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Stabilization and Disturbance Rejection for
the Beam Equation

Ömer Morgül

Abstract—We consider a system described by the Euler–Bernoulli beam
equation. For stabilization, we propose a dynamic boundary controller ap-
plied at the free end of the system. The transfer function of the controller
is a marginally stable positive real function which may contain poles on the
imaginary axis. We then give various asymptotical and exponential stability
results. We also consider the disturbance rejection problem.

Index Terms—Boundary control systems, distributed parameter systems,
disturbance rejection, flexible structures, semigroup theory, stability.

I. INTRODUCTION

Many mechanical systems, such as spacecraft with flexible attach-
ments, or robots with flexible links, and many practical systems such as
power systems, mass transport systems contain certain parts whose dy-
namic behavior can be rigorously described only by partial differential
equations (PDEs). In such systems, to achieve high precision demands,
the dynamic effect of the system parts whose behavior are described by
PDEs on the overall system has to be taken into account in designing
the controllers.

In recent years, boundary control of systems represented by PDEs
has become an important research area. This idea is first applied to the
systems represented by the wave equation (e.g., elastic strings, cables),
see, e.g., [2], [8], and then extended to the beam equations, [3], and
to the rotating flexible structures, see [11], [12]. In particular, it has
been shown that for a beam which is clamped at one end and is free
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at the other end, a singlenondynamicboundary control applied at the
free end is sufficient to exponentially stabilize the system, see [3]. This
result was then extended fordynamicboundary controllers, see [13].
For more references and technical information on the subject the reader
is referred to [10].

In this note, we consider a linear time invariant system which is
represented by one-dimensional Euler–Bernoulli beam equation in a
bounded domain. We assume that the system is clamped at one end and
the boundary control input is applied at the other end. For this system,
we propose a finite dimensionaldynamicboundary controller. This in-
troduces extra degrees of freedom in designing controllers which could
be exploited in solving a variety of control problems, such as distur-
bance rejection, pole assignment, etc., while maintaining stability. The
transfer function of the controller is a proper rational function of the
complex variables, and may contain a single pole ats = 0 and an-
other ones = j!1, !1 6= 0, provided that the residues corresponding
to these poles are nonnegative; the rest of the transfer function is re-
quired to be a strictly positive real function. Such transfer functions are
called marginally stable positive-real (MSPR) functions, see [7]. This
type of controllers have been proposed before for the stabilization of
wave equation, see [14] for the stabilization (only simple pole ats = 0
is used), and [15] for disturbance rejection. While an exponential sta-
bility result has been given in [14], only asymptotic stability result has
been given in [15]. A similar controller without any pole on the imag-
inary axis has been proposed for the beam equation in [13]. We then
show that if!1 does not belong to a countable set (e.g., the zeros of a
transcendental function), then the closed loop system is asymptotically
stable in general, and is exponentially stable in some special cases. We
note that in many cases exponential stability is desired, due to, e.g.,
the robustness of the resulting closed-loop system, and in infinite di-
mensional systems, asymptotic stability may not imply exponential sta-
bility. We also relate this set of zeroes with the transmission zeroes of
the appropriate transfer function. We then consider the case where the
output of the controller is corrupted by disturbance. We show that if
the structure of the disturbance is known (i.e., the frequency spectrum),
then it may be possible to choose the controller accordingly to atten-
uate the effect of the disturbance at the system output.

This paper is organized as follows. In Section II, we introduce the
system considered and propose a class of controller for stabilization.
In Section III, we give some stability results. In Section IV, we con-
sider disturbance rejection problem. Finally, we give some concluding
remarks in Section V.

II. PROBLEM STATEMENT

We consider a flexible beam clamped at one end and is free at the
other end. Without loss of generality, we assume that the beam length,
mass density and the flexural rigidity are given asL = 1, � = 1
andT = 1, respectively. We denote the displacement of the beam by
u(x; t) atx 2 (0; 1) andt � 0. The beam is clamped at one end and is
controlled by a boundary control force at the other end. The equations
are given as (x 2 (0; 1), t � 0)

utt + uxxxx = 0; (1)

u(0; t) = 0; ux(0; t) = 0 (2)

uxx(1; t) = 0; uxxx(1; t) = f(t) (3)

where a subscript, as inut denotes a partial differential with respect to
the corresponding variable, andf(�):R+ ! R is the boundary control
force applied at the free end of the beam.

0018–9286/01$10.00 © 2001 IEEE
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In this paper we assume thatf(t) is generated by a dynamic con-
troller whose relation between its inputut(1; t), and its outputf(t) is
given by the following:

f̂(s) = g(s)ût(1; s) (4)

where a hat denotes the Laplace transform of the corresponding vari-
able. In (4),g(s) is the controller transfer function, which is assumed
to be a proper and rational function ofs. We assume that the controller
transfer functiong(s) has the following form:

g(s) = g1(s) +
k

s
+

k1s

s2 + !2
1

; (5)

whereg1(s) is a strictly positive-real function, andk; k1; !1 2 R.
In [3], a static controller withg(s) = d > 0 was considered and

it was shown that the closed-loop system is exponentially stable. The
dynamic controller given by (5) withk = k1 = 0 was considered in
[13] for the beam equation and an exponential stability result was given.
For the wave equation, in [14] the casek1 = 0 was considered and an
exponential stability result was given, and in [15] only an asymptotic
stability result was given for the casek1 > 0.

To analyze the well-posedness of the system given by (1)–(3), (4), we
need a state-space representation for the controller given by (4) and (5).
Let (A; b; c; d) be a minimal (i.e., controllable and observable) rep-
resentation ofg1(s). Then, noting that the termk actually corresponds
to an integrator, we obtain the following state-space representation for
the controller given by (4), (5):

_z1 = Az1 + but(1; t) (6)

_x1 = !1x2; _x2 = �!1x1 + ut(1; t) (7)

f(t) = c
T
z1 + dut(1; t) + ku(1; t) + k1x2 (8)

whereg1(s) = cT (sI � A)�1
b + d, z1 2 Rn, for some natural

numbern, is the actuator state,A 2 R
n�n is a constant matrix,

b; c 2 Rn are constant column vectors,d 2 R, and the superscript
T denotes transpose.

We make the following assumptions concerning the actuator given
by (6), (8) throughout this work.

Assumption 1:All eigenvalues ofA 2 Rn�n have negative real
parts.

Assumption 2:(A; b) is controllable and(c; A) is observable.
Assumption 3:d � 0; k � 0; k1 � 0; moreover there exists a

constant
, d � 
 � 0, such that the following holds:

d+Re c
T (j!I � A)�1

b > 
; ! 2 R (9)

whereg1(s) = cT (sI � A)�1b+ d. Moreover ford > 0, we assume

 > 0 as well.

III. STABILITY RESULTS

Let the Assumptions 1–3 stated above hold. Then, since the transfer
function g1(s) = d + cT (sI � A)�1b is strictly positive real it
follows from the Meyer–Kalman–Yakubovich Lemma that given
any symmetric positive definite matrixQ 2 R

n�n, there exists a
symmetric positive definite matrixP 2 Rn�n, a vectorq 2 Rn and
a constant� > 0 satisfying (see [19, p. 133])

A
T
P + PA =�qqT � �Q (10)

Pb� c = 2(d� 
) q: (11)

To analyze the system given by (1)–(3), (6)–(8), we first define the
function spaceH as follows:

H = (uvz1x1x2)
T

u 2 H2
0; v 2 L2

;

z1 2 Rn
; x1; x2 2 R; (12)

where the spacesL2, andHk

0 are defined as follows:

L
2 = f : [0; 1]! R

1

0

f
2
dx <1 ; (13)

H
k = f 2 L2

f
0
; . . . ; f (k) 2 L2

;

H
k

0 = f 2 Hk
f(0) = f

0(0) = 0 : (14)

The equations (1)–(3), (6)–(8) can be written in the following ab-
stract form:

_z = Lz; z(0) 2 H (15)

wherez = (uutz1x1x2)
T 2 H, the operatorL: H ! H is a linear

unbounded operator defined as

L

u

v

z1

x1

x2

=

v

�uxxxx
Az1 + bv(1)

!1x2

�!1x1 + v(1)

: (16)

The domainD(L) of the operatorL is defined as:

D(L) = (uvz1x1x2)
T 2 H u 2 H4

0;

v 2 H2
0; z1 2 Rn

; x1; x2 2 R;

uxx(1) = 0; �uxxx(1) + c
T
z1 + dv(1)

+ ku(1) + k1x2 = 0 : (17)

Let the Assumptions 1–3 hold, letQ 2 Rn�n be an arbitrary sym-
metric positive–definite matrix and letP 2 Rn�n, q 2 Rn be the
solutions of (10) and (11) whereP is also a symmetric and positive
definite matrix. InH, we define the following “energy” inner-product:

hy; ~yiE = 1
2

1

0

v~v dx+ 1
2

1

0

uxx~uxx dx+ 1
2
ku(1)~u(1)

+ 1
2
z1

T
Pz1 + 1

2
k1(x1~x1 + x2~x2) (18)

wherey = (uvz1x1x2)
T , ~y = (~u~v~z1~x1~x2)

T 2 H. It can be shown
thatH, together with the energy inner-product given by (18) becomes
a Hilbert space. The “energy” norm induced by (18) [for the solution
z(t) of (15)] is given by:

E(t) = kz(t)k2 = 1
2

1

0

u
2
t dx+ 1

2

1

0

u
2
xx dx

+ 1
2
ku

2(1; t) + 1
2
z
T

1 Pz1 + 1
2
k1(x

2
1 + x

2
2): (19)

Theorem 1: Consider the system given by (15) withd � 0, k � 0
andk1 � 0.

i) The operatorL generates aC0-semigroup of contractionsT (t)
in H, (for the terminology of semigroup theory, the reader is
referred to, e.g., [17]).

ii) If k1 > 0 and! = !1 is not one of the roots of the following
transcendental equation:

cosh � sin � � sinh � cos � = 0; � =
p
! (20)
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then the semigroupT (t) generated byL is asymptotically stable,
that is all solutions of (15) asymptotically converge to zero.

Proof: i) We use Lumer–Phillips theorem, to prove the
assertion i), see, e.g., [17]. To prove thatL is dissipative, we compute
hy; LyiE by using (16) in (18). Then, integrating by parts, and using
(10), (11), (14), (17) we obtain

hy; LyiE = �


2
v
2(1)� 1

4

2(d� 
) v(1)� z
T
1 q

2

� �

4
z
T
1 Qz1: (21)

Sincehy; LyiE � 0, it follows thatL is dissipative, (see [14] for
similar calculations).

After some straightforward calculations, it can be easily shown that
�I �L: H! H is onto for� > 0, (see [14] for similar calculations).
Then, it follows from the Lumer–Phillips theorem thatL generates a
C0-semigroup of contractionsT (t) onH.

ii) To prove the assertion ii), we use LaSalle’s invariance principle,
extended to infinite dimensional systems, see [18] and [10]. According
to this principle, all solutions of (15) asymptotically tend to the max-
imal invariant subset of the following set:

S = fz 2 Hj _E = 0g (22)

provided that the solution trajectories fort � 0 areprecompactin H.
Since the operatorL: H ! H generates aC0-semigroup ofcontrac-
tionsonH (hence, the solution trajectories areboundedonH for t �
0), the precompactness of the solution trajectories are guaranteed if the
operator(�I�L)�1:H ! H is compact for some� > 0, see [10]. To
prove the last property, we first show thatL�1 exists and is a compact
operator onH. To see this, letq = (fhrr1r2)

T 2 H be given. We want
to solve the equationLz = q for z, wherez = (uvz1x1x2)

T 2 D(L).
The solution of this equation can easily be found as:

u(x) =�
x

0

�

0

�

0

�

0

h(�)d� d�1 d�2 d�3

+ c1x
3 + c2x

2
; v(x) = f(x) (23)

z1 =A
�1(r � f(1)b); x1 =

f(1)� r2

!1
; x2 =

r1

!1
(24)

where the constantsc1; c2 can be uniquely determined from (8). It fol-
lows thatL�1 exists and mapsH intoH4 � H2 � Rn � R � R,
moreover(uvz1x1x2)T 2 D(L). Sinceq = (fhrr1r2)

T 2 H it
follows thatf 2 H2

0, see (12). Hence, ifkqk is bounded inH, it fol-
lows easily that thatf(1) is bounded as well. ThereforeL�1 maps the
bounded sets ofH into the bounded sets ofH4�H2�Rn�R�R.
Since the embedding of the latter intoH is compact, see [20, p. 14], it
follows thatL�1 is a compact operator. This also proves that the spec-
trum ofL consists entirely of isolated eigenvalues, and that for any�

in the resolvent set ofL, the operator(�I � L)�1:H ! H is a com-
pact operator, see [9, p. 187]. Furthermore, our argument above shows
that� = 0 is not an eigenvalue ofL. Since the operatorL generates
aC0-semigroup of contractions onH, by the argument given above it
follows that the solutions trajectories of (15) are precompact inH for
t � 0, hence by LaSalle’s invariance principle, the solutions asymp-
totically tend to the maximal invariant subset ofS [see (22)]. Hence, to
prove that all solutions of (15) asymptotically tend to the zero solution,
it suffices to show thatS contains only the zero solution, which is a
typical procedure in the application of LaSalle’s invariance principle.

By using (15) and (19), we see that_E = 2hz; LziE . Hence, from
(21) we obtain
_E = 2hz; LziE = �
u2t (1; t)

�1

2
2(d� 
)ut(1; t)� z

T
1 q

2

� �

2
z
T
1 Qz1: (25)

To prove thatS contains only the zero solution, we set_E = 0 in (25),
which results inz1 = 0. This implies that_z1 = 0, hence by using (6)

and (8) we obtainut(1; t) = 0, f(t) = ku(1; t) + k1x2. Hence, all
solutions of (15) inS satisfy the following:

utt + uxxxx = 0; _x1 = !1x2; _x2 = �!1x1 (26)

u(0; t) = 0; ux(0; t) = 0;

uxx(1; t) = 0; ut(1; t) = 0 (27)

uxxx(1; t) = ku(1; t) + k1x2: (28)

Consider the system given by (26), (27). This system can be put into
the form _zp = Lpzp with zp = (uutx1x2)

T 2 Hp, whereHp is the
same as given by (12) with obvious omission ofz1, andLp is similar
toL given by (16) with obvious omission ofz1 (i.e., the third row) and
v(1) = 0. D(Lp) is given as (17) with the omission ofz1, and the
last boundary condition should be replaced byv(1) = 0. Hp is also
a Hilbert space with the inner-producth�; �ip induced by (18) with the
omission ofz1. By straightforward calculation, and using integration
by parts, it can easily be shown thathzp; Lp~zpip = �hLpzp; ~zpip,
for anyzp; ~zp 2 D(Lp), hence from [5, Th. 4.1], it follows thatLp
is skew-adjoint, i.e.,Bp = jLp is self-adjoint. Hence, it follows from
[17, Th. 10.8] thatLp generates aC0 semigroup of contractions. Also,
by using [5, Th. 5.1], it follows that there exists a complete set of or-
thonormal basisf'1; '2; . . .g onHp consisting of eigenvectors ofLp.
Moreover, for anyz0 2 D(Lp), we havez0 =

j
hz0; 'jip'j and

Lpz0 =
j
�jhz0; 'jip'j , where�j denotes the eigenvalues ofLp,

see [5, Th. 5.1]. Hence, the solutionzp(t) of (26), (27) can be given
aszp(t) =

j
cje

� t'j , where the coefficientscj 2 C can be de-
termined from initial conditions and the eigenvectors' have the form
' = (uvx1x2)

T 2 D(Lp). Due to the structure ofLp, � = �j!1 is
an eigenvalue pair, and since� =

p
!1 is not a root of (20), the cor-

responding eigenvectors haveu = v = 0. The rest of the eigenvalues
have the form� = �j�2, where� is a root of (20), and since we have
� 6= p

!1, the corresponding eigenvectors havex1 = x2 = 0 with
u(0) = u0(0) = u00(1) = v(1) = 0. By using these in (28), after
some straightforward calculations, we obtaincj = 0, j = 1; 2; . . ..
Hence,zp = 0 is the only possible solution of (26)–(28). Hence, by
LaSalle’s invariance theorem, we conclude that the solutions of (15)
asymptotically tend to the zero solution.

Theorem 1 remains valid even ifk1 = 0, provided that the variables
x1 andx2 are suppressed everywhere. The proof of this fact is essen-
tially the same as the proof of Theorem 1.

It was proven in [13] that fork = k1 = 0, if d > 0, then the
closed-loop system (1)–(3), (6) and (8) is exponentially stable. Since
the subsystem (7) is essentially finite dimensional, we may expect the
same conclusions hold for the casek � 0; k1 > 0 as well. In the sequel
we will prove this result by using Huang’s Theorem stated below:

Theorem (Huang):LetL be a linear operator on a Hilbert spaceH.
Assume thatL generates a boundedC0 semigroupT (t) onH. Then,
T (t) is exponentially stable if and only if the following holds:

i) imaginary axis belongs to the resolvent set ofL.
ii) the following resolvent estimate holds:

sup
!2R

k(j!I � L)�1k <1: (29)

Proof: See [6] or [10] for an alternative proof.
In the sequel, we will work on the complexified versions of the

Hilbert spaces mentioned above; for convenience we do not change
the notation.

Theorem 2: Consider the system given by (15) withd > 0, k � 0
andk1 > 0. Let the assumptions 1–3 hold. If! = !1 is not a root of
(20), then the semigroupT (t) generated byL is exponentially stable.

Proof: We will use Huang’s theorem cited above. First note that
by Theorem 1,T (t) is bounded. If� =

p
!1 is not a root of (20),

then by the part ii) of Theorem 1, the semigroupT (t) generated by
L is asymptotically stable, henceL cannot have an eigenvalue on the
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imaginary axis, and sinceL has compact resolvent, it follows that the
imaginary axis belongs to the resolvent set ofL, see, e.g., [10, Th. 3.26].

Next, we will show that the resolvent estimate given by (29) holds for
sufficiently large!. The calculations are lengthy, but straightforward,
similar to the ones given in [4]. Here we will omit the details, and give
only basic steps of the calculations. Lety = (pqrr1r2)

T 2 H and�,
in the resolvent set ofL, be given and letz = (uvz1x1x2)

T 2 D(L)
be the solution of the following:

(�I � L)z = y: (30)

In the sequel, we will use� = j!,! 2 R, for simplicity. The solution
u of (30) satisfyingu(0) = ux(0) = 0 is given by

u(x) =A(cosh �x� cos �x) +B(sinh �x� sin �x)

+
1

2�3

x

0

[sinh � (x� �)� sin � (x� �)]

� [�p(�) + q(�)]d�; � =
p
! (31)

whereA andB are determined by the remaining boundary conditions

uxx(1) = 0; uxxx(1)� �g(�)u(1) =
k

�
� g(�) p(1)

+k1
�r2 � !1r1
�2 + !2

1

+ cT (�I � A)�1r (32)

andg(�) is given by (5). Using (31) in (32) we obtain

A =
1

�
cosh � + cos � � �g(�)

� 3
(sinh � � sin � )

�X1 � (sinh � + sin � )(X2 +X3 +X4) (33)

B =
1

�
� sinh � + sin � +

�g(�)

� 3
(cosh � � cos � )

�X1 + (cosh � + cos � )(X2 +X3 +X4) (34)

where

� =2 1 + cosh � cos � � �g(�)

� 3

(sinh � cos � � cosh � sin � ) (35)

X1 =� 1

2�3

1

0

[sinh � (1� �) + sin � (1� �)]

� [�p(�) + q(�)]d� (36)

X2 =
1

� 3
k

�
� g(�) p(1) +

k1
� 3

�r2 � !1r1
�2 + !2

1

+
cT (�I � A)�1r

� 3
(37)

X3 =� 1

2�3

1

0

[cosh � (1� �) + cos � (1� �)]

� [�p(�) + q(�)]d� (38)

X4 =
1

2�3
�g(�)

� 3

1

0

[sinh � (1� �)� sin � (1� �)]

� [�p(�) + q(�)]d�: (39)

(Note that� = 0 may be considered as the characteristic equation in
the sense that its roots are the eigenvalues of the closed-loop system.)
In the sequel, by using estimates of (33)–(39), we will show that an
estimate of the formkzk � Mkyk holds. We will use the following
notation: for any functionF (�) > 0, O(F (�)) denotes any function

which satisfiesO(F (�)) �MF (�) for someM > 0 and for� suffi-
ciently large. Also, for anyf 2 L2, kfk2 denotes theL2 norm off .

For simplicity, assume that� > 0. Using integration by parts in (36),
(38) and (39), we obtain

Xi =� 1

4�3
e�

1

0

e���[jpxx(�) + q(�)]d�

+O kpxxk2 + kqk2
� 3

; i = 1; 3 (40)

X4 =
jg(�)

� 3
p(1) +

�g(�)

4�6
e�

1

0

e���[jpxx(�) + q(�)]d�

+O kpxxk2 + kqk2
� 4

: (41)

Let û denote the integral term in (31). Upon differentiating and using
integration by parts, we obtain

ûxx(x) =
1

4�
e�x

1

0

e���[jpxx(�) + q(�)]d�

+O kpxxk2 + kqk2
�

: (42)

In (35), by collecting dominant terms, we obtain

� = 2 + e� cos � � jg(�)

�
(cos � � sin � ) +O(e��): (43)

Letg(�) = R(!)+jI(!)whereR andI denote the real and imaginary
parts, respectively. Moreover we haveR(!) � 
 > 0 andI(!) =
O(1=�2) for large� . Noting thatcos2 � + (cos � � sin � )2 � c > 0
for somec, from (43) we obtain� = O(e�=�) for large� .

By using (33), (34), (40), (41) and (42) in (31) and noting that
��1 = O(�e��), after straightforward algebraic calculations we
obtain the following estimate for� sufficiently large:

kuxxk2 �M1kyk (44)

whereM1 > 0 is a constant and the normk � k is given by (19). Note
that in this calculation the key point is the fact that the dominant terms
in (40)–(42), which are the integral terms, cancel in the expression of
uxx, see [4] for a similar result. By using (33), (34), (40), (41), (42)
and (31) inv = �u � p, [see (30)], after straightforward calculations
similar to the ones mentioned above we obtain the following estimate
for � sufficiently large:

kvk2 �M2kyk (45)

whereM2 > 0 is a constant. Similarly, from (30) we obtain

kz1kn =O jv(1)j+ krkn
� 2

jxij =O jv(1)j+ jr1j + jr2j
� 2

; i = 1; 2 (46)

wherek�kn denotes the norm inRn, see (19). Finally. note thatv(1) =
�u(1) � p(1), andju(1)j � kuxxk2, jp(1)j � kpxxk2. Combining
these, we obtain the following inequality for sufficiently large� :

kzk �Mkyk (47)

whereM > 0 is a constant, and for a giveny 2 H, z 2 D(L) is the
solution of (30). Hence for some
 > 0 sufficiently large we have

sup
!�


k(j!I � L)�1k <1: (48)
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SinceL has compact resolvent and the imaginary axis is in the resolvent
set, we also have the following:

sup
!�


k(j!I � L)�1k <1: (49)

Combining (48) and (49) we obtain (29). Hence, by Huang’s Theorem,
L generates an exponentially stable semigroup inH.

Theorem 2 remains valid even ifk1 = 0, provided that the variables
x1 andx2 are suppressed everywhere. The proof of this fact is essen-
tially the same as the proof of Theorem 2.

IV. DISTURBANCE REJECTION

In this section, we show the effect of the proposed control law given
by (6)–(8) on the solutions of the system given by (1)–(3), when the
output of the controller is corrupted by a disturbancen(t), that is (8)
has the following form:

f(t) = c
T
z1 + dut(1; t) + ku(1; t) + k1x2 + n(t) (50)

or, equivalently, (4) has the following form:

f̂(s) = g(s)ŷt(1; s) + n̂(s) (51)

wheren̂(s) is the Laplace transform of the disturbancen(t) andg(s)
is given by (5).

To find the transfer function fromn(t) to ut(1; t), first we need to
find the transfer function fromf(t) to ut(1; t). By taking the Laplace
transform of (1)–(3) and using zero initial conditions, after some
straightforward calculations we obtain the following:

ût(1; s) =�h(s)f̂(s);

h(s) = j
(cosh � sin � � sinh � cos � )

� (1 + cosh � cos � )
(52)

wheres2 = ��4, see also [1]. By using (52) in (51), we obtain

ût(1; s) = �
h(s)

1 + h(s)g(s)
n̂(s): (53)

Remark 1: Consider the system given by (1)–(3). If we considerf

as an input andut(1; t) as output, it is known that this system is pas-
sive, see [10]; moreover the transfer function of this system is given by
h(s) in (52). On the other hand, the controller transfer functiong(s)
which is given by (5) is MSPR, see [7]. It was shown in [7] that for
finite-dimensional linear, time-invariant systems (LTI), in the classical
negative feedback configuration ifh(s) (the system to be controlled) is
positive real and ifg(s) (the controller) is MSPR, then the closed-loop
system is asymptotically stable, provided that none of the imaginary
axis poles ofg(s) is a transmission zero ofh(s). Note that this re-
sult may not hold for infinite dimensional systems. In our case, (1)–(3)
represent a passive system, which is equivalent to positive realness in
finite dimensional LTI systems. It can easily be shown that! = !1

is a root of (20) if and only ifh(j!1) = 0. In this sense, Theorem 2
may be considered as an extension of the stated result of [7] to an infi-
nite dimensional system given by (1)–(3). Note that, although in finite
dimensional LTI case the asymptotic stability implies exponential sta-
bility, this is not necessarily true in infinite dimensional systems. We
also note that a similar result holds for the wave equation, [16].

Remark 2: The controller given by (5) can easily be generalized to

g(s) = g1(s) +
k

s
+

N

i=1

kis

s2 + !2
i

(54)

for anyN . Theorem 2 will remain valid, provided thatki � 0 and!i
is not a root of (20) fori = 1; 2; . . . ; N .

From (53), we can also derive a procedure to designg(s) if we know
the structure ofn(t). For example ifn(t) has a band-limited frequency
spectrum, (i.e., has frequency components in an interval of frequencies
[
1; 
2]), then we can chooseg(s) to minimize

c(!) =
h(j!)

1 + h(j!)g(j!)
; ! 2 [
1; 
2] : (55)

Note that to ensure the stability of the closed-loop system,g1(s) should
be a strictly positive real function as well, [see (5)]. As a simple ex-
ample, assume thatn(t) = a cos!0(t). Then we may chooseg(s) in
the form (5) with!1 = !0. Provided that the Assumptions 1–3 are
satisfied and thatj!0 is not a zero ofh(s), the closed-loop system is
asymptotically stable, (see Theorem 1). Moreover, ifk1 > 0, thenc(!)
given above satisfiesc(!0) = 0. From (55), we may conclude that this
eliminates the effect of the disturbance at the outputut(1; t).

V. CONCLUSION

In this note, we considered a linear time invariant system which
is represented by one-dimensional Euler–Bernoulli beam equation in
a bounded domain. We assumed that the system is clamped at one
end and the boundary control force input is applied at the other end.
For this system, we proposed a finite dimensionaldynamicboundary
controller. This introduces extra degrees of freedom in designing con-
trollers which could be exploited in solving a variety of control prob-
lems, such as disturbance rejection, pole assignment, etc., while main-
taining stability. The transfer function of the controller is a proper ra-
tional function of the complex variables, and may contain a single
pole ats = 0 and another ones = j!1, !1 6= 0, provided that the
residues corresponding to these poles are nonnegative; the rest of the
transfer function is required to be a strictly positive real function. We
then proved that the closed-loop system is asymptotically stable pro-
vided thats = j!1 is not a zero of an appropriate system transfer
function, and is exponentially stable in some cases. We also studied the
case where the output of the controller is corrupted by a disturbance.
We showed that, if the frequency spectrum of the controller is known,
then by choosing the controller appropriately we can obtain better dis-
turbance rejection.
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Robust Control of Discrete-Time Markovian Jump
Linear Systems With Mode-Dependent Time-Delays

E. K. Boukas and Z. K. Liu

Abstract—This note considers the class of discrete-time Markovian jump
linear system with norm-bounded uncertainties and time-delay, which is
dependent on the system mode. Linear matrix inequality (LMI) -based suf-
ficient conditions for the stability, stabilization and control are de-
veloped. A numerical example is worked out to show the usefulness of the
theoretical results.

Index Terms—Discrete-time Markovian jump linear system, con-
trol, linear matrix inequality (LMI), time-delay system.

I. INTRODUCTION

Discrete-time Markovian jump linear system is a hybrid one with
state comprised of two components: a discrete part denoted byrt and
a continuous part, denoted byxt. Discrete statert is a discrete-time
Markov chain representing the mode of the system andxt denotes
the physical state of the system, e.g., the inventory level in manufac-
turing systems. The continuous statext evolves according to a differ-
ence equation when the mode is fixed. For more information on dis-
crete-time Markovian jump linear systems, the reader is referred to [5],
[6], and the references therein.

Time-delay occurs frequently in many practical systems, such as
manufacturing system, telecommunication and economic systems etc.,
which is an important source of instability and poor performance. For
continuous-time Markovian jump linear systems with time-delay, we
refer the reader to [4]. For discrete-time Markovian jump linear system
with time-delay, [1] studied the robust stability, stabilization andH1
problem. The purpose of this note is to extend the results in [1] to the
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case where the time-delay in the system is dependent on the system
mode.

The goal of this note is to study the robust stability and robust stabi-
lizability of the class of discrete-time Markovian jump linear systems
with time-delay and norm bounded uncertainties. The robustH1 con-
trol is also considered. The sufficient conditions we will establish are
all in linear matrix inequality (LMI) formalism which makes their res-
olution easy. The rest of this note is organized as follows: Section II
describes the system model. Section III addresses the robust stability
and stabilization problem. Section IV studies the robustH1 control
problem. Section V provides a numerical example to show the valid-
ness of the proposed results.

II. M ODEL DESCRIPTION

Let frk; k � 0g be a Markov chain with state space
S = f1; . . . ; Ng and state transition matrixP = [pij ]i; j2S ,
i.e., the transition probabilities offrk; k � 0g are as follows:

P [rk+1 = jjrk = i] = pij ; 8 i; j 2 S

with pij � 0, 8 i; i 2 S and N

j=1 pij = 1, for i 2 S .
Consider a discrete-time hybrid system withN modes. Suppose that

the system mode switching is governed byfrk; k � 0g and the system
parameters contain norm-bounded uncertainties. Let the system dy-
namics be described by the following:

xt+1 = A(t; rt)xt + Ad(t; rt)xt��(r )

+B(rt; t)ut +B1(rt)wt;

xs = �s; s = ��; . . . ; �1;

zt = C(rt; t)xt + Cd(rt; t)xt��(r )

+Bc(rt; t)u(t) + C1(rt)wt

(1)

wherext 2 n is the state of the system, for eachrt 2 S

A(rt; t) =A(rt) + �a(rt; t)

Ad(rt; t) =Ad(rt) + �d(rt; t)

B(rt; t) =B(rt) + �b(rt; t)

C(rt; t) =C(rt) + �c(rt; t)

Cd(rt; t) =Cd(rt) + �cd(rt; t)

Bc(rt; t) =Bc(rt) + �bc(rt; t)

with A(rt), Ad(rt), B1(rt), B(rt), C(rt), Cd(rt), Bc(rt) and
C1(rt) are matrices with appropriate dimensions,�a(rt; t),
�d(rt; t), �a(rt; t), �b(rt; t), �c(rt; t), �cd(rt; t), �bc(rt; t)
are unknown matrices denoting the uncertainties in the system.� (rt)
is a constant, denoting the time-delay of the system when the system
is in modert.

In this note, we assume that the admissible uncertainties satisfy the
following:

�a(rt; t) �d(rt; t) �b(rt; t)

�c(rt; t) �cd(rt; t) �bc(rt; t)

=
G1(rt)

G2(rt)
�(rt; t) (H1(rt) H2(rt) H3(rt) )

with �>(rt; t)�(rt; t) � I , 8 rt 2 S. In the sequel, notationX >

0(�0), withX being a matrix, means thatX is symmetric and (semi-)
positive–definite.
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