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Omer Morgiil stable in general, and is exponentially stable in some special cases. We

note that in many cases exponential stability is desired, due to, e.g.,

the robustness of the resulting closed-loop system, and in infinite di-
equation. For stabilization, we propose a dynamic boundary controller ap- m_?”s'ona' systems, asymptotlc stability may notimply gxponentlal sta-
plied at the free end of the system. The transfer function of the controller ~ Dility. We also relate this set of zeroes with the transmission zeroes of
is a marginally stable positive real function which may contain poles onthe the appropriate transfer function. We then consider the case where the
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Abstract—We consider a system described by the Euler—Bernoulli beam

results. We also consider the disturbance rejection problem. the structure of the disturbance is known (i.e., the frequency spectrum),
Index Terms—Boundary control systems, distributed parameter systems, then it may be possible to choose the controller accordingly to atten-
disturbance rejection, flexible structures, semigroup theory, stability. uate the effect of the disturbance at the system output.

This paper is organized as follows. In Section I, we introduce the
system considered and propose a class of controller for stabilization.
In Section 1ll, we give some stability results. In Section 1V, we con-

Many mechanical systems, such as spacecraft with flexible attasider disturbance rejection problem. Finally, we give some concluding
ments, or robots with flexible links, and many practical systems suchrasnarks in Section V.
power systems, mass transport systems contain certain parts whose dy-
namic behavior can be rigorously described only by partial differential
equations (PDESs). In such systems, to achieve high precision demands,
the dynamic effect of the system parts whose behavior are described bye consider a flexible beam clamped at one end and is free at the
PDEs on the overall system has to be taken into account in designiiier end. Without loss of generality, we assume that the beam length,
the controllers. mass density and the flexural rigidity are givenlas= 1,p = 1

In recent years, boundary control of systems represented by PBESIT = 1, respectively. We denote the displacement of the beam by
has become an important research area. This idea is first applied todhe, t) atz € (0, 1) andt > 0. The beam is clamped at one end and is
systems represented by the wave equation (e.g., elastic strings, cab&es)trolled by a boundary control force at the other end. The equations
see, e.g., [2], [8], and then extended to the beam equations, [3], &€l given asx € (0, 1), > 0)
to the rotating flexible structures, see [11], [12]. In particular, it has

|. INTRODUCTION

Il. PROBLEM STATEMENT

been shown that for a beam which is clamped at one end and is free Uit + Uprrs = 0, (1)
u(0, t) =0, uz(0,8) =0 2
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In this paper we assume thaft) is generated by a dynamic con- To analyze the system given by (1)—(3), (6)—(8), we first define the
troller whose relation between its input(1, ¢), and its outpuff (¢) is  function spacé+ as follows:
given by the following:

H= {(uv:lxla:g)T u € Hé v E LZ,

f(s) = g(s)i (1, s) (4) 21 €ER", @y, 20 € R-} (12)

where a hat den.otes the Laplace transform of the co.rres.pondlng vgvrrl]-ere the spacds?, andH}, are defined as follows:
able. In (4),9(s) is the controller transfer function, which is assume

to be a proper and rational function afWWe assume that the controller 9 S )
transfer functiory(s) has the following form: L"=43/[0,1]—-R /0 frdz <oop, (13)
k _ 2| o1 (k) 2
, i ks H ={fel?|f, ..., fPer?!,
9(5) = g () + S+ (5) ) { ) )
i Hi = {r e B [f(0)= () =0}. (14)

whereg: (s) is a strictly positive-real function, arid k1, w1 € R. The equations (1)—(3), (6)—(8) can be written in the following ab-
In [3], a static controller witly(s) = d > 0 was considered and ?]tract form:
I :

it was shown that the closed-loop system is exponentially stable. T
dynamic controller given by (5) withk = k; = 0 was considered in i=1Lz, 2(0) € H (15)
[13] for the beam equation and an exponential stability result was given.

For the wave equation, in [14] the case= 0 was considered and anwherez = (uuziz129)” € ‘H, the operatol: H — H is a linear
exponential stability result was given, and in [15] only an asymptotitnbounded operator defined as

stability result was given for the cage > 0.

To analyze the well-posedness of the system given by (1)—(3), (4), we “ v

need a state-space representation for the controller given by (4) and (5). v —Ugrax
Let (A, b ¢, d) be a mlnlmal.(l.e., controllable and observable) rep- Ll = | = 45 +001) |, (16)
resentation of;; (s). Then, noting that the teri actually corresponds
to an integrator, we obtain the following state-space representation for 1 w12
the controller given by (4), (5): 2o —wizy + (1)
2= Az + bue(1, ) (6) The domainD(L) of the operatot is defined as:
Tl = wixa, o = —wizr + ue(1, t) @) D(L)= {(u’UZlivléL’z)T € H|u e Hp,
) = el + du (1, t) + ku(l, t) + k2o (8) veH: 2z e R, 21, 72 € Ry
Ueo(1) =0, —wpan(1)+ ¢ 21+ du(1)

where g, (s) = cT(sI — A)’lb +d, z1 € R", for some natural
numbern, is the actuator stated € R™*" is a constant matrix,
b, ¢ € R" are constant column vectors,€ R, and the superscript
T denotes transpose.

We make the following assumptions concerning the actuator giv
by (6), (8) throughout this work.

Assumption 1:All eigenvalues ofA € R"*" have negative real
parts. -1 -1
Assumption 2:( A, b) is controllable andc, 4) is observable. (v, 9y = %/ vodz + %/ Uaalins do + hu(1)a(l)

Assumption 3:d > 0, k& > 0, k; > 0; moreover there exists a 0 0
constanty, d > v > 0, such that the following holds:

+ ku(l) 4+ kia2 :O}. a7

Let the Assumptions 1-3 hold, |6t € R"*™ be an arbitrary sym-
ghetric positive—definite matrix and l€¢ € R"*"”, ¢ € R" be the
solutions of (10) and (11) wherE is also a symmetric and positive
definite matrix. In, we define the following “energy” inner-product:

+1§Z~1 TP/’Zl + %]{71 (iL’l.f’1 + .[313) (18)

wherey = (vvziaias)?, § = (@01#1#2)Y € H. It can be shown
d+Re {GT (jwl — A)*lb} > 7, weR (9) that7{, together with the energy inner-product given by (18) becomes
a Hilbert space. The “energy” norm induced by (18) [for the solution
whereg, (s) = ¢’ (sI — A)~'b + d. Moreover ford > 0, we assume =(t) of (15)] is given by:

7 > 0 as well. 1 S
E@) = 20| = %/ uy da + %/ us, da
0 0

IIl. STABILITY RESULT 5 e o .
s SuLTS +1ku® (1, t) + ;—:l Pz + Yhi(af +23). (19)

Let the Assumptions 1-3 stated above hold. Then, since the transfer
function g1(s) = d + ¢’ (sI — A)~'b is strictly positive real it Theorem 1: Consider the system given by (15) with> 0,k > 0
follows from the Meyer—Kalman—Yakubovich Lemma that giver’flndkl > 0.
any symmetric positive definite matri € R™*", there exists a i) The operatot generates &';-semigroup of contractior&(t)

symmetric positive definite matri® € R"*", a vectorg € R™ and in H, (for the terminology of semigroup theory, the reader is
a constant > 0 satisfying (see [19, p. 133]) referred to, e.g., [17]).
ii) If k&1 > 0 andw = w; is not one of the roots of the following
ATP 4+ PA=—¢¢" —cQ (10) transcendental equation:

Pb—c=+/2(d—7)q. (11) coshtsinT —sinhTcosT =0, =W (20)
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then the semigroup(t) generated by is asymptotically stable, and (8) we obtaini;(1, t) = 0, f(t) = ku(1, ) + k122. Hence, all
that is all solutions of (15) asymptotically converge to zero. solutions of (15) inS satisfy the following:
Proof.: i) We use Lumer—Phillips thegrem, to prove the P — ) i = wirs, iy = —wi (26)
assertion i), see, e.g., [17]. To prove tiais dissipative, we compute
{y, Ly) £ by using (16) in (18). Then, integrating by parts, and using u(0, 1) =0, 7‘1(0’ t) =0,
(10), (11), (14), (17) we obtain uzz(1, 1) =0, ue(l, t) =0 (27)
(, L) = —1112(1) _ 1 Uewa (L, €) =ku(l, ) + krxa. (28)
’ 2 4
, 712 €7 Consider the system given by (26), (27). This system can be put into
[\/ 2(d =) o(l) =z ‘1] T Qz1. (21)  the formz, = L,z, with z, = (uuxi22)" € H,, whereH,, is the
Since(y, Ly)z < 0, it follows that L is dissipative, (see [14] for Same as given by (12) with obvious omissionzof and L, is similar
similar calculatio_ns). to L given by (16) with obvious omission ef (i.e., the third row) and
After some straightforward calculations, it can be easily shown that!) = 0. D(L;) is given as (17) with the omission of, and the
A — L: H — His onto for\ > 0, (see [14] for similar calculations). |25t boundary condition should be replacedity) = 0., is also
Then, it follows from the Lumer—Phillips theorem thiigenerates a & Hilbert space with the inner-produgt -), induced by (18) with the
Clo-semigroup of contractiorB(t) onA. omission ofz; . By straightforward calculation, and using integration

i) To prove the assertion i), we use LaSalle’s invariance principl@y Parts, it can easily be shown that,. L,=,), = —(Lyzp, Zp)p,
extended to infinite dimensional systems, see [18] and [10]. Accordifff @MY z»: Z» € D(L,), hence from [5, Th. 4.1], it follows that,

to this principle, all solutions of (15) asymptotically tend to the maxS Skew-adjoint, i.e.3, = j L, is self-adjoint. Hence, it follows from
imal invariant subset of the following set: [17, Th. 10.8] thatl, generates &'y semigroup of contractions. Also,

. by using [5, Th. 5.1], it follows that there exists a complete set of or-
S={zeHIE=0} (@2) thonormal basi$p1, 2, ...} onH, consisting of eigenvectors @f, .
provided that the solution trajectories fio>> 0 areprecompactn .  Moreover, for any=o € D(L,), we havezo = 3 (z0, ¢;)p; and
Since the operatak: 7 — H generates &’-semigroup otontrac-  Lyzo = 3=, A;(z0, ¥;)p¥;, Where); denotes the eigenvalues bf,
tionsonH (hence, the solution trajectories dreundedon ™ for ¢+ >  see [5, Th. 5.1]. Hence, the solutiep(#) of (26), (27) can be given
0), the precompactness of the solution trajectories are guaranteed ifabe, (t) = 3_, cje*ity;, where the coefficients; € C can be de-
operator( Al — L) *:H — H is compact for soma > 0, see [10]. To termined from initial conditions and the eigenvectprbave the form
prove the last property, we first show that ' exists and is a compact ¢ = (uvz 22)” € D(L,). Due to the structure of,, A = £jw, is
operator or{. To see this, lej = (fhrrir2)” € H be given. Wewant an eigenvalue pair, and since= y/wi is not a root of (20), the cor-
to solve the equatiofiz = ¢ for z, wherez = (uvz,2122)" € D(L). responding eigenvectors have= v = . The rest of the eigenvalues

The solution of this equation can easily be found as: have the form\ = £;72, wherer is a root of (20), and since we have
v €y péa ) T # /w1, the corresponding eigenvectors have= z» = 0 with
u(z) = —/0 /D /D /O h(o) do dg, d&s d&s u(0) = «'(0) = «"(1) = v(1) = 0. By using these in (28), after

3 9 some straightforward calculations, we obtajn= 0, = 1, 2, .. ..
taatfer, () = fe) (23) Hence,z, = 0 is the only possible solution of (26)—(28). Hence, by

1 F(1) =72 T1 LaSalle’s invariance theorem, we conclude that the solutions of (15)

a=AT 0= fh), m = w . 2T (24) asymptotically tend to the zero solution. O

where the constants, c» can be uniquely determined from (8). Itfol- Theorem 1 remains valid eveniif = 0, provided that the variables

lows thatL~—" exists and map%{ into H* x H?> x R" x R x R, &1 andx; are suppressed everywhere. The proof of this fact is essen-

moreover(uvzyaiaz)’ € D(L). Sinceq = (fhrrirm)T € H it tially the same as the proof of Theorem 1.

follows thatf € Hj, see (12). Hence, {fq|| is bounded ir, it fol- It was proven in [13] that fok = &k = 0, if d > 0, then the

lows easily that thaf (1) is bounded as well. Therefode™' maps the closed-loop system (1)—(3), (6) and (8) is exponentially stable. Since

bounded sets df into the bounded sets 81 x H?> x R” x R x R. the subsystem (7) is essentially finite dimensional, we may expect the

Since the embedding of the latter irtbis compact, see [20, p. 14], it Same conclusions hold for the cdse 0, k; > 0 aswell. Inthe sequel

follows thatL~" is a compact operator. This also proves that the spewe will prove this result by using Huang’s Theorem stated below:

trum of L consists entirely of isolated eigenvalues, and that forany Theorem (Huang):Let L be a linear operator on a Hilbert spdde

in the resolvent set of, the operatotAl — L)~':’H — ‘H is acom- Assume thaf generates a bound&t semigrougl’(t) on’H. Then,

pact operator, see [9, p. 187]. Furthermore, our argument above shadws) is exponentially stable if and only if the following holds:

that A = 0 is not an eigenvalue . Since the operatal generates i) imaginary axis belongs to the resolvent set/of

aCo-semigroup of contractions di, by the argument given above it i) the following resolvent estimate holds:

follows that the solutions trajectories of (15) are precompagt ifor . _1

t > 0, hence by LaSalle’s invariance principle, the solutions asymp- 31615 ((Gwl = L)™'|] < oc. (29)

totically tend to the maximal invariant subset®fsee (22)]. Hence, to

prove_that all solutions 9f (15) r_:lsymptotlcally tend to t_he zero_soll_Jtlon, In the sequel, we will work on the complexified versions of the

it suffices to show thats contains only the zero solution, which is aHilbert spaces mentioned above; for convenience we do not change

typical procedure in the application of LaSalle’s invariance principle, ) '

By using (15) and (19), we see thAt= 2(z, Lz) . Hence, from the notation. . . )
(21) we obtain ’ Theorem 2: Consider the ;ystem given by (15) Wﬂh> 0,k>0
andk; > 0. Let the assumptions 1-3 hold.df = w, is not a root of

Proof: See [6] or [10] for an alternative proof. O

E=2(z, Lz)p = —yui (1, 1) (20), then the semigrouf(¢) generated by. is exponentially stable.
1 r 1% € 7 Proof: We will use Huang'’s theorem cited above. First note that
—= (V/2(d — Y)us(l, t) — z — =z Qz. (25 : - - :
2 [ (d=yue(l, ) = = q] g 1@ (29) by Theorem 17T'(t) is bounded. Ifr = /&7 is not a root of (20),

To prove thatS contains only the zero solution, we d8t= 0 in (25), then by the part ii) of Theorem 1, the semigrdfipt) generated by
which results inzy = 0. This implies that; = 0, hence by using (6) L is asymptotically stable, hende cannot have an eigenvalue on the
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imaginary axis, and sincé has compact resolvent, it follows that thewhich satisfiesD(F(r)) < M F(r) for someM > 0 and forr suffi-

imaginary axis belongs to the resolvent sefp$ee, e.g., [10, Th. 3.26]. ciently large. Also, for any € L?, || f||> denotes thd&? norm of f.
Next, we will show that the resolvent estimate given by (29) holds for For simplicity, assume that > 0. Using integration by parts in (36),

sufficiently largew. The calculations are lengthy, but straightforward(38) and (39), we obtain

similar to the ones given in [4]. Here we will omit the details, and give

only basic steps of the calculations. ket (pgrrir72)” € H and), X, = _ L /'l ¢ Lipaa (o) + g(0)] do
in the resolvent set af, be given and let = (vvzyx1a0)T € D(L) ' 473 '
be the solution of the following: 4O <||paxr||i:‘ ||q||2> L i—13 (40)
(M~ L)z =y. (30) 0 N
Xy = ng_(s )p(l) + i(_b) e’ / e ipac(o) + q(o)]do
In the sequel, we will usgé = jw,w € R, for simplicity. The solution 0
u of (30) satisfyingu(0) = u.(0) = 0 is given by +0 <w> ] (41)
ufw) = A(Cth T cos 7x) + Blsinh 7 — sin 7) Let @ denote the integral term in (31). Upon differentiating and using
+ 3.3 / [sinh 7(z — 0) — sin7(z — 7)) integration by parts, we obtain
™ Jo
A do, 1=/ R Y L
[Ap(o) + q(0)] do, Vw (31) () = e / e T [jpra(o) + ()] do
0
whereA and B are determined by the remaining boundary conditions o )
o (lpllelals)

, koo, T

uzz(1) =0, 'uxml—)\g)\ul):<——g)\>pl
@) @ Mu(L A ¥ ) ) In (35), by collecting dominant terms, we obtain
Arg —wiry T —1
Fhy SET L L TN — A) Y (32) :
A2+ Wi A=2+¢" <cos7’— ng/\)(ms'r—sinr)) + 0™ 7). (43
T

andg(-) is given by (5). Using (31) in (32) we obtain
Letg(A) = R(w)+jI(w)whereR andI denote the real and imaginary

) 1 Ag(A) . . parts, respectively. Moreover we hat&w) > v > 0 andI(w) =
A= A { |:COSh THCoST — -3 (sinh 7 — sin T):| O(1/7*) for larger. Noting thatcosza;”ﬂ:- (cosT —sinT)? Z(c )> 0
) ] ] for somec, from (43) we obtaim\ = O(e™ /7) for larger.
X1 = (sinh 7 +sin 7)(X2 + X5 +X4)} (33) By using (33), (34), (40), (41) and (42) in (31) and noting that
1 Ag(N) AT = O(re™T), after straightforward algebraic calculations we
B= N { {— sinh 7 + sin T + (73 ~(cosh T — cos T)} obtain the following estimate far sufficiently large:
X1 4 (cosh 7 + cos T)( X2 + X3 —|—X4)} (34) lwaell2 < Mi|lyll (44)
whereM; > 0 is a constant and the norfin || is given by (19). Note
where that in this calculation the key point is the fact that the dominant terms
. Ag(N) in (40)—(42), which are the integral terms, cancel in the expression of
A=2 <1 +cosh7cosT — — .., See [4] for a similar result. By using (33), (34), (40), (41), (42)

and (31) inu = Au — p, [see (30)], after straightforward calculations
(sinh 7 cos 7 — cosh 7 sin r)) (35) similar to the ones mentioned above we obtain the following estimate
for = sufficiently large:

1
X = —21% /0 [sinh 7(1 — o) 4+ sin7(1 — )]

ol < Mz |lyll (45)
(o) + a(0)] do (36) _ - _
1 [k ki Ao — wiry whereM, > 0 is a constant. Similarly, from (30) we obtain
)&2—7_—3 X_g()‘) p(1)+7_—3)\2+—]z
o1 _ o (PO rlln
L OT— ) an all = 0 (F2 S
73 . , .
o =0 (MO s g
X3 =5 / [coshT(l — o) 4+ cosT(1 — )] T
Varn 0
-[Ap(o) + q(o)]do (38) where||-||. denotesthe normiR", see (19). Finally. note thaf1) =
PO ERICYR sinh (1 o) — sin 7(1 — o] Au(1) = p(1), andfu(1)] < [lweell2, [p(1)] < [[p22]l2. Combining
+T 53 T 3 ) - > these, we obtain the following inequality for sufficiently large
Py lo. 39
A\p(o) + q(0)] do (39) =1l < Mlly]l 47)

ﬁreM > 0 is a constant, and for a givene H, » € D(L) is the

the sense that its roots are the eigenvalues of the closed-loop system.}.. NS
g P Sy ution of (30). Hence for some > 0 sufficiently large we have

In the sequel, by using estimates of (33)—(39), we will show that an
estimate of the fornj|z|| < M||y|| holds. We will use the following I T
notation: for any functior®’(-) > 0, O(F(7)) denotes any function j‘;I; I(Gwl — L)™' < oc. (48)

(Note thatA = 0 may be considered as the characteristic equationgi{zh
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SinceL has compact resolvent and the imaginary axis is in the resolvdat any N. Theorem 2 will remain valid, provided that > 0 andw;

set, we also have the following:

sup ||(jwI — L)7| < oc. (49)
w<Q

Combining (48) and (49) we obtain (29). Hence, by Huang's Theore

L generates an exponentially stable semigrouf in O
Theorem 2 remains valid evenkif = 0, provided that the variables

x1 andx, are suppressed everywhere. The proof of this fact is essen-

tially the same as the proof of Theorem 2.

IV. DISTURBANCE REJECTION

In this section, we show the effect of the proposed control law givé
by (6)—(8) on the solutions of the system given by (1)—(3), when e

output of the controller is corrupted by a disturbamde), that is (8)
has the following form:

ft) = o+ du(1, t) + ku(l, t) + kiz2 + n(t) (50)
or, equivalently, (4) has the following form:
F(s) = g(s)de(1. ) +i(s) (51)

wherefi(s) is the Laplace transform of the disturbandg) andg(s)
is given by (5).

To find the transfer function from(#) to u.(1, t), first we need to
find the transfer function fronf(¢) to u.(1, ¢). By taking the Laplace

isnotarootof (20)fok = 1,2, ..., N. O

From (53), we can also derive a procedure to degigh if we know
the structure of.(¢). For example if.(¢) has a band-limited frequency
spectrum, (i.e., has frequency components in an interval of frequencies
r[fgzl, Q-]), then we can choosgs) to minimize

o h(jw) ;
(,(w) = ‘ 1t h(]w)g(jw) . w e [Ql, Qg] . (55)

Note that to ensure the stability of the closed-loop sysieiis,) should

be a strictly positive real function as well, [see (5)]. As a simple ex-
ample, assume thatt) = a cos wo(t). Then we may choosgs) in

ne form (5) withw; = wq. Provided that the Assumptions 1-3 are
tisfied and thafw is not a zero of:(s), the closed-loop system is
asymptotically stable, (see Theorem 1). Moreovét; if> 0, thenc(w)
given above satisfiegwo) = 0. From (55), we may conclude that this
eliminates the effect of the disturbance at the outp(t, ¢).

V. CONCLUSION

In this note, we considered a linear time invariant system which
is represented by one-dimensional Euler—Bernoulli beam equation in
a bounded domain. We assumed that the system is clamped at one
end and the boundary control force input is applied at the other end.
For this system, we proposed a finite dimensiahyahamicboundary
controller. This introduces extra degrees of freedom in designing con-
trollers which could be exploited in solving a variety of control prob-
lems, such as disturbance rejection, pole assignment, etc., while main-

transform of (1)—(3) and using zero initial conditions, after somgining stability. The transfer function of the controller is a proper ra-

straightforward calculations we obtain the following:

at(lv s) = —h(.s)f(s)
. _ .(coshtsinT —sinhTcosT)
hs) =] 7(1 4 cosh T cos 7) (52)
wheres? = —7*, see also [1]. By using (52) in (51), we obtain
a1, s) = —— M) s, (53)

T T4 h(s)(s)

Remark 1: Consider the system given by (1)—(3). If we consider

as an input and. (1, t) as output, it is known that this system is pas-

sive, see [10]; moreover the transfer function of this system is given
h(s) in (52). On the other hand, the controller transfer functjos)

which is given by (5) is MSPR, see [7]. It was shown in [7] that for
finite-dimensional linear, time-invariant systems (LT1), in the classical [2]

negative feedback configurationif s) (the system to be controlled) is

positive real and ify(s) (the controller) is MSPR, then the closed-loop
system is asymptotically stable, provided that none of the imaginary ]

axis poles ofg(s) is a transmission zero df(s). Note that this re-

sult may not hold for infinite dimensional systems. In our case, (1)—(3) [4]
represent a passive system, which is equivalent to positive realness in

finite dimensional LTI systems. It can easily be shown that w,
is a root of (20) if and only if2(jw1) = 0. In this sense, Theorem 2

may be considered as an extension of the stated result of [7] to an infi-

nite dimensional system given by (1)—(3). Note that, although in finite [6]
dimensional LTI case the asymptotic stability implies exponential sta-
bility, this is not necessarily true in infinite dimensional systems. We

also note that a similar result holds for the wave equation, [16]]

tional function of the complex variable, and may contain a single
pole ats = 0 and another one = jwi, w1 # 0, provided that the
residues corresponding to these poles are nonnegative; the rest of the
transfer function is required to be a strictly positive real function. We
then proved that the closed-loop system is asymptotically stable pro-
vided thats = jw; is not a zero of an appropriate system transfer
function, and is exponentially stable in some cases. We also studied the
case where the output of the controller is corrupted by a disturbance.
We showed that, if the frequency spectrum of the controller is known,
then by choosing the controller appropriately we can obtain better dis-
turbance rejection.
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Plriqr = jlri = 1] = pij» Vi, jeS
with p;; > 0,Vi,i € Sandy.’_, pi; = 1,fori € S.
Consider a discrete-time hybrid system wKXhmodes. Suppose that
the system mode switching is governed{by, k& > 0} and the system
. . . parameters contain norm-bounded uncertainties. Let the system dy-
Robust H, Control of Discrete-Time Markovian Jump  hamics be described by the following:
Linear Systems With Mode-Dependent Time-Delays
Tip1 = A(f, T‘t):L't + Ad(t, T‘t).’}d‘,g_,.(,‘t)
E. K. Boukas and Z. K. Liu +B(ry, t)uy + By (ry)wy,
Te =g, 5= —T, ..., —1, Q)

Abstract—This note considers the class of discrete-time Markovian jump 2= C(re, e+ Calre, t)"r't*f(m)
linear system with norm-bounded uncertainties and time-delay, which is +Bc(re, tyu(t) + C1(re)w:
dependent on the system mode. Linear matrix inequality (LMI) -based suf-
ficient conditions for the stability, stabilization and H. control are de- Wherez; € R” is the state of the system, for eachc S
veloped. A numerical example is worked out to show the usefulness of the

theoretical results. A(re, 1) = A(ry) + Ag(re, 1)
Index Terms—Discrete-time Markovian jump linear system, H, con- A/ A A o
trol, linear matrix inequality (LMI), time-delay system. Aa(re, t) = Aa(re) + Aalre. 1)
B(?’L, t) = B(T[) =+ A[,(T[./ t)
|. INTRODUCTION C(ri, t) =C(r) + Ac(re, t)

Discrete-time Markovian jump linear system is a hybrid one with . ,
state comprised of two components: a discrete part denoted dyd Calre, #) =Ca(re) + Aca(re, 1)
a continuous part, denoted by. Discrete state, is a discrete-time Bo(re, t) = Bo(re) + Apo (v, 1)
Markov chain representing the mode of the system andlienotes
the physical state of the system, e.g., the inventory level in manufadth A(r:), Aq(r¢), Bi(r:), B(re), C(ri), Ca(re), Be(re) and
turing systems. The continuous stateevolves according to a differ- C(r,) are matrices with appropriate dimensions\,(r., t),
ence equation when the mode is fixed. For more information on did«(r¢, t), Aa(re, t), Ap(re, 1), Ac(re, 1), Aca(re, ), Ave(re, 1)
crete-time Markovian jump linear systems, the reader is referred to [Bfe unknown matrices denoting the uncertainties in the systém)
[6], and the references therein. is a constant, denoting the time-delay of the system when the system
Time-delay occurs frequently in many practical systems, such igsin moder;.
manufacturing system, telecommunication and economic systems etclp this note, we assume that the admissible uncertainties satisfy the
which is an important source of instability and poor performance. Fallowing:
continuous-time Markovian jump linear systems with time-delay, we , )
refer the reader to [4]. For discrete-time Markovian jump linear syste Aa(re, ) Aalre 1) Ap(re, t)
with time-delay, [1] studied the robust stability, stabilization diig, Aclre, ) Aca(re, 1) Ape(rs, t)
problem. The purpose of this note is to extend the results in [1] to the <G1 (r)

G )> Alre, t) (Hi(re) Ha(re) Hs(ri))

a7
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