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ABSTRACT

HIGHER DIMENSIONAL SPHERICALLY SYMMETRIC
GRAVITATIONAL THEORIES

Emre Sermutlu
M.S. in Mathematics
Supervisor: Prof. Dr. Metin Girses
September 1994

We consider all possible theories in spherically symmetric Riemannian
geometry in D-dimensions. We find solutions to such theories, in particu-

lar black hole solutions of the low energy limit of the string theory in D-

dimensions.

Keywords :  Gravitation, higher dimensions, black holes, low energy

limit, spherical symmetry.
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OZET

YUKSEK BOYUTLARDA KURESEL SIMETRIK
GRAVITASYON TEORILERI

Emre Sermutlu
Matematik Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. Metin Gurses
Eylul 1994

D boyutlu kiiresel simetrik Riemann geometrisinde mimkiin olan bitiin
teorileri ele alarak ¢oziimleri inceledik. Bir ozel hal olarak sicim teorisinin

digiik enerji limitinde kara delik ¢oziimleri bulduk.

Anahtar Kelimeler : Gravitasyon, yuksek boyutlar, kara delikler, duguk

enerji limiti, kiresel simetri.
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Chapter 1

Introduction

In the classical relativity, the lagrangian contains only the Ricci scalar. On
the other hand we learned from the low energy limit of string theory that
the classical lagrangian contains all possible invariants constructed from the
curvature tensor and the matter fields. Depending upon the order of the

string tension parameter, this lagrangian is an infinite series expansion in

these invariants, i.e.

L=+—-gR+)> o"L,. (L.1)
n=1

Here « is the inverse of the string tension and L, are functions containing
the invariants up to n‘* order. There are several examples where the sum is

terminated at some value n. For instance when n = 2 we have Gauss-Bonnet

theory

L=+ —gR + Ol(RijklRijkl - 4Rini]' + RZ) (1.2)

For different n we have the Lovelock theorem: In d-dimensions divergence-

free second order symmetric tensors constructed from the metric and its first

two derivatives are given by

JI1.J2p h2p—1hap

m—1
i E: thy.hap piid2 piada J2p—1J2p d
AJ = ap(S' RhthRh3h4 R +a6]’, (13)
p=1



where m = In if n is even, m = 3(n+ 1) if n is odd.

Boulware and Deser [2] found two solutions for the Einstein plus Gauss-

Bonnet lagrangian, one of them asymptotically flat, the other asymptotically

anti-de Sitter.

Wiltshire [4] slightly generalized the previous results by including a
Maxwell field. Wheeler [5] has considered the most general second-order grav-
ity theory in arbitrary dimensions and analyzed asymptotically flat spheri-
cally symmetric static solutions, and cosmological solutions. Whitt [6] ex-

tended Wheeler’s work to non-static space-times.

The Schwarzschild solution which describes the uncharged black holes in
general relativity also describes (to a good approximation) uncharged black
holes in string theory. But, this is not the case for charged black holes. The
dilaton has a coupling to F'?, so the Reissner-Nordstrom solution is not even

an approximate solution of string theory.

Charged black holes were first analyzed by Gibbons-Maeda (7] and GHS
(Garfinkle, Horowitz, Strominger) [8] independently.

Black hole solutions depend on dimension and number of physical param-
eters. In this work we find D-dimensional solutions with three independent
parameters, mass M, electric charge @, and the dilaton charge ¥. We also
extend the Levi-Civita Bertotti-Robinson metrics to D-dimensions and prove

that they solve all field equation arising from a variational principle.



Chapter 2

Spherically Symmetric Riemannian

Geometry

The metric of a static and spherically symmetric D-dimensional spacetime is

given by:

ds® = —A%dt? + B%dr* 4+ C*dQ3%_,, (2.1)
where A,B,C depend only on r. dQ%_, is the metric on Sp_;. The metric
can be rewritten as g;; = —A%t;t; + B*k;k; + C?hij, where t; = 6!, k; = &7,
h;; =metric on D-2 sphere for 4,5 > 2, ho; = h1; = 0.

Christoffel symbols are given by

1 ]' n
Lim = 597 (ginm + gnm.j = Gimon) (2.2)
_r;'.m = —AA E(tikm + tmk;) + AA k't it + BB kK kiky — CC' Kl
+CC" (Kikm + hiyki) + Cigyjms (2.3)

where T'(,) is the christoffel symbol on D — 2 sphere.

The Riemann tensor is given by

vt = Ditn = Djmt + Do D5t = T (2.4)

sml =

3



, AA'B' ,_CC'B
Rijmi = (AA - T) ks tpmby + (CC' -
AA'CC cc” -

+ tmhaiits = —gz—Pimbui + O*Reiimi,

B? B

where Rsijml = hi[mhl]j-
Riemann tensor can be rewritten as

keen
ml

Rijmi = i1Sim — 9imSit + gimSjt — gitSmj + M2 Hijk..n H,

where
1
Si; = noMi; + mkik; + 5 739ii>

which turns out to be

(D - 3)! 1
i = W(hij - ﬁgﬁ),

the tensor H;;._ x is the volume form of Sp_,, l.e.

Hij---k = —\/Eﬁij...k.

Here the scalars are given by

B CZ(D—Z) A" A'B' c" N B'C!

T = (D31 \AB? AB® CB* BC)’
_ A/O,__CY_”. B/Cl

= 4c T ¢ T BCY

CZ(D—B)

) kiihjmky

(2.5)

(2.6)

(2.9)

(2.10)

(2.11)

B'C'C

T = (D4 (1_§5+ A~ AB: | AB® | B

c* AC'C A'C* ABC* CC”
— + + —

)



ek
=T ARC

(2.12)

The Ricci tensor, Ricci scalar and Einstein tensor can be computed from

Riemann as follows:

D — 3)!

Ry é—oz(ﬁl—)(ﬂow —4) + 1) + %771 +13(D —1)| gi5

+m (D — 2)kik; + [no(D — 2) + n2] M, (2.13)
D - 3)! (D —
R o= CoDn a0 -1) 40 -2+ 2220
+n3D(D — 1), (2.14)
D —3)!

Gi = — | S0 (D = 4)(D = 2) + ma(D ~ 3)) + (D —2)
+3(D = (D = 2)] g5+ m(D = 2k
+[no(D — 2) + n2] M. (2.15)

The covariant derivatives of H;; ) and k; are given as

ViH;j. m = —pl[(D = 2)Hij.mbs + ki Hijo.om + ki Hit oo + oo + ki His 1], (2.16)

Vik; = p1gi; + p2Mi; + pskik; (2.17)
where
e _AC+ AC
F= 7 1= ToABC
CUD=2) AC' — A'C (ABY
P2 = (D=3) ABC P=""4B (2.18)

The covariant derivatives of H;;..x and k; are expressed only in terms
of themselves and the metric tensor. Riemann tensor is given in terms of

Hi;.. , gi; and k;. Hence we have the following theorem:

5



Theorem 1 Covariant derivatives of the Riemann tensor R;jy, the ten-

sor H;; and the vector k; at any order are expressible only in terms of

Hij..x, gij, ki.

Since contraction of k' with H;;..x vanishes, the only symmetric tensors
constructable out of Hj;...k , gi;j and k; are M;;, the metric tensor g;; and k;k;.

Then the following theorems hold:

Theorem 2 Any second rank symmetric tensor constructed out of the Rie-
mann tensor, anti-symmetric tensor Hjj.., dilaton field $ = ¢(r) and their

covariant derivatives is a linear combination of My;, gi; and kik;.

Let this symmetric tensor be E/;. Then we have

Ez{j = 0'1M.[]' + 029i; + ng.,'kj (2.19)

where o1, 03 and o3 are scalars which are functions of the metric functions,

invariants constructed out of the curvature tensor R;;x, H;; and the dilaton

field.

Theorem 3 Any vector constructed out of the Riemannian tensor
Rijri, Hij.x the dilaton field ¢ = ¢(r) and their covariant derivatives is

proportional to k;.

Let this vector be E]. Hence

where o is a scalar like oy, 03, 3.
Theorem 2 has an application:
Theorem 4 In a spherically symmetric, D-dimensional spacetime, the coef-

ficients a; in the identity

01 Rimn R]™ + a3 Rim RT* + a3 Rjmin R™ + a4 Rij + asgi; = 0 (2.21)
6



can be found in terms of the n;.

This can be easily seen if we write each of the symmetric tensors as a

combination of M;, gi;, k:k;. Let us denote these tensors as follows:

RiR;. = Phgi; + BaMi; + Bakik;

R R = fugi; + BsMi; + Bekik;

R Rjsse = Brgij + BsMij + Bokik;
Ry = figi; + oPMi; + fakik;. (2.22)

Thus, we obtain

Brai + Braz + Paas + fiag+as = 0,
Bsai + Baaz + Psas + fras = 0, (2.23)
Boar + Paaz + Psaz + fzas = 0.
Provided we know a4 and as, we can compute a;, a3, as.
Let’s denote
Br B Ba

B B Bs|= g (2.24)
Bo Bs o

then,

a1 = —U[(Bofs — BaBs)( fraa+as)+ (BsBs— B1Bs)(f204) + (P1Ps — B2P4) (fsa4)],
(2.25)

az = —‘I’[(ﬁsﬁ9 - 56ﬁ8)(f1a4 +(15) + (5657 - ,3458)(1(2(14) + (164168 - ﬁsﬂ7)(f3a4)]’
(2.26)



az = —‘I’[(ﬁzﬂs - ﬂzﬂg)(fﬂzt + as) + (,Hl Bo — 53ﬂ7)(f204) + (ﬂ257 - ﬂlﬂs)(faazx)]-

(2.27)
We will give 3’s explicitly in appendix.
We may also write the Riemann tensor in the form
Rijmi = 951Sim — GimSit + gim Sit — guSm; + €2Fi; Fny, (2.28)
where AB
Fi]' = —672-(?5,'/6_7' — tjk,'). (2.29)
Other tensors are defined similar to the previous case, i.e.
— 1
Sij = ey Mij + eq k,'/cj + 563 Gij, (230)
M = FoiF™ — ~F gy = —(h l
i = Fni " = 2 gii = (ki — 5755 955)- (2.31)
The scalars are given as
crcr  CC'A
_ 2
¢ = O =~ t g
€1 = 7, (232)
Y L AcC At ABCT 00" BCC
2 = Bt A A T Tap TR B )
ez = T73.

Notice that when D = 4, ]W?J = M;;, and e; = —1s.

The covariant derivatives of Fj; , k; and ¢; are given as

3¢’ AC!

VIiF; = —_C_Fi'kl — B—C@(tjgil — tigit), (2.33)
Vik; = prgi; + 2 My + pakikj, (2.34)

8



!/

A
Vit; = Z(tik]' + tjki). (2.35)

~ -3 . . .
where p; = éﬁT% p2. The covariant derivatives of Fj; and k; are expressed

in terms of themselves, metric tensor and ¢;. So we have a similar theorem

for an extended set:

Theorem 5 Covariant derivatives of the Riemann tensor Rijn, the anti-
symmetric tensor Fi;, and the vectors k; and t; at any order are ezpressible

only in terms of Fij, ki, t; and g;;.



Chapter 3

Schwarzschild and Reissner-Nordstrom

Solutions

These are the earliest spherically symmetric solutions, obtained in 1916, so

they deserve a short rewiew here.

Let’s take the line element as

ds? = —A%dt* + B2%dr® + r*d02. (3.1)

In other words, take C'(r) = r. Our equation is

Gi; = 0. (3.2)

We have already computed G; in terms of g;;, k;k; and M;; (2.15), so equating
the coeflicients of these terms to zero, we obtain three equations:

%—%[UO(D_4)(D—2)+U2(D—3)]+%12-(D—2)+%(D_ 1)(D—2) =0,
(3.3)

771(D — 2) =0, (34)

no(D —2)+n: =0, (3.5)

10



(3.4) gives

—+—==0 (3.6)
so AB = c¢; but the boundary condition for the metric to be Lorentzian at
infinity requires that ¢; = 1.

Thus

AB =1. (3.7)

Using (3.5), we can find 7, in terms of no. Inserting 7, and substituting
B = 4 in (3.3) gives

D —
AA" + A" + D=2) 44 = 0, (3.8)

r

which is actually

W+ (D—-2)==0 (3.9)

R

where u = A A’.

Thus A? = ¢; + czr~P*3. Inserting this in (3.5), we find that c; =1,

SO

2m
2 _
A = 1- 55,
2 -1
B = <1—TDT?3> , (3.10)

where 2m is the integration constant cs.

So we obtain the Schwarzschild solution. For Reissner-Nordstrom solution

we have to take electrostatic charge () into account.

Our equation is

11



Gi; = Ty (3.11)

where

1
Tij = -2 [ENFJN - ZFMNFMNgij] , (3.12)
AB
Ft-,- =QTD_2. (313)
T;; turns out to be
, r2(P=4)
T;=-2Q (D=3 M;;. (3.14)

Thus we obtain the same set of equations except for(3.5).

Proceeding in a similar manner, instead of (3.8) we obtain

" 2 (D - 2) (D '_ 3) Qz
AA" + A’ + —T’—AA/ = —2(D — 2) 2(D-2) (315)
which is actually
(Prady _ (D-3) @
D2 = —2(D =) 207 (3.16)
so we find
_2Q2
' 2(0-9) |
A (D—2)(D——3)r (3.17)

But this is the non-homogeneous solution, we have to add the solution of

(3.8) to this.

Thus

12



A2

B2

Here integration

solution:

2m 22
= " (D= 2)(D - 3) 70

(l 2m 2Q)?

(3.18)

T 703 " (D—2)(D-3) r2(D—3)>

constants are found by the asymptotic behaviour of the

lim PP3(A% - 1) = —2M,
lim PR, = Q. (3.19)

13



Chapter 4

Levi-Civita Bertotti-Robins_on Metric

4.1 Einstein’s equation

An example is the Levi-Civita Bertotti-Robinson (LCBR) metric in D-

dimensions

2
q— (—t,‘t]' + C(Z)kikj + 7‘2]7,,'_7') (41)

9i; = 3 {

-~

where h;; is the metricon Sp_y, t; = 6!, ki = 67 , g and ¢y are constants.

This is the previous metric with the choice A = £, B = 22, C' = g, then

Co .

Fij = 5 (tik; — tiki), (4.2)
v m 1 2

Mij = Fm]'Fi — ZF Gij, (4.3)

AT — 2
61:63_—‘0:> SijzeoMij,EO—q,

2 2
Pl
Risu = *lgnMix — g9 My + g M5t — ga My;] + —(—g-—O)Fiijz, (4.4)

0

l, — 1 1
Rij = qZ[(D —. ) —+ EE]M,] + 5? (D - 3) — Eg]gij, (40)

14



1. —
Gy = "D =3+ M+ 55l = (D=3l (49

0

It is easily seen that

VgFi]‘ =0 vaijkl = 0. (47)

If we consider the Einstein’s equations

Gi]' = Tij (4.8)
where
—_— ] =~
T.ij = ijFim - ZF2 gi; (4.9)
and Fi;(E.M) = eF;, we obtain
2 1 2
q [(D ~-3)+ C—z} = ¢ (4.10)
0
L _posp| =
2¢* [

where ) is the cosmological constant. To eliminate the cosmological constant,
we let i = |D — 3|. It is interesting that spacetime is conformally flat only

for D = 4.

We can obtain the same equations using the expression (2.15). This time we
have to choose
Ty = B n B — — g, (4.11)
¥ tmeendd 5 2(D _ 2) J
and Ej...k = eH;j..k,. When the cosmological constant is set equal to zero,

we obtain



5 1

Hence the higher dimensional (D > 4) Levi-Civita Bertotti-Robinson space-

times without cosmological constants can not be conformally flat.

4.2 The Solutions of Lovelock Theory

In the following 5;1;2;’;’, is the generalized Kronecker delta defined by

L
61122...1,1\/ — det . (413)

J132--IN .
N L SN
6j1 5.7N

According to a theorem by Lovelock, the only symmetric tensor
A = AY(grs; grst © Grsu) for which Al =0is

731.--d2p h2p—1h2p

m—1
i thi-hap piija pada J2p—1J2p i
A= 3" apbl P RIVE R + as; (4.14)
p=1

where a and a, are arbitrary constants. We have found the equation for

n=2>5,6

T2 R 4 aparanane R RIS 4 g8) = 0 (4.15)

Jmima = "nyng Jm1mzm3msg = "niny n3ng

which is

Gi; + ao[(R? — 4R™ Ry + R** Rapea)gi; + 4(2R? Rjo + 2Rjain R*® — RR;j—

R Rjane)] = Mgy
(4.16)

where o = —571-

16



We know that every symmetric tensor of rank two can be written as a

linear combination of g¢;;, M;; and k;k;. To calculate these we need the

following:

For the LCBR metric

2
ds? = L (—dt* + Edr® +r2d0?) (4.17)

r

where ¢ and ¢, are constants, we have

_ L
o = ack’
m = 0, (4.18)
(D —3)(c3 - 1)
M2 = 2 )
acy
3 = 0.

If we insert these values in tq, t3, t3 we find

1 (D=3 a , 20
= e &) 3)(D—4)(D5)— 222 (D-3)(D~4), (4.
b 2q2c} 242 +q4( 3)(D—4)*(D=5) q“cg( 3)( ), (4.19)

t2 = .
< ag’cs

<D 34 i) LoD =D =) L e sy, (420)

R+

ty = 0. (4.21)

Field equations reduce to t; = A, t; = t3 = 0. This gives relations between

constants of the theory and the constants of the metric.

For D = 5 we obtain

gt —4q%ck —8ay = 2¢*cA ), (4.22)
¢* +2¢*°c2 —8ap = 0
17



which gives ¢ =0 or ¢* = -3

For D = 6 we obtain

(1 —9¢2) 4+ 24ap(ct — 1) = 2¢*cE ), (4.23)
3¢°ct + ¢* —240p(1 +c2) = 0.

which gives ¢* = 4o, ¢§ = —2 for A = 0 and

=34+ V9 + 24apA
2 + )\-i— ao’ (4.24)

q? — 24y
B+

for A #£ 0.

So there is no solution for 5 or 6 dimensional spacetimes without a cos-

mological constant.

4.3 Solution of the most general theory

The Lagrangian of the most general theory will be a scalar containing the
Riemann tensor, metric tensor, and their derivatives, contractions and mul-
tiple products of all orders. But, according to theorem 2, all second rank

symmetric tensors constructed out of these will be expressible in terms of

gij,s Mi]', and k,-/cj.

- So, whatever the theory is, we'll obtain two equations for the LCBR
metric, because the coefficient of the k;k; term will automatically vanish.
This will give us two algebraic equations for two unknown constants in the
metric, namely ¢ and ¢y. These equations may or may not have a solution

according to theory. For example, in the preceding case, in D = 5,6 we have

no solution.

18



Chapter 5

Solutions of the Low Energy Limit of the
String Theory

The gravitational field equations obtained from the low energy limit of the

string theory can be obtained from the following lagrangian

R 4 )
L=v=g [2/{2 (D —2)x? (Ve) -

e-aw‘zﬂ] . (5.1)

> =

The field equations are

8 1 - m 1 ®
Gij = [3i¢3j¢ - §(V¢)2gi]] — gle? [Fi Fim — ZFZg,-J} , (5.2)

-2
Vi(e ) =0, 6:3)

— 2 _
az(\/:g gz_7 8J¢) + (D 2);2ae\/_ge—a¢¢F2 — O, (54)

where F;; is the Maxwell and ¢ is the dilaton field. Here:,j = 1,2,...,D > 4.

In static spherically symmetric spacetimes, gravitational field equations first

lead to

19



no(D —4)(D —2)! | ma(D =3)(D =) m(D-2) 7D 1)(D~2)

2(2(D-2) 20UD-2) B2 2
44"
“D-2B " (5.
84"
nl(D—2)—(D_2) =0, (5.6)
K',2 2 /(xp_(b
no(D — 2)! +ma(D — 3)! — —f% ~ 0. (5.7)

Dilaton equation is:

8 A " a, ABK?Q?ex?
- CD—Z I} e = 0. .
5515077 - o0 ar, ! (58)
From (5.5) and (5.6) we obtain
(acd) ¢
—5 | = d?ABC*! (5.9)

where d = D — 3. Using the freedom in choosing the r coordinate we can let

ABC4 ! = i1 (5.10)

by using (5.9) and (5.10) we obtain

A2C™ =% — 2b 7% + by (5.11)

where b, and b, are integration constants.

A combination of the dilaton (5.3) and gravitational field equations (5.2)

gives

20



d—1 8

2 ’ 2 _
dT* — . T+ T +(d+l)2¢ =0, (5.12)
where T is defined as
d d—1 1 /
r- e 164 (5.13)

- (r2d — 2b;7d + by)  (d+1)2%c.

Defining now

kl d ’l"d_1

e Qs, = (TZd _ 2b17"d + bz) 1’/)(p)7 (5'14)
the equation (5.12) becomes
rd — 2byr? + by dip d
T g, g = R (5.15)
The constants are given by
(d+1)"c
a = —,
32d
po= —(a+b), (5.16)

Vo= ap® - Aa+1).
Now, if we solve the auxiliary equation

T‘Zd - 2[717'd + bz dp _

e o =P (5.17)
and insert p above, we obtain
d

p—% = (P +u) + % (5.18)

Note that p depends on the sign of A = b2 — b;. ¢ can be found from % by

21



kl [/
=2 @d,} + b, (5.19)

where k; = ;24—_‘11- The metric function C' is connected to ¢ as

C’ d d—1 166
¢ _ (te) ¢ (5.20)
C  (r¥—2biri4+b;)  (d+1)%a.

this gives us

in($yt = (/ %m) - g‘—;gzs (5.21)

where u = r? — b,.

Metric functions A and B can be found from C through the equations (5.10)
and (5.11).

We have three different cases according to the sign of A,

. 1 7"d - b] ™
Case 3 A <0 lnp(r)= JA [arctan ( m) - —2—]

where r¢ = b; + VA, ré = by — VA, ré =b,.

The integration constants ¢y and @o are determined through the asymptotic

behaviour of the functions C(r) and ¢(r).

lim ¢ = ¢o =0, (5.23)

=c¢ = 1. (524)



To determine the remaining integration constants, we use the asymptotic
behaviour of the metric, scalar field and the tensor field F;; as follows:

262 M
lim r¢(A%2-1) = _—,
=00 ( ) Ad+1 (d + 1)
vV 1
lim ritlg’ = _kvdFl z, (5.25)
7—00 2Ad+1
lim rt' F, = ¢ )
T—00 Ad+1
CASE 1
A>0 (5.26)

Which means there are two roots to the equation (5.11). According to

the sign of v? we have three distinct solutions

Type 1
Vi< 0 2= 2
_ 2)
p = ATpFal+uper (5.27)
1 — 62p2/\
The metric functions become
oo Moo, e
T = =)
_ 2X\ k2
c?t = (rt—rf) l-ap” pre. (5.28)
1-— Cy
Dilaton field is given as
1 —cp)p** b
S Gl ) 5.29
. [ S ] (5.29)

The constants are given by
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1 by i) (v tan)
(a+1)’ 2 (a+1)°

ky = (5.30)

Undetermined integration constants are ry, ry, ¢; and ¢z. From the boundary

condition (5.25) we find that

l+c¢
2M = [l_cz/\+a,u}el,
l-f-Cg ]
Y = A= .
[1—62 Kl €2, (531)
Q = A c2 €3.
].—02

The constants ¢; are given by

2 Ad+1 (d + 1)

€1

(a+1)s%
Ad+1 e (d + 1)%
.32
e 8(a+ 1)k (5:32)
e 2Ad+1 (d+1)d
:T K (a+1)

Note that, we have four integration constants (c;, ¢z, r¢ and r§) but there
exists only three equations to determine them. Also note that ¢; does not
appear in the solution directly, so we have a freedom in ¢;. (¢ # 1) In order
to complete the solution,we need to determine the integration constants in
terms of the physical parameters M, ¥ and Q. Let us define some auxiliary

variables to solve the set of algebraic equations (5.31)

1 a¥X 2M 1 2M X
T, = —_—+ —), T, = — ),
! a—i—l(ez el) 2 a+1(el ez)

[ 4Q?
= l - —. 5.33
T e2 T? (5:33)

Then the integration constants are
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1+ 2
c, = —
’ 1+ Ty
and
2 1 )2
_apt+ A
= Tarl (5.35)
The reality of T3 imposes
M+g%>s|Q (5.36)
where ¢ and s are given by
o (d41)%? 1\/(d+1)(a+1)
9= e T % d (5.37)

Such an inequality has been found by Gibbons and Wells for D=4.

When A > 0 we have two roots. In general these roots are the singular
points of the space-time. If the integration constants satisfy some additional
constraints one of these roots becomes regular. In this case we have a black
hole solution carrying mass M, electric charge @) and scalar charge ¥£. An

invariant of the space-time is the scalar curvature is given by

220 2 e | FH2
R=A pz1 [—/1 + A + 12—C2p":\ . A pz1+2/\ (l_l_cch%) a
TN = ) — (L — )R = rd)(r — )t
(5.38)
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where

2
2 = d(a—_H)(aAH-/\),
8 k2
A= e (5.39)
k(D —4)
= 2 (D=2)

As r — r; we have a singularity unless we choose p = A. By this choice,
d_,,,d 2 .
g = 2572 and hence p™' ~ (rd — rf)fz, p?* ~ (rf — r$)? around the horizon,

so £ — 0.

If we insert these values for 4 and A in the solution, we obtain

Ct = (r* — 1) (1 a_ (15— ’"f)>k2 (5.40)

1—c r¢—rd

At this point, the choice of r, = 0 gives Gibbons-Maeda solution, whereas
d

the choice of ¢; = ?g gives the GHS solution. It is easy to show that Gibbons-
1

Maeda metric is the same as the GHS metric with r > ry.

Type 2
vt > 0
Y = vtan(cz+vinp) —p (5.41)
/ @dp = —In[cos(cz +vinp)] —plnp+c; (5.42)

After similar steps as the previous type, we arrive at the solution

d _ pdy(pd _ ,d 2d—2 (712
2 (r®—ri)(r® —13) 2 o =
_ _ 43
§ (G TN
kz
o —Tg)prd;"d_%L [cos(cg+l/1np)J (5.44)
cos ¢,
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Scalar field is given as

ky
b _ oS ¢y
© p* cos(cz + vinp) (5:45)
Physical parameters are found using (5.25)
2M = (ap +vtanc)e,
Y = (—p+vtanc)es, (5.46)
v
Q = €s,
COS Cy
r = T27
. es T
sine; = 3Q L (5.47)
vtancg = Tj.
The condition |sin ¢;| < 1 imposes
M+g¥ <s|Q| (5.48)

where g and s are defined in (5.37). We also have to check the sign of A.

1 ,aX* 4M? Q?
=y 1( ) — = (5.49)

2 2
€ €1 €3

(a+1)A =

Here the sign of A puts a constraint on the physical variables.

Type 3

(5.50)
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/Md/) =—In(lnp+c;) — plnp + cs, (5.51)

P
e¥b = — 2 " 5.52
= e+ (5-52)
ol = (& +1lnp k2 4 dvsd  _dvl =Ek
T [(r® =D (" —r)lEp 2. (5.53)

Physical parameters are found using (5.25)

2M = (ap— —)ey,
15)
1
S = (- s)e, (5.54)
C2
€3
Q = 0"
The solution is
u = _T27
1
—— =1, (5.55)
C2
(5.56)
which gives
2
20 _p,. (5.57)
€3
This is the equality case of the inequality (5.36).
CASE 2
A=0 (5.58)
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Then there is one root to the equation (5.11). Denote it by r¢.

AC! = (r! ) (5.59)
(Td _ 7.d)z T'2d_2 Cz
A? = 02‘11 : B? = - (5.60)
k
A _ ddy B cos(c; + vinp)|™
C* = (r*—rd)p [ — } (5.61)

Scalar field is given as

ky
et = SR (5.62)
p* cos(cz + v 1n p) )

CASE 3
A<0 (5.63)

This case is similar to the previous one.

k1
wd Cos ¢y
© = [pu cos(cz + vinp)| ~’ (5:64)

2d d 2d-2 (2
2 _ (r®® — 2by7¢ + by) r C
ka
d _ (24 d 1 _sk [cos(c; +vInp)
c® = (r 26,7 + by)2 p” 2 [ cos(ca) (5.66)

In cases 2 and 3, the relation of physical parameters to integration constants

are exactly the same as case 1 type 2, the only difference being the sign of

A, hence equation(5.49).
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Chapter 6

Conclusion

In this study, we considered D-dimensional spherically symmetric space times
and obtained the Riemann tensor in compact form. Using this expression, we
established certain theorems concerning any spherically symmetric theory of
gravitation. As a special case, we considered the Lovelock theory in 5 and 6
dimensions with the LCBR metric, which simplifies most of the expressions.
Then we considered the low energy limit of the string theory and obtained
black hole solutions carrying mass, electrostatic charge, and dilaton charge.

We also generalized an inequality concerning physical parameters of the black

hole to D-dimensions.
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Chapter 7

Appendix
Mo = e
2
n (87
M M} = 20194
n o _ _ 2L
Mok =~k (7.1)
where
1 (D — 3)!

Mi; = alhi; = 539:), @ = ") (7.2)
Using these, we can compute several contractions of S;;, which in turn will
be used to compute the contractions of the Riemann tensor. Now we’ll define

new variables that will simplify the coeflicients.

a a
50=%7, 61:%a 62:7762'_2’ 3=13 (7.3)
o?
Sij = - o Mij + B*61kik; + %gija
D—14 1
5= 2761260,

2

1 C
SinS7 = Z(&"; +€3)gi; + &o fS;Mi]’ + (& + &u&s — Eobr) BPkikj,
1 1
Sink™ = (—550 +&6+ 553)7%
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" o 1 C? 1
S,-nM]- = -0—2(150.% + E@Mij - glezkikj),
1
Sthjn = 5(50 + &3)hij,
S™ Rinbmi = (o + 53)5CL- (7.4)

Now we can compute the second rank tensors in terms of g¢;;, M;; and

kik;

where

Pr =

ﬂ3=

s =

ﬂsz

Bo =

RiR;, = Phgi; + BaMij + Bakik;,

RjavR® = Pagi; + BsMi; + Bekik;, (7.5)
R{*Rjupe = Prgi; + BaMij + Bokik;,
R, = figij + faMij + fakik;,

D —3)2
D=3 s g2 4 (D - 3ot + o+ 263+ (D = 1)(D ~ Dok

(D — 4)6lr +2(D — 1)616s + (D ~ 1)E63 + (D — 1)2¢2,

D = 2)(D - 1)¢3 + 2D ~ 26ets +2D - enks + 2662 + €}
+2(D — 1)(D — 2)éoés + 2(D — 1)&263,

B*[~2(D - 2)éoés + D(D — 2)& +2(D — 1)(D — 2)é1s],

D — 3)?
D=3+ les 206, + (D~ )& +(D - 3ok + 3660 + 56

+(2D = 2)(D — 4)6ots + (3D — Dato + 5(D ~ Déats + (D — 16},

D - 2)(D — 96 + 2D ~ 2)eoks +2(D = éoka + b16a + 6
+(D — 2)%60és + (D — 2)6:63),

(D — 2)B[(D — 2)éobs + 162 + (D — 2)6143],
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Br = (D — 28 — 2abs + 263 + 2ok + (D—l_—?)—)ﬁi £2(D — 4)boks + 4Ers

+26,65 4+ 2(D — 1)€2,

By = % 2(D — 4)€5 + 4boby + 46obn + 2, +4(D — 2)6o&s + 46:2¢
o 0 061 062 (D—3) 063 263 »

Bo = 2(D—2)B*;(& +26)

(7.6)
and
1
h = 5({0(0 —4)+ &)+ & +&(D - 1),
02
o= S -2+e), &
fs = B*D-2)&.
If we insert these in (4.16), we obtain
[f1 = LR + co(R? = 4Ru B + Rusea B + 861 + 884 — 467 — 4R 1) 93
+[f2 + o (802 + 805 — 4f3s — 4R f2)] M;
+ [fs + c0(8Bs + 886 — 4Bs — 4R f3)] kik; = Agij
(7.8)
We can rewrite it as
t19i; + tzlw,'j + t3kikj =0 (79)

So, the field equations will reduce to t; = A, 2 = t3 = 0, where these

coefficients are given as
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t

LD - 4D ~2)to (D~ 2)& ~ 3(D = s — 5D~ (D - Dty

+ao(D — 3)(D — 4)[(D = 3)(D = 6)ég + 4(D — 3)éo1 + 2(D — 6)éoé
(D -4)D -5

+46:62 + (D —3) €3 4+ 2(D — 4)(D = 2)&o&s + 4(D — 2)61és
+2(D — 3)&26s + (D — 1)(D - 2)&3], (7.10)
12 2 —
Cp -2t + 4 ea(D - 90 - 1) [0 - 063 + T =Teet
2 D-5) ,
+2661 + (—m&fz + ((D — 3))2 &+ (D —2)6ols + 5253] ) (7.11)

—4agBY(D — 2)(D — 4)é1[€o(D — 3) + & + (D — 3)&3)]
+B*(D - 2)4,. (7.12)
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