper

space, Va+1, the signal is represented with higher resolution, which results in

better reconstruction than the one from the lower space. Although representing

the signal with higher resolution is better than in lower resolution, it should be

noted that the number of translated wavelets increases exponentially, which adds

computational cost and increases the dimension of the representation.
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Appendix B

Methods for Generating Sparse

Innovations

This section includes the implementation details of the methods referred as (a)–

(f) in Chapter 3. In the following, the models and parameters used in the

methods are described.

For the following methods, let {rn, rn−1, rn−2, rn−3, . . .} be the sequen-

tially acquired 2-D scans in a data set. Each scan is considered to be a

sequence of range measurements denoted by rn = {rn[1], rn[2], . . . , rn[N ]},

rn−1 = {rn−1[1], rn−1[2], . . . , rn−1[N ]}, rn−2 = {rn−2[1], rn−2[2], . . . , rn−2[N ]},

rn−3 = {rn−3[1], rn−3[2], . . . , rn−3[N ]}, . . . , etc. Furthermore, let S be the matrix

where the 2-D scans acquired until rn are accumulated as row vectors, such that:

S =


rn−1[1] rn−1[2] . . . rn−1[N ]

rn−2[1] rn−2[2] . . . rn−2[N ]

rn−3[1] rn−3[2] . . . rn−3[N ]

...
...

...
...


(B.1)
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(a) Differences between Consecutive Scans

When n > 1, the differences between two consecutive scans are defined as dn =

rn − rn−1. When n = 1, d1 = r1. Thus, rn is represented by dn.

(b) Linear Regression Using the Last Two Scans

In this method, rn[i], where i = 1, 2, . . . , N , is predicted by the following pro-

cedure: At first, the ith column of S is differentiated to determine the critical

points in the corresponding slice of the scan. The critical points appear to be

spikes in the differential signal. The spikes indicate the separations between the

linear surfaces on the corresponding slice of the scan. If rn−1[i] and rn−2[i] are

not separated by a critical point, rn[i] is assumed to be on the linear surface

formed by rn−1[i] and rn−2[i]. Therefore, it is estimated to be the point on the

line that satisfies rn−1[i] = p1(n− 1) + p0 and rn−2[i] = p1(n− 2) + p0, where p0

and p1 are line parameters. These equations can be expressed in compact form,

such that:  rn−1[i]

rn−2[i]

 =

 1 n− 1

1 n− 2

 p0

p1

 (B.2)

which is denoted by u = A p. The parameters placed in p are computed from

p = (ATA)−1ATu. Eventually, rn[i] is estimated to be p1n + p0. If rn−1[i]

and rn−2[i] are separated by a critical point, rn[i] is estimated to be rn−1[i].

Consequently, rn is represented by the difference between itself and its estimate.

(c) Second-order Polynomial Fitting Using the Last Three

Scans

In this method, rn[i], where i = 1, 2, . . . , N , is predicted by the following proce-

dure: As in (b), the ith column of S is differentiated to determine the critical

63



points in the corresponding slice of the scan. The critical points appear to be

spikes in the differential signal. The spikes indicate the separations between the

continuous surfaces on the corresponding slice of the scan. If rn−1[i], rn−2[i], and

rn−3[i] are not separated by a critical point, rn[i] is assumed to be on the poly-

nomial interpolated by rn−1[i], rn−2[i], and rn−3[i]. Therefore, it is estimated to

be the point on the polynomial that satisfies rn−1[i] = q0 + q1(n−1) + q2(n−1)2,

rn−2[i] = q0 +q1(n−2)+q2(n−2)2, and rn−3[i] = q0 +q1(n−3)+q2(n−3)2, where

q0, q1, and q2 are polynomial coefficients. These equations can be expressed in

compact form as:
rn−1[i]

rn−2[i]

rn−3[i]

 =


1 n− 1 (n− 1)2

1 n− 2 (n− 2)2

1 n− 3 (n− 3)2



q0

q1

q2

 (B.3)

which is denoted by u = A q. The coefficients placed in q are computed from

q = (ATA + I3)−1ATu, where I3 is a 3 × 3 identity matrix. A small term is

added to the diagonal coefficients of ATA because A is obtained to be close to

singular matrix.1 Eventually, rn[i] is estimated to be q0 + q1n + q2n
2. If rn−1[i],

rn−2[i], and rn−3[i] are separated by a critical point, rn[i] is estimated to be

rn−1[i]. Consequently, rn is represented by the difference between itself and its

estimate.

(d) Second-order Wiener Filtering on Differential Scans

In this method, let {d1, . . . , dn−1} be available for the scan rn. We assume that

every difference sequence is stationary and is comprised of N zero mean random

variables, such that dn1 = {dn1 [1], . . . , dn1 [N ]} and dn2 = {dn2 [1], . . . , dn2 [N ]},

where 1 ≤ {n1, n2} ≤ n−1. Then, the biased autocorrelation between dn1 [i] and

1See A. Tikhonov, On the stability of inverse problems (1943) for a detailed explanation.
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dn2 [i] for i = 1, . . . , N is estimated as follows:

Rd[i](n1 − n2) = Rd[i](τ) =
1

N0

N0−τ∑
m=1

dm[i]dm+τ [i] (B.4)

where N0 is the number of observations of the differences, and τ
∆
= n1 − n2.

Consequently, the estimate of dn, denoted by d̂n, is obtained by predicting dn[i]

for i = 1, . . . , N over dn−1[i] and dn−2[i] using a second-order Wiener filter. Each

pair of filter coefficients {f i1, f i2} used to estimate dn[i] for i = 1, . . . , N is derived

from the following equation: Rd[i][1]

Rd[i][2]

 =

 Rd[i][0] Rd[i][1]

Rd[i][1] Rd[i][0]

 f i1

f i2

 (B.5)

which is denoted by u = A f i. Since A is a positive-definite matrix, f i = A−1 u.

Eventually, rn is predicted to be rn−1 + d̂n. Consequently, rn is represented by

the difference between itself and its prediction.

(e) 1-D Random Walk on the Previous Difference

In this method, dn is estimated as

d̂n = αdn−1 + wn (B.6)

where α is the correlation coefficient between dn and dn−1, and wn is white

Gaussian noise vector with zero mean and an identity covariance matrix. If we

multiply both sides of Equation (B.6) by dT
n−1, and take the expected value,

α is determined to be
E{dT

n−1dn}
E{dT

n−1dn−1} , where E { · } is the expectation operator.

Using all the differential signals determined from all of the 3-D scans in the first

data set, α is estimated to be −0.4. After dn is estimated, rn is predicted to be

rn−1 + d̂n. Consequently, rn is represented by the difference between itself and

its prediction.
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(f) Linear Kalman Filtering with the Constant Velocity

Kinematic State Model

In this method, we estimate rn denoted by r̂n, using a linear Kalman filter with

the constant velocity kinematic state model. In this model, the 2-D scans are

considered to be the position state in N -dimensional space at discrete instants,

and the position is assumed to change in time without acceleration. [rm,dm]T is

the state vector for m = {n, n− 1, n− 2, . . .}, where dm indicates the velocity.

The slight changes in velocity are modeled as state estimate error en that is white

Gaussian noise with zero mean and unit variance. Consequently, rn is estimated

as r̂n in the state estimate model that is expressed as r̂n

dn

 =

 IN IN

0N IN

 rn−1

dn−1

+

 1
2
I
N

IN

 en (B.7)

where IN and 0N are N ×N identity matrix and zero matrix, respectively.

The measurement vector at instant n − 1 is rn−1 having measurement noise

wn−1 that is white Gaussian noise with zero mean and standard deviation 10

times that of the state estimate error. The measurement model can be expressed

as: [
rn−1

]
=
[

IN 0N

] rn−1

dn−1

+
[

IN

]
wn−1 (B.8)

The ratio of the standard deviation of the measurement error to the standard

deviation of the state estimate error is determined such that the error in predict-

ing rn is minimized. Eventually, rn is represented by the innovation that is the

difference between itself and its estimate, rn − r̂n.

In the Kalman filter structure, both the state estimate and measurement er-

rors are supposed to be zero mean white Gaussian noises that are uncorrelated

with each other. In this case, the Kalman filter becomes the optimal minimum

mean square error state estimator, otherwise it is the best linear state estima-

tor [59]. However, the noise in 3-D laser range measurements are declared to
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be correlated at adjacent scans, and not quite Gaussian, since the noise in the

range measurements includes the noises generated by the optical components of

the sensor, for instance the lens, the mirror driver, and the laser, besides the

electronic noise [60]. Despite this fact, we model the noise as zero mean white

Gaussian to satisfy the consistency of the state estimation [44], which requires

zero mean and white innovation, and zero mean state estimate error.
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