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Graph Signal Processing: Vertex Multiplication
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Abstract—On the Euclidean domains of classical signal process-
ing, linking of signal samples to underlying coordinate structures
is straightforward. While graph adjacency matrices totally define
the quantitative associations among the underlying graph vertices,
a major problem in graph signal processing is the lack of explicit
association of vertices with an underlying coordinate structure. To
make this link, we propose an operation, called the vertex multipli-
cation (VM), which is defined for graphs and can operate on graph
signals. VM, which generalizes the coordinate multiplication (CM)
operation in time series signals, can be interpreted as an operator
that assigns a coordinate structure to a graph. By using the graph
domain extension of differentiation and graph Fourier transform
(GFT), VM is defined such that it shows Fourier duality that
differentiation and CM operations are duals of each other under
Fourier transformation (FT). Numerical examples and applications
are also presented.

Index Terms—Graph signal processing (GSP), graph Fourier
transform (GFT), duality, coordinate multiplication, vertex
multiplication.

I. INTRODUCTION

C LASSICAL digital signal processing (DSP) provides a
useful tool for the analysis of signals defined by sampling

an Euclidian space such as time-series signals and the R2 plane
for images. However, the DSP theory is not designed to capture
the complicated structures of large networks, such as social
and economic networks, networks arising from the world wide
web, and sensor networks. The graph signal processing (GSP)
provides a framework that can make the analysis of these net-
works and processing signals defined on them possible, [1]–[14].
Graph based extensions to machine learning and analysis of
brain signals have also been studied [15], [16].

Classical signal processing has been extended to the graph
domain [2]–[4]. Specifically, filtering [1]–[6], [13], [14], [17],
frequency analysis [5], [8], [18], sampling [10], [19], inter-
polation [20], Fourier transform (FT) [21], multi-rate signal
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processing [22], signal reconstruction [23], processing of sta-
tionary signals and multiscale decomposition methods have been
studied for graph signals, [24]–[26].

Much of the developments in the processing of graph signals
rely on extending the definition of FT and frequency analysis
to graph signals [8]. This allows the translation of many signal
processing algorithms to graph signals, and provides a frame-
work that has proved to be foundational in many novel GSP ap-
plications, including filtering, sampling and interpolation, [10],
[19], [20], big data analysis, [7], and classification, [27], [28].
There are two main approaches for extending the FT to the graph
domain. The first is derived from the spectral graph theory and
uses the graph Laplacian. This framework describes the graph
Fourier transform (GFT) as a change of basis into the basis of
the eigenvectors of the graph Laplacian [1]. Despite generally
considered to be limited to undirected graphs, it has extensions to
directed graphs, [29]. Built on the algebraic signal processing,
the second approach is based on the adjacency matrices and
describes the GFT as a change of basis into the eigenvectors
of the adjacency matrix [14]. This reflects the intuition that the
adjacency matrix is analogous to the discrete shift matrix, and
the eigenvalues of the latter form a basis for the discrete Fourier
transform (DFT). The second approach supports both directed
and undirected graphs.

The relationships between operators on graphs and their FT
counterparts have also been studied, [1], [2], [5], [8], [14], [18].
Specifically, operations like convolution, translation, modula-
tion, dilation, and filtering as well as the uncertainty relation
have all been generalized to GSP domain, [1], [30]. Fourier
duality, which is an exact kind of symmetry between the two
domains (e.g. translation in one domain is phase multiplication
in the other, etc. [1], [31]), is of importance in such general-
izations. For example, [32] studied vertex- and spectral-domain
convolutions. [33] proposed a dual shift operator that constructs
a dual graph in the spectral domain giving it a graph topology.
Instead of using classical frequency ordering, [34] proposes a
new ordering for the graph Laplacian eigenvectors using the
ramified optimal transport theory for better generalizations.

In this letter, by using the Fourier duality for the differenti-
ation operator on graphs, we propose an operation, called the
vertex multiplication (VM) for directed graphs. VM mimics the
coordinate multiplication (CM) operator of time series signals
(Uf(u) = uf(u)), which is the Fourier dual of differentiation.
While discretization of CM is straightforward, generalization to
the graph domain is problematic since the vertices of a graph
do not correspond to certain quantitative values, apart from just
indices of order. Defined in a matrix form, VM can be interpreted
as an operator which assigns a coordinate structure to a graph by
associating a “coordinate vector” (represented by the columns
of the matrix) for each vertex, and can also operate on graph
signals (represented as vectors) through matrix multiplication.
Since several established metrics and quantitative manipulations
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can be applied to coordinate vectors, the proposed direct assign-
ment of coordinate structure to the vertex domain can also be
instrumental in efforts to define “distance” metrics in the vertex
domain, [35], [36], study the notion of smoothness of signals
on graphs, [37], localization of signals in the vertex-domain and
study of transforms on graphs, [1], [38]–[40].

The proposed VM generalizes a fundamental operation like
CM to directed graph domain and defines the Fourier duality
of differentiation for GSP. Moreover, VM, being defined totally
consistent with the circulant and dual structure of the DFT, can
also be considered a natural way to overcome a major obstacle in
embedding the underlying structure of irregular vertex domain
to a quantitative coordinate structure assigned to the vertices.
This coordinate association is important in the ongoing gener-
alizations from DSP to GSP.

II. DUALITY RELATION

The duality between differentiation and CM operators is par-
ticularly important in classical signal processing [41], [42]. The
duality between time (space) and frequency (spatial-frequency)
domains is also one of the most fundamental properties of
Fourier analysis. Let U , D and F denote the CM, differentiation
and FT operators, respectively. Continuous manifestations of the
former two are:

Uf(u) = uf(u), (1)

Df(u) =
1

2πj

df(u)

du
, (2)

where (2πj)−1 is included to make U and D precise Fourier
duals (the effect of either in one domain is its dual in the other
domain). Then, the duality is given as:

U = FDF−1. (3)

Duality can also manifest itself between shift and modulation
operations, both of which are fundamental properties of Fourier
analysis, [1]. The duality relations in the classical signal process-
ing theory are crucial for understanding much of the underlying
theory as well as for being instrumental in applications, [43].
Therefore, extension of these relations to GSP is inescapable.
Duality creates a way to define the CM operator without needing
coordinates to be explicitly defined once a differential operator
on graphs is provided. Therefore, the extension of Fourier duality
to graphs can be used to define a coordinate structure on graphs
where one replaces D with the differential operator on graphs
and F with GFT.

III. GFT AND DIFFERENTIATION ON GRAPHS

A finite graph G = (V,A) is a finite set of N ordered points
V = {v0, v1 . . . vN−1} (called vertices) which are connected to
each other with some relation. The connections are represented
by an adjacency matrix A. The element aij of A is the weight
of the connection between the i’th and j’th vertices, where
i, j = 0, 1, . . ., N − 1. In general, connections are directed. For
undirected graphs, A is symmetric with aij = aji.

Any complex valued function x defined on the set of vertices
V , i.e.: x : V → C is called a graph signal. Since V is finite, it
is convenient to represent x as a vector where each index of x is
the value the signal takes on the corresponding vertex:

x = [x0, x1, . . . , xN−1]
�, xi = x(vi). (4)

Fig. 1. Graph structures for Numerical Example 1. (a) The input signal x =
[1, 1, . . . , 1] plotted on vertices with colormaps. (b) Magnitudes of the output
signals after VM operates on the input, i.e., yi = UGi

x.

When viewed as a vector, operators acting on x can be repre-
sented by left multiplication with matrices. Of these operators,
the one represented by A itself is of particular importance,
since it implicitly contains the connectivity information of G.
This operator is called a graph shift and extends the cyclic shift
defined on a periodic time series signal in the DSP which has
the graph structure G1 as shown in Fig. 1(a). In this case, A is
identical to the cyclic shift [8].

Let G be a graph with adjacency matrix A and x be a graph
signal defined on G. Then A can be written in the Jordan canon-
ical form as A = VΛV−1. Then, the Graph Fourier Transform
(GFT) of x, denoted by x̃, is defined as [14]: x̃ = V−1x. GFT of
a signal x is unique up to the ordering of the Jordan blocks in the
Jordan canonical form. If A is diagonalizable, then the Jordan
Canonical form is identical to diagonalizing A. In this case GFT
becomes a change of basis into the basis of eigenvectors of A,
and this process is unique up to the ordering of the Fourier
basis vectors. It is also easy to see that if one takes the GFT
on a directed circular graph, then the GFT basis becomes the
eigenvectors of the cyclic shift matrix, and the GFT reduces to
the DFT.

We now consider the definition of differentiation on GSP
domain, [44]. Let xc : R → C be any smooth periodic function
with period T , and t = (t0, t1, . . ., tN−1) be an ordered set of
numbers selected from the interval [0, T ). Then an irregular
sampling of xc with respect to t is the finite discrete signal
x ∈ RN where xn = xc(tn) for ∀n ∈ {0, 1, . . . , N − 1}.

Let S0 be the circular forward shift operator defined in the
space of finite discrete signals of length N . Then the matrix
representation of S0 is of the cyclic shift form. Then, if we let
the addition and subtraction on the vector indices to be defined in
modulo N (i.e., if we write x−1 = xN−1 and t−1 = tN−1 − T ),
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one can use the Taylor series expansion to write:

(S0x)n = xn−1 = xc(tn−1) =

∞∑
k=0

(
(tn−1 − tn)

k

k!

dk

dtk

∣∣∣∣
tn

xc

)

=

(( ∞∑
k=0

(tn−1 − tn)
k

k!

dk

dtk

)
xc

)
(tn)

= exp

(
(tn−1 − tn)

d

dt

)
xc(tn). (5)

Thus, the matrix manifestations of the discrete differential
operator and S0 should satisfy S0 = exp(−Δt∇), where
Δt = diag(t0 − t−1, t1 − t0, . . ., tN−1 − tN−2). Then, the ma-
trix manifestation of the differential operator defined on unequal
sampling of xc resulting in the vector x is defined as:

∇ = −Δ−1
t logS0, (6)

where the complex logarithm can be defined on any branch cut
as long as it is consistent throughout the analysis.

IV. GRAPH VERTEX MULTIPLICATION

Consider a graph G with an adjacency matrix A. Then
the eigenvalues of A can be written as the ordered set
{r0ejω0 , . . . , rN−1e

jωN−1} where ri’s are the magnitudes and
ωi ∈ [0, 2π) are given in an increasing order. Then for any
graph signal x with a GFT of x̃, the elements of x̃ can be
ordered with respect to their corresponding eigenvalues. That is,
if we write the eigenvalue decomposition ofA asA = VΛV−1

where the diagonal elements of Λ are ordered in an increasing
order: Λ = diag(r0e

−jω0 , r1e
−jω1 , . . ., rN−1e

−jωN−1). Then,
x̃ = V−1x. In this ordering, each coordinate of x̃ are in the
order of (possibly irregularly) increasing frequency. Since x̃ has
no two coordinates corresponding to the same frequency, we can
always find a smooth function x̃c : R → C such that x̃ induces
an irregular sampling on x̃c such as: x̃n = x̃c(ωn). Then the
discrete differentiation of x̃ can be defined as:

(∇F x̃)n (7)

where ∇F is the FT domain discrete differential operator:

∇F = −Δ−1
ω logS0, (8)

where Δω = diag(ω0 − ω−1, ω1 − ω0, . . ., ωN−1 − ωN−2)
with ω−1 = (ωN−1 − 2π). Before proceeding, to be able to use
the precise duality relation given in Eq. (3), we first alter the
definition for the discrete derivative by dividing Eq. (8) by j:

∇̃F = jΔ−1
ω logS0, (9)

which is analogous to the definition of differential operation with
constant multiplier (2πj)−1 as given in Eq. (2). (Please note that
2π term is already encapsulated in frequency w.)

Finally, by using the duality in Eq. (3), we can define the
precise Fourier dual of ∇̃F as a new operator called vertex
multiplication denoted by UG , in abstract operator notation. The
matrix manifestation of UG , using GFT, is then given by:

UG = V−1∇̃FV = jV−1(Δ−1
ω logS0)V. (10)

The proposed VM operator UG can be interpreted as a collec-
tion of vectors ui assigned to each vertex on the graph such that
UG = [u0,u1, . . . ,uN−1]. Also, it operates on a graph signal

x = [x0, . . . , xN−1]
� as:

y = UGx =

N−1∑
i=0

xiui. (11)

This definition provides a generalization of the CM operator.
As such, the VM operator computes the superposition of the
multiplication of the signal value on each vertex with the vector
ui associated with the same vertex. Hence, the columns of the
VM matrix mimic the coordinate values in the CM operator
in DSP (Eq. (1)). Thus, we shall call these columns ui the
coordinate vector of the i’th vertex. Due to the summation in
Eq. (11), the coordinate vector of a vertex has a global effect on
the behavior of the VM, and the output graph signal value yi

depends on values of the input signal at all vertices through the
coordinate vectors.

It should be noted that, in our above derivation, we implic-
itly assume that A has eigenvalues with distinct arguments
(frequencies) when we write the diagonalization of A. This
assumption implies that our present framework is valid only
for directed graphs. That is because undirected graphs with
symmetric adjacency matrices give rise to real eigenvalues with
phases being either 0 or π, which makes ordering of eigenvalues
ambiguous. However, our framework that leverages duality is
still valid provided that one is able to define a proper differential
operator for undirected graphs.

V. NUMERICAL EXAMPLES

We first consider the CM of classical DSP and show that it
can be interpreted as a special case of VM. The matrix U that
represents the CM is diagonal. It is composed of one-hot column
vectors with non-zero entries existing only at the corresponding
indices of each vertex. Then the effect of each coordinate vector
in Eq. (11) can be represented locally and thus, the diagonal
elements of U can be assigned to each vertex as proper coor-
dinates. To prove this, consider the graph representation of a
time-series as shown by G1 in Fig. 1(a). The adjacency matrix
in this case is equivalent to the forward time shift, i.e., A = S0.
The eigenvalues ofA are then equally spaced on the unit circle in
the complex plane and are of the form ejωk whereωk = 2kπ/N .
Thus we have

Δω = (1/N)diag(2π(0− (−1)), 2π(1− 0), . . .,

2π((N − 1)− (N − 2))) = (2π/N)I, (12)

where I is the N ×N identity matrix. Then, the Fourier domain
derivative becomes − N

2π logS0. This leads to the following
vertex multiplication operator:

UG = jV−1

(
N

2π
logS0

)
V = j

N

2π
log(V−1S0V), (13)

where V−1 reduces to the DFT. Using elementary properties of
the DFT, we can obtain

V−1S0V = diag(e−jω0 , e−jω1 , . . ., e−jωN−1) = Λ. (14)

Then, UG is the diagonal matrix with entries Nωk

2π . Finally,
UG = U = diag(0, 1, 2, . . ., N − 1), which is consistent with
the discrete CM operator that can be written as (Ux)n = nxn.

Next, we consider our Numerical Example 1 (given in Fig. 1)
to show the effects of underlying graphs on the corresponding
VM operators and their subsequent effects on a graph signal.
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Fig. 2. Coordinates are calculated by l1-norm of the coordinate vectors for
G1,G2, andG3. (Left: l1-norms. Right: l1-norms normalized to the time-series
coordinate interval [0, 7].

TABLE I
SMOOTHNESS MEASUREMENTS

G1 is the directed circular graph that corresponds to time series
signals. We have chosenG2 such that it deviates from time series
by only having v0 makes an extra connection to v2; and G3

such that each vertex vi has connections to the vi+1 and vi+2.
Fig. 1 also presents the vertex-multiplied output graph signals
shown by colormaps on the vertices. It is immediately clear
that any deviation from the directed circular graph yields to
the matrix manifestation of the VM operator to have complex
components. We provide more details on this property in Ap-
pendix A. Since VM enables us to define quantitative coordinate
vectors, possibilities for manipulations are endless. As an exam-
ple, in Fig. 2, l1-norms of the columns of the VM matrices are
plotted, i.e., given UG = [u0,u1, . . . ,uN−1], ui’s are assigned
to each vertex to calculate coordinates by ||ui||1. Both l1-norms
and their normalized values to the reference coordinates (0,
1,..., 7) of the time series by using the scaling 7× (||ui||1 −
mini ||ui||1)/(maxi ||ui||1 −mini ||ui||1) are plotted. Intuitive
behavior can be observed in Fig. 2. First, the extra connection
between v0 and v2 at the beginning of the graph almost merges v0
and v1 so that their coordinates become close to each other; then
the linearly increasing coordinate structure continues as in the
time series. Second,G3 leads to an interesting coordinate pattern
due to the regular structure of the graph. A linearly increasing
coordinate structure still exists with the abrupt deviation where
central vertices v3 and v5 exchange their coordinates. The reason
of this behavior is the dependence of the coordinate ordering
of vertices to the ordering of phases of the eigenvalues of the
adjacency matrix. We provide the details of this behavior in
Appendix B.

As our Numerical Example 2, we apply VM to
measure smoothness of signals on graphs. Inspired by
the work of [1] that compares smoothness of graph signal
x = [−0.41,−0.41,−0.35,−0.19, 0, 0.19, 0.35, 0.41, 0.41]T

for different graphs by using total variation (TV), we consider
four graphs G4, G5, G6 and G7, each having 9 vertices, as
shown in Fig. 3 with increasing TV. TV of a graph signal
x ∈ CN defined on a graph with A ∈ CN is defined as [8]:
TVG(x) = ‖x−Anormx‖, where Anorm = 1

|λmax|A and
λmax is the eigenvalue of A with the largest magnitude. The
VM-based smoothness measure is calculated as the difference
between the normalized l1-norms of the coordinate vectors of
the last and the first vertices of each graph. In Table I, TVs of

Fig. 3. Example graphs for smoothness measurement.

the signal x on G4, G5, G6 and G7 along with the smoothness
measure obtained by only the coordinate vectors are shown.

As can be seen in Table I, as one goes from G4 to G7,
the inter-connectivity of the graph structures increases while
the graph signals on them are same. This in turn leads to
increases in TVG(s) values while the difference between the
l1-norms of the last and the first coordinate vectors decrease.
This result is expected and our measure is in consistence with
TV. Vertex coordinates get more and more densely packed due
to the increasing number of interconnections. In other words,
vertices become “closer” and the variations of the graph signal
on this graph structure would be amplified due to this closeness,
resulting in higher TVs and reducing smoothness. This gives
us a general measure of smoothness of the underlying graph
structures irrespective of graph signals that may be defined on
them, unlike TV that requires the knowledge of both the graph
signal and the graph structure. Above all, being able to represent
vertices with theoretically consistent quantitative vectors opens
up the path for any kind of mathematical manipulations that
involve vectors for a variety of possible future purposes. We
believe that VM could open up further directions for research
into several other utilizations of the coordinate vectors and the
examples such as the above demonstrations can be expanded as
future works.

VI. CONCLUSIONS

Generalization of the CM operation to the graph domain for
directed graphs is proposed. The proposed VM is in consis-
tence with the classical signal processing where differentiation
and CM are Fourier duals. VM is an operator that assigns
a coordinate structure to a graph by assigning each vertex a
coordinate vector. Coordinate vectors, which are intrinsically
consistent with the FT theory and its dual structure, can be
further manipulated to assign single coordinates to the vertices or
for other purposes. Given an adjacency matrix, such an explicit
coordinate association is helpful in the ongoing generalizations
to GSP. It can also lead to new theoretical and computational
endeavors, and deepen our theoretical understanding of the link
between vertex and frequency domains with possible insights
and applications to the notion of smoothness, distance metrics
and localization in the vertex-domain, and transform designs for
graph signals. Extension to undirected graphs could be a possible
direction for future work.
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