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Abstract

We first present some results about Mackey algebras of p-groups over fields of characteristic p, including
their primitive idempotents and decompositions of their simple and principal indecomposable modules un-
der restriction. We then apply these results together with a Green’s indecomposability theorem for Mackey
algebras to obtain Mackey algebra versions of some classical results of group algebras which are mostly
related to restriction, induction and dimensions of modules. Our results about dimensions include Mackey
algebra analogues of Dickson’s theorem, Swan’s theorem and Fong’s dimension formula.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Swan’s theorem on the composition length of a module and Fong’s theorem on the dimension
are two classic applications of Clifford theory of group algebras. The theory of Mackey functors
is rather different from the theory of group algebras. For instance, restriction does not preserve
dimension. Nevertheless, we shall be using a Clifford theory of Mackey functors to obtain ana-
logues of Swan’s theorem and Fong’s dimension theorem.

Mackey functors were introduced by J.A. Green [6] and A. Dress [5] to axiomatize repre-
sentation theory of finite groups, unifying several notions like representation rings, G-algebras
and cohomology. Besides the definitions of Mackey functors given in [5,6], there is another one
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introduced by J. Thévenaz and P. Webb in [12] which identifies Mackey functors of a finite
group G over a commutative unital ring R with modules of an R-free R-algebra g (G), called
the Mackey algebra of G over R, allowing one to adopt many module theoretical constructions.
J. Thévenaz and P. Webb in [11] constructed the simple Mackey functors explicitly. We will use
these comprehensive references [11,12] frequently.

As usual in Section 2, we have collected some crucial notions about Mackey functors. The
structure of Mackey algebra ur(G) of a p-group G over an algebraically closed field IF of charac-
teristic p is studied in Section 3. By using [12], we observe that ) H<G tg =1 is an orthogonal
decomposition of the unity of ur(G) as a sum of primitive idempotents, and the principal in-
decomposable upr(G)-module MF(G)ZII; is the projective cover of Sg’]F. We also observe that
the center of ur(G) is a local algebra. Then we provide explicit decompositions of simple and
principal indecomposable pr(G)-modules under restriction.

In later sections we use a Mackey functor version of Green’s indecomposability theorem
to prove some results on lengths and dimensions of modules, including Mackey functor ver-
sions of some theorems of Dickson, Swan, Dade and Fong. For many of them we need some
extra assumptions on group G to guarantee that ur(G)-modules satisfy analogues of the the-
orems mentioned above. These additional assumptions are needed because of some structural
differences between Mackey algebras and group algebras. For a proper subgroup H of G, the
subalgebra up(H) of ur(G) is not unital, principal indecomposable ur(G)-modules may have
vertices different than 1, and indecomposable ur(G)-modules may have vertices which are not
p-groups. These are among the main differences which prevent us from finding exact analogues
of the results mentioned above.

Let P be a p-subgroup of G and S be a Sylow p-subgroup of G containing P, and let V
be a finitely generated P-projective FG-module. Then it is known that |S : P| divides dimp V.
In particular, if V is principal indecomposable, equivalently P = 1, then the order of a Sylow
p-subgroup of G divides dimp V. This is a theorem of Dickson. In Section 4 we provide Mackey
algebra versions of these results. Let T be a finitely generated indecomposable ur(G)-module.
We first show that dimp ¢gT is divisible by dimp MF(P)tll if T is 1-projective, which is remi-
niscent of Dickson’s theorem. Also it is shown that |S : P| divides dimp ¢gT if P is normal and
T is P-projective.

Suppose that N is a normal subgroup of G with G/N is p-solvable. If U is a simple FG-
module then by a theorem of Swan the composition length of igU divides |G : N|. We prove
in Section 5 that a similar result holds for Mackey algebras. Namely, if M is a simple ur(G)-
module with ¢2M # 0 then the composition length of ¢1(\;,M divides |G : N|. In Section 6, we
provide a Fong dimension theorem for Mackey algebras.

In Section 7 we prove a result for Mackey algebras of direct products of groups which has
some applications for Mackey algebras of nilpotent groups. For instance, if G is nilpotent and H
is a subgroup of G such that the Sylow p-subgroup of H is not normal in the Sylow p-subgroup
of G, then the dimension of every simple (G)-module of the form Sg’ v 1is divisible by p.

Throughout the paper, G denotes a finite group, R denotes a commutative unital ring, K
denotes a field, and I denotes an algebraically closed field of characteristic p > 0. We write
H < G to indicate that H is a subgroup of G. Let H < G > K. The notation H = g K means
that K is G-conjugate to H and H < g K means that H is G-conjugate to a subgroup of K. By
the notation g H C G we mean that g ranges over a complete set of representatives of left cosets
of H in G, and by HgK C G we mean that g ranges over a complete set of representatives of
double cosets of (H, K) in G. Also we put Ng(H) = Ng(H)/H,*H =gHg™', H¢ = g 'Hg
for g € G, and |G : H| for the index of H in G. Furthermore, for a module U we denote by J(U)
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and Soc(U) the Jacobson radical and the socle of U, respectively. We will mainly work over a
field F which is algebraically closed and of characteristic p > 0.

2. Preliminaries

In this section, we briefly summarize some crucial material on Mackey functors. For the
proofs, see Thévenaz—Webb [11,12]. Recall that a Mackey functor for G over R is such
that, for each subgroup H of G, there is an R-module M (H); for each pair H, K < G with
H < K, there are R-module homomorphisms rg :M(K) — M(H) called the restriction map
and tg :M(H) — M(K) called the transfer map or the trace map; for each g € G, there is an
R-module homomorphism c‘}g_l *M(H) - M(8H) called the conjugation map. The following
axioms must be satisfied for any g,h € G and H, K, L < G [1,6,11,12].

M) IfH< K<L, rk=rKrk and t}, =t£tK; moreover rfl =t =idpm).
h
M) ci =chc}I‘{.
(M3) Ifhe H,cl,: M(H) — M(H) is the identity.
My) If H<K, cilrg = rjfgcf( and cé]"(tg = tjgcﬁl.
. 8
(Ms) (Mackey Axiom) If H <L > K, ritg =Y poxcr Hinex "Hisk Cx-

Another possible definition of Mackey functors for G over R uses the Mackey algebra ;g (G)
[1,12]: uz(G) is the algebra generated by the elements r£,¢X, and ¢f,, where H and K are
subgroups of G such that H < K, and g € G, with the relations (M)—(My).

H H
Me) X n<cti =2 n<c™n = luzG)-
(M7) Any other product of r 5 ,t g and c}gi is zero.

A Mackey functor M for G, defined in the first sense, gives a left module M of the associative
R-algebra ;g (G) = R ®z 17(G) defined by M = @ ;< ; M(H). Conversely, if M is a jug (G)-
module then M corresponds to a Mackey functor M in the first sense, defined by M (H) =t g M,
the maps ¢ 1’5 F g , and c‘;’z] being defined as the corresponding elements of the g (G). Moreover,
homomorphisms and subfunctors of Mackey functors for G are g (G)-module homomorphisms
and u g (G)-submodules, and conversely.

Theorem 2.1. (See [12].) Letting H and Krun over all subgroups of G, letting g run over
representatives of the double cosets HgK C G, and letting J runs over representatives of the
conjugacy classes of subgroups of H8 N K, then tgcz}yrf comprise, without repetition, a free

R-basis of ur(G).

Given a simple Mackey functor M for G over R, there is a unique, up to G-conjugacy, sub-
group H of G, called a minimal subgroup of M, such that M (H) is nonzero. Moreover, for such
an H the RN g (H)-module M (H) is simple, see [11].

Theorem 2.2. (See [11].) Given a subgroup H < G and a simple RN (H)-module V, then
there exists a simple Mackey functor Sg,v for G, unique up to isomorphism, such that H is

a minimal subgroup of Sf],v and SS’V(H ) = V. Moreover, up to isomorphism, every simple
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Mackey functor for G has the form SS’V for some H < G and simple RN G (H)-module V. Two
simple Mackey functors SIG1 y and Sg, v are isomorphic if and only if;, for some element g € G,
we have H' =8H and V' = C‘Z(V).

We now recall the definitions of restriction, induction and conjugation for Mackey functors
[1,9,11,12]. Let M and T be Mackey functors for G and H, respectively, where H < G, then
the restricted Mackey functor |$ M is the ug(H)-module 1,,z)M and the induced Mackey
functor T?_IT is the wg(G)-module wr(G) 1, x(H) ®ur(H) T, where 1, gy denotes the unity of
ur(H). For g € G, the conjugate Mackey functor |§1T = 8T is the ug (8 H)-module T with the
module structure given for any x € ug(8 H) and t € T by x.t = (Yq-1XYg)t Where y, is the sum
of all ¢§ with X ranging over subgroups of H. Obviously, one has |§ 7, |, = S:Z’CZ - The
subgroup {g € Ng(H): 8T ~ T} of Ng(H) is called the inertia group of T in Ng(H).

Given H < G > K and a Mackey functor M for K over R, the following is the Mackey
decomposition formula for Mackey algebras [12], which will be of great use,

L AL 1y~ H 8K g
VptgM= @ Tansk Y Hnek kM-
HgKCL

We let Bg denote Burnside functor for G, see [12].
Theorem 2.3. (See [12].)
() ur(G)ff =15 BY.
(ii) BFG is indecomposable if and only if G is a p-group.

(iii) Let G be a p-group. Then Sg,F(K) is nonzero if and only if H = g K.

As a last result in this section, we record a Mackey algebra version of Green’s indecompos-
ability theorem which will be used frequently.

Theorem 2.4. (See [13].) Let N be a normal subgroup of G. Let S be a finitely generated inde-
composable Mackey functor for N over IF, and let L be the inertia group of S. Then, TgS is an
indecomposable Mackey functor for G over F if and only if L/ N is a p-group.

3. Mackey functors of p-groups
In this section, using some results from [12], we find an orthogonal primitive idempotent

decomposition of the unity of Mackey algebra of a p-group over FF, an algebraically closed field
of characteristic p. As in [12] we let Pg’v denote the projective cover of the simple Mackey

functor SS’V for G.
Proposition 3.1. Let G be a p-group. Then for any subgroup H of G,

(i) The idempotent tg € ur(G) is primitive.
(i) pr(G)f] ~ PG~ 1% BE.
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Proof. (i) The idempotent tg is primitive if and only if mp(G)tg is an indecomposable ur(G)-
module. Indeed, M]F(G)tg ~ T%B{ is indecomposable by 2.3 and 2.4.

(i) As > H<G tg =1 is an expression of 1 as a sum of primitive orthogonal idempotents,
the projective cover PS)F of the simple ur(G)-module SS,F must be isomorphic to MF(G)I))((
for some subgroup X of G. Therefore the simple modules /,L[F(G)t;(( /J (/LF(G))t;(( and SI(-;I,]F
must be isomorphic, implying that t})(( does not annihilate SS,F’ that is SS’F(X ) # 0. By 2.3(iii)
X=¢gH. O

The previous result can be proved without using 2.4. Indeed, it follows by 2.3 and [12, 8.6],
a result which express TZBHIg explicitly as a direct sum of principal indecomposable uk(G)-
modules, for large enough fields K.

We record an immediate consequence of 3.1.

Corollary 3.2. Let G be a p-group. Then for any subgroups H and K of G,

(i) ur(G)tH >~ pur(G)tE ifand only if H= K.
(i) If H < K then ¢ Pf =~ Py &

Proof. (i) Obvious by 3.1(ii).
(ii) Using 3.1Gi), 1 Ph g ~ 171 E BE ~ GBI ~ Pl . D

The group algebra FG is local if G is a p-group. For Mackey algebras we have
Proposition 3.3.

(1) If G is a p-group, then the center of ur(G) is a local algebra, so 1 is a block idempotent of
ur(G).

(i) If the center of ur(G) is a local algebra then K is of characteristic p > 0 and G is a p-
group.

Proof. (i) For any subgroups H and K of G, the primitive idempotents t,’_}l and t}(( of ur(G) lie
in the same block because tgmg(G)tllg is nonzero (it contains tlHrlK). As ZHgG tg =11isan
orthogonal decomposition, 1 must be a block idempotent.

(i) The Burnside algebra Bk (G) embeds into the center of ux(G), see [12]. Hence 1 €
B (G) is a primitive idempotent and the result follows by [4]. O

For a p-group G, the radical J(FG) of FG is the kernel of the augmentation map. We see
now that a similar result holds for Mackey algebras. Consider a map r(G) — R whose image
at the basis element 73 is 1 and at the other basis elements 1 c$rK are 0, see 2.1 for the basis
elements. It is a routine checking that the above map is an R-algebra epimorphism. We let
denote its restriction to the center Z(ug(G)) of ur(G). If G is a p-group then as Z(ur(G)) is
local it is clear that the radical of Z(ur(G)) is equal to the kernel of i, which is also equal to
the set of all elements of Z(ur(G)) annihilating the simple wr(G)-module S g,IF'

For future use we next state a Mackey algebra version of Nakayama’s reciprocities for group
algebras whose first three parts depend on the adjointness of restriction and induction functors

and whose last part depend on the symmetricity of group algebras. For Mackey algebras, we
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have the same adjointness properties of restriction and induction functors, see [11]. So a slight
modification of the proof of the result for group algebras implies

Proposition 3.4. Let K be algebraically closed and H be a subgroup of G. Let S be a simple
Uk (G)-module and T a simple ux (H)-module, and let P(S) and P(T) denote their projective
covers. Then,

(1) The multiplicity of S as a simple constituent of TgT/J(TgT) is equal to the multiplicity of

T as a simple constituent of Soc(¢g S).

(i) The multiplicity of P(T) as a direct summand of ¢2P(S) is equal to the multiplicity of S
as a simple constituent of ?g T

(iii) The multiplicity of P(S) as a direct summand of TgP(T) is equal to the multiplicity of T
as a simple constituent of igS.

(v) If ux(H) is a symmetric algebra, then the multiplicity of T as a simple constituent of
¢g P(S) is equal to the multiplicity of S as a simple constituent of T‘g P(T).

By Clifford theory for Mackey algebras the restriction of a simple g (G)-module to a sub-

normal subgroup is semisimple [13]. In the next result we give an explicit description of the
restriction of simple Mackey functors of p-groups over characteristic p.

Corollary 3.5. Suppose that G is a p-group. Then forany K < G>L > H,

® VI PR p= @ Plok k-
LgKCG
(i) 198G o P SeHF-

LgNG(H)CG: sHLL

Proof. (i) By 3.1(ii) P K P ~1¢B ¥ K and using the Mackey decomposition formula we get

G LﬂgK
7 K]F—‘LLTKBF = @ ek BF
LgK<G

And by 3.1(ii) each 1, . BE™X is isomorphic to P}, K implying the result.

(i1) For each X < L let my be the multiplicity of S X Fasa simple constituent of ¢GSG
Then by 3.4(iii) mx is the multiplicity of PH,]F as a direct summand of TG 'y Moreover by
3.2(ii) we have TL X P PG Therefore mx =1 if H = ¢ X, and mx = 0 otherwise. Since
¢GS G 7.F 1s semisimple we must have

L
Visieg= €D Siw

XgLL: X=6H

Finally it is clear that the index set {X < ;L: X = g H} is the desired index set. O
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4. Relative projectivity

The object of this section is to provide some applications of Green’s indecomposability the-
orem for Mackey algebras 2.4 and the results of the previous section. Specifically, we obtain
Mackey algebra versions of some classical results about dimensions of modules of group alge-
bras, and we derive some results related to restriction and induction of Mackey functors.

A Mackey functor M for G over K is said to be H-projective for some subgroup H of G
if M is a direct summand of Tg¢gM , equivalently M is a direct summand of TZT for some
Mackey functor T for H. For an indecomposable Mackey functor M, up to conjugacy there is a
unique minimal subgroup H of G, called the vertex of M, so that M is H-projective. Although
these notions are very similar to the corresponding notions in group algebras, there are some
crucial differences. For example, projective Mackey functors may not be 1-projective. Indeed,
over any field the projective indecomposable Mackey functor Pg,v has vertex H, see [9,12].
These differences are major obstacles to the obtaining Mackey algebra versions of the classical
results about group algebras. That is why we usually need some extra assumptions for Mackey
algebras to satisfy the similar results.

Let V be a principal indecomposable FG-module. Then dimy V' is divisible by the order of
a Sylow p-subgroup of G. This is one of the earliest result in modular representation theory,
known as Dickson’s theorem, see [7, Corollary 7.16, p. 91]. We begin by obtaining a Mackey
algebra version of Dickson’s theorem.

Proposition 4.1. Let P be a p-subgroup of G. Then, given any 1-projective indecomposable
ur(G)-module M, there is a positive integer n such that ¢gM ~ nmp(P)tl1 as ur(P)-modules.
In particular dimyp ,u]F(P)tll divides dimp i,gM.

Proof. We may write ¢gM ~Ty & ---®T, as a direct sum of indecomposable pp(P)-mod-
ules 7;. Then each T; is a direct summand of ¢gM ,and as M is l-projective by applying the
Mackey decomposition formula we see that each 7; is 1-projective. Therefore 7; is a direct
summand of Tf’ T for some indecomposable up(1)-module 7. As ur(1) ~F, T =~ and T; is
a direct summand of TfT ~ M]F(P)tll R F ~ MF(P)tll. Moreover by 3.1 the up(P)-module
[L]F(P)tll is indecomposable, implying that each 7; is isomorphic to M]F(P)tll. O

Let V be a finitely generated P-projective FG-module where P is a p-subgroup of G. Then
|S : P| divides dimp V where S is a Sylow p-subgroup of G containing P, see [8, Theorem 7.5,
p- 293]. We next give a Mackey algebra version of this result.

Proposition 4.2. Suppose M is a finitely generated P-projective ur(G)-module where P is a
normal p-subgroup of G. If S is a Sylow p-subgroup of G, then |S : P| divides dimp igM.

Proof. Evidently P € S. As M is P-projective it is a direct summand of TgigM . Using the
Mackey decomposition formula we see that ¢gM is a direct summand of

LSTELEM = |G SIHLEM.
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We write ¢gM ~Ty & --- & T, as a direct sum of indecomposable ur(P)-modules 7;. By 2.4
each T‘IZ T; is an indecomposable pp(S)-module. Therefore

SM~n 13T @& @nAbT;
for some integers n; > 0. Consequently,
VEM >~ V3 M >~ 33T @ - @ n L343 T,

Finally, using the Mackey decomposition formula we see that

13T = D °T;

gPcs
for each i. In particular, for any i, |S : P| divides dimp if, T“Ii T;, implying the result. O

For group algebras the dimension of ¢ngW is divisible by |G : H| which may not be
the case for Mackey algebras unless H is normal. This is one of the reasons why we assumed
the normality of P in the previous result. In fact, let G be a p-group having a nonnormal
subgroup H of order p. Then for any g € G it is clear that H N8H = H if and only if
g € Ng(H), and H N&H =1 otherwise. By using the Mackey decomposition formula we see
that dimp ingSg,]F = |Ng(H) : H| is not divisible by |G : H|. In particular, the normality
of P cannot be removed from the statement of 4.2 so as to leave a correct statement.

Corollary 4.3. Let G have a normal Sylow p-subgroup S, and let M be a finitely generated
indecomposable ur(G)-module with dimp ¢§7M = 1. Then S is a vertex of M.

Proof. As S is a Sylow p-subgroup, F is of characteristic p and LgM # 0 it follows that M
is S-projective, see [12]. Let Q be a vertex of M and Q' be a vertex of LgM. Then Q C S,
and if Q' # S then we choose a maximal subgroup P of S that contains Q’. Then ¢gM is a
finitely generated P-projective up(S)-module and P is normal in S. Therefore 4.2 implies that
|S : P| = p divides dimp ¢f;¢gM = dimp igM which is impossible because ¢gM - ¢§;M.
Therefore S is a vertex of ¢gM . As Q is a vertex of M it is a direct summand of TgigM . This
implies that ¢gM is a direct summand of ingigM which is, by the Mackey decomposition
formula, isomorphic to € 2SCG 15 0 ifQM . Moreover as dimp ¢gM =1, the module ¢gM and
the modules LgGQM must be indecomposable. Finally by 2.4 we see that ¢gM ~ Tg Q¢KGQM for

some g € G, in particular ¢gM is 8 Q-projective. As S is a vertex of ¢gM we conclude that
S=0. O

Remark 4.4. Let G have a p’-subgroup H. Then, any finitely generated indecomposable H -
projective ur(G)-module is projective.

Proof. Let M be such a module. Then M is a direct summand of TgT for some finitely gen-
erated indecomposable up(H)-module T. As H is a p’-group, ur(H) is semisimple [11],
implying that T is projective. Lastly, as restriction and induction are exact functors which are
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two sided adjoints of each other, they send projectives to projectives [11,12]. Hence M must be
projective. 0O

5. A Swan length theorem

Suppose N is a normal subgroup of G and G/N is a p-solvable group. Let U be a simple
FG-module. Then, the composition length of igU divides |G : N|. This is a theorem of Swan,
see [10] or [7, Theorem 9.20, p. 143]. Our aim is to show that a similar result holds for Mackey
algebras. We first need the following, see [13].

Theorem 5.1 (Clifford Theorem for Mackey algebras). Let N be a normal subgroup of G and
Sg,v be a simple uk (G)-module with H < N. Then, there is a simple u (N)-submodule SZ’W

of if,Sg v such that
G oG g oN NG(H)y, g
1585 v~d P 15SNw and VoV =d P Gw
gL<SG 8T<Ng(H)
for some positive integer d, called the ramification index of Sg,v relative to N, where L and T

are the respective inertia groups of S Z’W and W in G and N g (H). Furthermore, L = NT and
Np(H)=T.

Theorem 5.2 (Swan Length Theorem for Mackey algebras). Let N be a normal subgroup of G
such that G/N is p-solvable, and let M be a simple ur(G)-module with igM # 0. Then the
composition length of igM divides |G : N|.

Proof. Let M = Sg,v where H < N. Then by 5.1

158Gy ~d @ 15syy and (Nv~a P )

Ny (H)
gL<SG gTSNG(H)
where W is a simple N y (H)-module which is a direct summand of V/%GEZ; V,and L and T are
N

the respective inertia groups of S g w and W. Moreover L = NT and Ny (H) =T. Now
NG(H)/Nn(H) = Ng(H)/(Ng(H)NN) = (Ng(H)N)/N < G/N

implies thatﬁlv G(H)/ Ny(H) is p-solvable. Thus by [7, Theorem 9.20, p. 143] the composition

length of ¢%f]2g;V, which is d|Ng(H) : T|, divides |Ng(H) : Ny(H)|. So there is a positive

integer s such that sd|Ng(H) : T| = |Ng(H) : Ny(H)| implying that
sd=|T:Ny(H)|=|T :NONNL(H)|=|T:NNT|=|NT:N|=|L:N|.

Hence sd|G : L| = |G : N|, and so the composition length of ¢](\7,M, which is d|G : L], divides
|G:N|. O

We record an immediate consequence of 5.1 and 5.2.
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Corollary 5.3. Let N be a normal subgroup of G such that G/ N is p-solvable, and let M be a
simple ur(G)-module with igM #0.If S is a simple ur(N)-module which is a direct summand
of LS M, then dimg | § M divides |G : N|dimg S.

Suppose A is a normal abelian subgroup of G so that G/A is p-solvable. Then dimp U divides
|G : A| for any simple FG-module U, see [3,10]. As a consequence of the previous result we have
the following similar result for Mackey algebras.

Corollary 5.4. Let N be a normal abelian p-subgroup of G such that G/N is p-solvable, and
let M be a simple jug(G)-module with |G M # 0. Then dimg | M divides |G : N|.

Proof. As N is abelian, 2.3(iii) implies that every simple pup(N)-module is one dimensional.
Then the result follows. O

The proof of the above result depend on the fact that for an abelian p-group G, all simple
ur(G)-modules are one dimensional. It can be seen easily that all simple uk (G)-modules are
one dimensional if and only if K is of characteristic p > 0 and G is a p-group such that all
subgroups of G are normal.

6. A Fong dimension theorem

For any natural number n we let n, and n,; denote its p- and p’-part, respectively. We denote
by P () the projective cover of its argument.

If G is a p-solvable group and V is a simple FG-module then dimp P (V) = |G|, (dimp V) .
This is known as Fong’s dimension theorem, see [7, Theorem 16.9, p. 230]. In this section we
obtain a result which looks like Fong dimension theorem for Mackey algebras.

We now give some results related to ramification indices and restriction of principal indecom-
posable Mackey functors. The next two results will be the main ingredients of the proof of 6.3,
a result which we suggest as a Fong dimension theorem for Mackey algebras.

Proposition 6.1. Let N be a normal subgroup of G such that G/N is a p-group and M be a
simple ur(G)-module with ¢gM #0. Then

i) P(M)~ Tg P(S) for any simple wr(N)-module S which is a direct summand of ¢2M.
(i) The ramification index of M relative to N is 1.
(iii) For any simple ur(N)-module S which is a direct summand of ilc\;,M ,

WP~ B FPS=IL:NI P 15 P©)

gNCG gLCG
where L is the inertia group of S. In particular, ¢](\;,P(M) ~|L: N|P(¢gM).

Proof. Take any simple up(N)-module S which is a direct summand of ¢§,M . Then by 5.1
¢2M o~ d@ngG |§\,S where d is the ramification index. Using 3.4(iii) we see that d is the
multiplicity of P(M) as a direct summand of Tg P(S), where by 2.4 Tg P(S) is indecomposable.
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Henced =1 and P(M) ~ TgP(S). Finally, observing that L is also the inertia group of P(S),
the last part follows by the Mackey decomposition formula applied to the first part. O

Under the assumptions of 6.1, if S is a simple ur(N)-module then P(TgS) ~ TgP(S). In-
deed, as induction is an exact functor sending projectives to projectives it follows that P(Tg S) is
a direct summand of TZC\;,P(S) from which the isomorphism is concluded by 2.4. Moreover, any
primitive idempotent of pup(N) stays primitive in ur(G), because given a primitive idempotent
e of urp(N) we have ur(G)e =~ T](\;, ur(N)e which is indecomposable by 2.4. More to the point,
any finitely generated N-projective indecomposable ur(G)-module M is of the form TE,T for
some indecomposable pur(N)-module 7.

Proposition 6.2. Ler N be a normal subgroup of G such that G/N is a p’-group, and M be a
simple ur(G)-module with igM #0. Then

(1) For any simple ur(N)-module S which is a direct summand of igM,

ISPy ~d € 15 PS)

gLCG

where d is the ramification index of M relative to N and L is the inertia group of S in G. In
particular, ¢g P(M)~ P(¢2M).
(ii) p does not divide d.

Proof. (i) Let S be any simple yr(/N)-module which is a direct summand of ¢gM . It follows by
5.1 that ¢gM ~dP ¢LCG |§VS where d is the ramification index and L is the inertia group of S.
Let S1, ..., Sr be a complete set of representatives of simple ur(N)-modules. By the functorial
properties of restriction it sends projective modules to projective modules (if the resulting module
is nonzero), see [11,12]. So we may write

-
IS PM) =@ ni P(Si)
i=1
for some integers n; > 0. Note that P(S;) >~ P(S;) if and only if i = j. Then by 3.4 n; is
the multiplicity of M as a simple constituent of TgSi. Therefore n; is equal to the dimension of
Hom, () (P (M), TgS,-). Moreover, as G/N is a p’-group, [13, Corollary 3.8] implies that TgSl-
is semisimple. Now using the adjointness of restriction and induction we have as F-modules

Homyu () (P (M), 1§5;) = Homyu ) (M, 1§ S) = Homye ) (V5 M. i)

~d @ HOIH[L]F(N)(|§\]S’ S,’).
gLCG

Hence n; =d if §; ~ |§VS for some g € G, and n; = 0 otherwise, implying the result.
(ii) Let M = SFGI’V where H < N. Then by 5.1 we can choose S as § = SZ’W where W is a

simple FN y (H)-submodule of V. By 5.1 we know that the ramification index d of M relative to
N is the same as the ramification index of V relative to N y (H). Also note that, being isomorphic
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to a subgroup of G/N, the group NG (H)/N y(H) is a p’-group. So by the corresponding result
in the context of group algebras [8, p. 389], p does not divide d. O

Theorem 6.3 (Fong Dimension Theorem for Mackey algebras). Let G be a p-solvable group,
N be a normal subgroup of G, and let M be a simple ur(G)-module with ¢gM #0.

(1) If N is a p’-group then
dimp | § P(M) = ndimp | §M

for some natural number n which is a power of p.
(i1) If N is a p-group then

dimg | § P(M) =|G/N|,(dimp ¢§M)p, dimg P(S)

where S is a simple up(N)-module which is a direct summand of J,](\;,M. And if X is a
minimal subgroup of M then dimp P(S) = dirn]F(u,F(N)t))(().

Proof. As G/N is p-solvable we may find a chain N =N, C N,_| C --- C N1 = G where each
N; is a normal subgroup of G, and each quotient N; /N; 11 has order n; which is a p’-number or
a power of p (consider the p’ p-series of G/N).

Let S1 = M and fori =2, ..., r choose a simple ur(N;)-module S; which is a direct sum-
mand of L%ﬁ” S;_1, and let d; _; be the ramification index of S;_; relative to N;, and let L; be
the inertia group of S; in N;_1. So in particular N; € L; € N;_1.

Then, fori =2,...,r it follows by 6.1 and 6.2 that

Ni_ i Ni— i
Iy 'Sii=dio @ 5 S and LG PSiD=kio 15 PGS

8iLiSNi— 8iLiSNi—
where kj_1 = |L; : Nij| =d;_1|L; : Nij| if nj_1 = |N;j_1 : N;j| is a power of p; and kj_1 =d;_1,
which is a p’-number, if n;_| = |N;_; : N;| is a p’-number.
Then, as each N; is normal in G, we have
Gag_ (N1 Ny Nig 82838r
IGM =1y LS > (didy-de) @ @ - PIRETES,
82L2CN1 g3L3SNy g Ly SNy
Ny_ N, | N gy
ISP =1y LS = kika ko) @ P - @ IR PEH.

8 LrCNy g3L3CEN, gL, CN,_;
Therefore

r—1 r—1
dimp | §M = (Hdi) (1‘[ IN; Li+1|> dimg ;.

i=1 i=1

r—1 r—1
dimg | § P(M) = (Hk,-> (H INi: Lit |> dimg P(S}).

i=1 i=1
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(i) Suppose N is a p’-group, then ur(N) is semisimple [11]. So P(S,) = S,. Letting n be the
number ]_[lr;ll (k; /d;) we see that n is a power of p and dimp ig P(M) = ndimgp igM.

(ii) Suppose N is a p-group. Let X be a minimal subgroup of M. By 5.1 we may take S, to be
SQF, whose dimension is equal to | N : Ny (X)| by 2.3. Then 3.1 implies that P(S,) =~ ,u]F(N)t;((.
Let{l,2,...,r—1}=1WJ wherei € I ifand only if | N; : Ni+1| = n; isapowerof p.So,d; =1
and k; = |L;y1: Njy1] fori € I; and k; = d; and p does not divide d; for i € J. Now note that

r—1
[TV Lial = (1‘[|Ni :L,»+1|><1"[|N,~ :L,-+1|)
i=1

iel iel

as product of its p- and p’-part, respectively. Note also that ]—Lr;ll d; is a p’-number and

leiki = (ﬁdi> (HIL,-+1 :N,-+1|).

i=1 iel

Therefore

(dimp ¢§§M)p, = (]:[1 d,-)

(HlNiiLiHI),

ieJ

=

1
1

dimm%P(M)=< di)(]"[mm : N,~+1|)<1"[|N,- :L,-+1|>
i=1 iel iel
X (1_[|Ni : Li+1|) dimJF(MF(N)f;}(().

iel
As ([Tier ILiv1 : NigaiD( Lies INi : Lis1D) =[1;es INi : Nig1l =|G/N|,, the result follows. O

Let us explain how to derive, using the previous result, Fong’s dimension theorem for group
algebras. Given a simple FG-module V, we use 6.3(ii)) with M = va and N =1 to get

dimg | ¢ P(M) = |G|, (dimp | ¥ M),y dimp(ur(1)t]), where, of course, dimp(ur(1)t]) = 1 and
(dimg | M), = (dimg V) . Moreover dimg |.{ P(M) = dimg P’ (1) = dimp P(V), because
by [12, 12.6] we have PIG,V(l) >~ P(V). Hence dimp P (V) = |G| ,(dimp V).

7. Mackey functors of direct products

We give some results about Mackey functors for direct products of groups. If G| and G, are
groups then K(G1 x G2) ~ KG| ®x KG3, and if we assume that G| and G, have coprime
orders, then it follows by 2.1 that ux (G1 x G2) =~ uk(G1) ®k uk(G2), because subgroups of
G| X G, are of the form H| x H> for some subgroups H; of G;. We first recall some basic notions
about tensor products of algebras, see [2, pp. 249-254]. Let A and B be finite dimensional K-
algebras and K be algebraically closed. If X and Y are A- and B-modules, respectively, then
X ®Kk Y becomes an A @k B-module by means of the action (a ® b)(x ® y) = ax ® by. The
simple modules of A @k B are, up to isomorphism, precisely the modules X @k ¥ where X and
Y are simple modules of A and B, respectively. Moreover, given indecomposable A-modules
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X1, X7 and indecomposable B-modules Y1, Y> then X; ®k Y; is an indecomposable A Qk B-
module for i = 1,2, and X1 ®k Y1 = X7 ®k Y> if and only if X1 >~ X and Y1 >~ Y5. Let X be
an A-module and Y be a B-module. Identifying A and B with their images A® 1 and 1 ® B in
A @k B we see that X ®x Y is isomorphic to (dimk Y)X and (dimg X)Y as A- and B-modules,
respectively. In particular, if X @k Y is a projective A @k B-module then X and Y are projective
A- and B-modules.

Proposition 7.1. Let G| and G be groups with coprime orders and let H> be a subgroup of G».
Suppose that K is algebraically closed. Then, any finitely generated 1 x Hy-projective indecom-
posable ux (G x Ga)-module is of the form S @k T, as ur(G1) @k uk(G2)-module, where
S is a principal indecomposable g (G1)-module and T is a finitely generated H»-projective
indecomposable 1k (G2)-module. Conversely, given such modules S and T the ux(Gi x G)-
module S @ T is finitely generated, 1 x Hy-projective and indecomposable.

Proof. Let M be such a ux(G| x Gs)-module. Then there is a finitely generated 1 x H»-
projective indecomposable uk (1 x G2)-module T such that M is a direct summand of TIGXI éfz T,
and there is a finitely generated indecomposable puk (1 x H»)-module U such that T is a direct

summand of T}ig; U. As

1xG
ParrU = (1 X G2) @1ty U = 1k (G2) ®puge () U,

T may be regarded as a finitely generated H»-projective indecomposable uk (G>)-module. Writ-
ing ug(G1) = S1 @ --- @ S, as a direct sum of principal indecomposable pk(G1)-modules we
note that

TlGXlZ(;fZT ~ ur(G1 X G2) Que(ixGy) T = (MK (G1) ® 1K (G2)) QuyGy T

n
~ ug(G1) ®x (4x(G2) ®uy Gy T) = nr(G1) @ T = @ Si®k T.

i=1

Since each S; @ T is indecomposable, M must be of the desired form.

Conversely, let S and T be given. As T is H,-projective we may regard 7 as a 1 x Hp-
projective uk (1 x Go)-module. Evidently, S @k T is a direct summand of uk(G1) ®x T which
is equivalent, by what we have done above, to T?XI ész T.Since T is 1 x H,-projective the result

follows. O

We next provide some applications of 7.1. For a prime number p and a group G, we denote
by 0,(G) and O, (G) the respective largest normal p and normal p’-subgroups of G.

Corollary 7.2. Let G be a nilpotent group and H be a p-subgroup of G. Then the dimension of
the ur(G)-module PIEI;,V is divisible by the dimension of MF(OP(G))Z;II.

Proof. Applying 7.1 with G| = O0,/(G) and G2 = O,(G) we see that PI?,V ~SQ®pT for
some projective indecomposable (O ,(G))-module T with vertex H. Then T is isomorphic to
ur(Op (G))tg by 3.1, implying the result. O
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Let M be a uk(G)-module with vertex H. Then there is an indecomposable px (H)-module
U such that M is a direct summand of Tf, U. Any such U is called an H-source of M.

Corollary 7.3. Let G be a nilpotent group and H be a p-subgroup of G. If M is a ﬁnilely

generated indecomposable juy(G)-module with vertex H and H-source U, then dimp 1 5 O (G)U
divides dimp M.

Proof. By the proof of 7.1 there is a finitely generated indecomposable ur(O,(G))-module
T with vertex H and H-source U such that M ~ § @ T for some principal indecomposable
ur(0,(G))-module S. In particular, dimp 7' divides dimp M. As T is a direct summand of

TO”(G)U it follows by 2.4 that T >~ TOP(G)U, finishing the proof. 0O

Finally we give a result on the simple ur(G)-modules for a nilpotent group G.

Corollary 7.4. Let G be a nilpotent group. Then for a simple up(G)-module Sg,v we have

. . 0,/(G)
dimg S§; |, =G : N6 (0, (H))|dimp 50‘ ).V

Proof. Considering SG .y asa simple up(Op (G)) ®r ur(O0p(G))-module, there are simple
G

modules M| = S ( ) and M, = S;) %(G) for some respective subgroups X and Y of O,(G)

and O,(G) such that SfGI,v >~ M| Qr M>. As H is isomorphic to O, (H) x O,(H) we see

that M(O0,/(H)) and M>(0,(H)) are nonzero. On the other hand, since M;(X) and M>(Y)

are nonzero it follows that SG v (XY) is nonzero. Hence we may take X = O,/(H) and ¥ =

O, (H). Moreover asS V(H)—Vwe have V >~ M (0, (H)) ®r M2(0p(H)) =~ W Qr I as
]FO (H)®rFO,(H)- modules So W =~ V. Finally by 2.3 dimp M> = |G : Ng(O,(H))|. O
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