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ABSTRACT

GROUND STATE ENERGY OF THE FRÖHLICH
POLARON AS A FUNCTION OF DIMENSIONALITY

AND THE PHONON COUPLING STRENGTH

Hamdi Burak Bayrak

M.S. in Physics

Advisor: Zeki Atilla Erçelebi

September 2018

We use the trial polaron wave function introduced by Devreese et al. [1] to

estimate the ground state energies of the Fröhlich polaron over a broad range of

the phonon coupling strength by a variational approach. We calculate the binding

energy of the polaron as a function of dimensionality interpolating between two

and three dimensions. We compare these results with the outcomes obtained by

the Strong and Weak Coupling Theories and conclude that in the strong coupling

regime, the present work leads to a significantly improved upper bound for the

ground state energy.

Keywords: Fröhlich, polaron, weak coupling, strong coupling .
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ÖZET

BOYUTUN VE PHONON BAĞLANMA KUVVETİNİN
FONKSİYONU OLARAK FRÖHLİCH POLARONUN

TEMEL DURUM ENERJİSİ

Hamdi Burak Bayrak

Fizik, Yüksek Lisans

Tez Danışmanı: Zeki Atilla Erçelebi

Eylül 2018

Fröhlich polaronun temel durum enerjisini, Devresee ve diğerlerinin öne sürdüğü

polaron deneme dalga fonksiyonunu kullanarak [1], phonon bağlanma kuvve-

tinin oldukça çeşitli değerleri için, varyasyonel bir yaklaşım ile tahmin ediyoruz.

Boyutu iki ile üç arasında değişen bir polaronun bağlanma enerjisini hesaplıyoruz.

Elde ettiğimiz sonuçları Kuvvetli ve Zayıf Bağlanma kuramları ile kıyaslıyoruz.

Sonuç olarak, kuvvetli bağlanma rejiminde, mevcut çalışmanın temel durum en-

erjisinin üst sınırını dikkate değer bir biçimde geliştirdiğini gözlemliyoruz.

Anahtar sözcükler : Fröhlich, polaron, zayıf bağlanma, kuvvetli bağlanma .
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Chapter 1

Introduction

The first appearance of the polaron concept in the literature is often attributed to

the paper proposed by Landau[2].The basic rationale behind the polaron concept

can be described as follows: When a charge carrier has a sufficiently slow motion

in an ionic crystal, the equilibrium positions of the surrounding ions are shifted.

This change in the positions of the ions creates a potential well for such carrier.

If the energy required to remove the carrier from this well is greater than the

phonons characteristic energy, the potential well can be considered almost static.

Consequently, it is said that the carrier is self-trapped; that is, its existence

induces a potential well so that it cannot escape beyond the well.

Such a structure described above(i.e. the carrier which is self-trapped and the

surrounding ions) is called with a specific name: strong-coupling polaron. How-

ever, for every polaron formation, the self-trapping situation may not necessarily

occur; that is, if the interaction between the charge carrier and the ions is weak,

a potential well that traps the carrier is not established. Nevertheless, the carrier

and the surrounding ions still have an appearance of a composite quasi-particle;

and this structure is termed as a weak-coupling polaron.

Among these two types of polarons (i.e. strong and weak-coupling polarons),

the strong-coupling polaron is considered under two titles: Large polaron and
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small polaron. Large polaron wave functions and the corresponding lattice dis-

tortions exceed the characteristic inner-site separation of the lattice. Such polaron

can be described as a free particle moving in an elastic continuum[3]. On the other

hand, a small polaron is confined in a single structural unit. The carrier’s motion

in this polaron is generally described by the successive random phonon-assisted

jumps between the adjacent sites[4].

Motivation behind working on the polaron problem can be summarized as

follows: The interaction between electron and phonons leads to phase transfor-

mations such as superconductivity, and dominates the transport properties of

many metals and semiconductors[3],[5],[6]. Second, despite of the simplicity of

the formulation of the problem, the exact solution has not been formulated yet[7];

hence, such a problem becomes a reference problem to test the various methods

of approximations[8].

To bring a solution to the polaron problem, there are many models that de-

scribe the interaction between the carrier and phonons. Among them, one of the

most important models is the Fröhlich’s interaction[9] (i.e.the interaction between

the electron and the phonon reservoirs).

Based on the Fröhlich’s polaron, it turns out that the strength of the in-

teraction between the electron and the phonons determines the validity of the

approximation methods. For example, for the weak coupling case, Fröhlich’s

himself employed the perturbation theory to estimate the ground state energy of

the complex[9].

For the strong-coupling polaron, the perturbation theory is regarded not a

reliable method to calculate the energy values of the polaron[10],[11]. In such a

strong interaction situation, the adiabatic approximation is generally used; that

is, it is assumed that there is no correlation between the instantaneous position of

the electron and the induced polarization field[5]. With this approach, the energy

of the polaron is calculated by the variational principle[2],[12],[10]. Without using

the adiabatic approach, based on the variational principle, it is possible to find

some other methods in the literature which is applied to the strong-coupling
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regime[11].

In this thesis, we calculate the ground state energies of the Fröhlich polaron for

all coupling regimes(i.e. weak, intermediate and strong couplings) for three cases:

two and three dimensional polarons(2D and 3D polarons) and a polaron with one

dimensional confinement (2-3 D polaron). Throughout our work, we use the

variational principle to estimate the (ground state) energy values of the polarons

and we employ the polaron trial wave function |ψ〉 introduced by Devreese et al.

[1] having the form:

|ψ〉 = c |0〉 |φn〉+
∑
k

g∗kV
∗
k (e−ik·r − ρ∗k)a+

k |0〉 |φn〉 .

To calculate the energy values of the nD polaron (n = 2, 3) and 2-3 D polaron,

we adapt the generalized polaron Hamiltonian which was introduced by Peeters

and Smondyrev [13] to our problem.

For this purpose, the rest of the thesis is organized as the following: In the

next section, we derive the Fröhlich Hamiltonian and generalize this Hamiltonian

according to the reference [13]. In the second chapter, we introduce two approxi-

mation methods, namely, the perturbation theory and the variational approxima-

tion. Using these techniques, we verify the validity of such a generalization. In

Chapter three, based on the wave function given above, we present our analytical

calculations and give the numerical results. Moreover, we compare these results

with the outcomes obtained from the strong and weak coupling theories. In the

last chapter, we give a brief summary and conclusions of our work.
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1.1 The Fröhlich Polaron Hamiltonian

In this section, we derive an expression for the Hamiltonian of a Fröhlich polaron

in which a single electron exists; it interacts with (longitudinal) optical bulk

phonon modes and is confined by an external potential. In other words, we

introduce three different Hamiltonians,namely Hamiltonians of the electron, the

phonons and the interaction between the electron and the phonon modes where

the last one is the so-called Fröhlich Hamiltonian, and their sum is equivalent to

the polaron’s Hamiltonian. Even though there are three major Hamiltonians, our

main focus will be on the interaction Hamiltonian. For a more detailed derivation

of Fröhlich Hamiltonian one can see the article [9] and the book [14].

1.1.1 Preliminaries

When a linear atomic chain consisting of N point particles with mass M is

treated quantum mechanically, the Hamiltonian resulting from the vibrations

of the atoms is expressed as:

H =
∑
k

~wka+
k ak +

1

2

∑
k

~wk, (1.1)

where a+
k and ak and ωk are the creation and annihilation operators and the

oscillation frequency of the particle with the wave number k, respectively. Note

that the second term in the equation above stands for the energy of the zero point

vibrations and with the appropriate choice of the zero energy, this term might be

omitted. Thus, the Schöredinger equation for such a system becomes:

(
∑
k

~wka+
k ak)Φ = EΦ (1.2)

where Φ is the phonon wave function and E is the corresponding eigenvalue.

Furthermore, these operators satisfy the following commutation relations:

[ak, a
+
k′ ] = δk,k′ , (1.3)

[ak, ak′ ] = 0, (1.4)

4



and

[a+
k , a

+
k′ ] = 0. (1.5)

Moreover, the displacement operator ql for the lth atom is given in terms of the

raising and lowering operators as:

ql =
∑
k

√
~

2MNωk
(a+
−k + ak)e

ikla, (1.6)

where a is the distance between two successive atoms.

Note that taking into consideration (1.2) and (1.6), it may be interpreted that in

the stationary state the lattice waves with the wave number k are occupied by

nk quasi-particles, which are termed as phonons.

1.1.2 The Hamiltonian of the Polaron

In this subsection, we shall give an expression for the Hamiltonian of the specific

case of the Fröhlich polaron, where a single electron is in a polar crystal and it

interacts with vibrating dipoles. Before starting our derivation, we make some

assumptions which simplify our system: The electron’s Bloch function has a

small k-vector; thus its wavelength is large compared with the lattice constant.

Furthermore, the lattice vibrations are important only for the interaction with

the electron. Then, with these assumptions, we can ignore the detailed lattice

structure and consider our the lattice as a dielectric continuum. Besides, we take

into consideration the effective mass approximation. Moreover, the frequency ωk

of the phonon modes is independent of k, i.e. ωk = ω, which is approximately

the case for optical lattice vibrations.

Then the total Hamiltonian of the polaron is

H = He +Hp +He−p, (1.7)

where He, Hp represent the Hamiltonians of the electron and phonons, respec-

tively; and He−p stands for the electron − phonon interaction Hamiltonian that

is called Fröhlich Hamiltonian.
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The Hamiltonian of the electron is written as

He =
p2

2m∗
+ Vconf (r), (1.8)

where p and r are the momentum and position operators of the electron, m∗

is the effective mass of the electron and Vconf represents the external potential

within which electron is confined. Later, we will see that this term will be used

in our work as either zero or an infinite potential barrier.

Next, we handle the Hamiltonian of the phonons. At this point, we introduce the

Hamiltonian of phonons in continuum by the analogy with equation (1.1) as [14]:

Hp =
∑
k

~wa+
k ak (1.9)

The creation and annihilation operators in (1.9) satisfy the following commutation

relations: [
ak, a

+
k′

]
= δk,k′ , (1.10)

[ak, ak′ ] =
[
a+
k , a

+
k′

]
= 0. (1.11)

Furthermore, the number operator is given as:

nk = a+
k ak. (1.12)

Note that when the number operator in (1.12) is applied the phonon wave function

Φ, the resulting eigenvalue is the number of phonons with the wave vector k.

Moreover, the position operator q(r) is expressed by the analogy with (1.6) in

terms of the raising and lowering operators in the following form:

q(r) =
∑
k

1√
V

√
~

2ρω
(eik·rak + e−ik·ra+

k ) (1.13)

where V is the volume of the lattice and ρ is the mass density.

Finally, we focus on the interaction Hamiltonian He−p. The total energy of an

individual dipole resulting from the existence of the electron is given as:

ml

2
(q̇l

2 + ω2ql
2), (1.14)
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where m is the vibrating mass of the dipole ω is the characteristic frequency and

ql is the displacement vector. Here, we consider that the dipoles are located at

the sites of the crystal and the dipoles are not coupled. To move on from this

discrete case to the continuum, we replace dipole moments by dipole densities as:

e∗ql −→ P(r) (1.15)

where e∗ is the effective charge of the dipole moment and P(r) is the polarization

of the medium. Moreover, one can express the mass ml in terms of the mass

density ρ:

ml = ρ(r)d3r (1.16)

If we introduce the equation
ml

e∗2
= γd3r (1.17)

then we can express the kinetic energy K and potential energy U of a vibrating

lattice as:

K =

∫
γ

2
Ṗ2(r)d3r (1.18)

and

U =

∫
γω2

2
P2(r)d3r, (1.19)

where γ is a constant and ω is the frequency of the optical lattice vibrations as

it is mentioned in the assumptions. Note that so far we have not described the

vibration of the dipole densities as longitudinal. However, it will shortly turn out

that the vibration is necessarily longitudinal.

It is a known fact, in classical electrodynamics, that the interaction energy

between an electric charge e located at r and dipole density P(r′) at r′ is:

εint = e
r− r′

|r− r′|3
P(r′)d3r′. (1.20)

Therefore, total interaction energy Eint of the polarization field P and the charge

e is obtained by integrating (1.20) over all volume as:

Eint =

∫
e

r− r′

|r− r′|3
P(r′)d3r′. (1.21)

The Lagrangian for such a system is given as

L = K − U − Eint (1.22)
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and Lagrangian equations are:

d

dt

δL

δṖi
− δL

δPi
= 0 (1.23)

where i = x, y, z.

Using the relations δq(x)
δq(x′)

= δ(x− x′) and δq̇(x)
δq̇(x′)

= δ(x− x′), one can solve (1.23)

and obtain the equation of motion as:

γ(P̈(r′) + ω2P(r′)) = −e r− r′

|r− r′|3
. (1.24)

Notice that the right-hand side in (1.24) is nothing but the dielectric displacement

D(r′) that results from the electric charge e. When we consider the static case,

equation (1.24) becomes

γω2P(r′) = D(r′). (1.25)

Here, we employ the connection between the field strength and the electric dis-

placement:

D = E + 4πPtot = ε0E, (1.26)

where ε0 is the static dielectric constant.

Thus,

4πPtot =
(

1− 1

εo

)
D. (1.27)

Note that Ptot is expressed as Ptot = Pe + P where Pe is the polarization of

the electrons in the ionic shells and P is the polarization of the ionic displace-

ment. However, our main interest is on the polarization coming from the ionic

displacement; so we need to express Pe in terms of the known variables. To do

this, we expose the system to a quick appearance of an external field. Since only

the electrons (not ions) can respond to such a sudden switch-on of the field, we

have the relation:

4πPe =
(

1− 1

ε∞

)
D (1.28)

where ε∞ is the high frequency dielectric constant. Therefore, by using (1.27)

and (1.28), we obtain the polarization due to the ionic displacement

4πP =
( 1

ε∞
− 1

ε0

)
D. (1.29)
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Hence, to find the value of the constant γ, it is sufficient to solve equations (1.25)

and (1.29) together:

γ =
4π

ω2

( 1

ε∞
− 1

ε0

)−1

. (1.30)

Now, we are tempted Eint in the operator format to lead to He−p. Before this,

we may express Eint in more convenient form if we make the following observation:

r−r′
|r−r′|3P(r′) = −∇r

(
1

|r−r′|

)
·P(r′)

= ∇r′ ·
(

P(r′)
|r−r′|

)
−
(

1
|r−r′|

)
∇r′ ·P(r′).

(1.31)

Therefore, equation (1.21) becomes:

Eint = −
∫
d3r′

e

|r− r′|
∇r′ ·P(r′) (1.32)

Note that when the plane wave expansion of P is performed equation (1.32) allows

only the longitudinal vibrations to contribute to the interaction energy. So, it

can be assumed at the very beginning that the lattice vibrations are longitudinal.

Using equations (1.13),(1.16) and (1.17), we can express the polarization P in

terms of the creation and annihilation operators as:

P(r′) =
1√
V

∑
k

√
~

2γω

k

k
eik·r

′
(ak − a+

−k). (1.33)

If we substitute (1.33) into (1.32), we have the electron-phonon interaction Hamil-

tonian He−p:

He−ph =
∑
k

(Vkake
ik·r + V ∗k a

+
k e
−ik·r) (1.34)

where the factor Vk is given as

Vk = −4πi
( e2~

2γωV

)(1/2) 1

k
, (1.35)

and the magnitude of Vk with the explicit expression of γ is

|Vk| =
1√
V

e

k

√
2π~ω

( 1

ε∞
− 1

ε0

)
. (1.36)

At this point, we introduce the unit of length as u =
√

~
2m∗ω

and making those

scaling transformations:
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r −→ ru, V −→ V u3 and k −→ k/u. Keeping these transformations in mind, we

introduce a constant α, namely, dimensionless electron-phonon coupling constant

as:

α =
1

2

( 1

ε∞
− 1

ε0

) e2

~ωu
. (1.37)

Thus, equation (1.36) has the form:

|Vk| = ~ω
√

4πα

V

1

k
. (1.38)

One remark is that some authors prefer to use u′ =
√

~
m∗ω

for the unit of length.

So if this unit is used and α is expressed as in equation (1.37), there occurs a

relation between Vk,u and Vk,u′ (i.e. the term Vk,u represents the expression of Vk

where the unit of length is chosen as u; similarly, Vk,u′ stands for the expression

of Vk where the unit of length is chosen as u′ ) as

|Vk,u| = 21/4|Vk,u′ |. (1.39)

Note that, in this paper, we always use u for the unit of length.

So, the Hamiltonian of the polaron is given as:

H =
p2

2m∗
+ Vconf (r) +

∑
k

~wa+
k ak +

∑
k

(Vkake
ik·r + V ∗k a

+
k e
−ik·r). (1.40)

So far, we considered the three dimensional(3D) polaron and equation (1.40) rep-

resents the Hamiltonian for the 3D polaron. However, Peeters and Smondyrev

[13] propose a general Hamiltonian for the nD polaron (i.e. by the nD polaron

we mean electron is allowed to move in n dimensions where n=1,2,3 and interacts

with n dimensional lattice). They do such a generalization by generalizing the in-

teraction amplitude Vk and the dimensionless electron-phonon coupling constant

α as the following:

|Vk|2 = (~ω)2Γ
[n

2

]
2nπ

n
2
−1 α′

V kn−1
(1.41)

where the generalized coupling constant α′ is

α′ = α
√
π

Γ[n−1
2

]

2Γ[n
2
]
. (1.42)

So, for example, if one wishes to study the polaron in two dimensions, one has

to insert n=2 into equation (1.41); and the result turns out in terms of the

10



generalized coupling constant α′. Furthermore, to express the outcome in terms

of standard coupling constant α, one has to use the transformation given in (1.42)

by choosing n=2.

The explicit expression for |Vk|2 is:

|Vk|2 =


4πα′

V
1
k2 if n = 3.

4α′

A
1
k

if n = 2.

2α′

L
if n = 1.

(1.43)

One important property of equation (1.43) is that for an arbitrary function f ,

the sum
∑

k |Vk|
2f transforms to the same integral for all n; that is:∑

k

|Vk|2f =
2α′

π

∫ ∞
0

fdk , n=1,2,3. (1.44)

Furthermore, we need to underline the fact that equation (1.42) is divergent at

n=1. The reason for such a divergence is the Coulomb nature of the problem[13].

Accordingly, with this formalism of the Hamiltonian, we may calculate the po-

laron’s energy in 1D in terms of the generalized coupling-constant α′; however,

we are not allowed to express the result in terms of the standard electron-phonon

coupling constant α.

According to equation (1.42), the explicit form of the relation between α′ and

α is:

α′ =


α if n = 3,

π
2
α if n = 2,

not applicable if n = 1.

(1.45)

One remark about equation (1.41) is that the authors in their paper use u′

for the unit of length[15]. So, we transformed their expression by using equation

(1.39).
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In the next chapter, we will consider the approximation methods for the po-

laron problem. Specifically, our focus will be on the perturbation theory and the

variational principle. Note that in all calculations we shall use the generalized

form of the Hamiltonian of the polaron.
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Chapter 2

Approximation Methods

In this chapter, we shall take into consideration mainly two approximation meth-

ods: (1)Perturbation theory and (2) Variational approach. The first one among

these methods is appropriate for the weak-coupling regimes(i.e. α << 1) and

in this method, the electron-phonon interaction is considered as the perturbed

Hamiltonian.

The second method is, on the contrary, available to use in strong-coupling limit

(i.e. α >> 1) and this method basically contains three steps: first finding a trial

wave function with one (or more ) variational parameters, second calculating the

expectation value of the intended observable with respect to this wave function,

third calculating the minimum value of this expectation value which is a function

of the variational parameter(s). Therefore, this minimum value gives an upper

bound for the observable.

The main purpose in this chapter is to verify that the generalized Fröhlich

Hamiltonian introduced in the previous chapter is valid. To do this we shall

calculate the ground state energy values of the polaron in asymptotic limits and

show that these results are compatible with the values given in the literature.

In the rest of this chapter our strategy is to focus on the weak-coupling case by

the perturbation theory; next we will handle the strong-coupling polaron with the

13



Material α

KCl 5.6
NaCl 5.5
AgBr 1.56
CdTe 0.40
InP 0.11

GaAs 0.07
InAs 0.05

Table 2.1: Coupling constants of some (bulk) materials

variational principle. To simplify the expressions, we shall consider the polaron

dimensionless by letting 2m∗ = ~ = ω = 1.

14



2.1 Perturbation Theory

The polaron’s Hamiltonian can be expressed as (see equation (1.7))

H = H0 +H1, (2.1)

where H0 = He +Hp and H1 = He−p.

Then the time independent Schörenidger equation for the polaron is expressed

as:

H |ψn〉 = En |ψn〉 , (2.2)

where ψn is the wave function of the polaron in nth state and En is the corre-

sponding energy value of the polaron.

If the coupling constant α is sufficiently small, one can consider the term H0 as

the unperturbed Hamiltonian and H1 as the perturbed Hamiltonian. Then the

unperturbed Hamiltonian H0 satisfies the following relation:

H0
∣∣ψ(0)

n

〉
= E(0)

n

∣∣ψ(0)
n

〉
. (2.3)

If we expand the variables |ψn〉 and En as a perturbation series, we have

|ψn〉 =
∣∣ψ(0)

n

〉
+
∣∣ψ(1)

n

〉
+
∣∣ψ(2)

n

〉
+ ... (2.4)

and

En = E(0)
n + E(1)

n + E(2)
n + ... (2.5)

where
∣∣∣ψ(1)

n

〉
, E

(1)
n are first-order corrections to the nth eigenfunction and eigen-

value,
∣∣∣ψ(2)

n

〉
, E

(2)
n are second-order corrections to the nth eigenfunction and eigen-

value, respectively, and so on.

Now, we can start to calculate the corrections (up to 2nd order) to ground state

energy eigenvalue for the nD polaron where n=1,2,3.

2.1.1 3D Polaron

For 3D polaron, the unperturbed Hamiltonian H0 is given as

H0 =
p2

2m∗
+Hp. (2.6)
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Note that by definition of 3D polaron(actually nD polaron) Vconf = 0. However,

we can use the following trick:

H0 =
p2

2m∗
+

1

2
m∗Ω2r2 +Hp (2.7)

where r2 = (x2 + y2 + z2) and Ω −→ 0. Notice that we have just added an

harmonic oscillatory potential to equation (2.6) as a confining for the electron.

The underlying reason to use a harmonic potential is to be able to apply the well-

known operator formalism (for the electron) to our problem. Then, for such a

Hamiltonian given in (2.7), the wave function |ψ0
n〉 in the nth state is given as:∣∣ψ0

n

〉
= |nx, ny, nz > |~̀ > (2.8)

where |nx, ny, nz > is the wave function of the electron and |~̀ > is the phonon

wave function. Accordingly, the ground state wave function |ψ0
0〉 of the polaron

is: ∣∣ψ0
0

〉
= |0, 0, 0 > |~0 > . (2.9)

Therefore, clearly, first-order correction to the ground state eigenvalue E
(1)
0 is:

E
(1)
0 =

〈
ψ0

0

∣∣H(1)
∣∣ψ0

0

〉
= 0. (2.10)

So, the contribution coming from the first order correction for the ground state

energy is zero. However, we shall see that this situation is not valid for the second

order correction E
(2)
0 which is given as:

E
(2)
0 =

∑
m

∣∣〈ψ0
0|H(1) |ψ0

m〉
∣∣2

E
(0)
0 − E

(0)
m

. (2.11)

In more explicit form:

E
(2)
0 =

∑
nx,ny ,nz ,~̀

∣∣∣< ~̀| < nx, ny, nz|H(1)|0, 0, 0 > |~0 >
∣∣∣2

E
(0)

0,0,0,~0
− E(0)

nx,ny ,nz ,~̀

. (2.12)

Note that

H(1)|0, 0, 0 > |~0 >= He−p|0, 0, 0 > |~0 >=
∑
k

(V ∗k a
+
k e
−ik·r)|0, 0, 0 > |~0 > . (2.13)
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At that point we choose the vector k in the x̂ direction, i.e. k = kx̂. Therefore,

the product k · r becomes k · r = kx. Thus, (2.12) becomes

E
(2)
0 =

∑
nx,~̀

∣∣∣< ~̀| < nx|
∑

k(V ∗k a
+
k e
−ikx)|0 > |~0 >

∣∣∣2
E

(0)

0,0,0,~0
− E(0)

nx,0,0,~̀

. (2.14)

We may reexpress |~̀ > as |~̀ >= |v > |mk >. Then, |~0 >= |0 > |0k >.

Accordingly,∑
k

(V ∗k a
+
k e
−ikx)|0 > |~0 >=

∑
k

(V ∗k e
−ikx)|0 > |1k > |0 > . (2.15)

Hence, equation (2.14) has the following form:

E
(2)
0 =

∑
nx,k

|Vk|2
∣∣< nx|e−ikx|0 >

∣∣2
E

(0)

0,0,0,~0
− E(0)

nx,0,0,0,1k

. (2.16)

Note that E
(0)
n,0,0,0,1k

(i.e. we have just changed the notation as nx −→ n) satisfies

the following relation:

H(0)|n, 0, 0 > |0 > |1k >= E
(0)
n,0,0,0,1k

|n, 0, 0 > |0 > |1k > . (2.17)

Since

H(0)|n, 0, 0 > |0 > |1k >=
[
(n+ 3/2)~Ω + ~ω

]
|n, 0, 0 > |0 > |1k >,

it follows that

E
(0)
n,0,0,0,1k

= (n+ 3/2)~Ω + ~ω. (2.18)

Similarly,

E
(0)

n,0,0,~0
=

3

2
~Ω. (2.19)

Now, we shall handle the numerator in (2.16). To do this, we use the formalism

for the harmonic oscillatory potential. Then we can express x in terms of the

creation and annihilation operators b and b+ as:

x =

√
~

2m∗Ω
(b+ + b) (2.20)

17



If we let ~ = 2m∗ = 1 the expression e−ikx becomes

e−ikx = eβ(b++b) = eβ
2/2eβb

+

eβb (2.21)

where β = −ik 1√
Ω

and we use the identity

eA+B = eAeBe
1
2

[B,A]. (2.22)

Notice that

e−ikx|0 > = eβ
2/2eβb

+ |0 >

= eβ
2/2(1 + βb+ +

(βb+)2

2!
+ ...)|0 >

= eβ
2/2(1 + β|1 > +

β2
√

2

2
|2 > +...+

βn
√
n

n!
|n > +...).

(2.23)

Therefore, ∣∣< n|e−ikx|0 >
∣∣2 =

eβ
2

n!
|βn|2 =

e−k
2/Ω

n!

(k2

Ω

)n
. (2.24)

Hence, equation (2.16) (with the dimensionless units i.e. ~ = 2m∗ = ω = 1)

becomes

E
(2)
0 = −

∑
k

|Vk|2e−k
2/Ω
∑
n

1

n!

(k2/Ω)n

1 + Ωn
. (2.25)

If we employ the following identity∑
n

1

n!

βn

(a+ bn)m+1
=

1

m!

∫ ∞
0

xme−ax+βe−bx

dx, (2.26)

we have

E
(2)
0 = −

∑
k

|Vk|2
∫ ∞

0

e−xe−k
2
(

1−exp(−Ωx)
Ω

)
dx. (2.27)

Considering free electron case i.e. Vconf = 0 or Ω −→ 0, we have:

−
∑
k

|Vk|2
∫ ∞

0

e−x(1+k2)dx = −
∑
k

|Vk|2
1

1 + k2
. (2.28)

Finally, we apply the result we have observed in equation (1.44) to get the second

order correction to the ground state energy E
(2)
0 :

E
(2)
0 = −

∑
k

|Vk|2
1

1 + k2
= −2α′

π

∫ ∞
0

dk

1 + k2
= −α′. (2.29)

18



To express this result in terms of standard dimensionless coupling constant α, we

use the transformation given in equation (1.42). Hence, we conclude that

E
(2)
0 = −α. (2.30)

Note that this result exactly matches with the results in reference [10] and [6].

So, we draw the conclusion that the generalized Hamiltonian is valid for n=3.

2.1.2 2D Polaron

Similar to the 3D case, we consider the electron-phonon interaction Hamilto-

nian He−p as the perturbed Hamiltonian H(1). Furthermore, we consider the

unperturbed Hamiltonian H0 as the sum of He and Hp. One difference from the

preceding case is the form of external potential Vconf . In 2D case, we introduce

this potential as:

Vconf =
1

4
Ω2(x2 + y2). (2.31)

Recalling that electronic wave function is defined in two dimensional space, the

(unperturbed) polaron’s wave function in nth state is given as:∣∣ψ0
n

〉
= |nx, ny > |~̀ > . (2.32)

The first-order correction given as (2.10) to the ground state energy in 2D case

again vanishes;i.e.

E
(1)
0 = 0. (2.33)

If we choose the direction of the k vector as in the x direction i.e. k = kx̂ and

follow the procedures within (2.12)-(2.16), we obtain the second-order correction

to the ground state eigenvalue as:

E
(2)
0 =

∑
n,k

|Vk|2
∣∣< n|e−ikx|0 >

∣∣2
E

(0)

0,0,~0
− E(0)

n,0,0,1k

. (2.34)

Note that when we perform the similar operations in equations (2.17)-(2.19) the

energies in the denominator of equation (2.34) turn out as:

E
(0)

0,0,~0
= Ω (2.35)
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and

E
(0)
n,0,0,1k

= (n+ 1)Ω + 1. (2.36)

Notice that the value of the denominator does not change;that is, we can fol-

low exactly the same steps between (2.20)-(2.29) to calculate the second-order

correction in 2D. Hence, we have

E
(2)
0 = −

∑
k

|Vk|2
1

1 + k2
= −2α′

π

∫ ∞
0

dk

1 + k2
= −α′. (2.37)

Note that in (2.37) we have used our observation given in the previous section in

equation (1.44).

So, in 2D polaron case, we obtain exactly the same energy value with the one

calculated in 3D case. Using the relation (1.42) we can express our result in terms

of standard coupling constant α:

E
(2)
0 = −π

2
α. (2.38)

This result is also (as the previous one) identical with the values given in our

references [10],[6],[16] and [17]. So, we conclude that the generalized Hamiltonian

given in (1.40) together with the expressions (1.41) and (1.42) is valid for n=2

case.

2.1.3 1D Polaron

Just as the previous 2 cases, we introduce the variables as the following: The

perturbed Hamiltonian is

H1 = He−p.

The unperturbed Hamiltonian is:

H0 = He +Hp.

At that point we define our external potential as a parabolic potential in one

dimension:

Vconf =
1

4
Ω2x2.
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Then, the polaron’s wave function (associated with unperturbed Hamiltonian) in

nth state is given as: ∣∣ψ0
n

〉
= |nx > |~̀ > .

Accordingly, the first-order correction to the ground state energy is zero,i.e.

E
(1)
0 = 0.

Again, if we choose k = kx̂, and follow the steps within (2.11)-(2.16),we have

E
(2)
0 =

∑
n,k

|Vk|2
∣∣< n|e−ikx|0 >

∣∣2
E

(0)

0,~0
− E(0)

n,0,1k

. (2.39)

Since

E
(0)

0,~0
=

1

2
Ω,

and

E
(0)
n,0,1k

= (n+
1

2
)Ω.

Notice that the denominator in (2.39) does not change; hence, performing the

procedures (2.17-2.29), we calculate the second-order correction to the ground

state eigenvalue (with the fact given in (1.44)) as:

E
(2)
0 = −

∑
k

|Vk|2
1

1 + k2
= −2α′

π

∫ ∞
0

dk

1 + k2
= −α′. (2.40)

As mentioned in Chapter 1, even though we are not allowed to express the result in

terms of α, we obtain an energy value for 1D polaron. One important observation,

as a result of such a generalization, is that we obtain exactly the same energy in

all three cases: −α′.
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2.2 Strong Coupling Theory

In this section, we consider the situation where the electron-phonon interaction

is sufficiently strong. Then, the force due to present of the electron can no longer

be omitted from the equation of the lattice vibration. Because of this reason, we

perform the displaced oscillatory transformation.

2.2.1 Displaced Oscillator Transformation

The transformed Hamiltonian H ′ is given as the following canonical

transformation[18]:

H ′ = e−SHeS (2.41)

where S =
∑

k uk(ak − a
+
k ) and the Hamiltonian H is given in (1.40). Note that

uk is the lattice variational (real) parameter . Furthermore for convenience we

consider the Hamiltonian He−p as

He−p =
∑
k

|Vk|(akeik·r + a+
k e
−ik·r). (2.42)

Note that if He−p is taken as in equation (1.34), one has to consider S =∑
k(a

+
k uk − aku∗k) where uk is no longer a real parameter[11]. To calculate the

transformed Hamiltonian H ′, we employ the following identity:

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + ... . (2.43)

Thus, equation (2.41) becomes:

H ′ = H + [H,S] +
1

2!
[[H,S], S] + ... . (2.44)

After certain series of computations, it turns out that only first three terms survive

in the equation above; hence, the transformed Hamiltonian H ′ has its final form:

H ′ = H −
∑
k

uk(ak + a+
k )−

∑
k

|Vk|uk(eik·r + e−ik·r) +
∑
k

u2
k. (2.45)
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2.2.2 Variational Principle

In this subsection, we apply the variational procedure to the Hamiltonian H ′

given in (2.45). We assume that the ground state polaron trial wave function |ψ〉
is separable i.e.

|ψ〉 = |φ〉
∣∣∣~0〉 (2.46)

where |φ〉 and
∣∣∣~0〉 are the electron and phonon wave functions respectively. Fur-

thermore, we assume that the electronic (trial) wave function |φ〉 is of Gaussian

type. Then, the expectation value of H ′ with respect to the trial wave function

given in (2.46) is:

〈ψ|H ′ |ψ〉 = 〈φ|He |φ〉 −
∑
k

|Vk|uk(ρk + ρ∗k) +
∑
k

u2
k (2.47)

where ρk = 〈φ| eik·r |φ〉.
Now, we start to calculate the energy values of the nD polaron by the variational

approach.

2.2.2.1 3D Polaron

For the three dimensional case, we consider Vconf=0 and k = kx̂.

Moreover, we choose our trial wave function as

|φ〉 = Ae−ar
2

= Axe
−ax2

Aye
−ay2

Aze
−az2

(2.48)

where a is the variational parameter, A = AxAyAz is the normalization constant

with

A2
x = A2

y = A2
z =

√
2a

π
. (2.49)

Thus,

ρk = ρ∗k = e−
k2

8a . (2.50)

First, we minimize equation (2.47) with respect the variable uk; that is

∂ 〈ψ|H ′ |ψ〉
∂uk

= 0. (2.51)
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If one performs the operation in (2.51), it turns out that

uk = |Vk|ρk. (2.52)

Therefore, equation (2.47) becomes:

〈ψ|H ′ |ψ〉 = 〈φ|He |φ〉 −
∑
k

|Vk|2ρ2
k. (2.53)

The first term above the equation is simply 〈φ|He |φ〉=−〈φ| ∇2 |φ〉 and one may

calculate it as:

〈φ|He |φ〉 = 3a. (2.54)

Using the fact given in equation (1.44), the second term is obtained as

∑
k

|Vk|2ρ2
k = 2α′

√
a

π
. (2.55)

Therefore, minimizing equation(2.53) with respect to variational paramater a, we

obtain the ground state energy of the polaron E3D in terms of the generalized

coupling constant α′ as:

E3D = −α
′2

3π
. (2.56)

By using the relation between the standard and generalized coupling constant(see

equation 1.45), we may express this result in terms of α:

E = −α
2

3π
. (2.57)

Note that this result given in (2.57) is exactly the value found by Das Sarma and

Mason [10].

2.2.2.2 2D Polaron

Similar to the previous case we determine Vconf = 0 and k = kx̂.Furthermore,

we choose the trial wave function for electronic part as two dimensional Gaussian

function:

|φ〉 = Axe
−ax2

Aye
−ay2

. (2.58)
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where

A2
x = A2

y =

√
2a

π
. (2.59)

Furthermore,the value of the expression 〈φ| eik·r |φ〉 does not change, i.e.

ρk = ρ∗k = e−
k2

8a . (2.60)

If we follow the same steps (2.51) and (2.52), we obtain equation (2.53). Since ρk

is the same with the one calculated in 3D, by the property (1.44) the value of the

second term is given as (2.55). However, we cannot propose the same reasoning

for the first term since the wave function has changed. When the first term is

calculated, its explicit expression turns out as:

〈φ|He |φ〉 = 2a. (2.61)

If equation (2.53) is minimized with respect to the variational parameter a, (an

upper bound for )the ground state energy of 2D polaron E2D is given as:

E2D = −α
′2

2π
. (2.62)

Using the relation given in (1.45), one can express the energy in terms of the

standard electron-phonon coupling constant α as:

E = −π
8
α2. (2.63)

Note that this result is also what the strong-coupling theory predicts in two

dimensional case [10], [17].

2.2.2.3 1D Polaron

As in the previous two cases, we choose Vconf = 0 and k = kx̂. Furthermore, we

assume that the trial wave function has the 1D Gaussian form, i.e.

|φ〉 = Axe
−ax2

(2.64)

where A2
x =

√
2a
π

. If we follow the same procedures in 3D case, we obtain

〈ψ|H ′ |ψ〉 = 〈φ|He |φ〉 −
∑
k

|Vk|2ρ2
k (2.65)
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where the second term on the right hand side of the equation above is given as

(2.53) and the first term is of the form:

〈φ|He |φ〉 = a. (2.66)

Thus, minimization operation on (2.65) with respect to the variational parameter

a leads to the following ground state energy value of 1D polaron in terms of the

generalized coupling constant:

E1D = −α
′2

π
(2.67)

Note that because of the definition of α′, we are not allowed to transform α′ into

α.

Another point we emphasize about overall energies is that these three energies

(i.e. E1D, E2D and E3D ) can be written in more general form in terms of α′ as:

EnD = −α
′2

nπ
. (2.68)

2.2.2.4 ”2-3” D Polaron

In this subsection, we consider a polaron whose dimension is continuously varied

to two dimensions from three dimensions where the electron interacts with the

bulk phonon modes of the polar lattice, and we calculate the ground state energy

of such a polaron. To do this, we consider the following confinement potential for

the electron:

Vconf =

∞, |z| ≥ L
2

0, otherwise.

Furthermore, we use following ground state trial wave function |φ〉 for the elec-

tron:

|φ〉 = Axe
−ax2

Aye
−ay2

Aze
−az2

cos(
π

L
z), (2.70)

where

A2
x = A2

y =

√
2a

π
(2.71)
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and

A2
z =

(∫ L/2

−L/2
cos2(

π

L
z)e−2az2

dz

)−1

. (2.72)

As usual, we determine k = kx̂. Thus,

ρk = ρ∗k = e−
k2

8a . (2.73)

Applying equation (2.51) we have

〈ψ|H ′ |ψ〉 = 〈φ|He |φ〉 −
∑
k

|Vk|2ρ2
k. (2.74)

Now, we calculate the second term in the right hand side of equation (2.74). At

this point we assume that for all values of L the electron-phonon interaction is

described either by the electron-phonon interaction of (strict) 3D polaron or the

interaction of (strict) 2D polaron. Then, the second term on the RHS of equation

(2.74) becomes ∑
k

|Vk|2ρ2
k = 2α′

√
a

π
. (2.75)

Notice that when L is sufficiently large, α′ transforms α according to equation

(1.45). Similarly, when L is sufficiently small α′ maps to π
2
α. For the case that L

is neither sufficiently large nor small, α′ transforms to either α or π
2
α. However,

since we do not have a rule that determines to which value α′ transfroms in that

interval of L (i.e. the intermediate values of L), we express our results in terms

of α′.

On the other hand, the first terms in equation (2.74) might be written as:

〈φ|He |φ〉 = 2a+ (2a+
π2

L2
)− 4πa

L
〈φ| z tan

πz

L
|φ〉 − 4a2 〈φ| z2 |φ〉 . (2.76)

Therefore, by minimizing equation (2.74) with respect to the variational parame-

ter a, one can obtain the ground state energy of the free polaron(i.e. the subband

energy π2/L2 coming from the potential barrier must be subtracted from (2.76))

for an arbitrary squeezing length L (i.e. the distance between potential barriers).

In our work, we handle this minimization process via numerical methods.

Our first observation from Fig. 2.1 that while the coupling constant α′ increases

the polaron’s energy decreases, as expected, since simply the weaker coupling be-

tween the electron and phonons leads to the lower binding energy. Secondly, we
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Figure 2.1: E vs L for various α′.

notice that while the squeezing length L increases, the polaron’s energy converges

to the energy of 3D polaron (i.e. −α′2/(3π)). This result is also expected because

greater values of L implies the free electron case in all space dimensions. Fur-

thermore, for the case L −→ 0 we observe that the polaron’s energy converges to

the energy of 2D polaron (i.e. −α′2/(2π)).

Moreover, from Fig. 2.2 we see that for the values of L which are greater than

a certain value of L, say critical length Lc, the (”2-3” D) polaron behaves like

(strict) 3D polaron in terms of energy. Similarly, for those values of L which

are less than a critical length Lc, the (”2-3” D) polaron might be considered as

(strict) 2D polaron.
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Figure 2.2: Energy change of the polaron for different L.
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To be more precise, suppose the energy Eneg is the energy we may neglect in

our system. Then, the critical length Lc is defined as:

If 0 < L < Lc , then |E2−3D − E2D| < Eneg. (2.77)

Notice that the expression in (2.77) indicates that when L is less than the critical

length Lc, the (”2-3” D) polaron acts like 2D polaron. Similar expression can be

written for 3D case just by replacing E2D with E3D and the interval of L; that is,

|E2−3D − E3D| < Eneg whenever Lc < L <∞. (2.78)

Note that, similar to the previous case, equation (2.78) means that the polaron

restricted by the plates where the distance between them is L behaves like (strict)

3D polaron when L is greater than a critical distance Lc.

Based on the definition of critical length Lc and considering Fig. 2.2, we

propose that the length Lc is correlated to the coupling constant α′. In fact,

this statement can be supported by regarding the specific case of the negligible

energy Eneg: If we assume that Eneg = 0.1(~ω), the critical lengths turn out as

in Fig. 2.3. We observe from Fig. 2.3. (a) that for increasing values of coupling

constant, we must consider the smaller values of Lc to be able to regard the (”2-

3”D) polaron as 2D polaron. On the other hand, from Fig. 2.3 (b) we see that

to consider the polaron as 3D polaron, we have to take greater values of Lc for

increasing values of α′.
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Next chapter, we shall give the ground state energy of the nD (n = 1, 2, 3) and

”2-3” D polaron for full range of couplings (i.e. 0 < α′ < 12) and compare the

results with the ones obtained by the weak-coupling and strong coupling theories.
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Chapter 3

Improved Strong Coupling

Theory

In this chapter, we calculate the ground state energy of of the Fröhlich Polaron

for all coupling constant values. Our work is based on the approach Devreese et

al. [1] introduced. Their work is basically to improve Strong Coupling Theory by

introducing a trial wave function which has been corrected by the perturbation

theory having the form

|ψ〉 = c |0〉 |φn〉+
∑
k

g∗kV
∗
k (e−ik·r − ρ∗k)a+

k |0〉 |φn〉 . (3.1)

In this thesis, we will not discuss how to obtain such a wave function. Instead,

we shall take into consideration the application of the trial wave function (3.1).

For more detail, one can check the relevant paper.
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3.1 Analytical Calculations

Considering the normalization condition of (3.1), if the expectation value of

the polaron’s Hamiltonian given in equation (1.40) with respect to the (ground

state)trial wave function in (3.1) is calculated, the result turns out[1]

E = 〈ψ|H |ψ〉 = 〈φ|Hu |φ〉+
X

2
(3.2)

where

Hu = p2 + Vconf +
∑
k

|Vk|2|ρk|2 −
∑
k

|Vk|2(ρ∗ke
ik·r + ρke

−ik·r) (3.3)

and X satisfies the following integral equation:

X

2
+

2α′

π

∫ ∞
0

(1− |ρk|2)2

D1(k) +D2(k)− (1− |ρk|2)X
2

dk = 0 (3.4)

with

D1 = 〈φ| (eik·r − ρk)Hu(e
−ik·r − ρ∗k) |φ〉 (3.5)

and

D2 = (1− |ρk|2)(1− 〈φ|Hu |φ〉). (3.6)

Note that we use the same definition for ρk which is given in strong coupling

theory; that is, ρk = 〈φ| eik·r |φ〉.

Notice that to obtain the ground state energy for the polaron, we have to

minimize equation (3.2) with respect to the variational parameter,say a, which is

embedded in the electronic wave function |φ〉. However, our standard way (i.e.

differentiating E with respect to the variational parameter, letting the resulting

expression be zero, finding the parameter; so the minimum value of E) to find

the minimum value of (3.2) is not readily available since X is a transcendental

function of the variational parameter a (i.e. X cannot be expressed in terms of

known functions of a) by equation (3.4). One candidate solution (and we use in

our work) for this problem is to solve the integral equation for certain value of a

numerically and to find the minimum value of E. Before doing this, we give the

explicit form of the other variables (i.e. 〈φ|Hu |φ〉, D1 and ρk ).
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3.1.1 3D Polaron

For the three dimensional polaron case, we consider Vconf = 0. Furthermore, we

choose the electronic trial (ground state) wave function in the form of Gaussian

i.e.

|φ〉 = Axe
−ax2

Aye
−ay2

Aze
−az2

(3.7)

where a is the variational paramater and the normalization constants are given

by equation (2.49). Furthermore we determine k = kx̂. Thus,

ρk = ρ∗k = e−
k2

8a . (3.8)

Now, we consider the term D1. Note that one can express D1 as

D1 = 〈φ| eik·rHue
−ik·r |φ〉 − ρk(〈φ| eik·rHu |φ〉+ 〈φ|Hue

−ik·r |φ〉) + ρ2
k 〈φ|Hu |φ〉 .

(3.9)

After certain amount of algebra one can show that

〈φ| eik·rHue
−ik·r |φ〉 = k2 + 〈φ|Hu |φ〉 . (3.10)

Furthermore, the term 〈φ|Hue
−ik·r |φ〉 can be written as

〈φ|Hue
−ik·r |φ〉 = 〈φ| (− ∂2

∂y2
− ∂2

∂z2
)e−ikx |φ〉+〈φ| (− ∂2

∂x2
)e−ikx |φ〉+〈φ| ξe−ikx |φ〉 .

(3.11)

where

ξ =
∑
k

|Vk|2ρ2
k − 2

∑
k

|Vk|2ρk cos kx. (3.12)

Using equation (2.61), the first term can be calculated as:

〈φ| (− ∂2

∂y2
− ∂2

∂z2
)e−ikx |φ〉 = ρk2a. (3.13)

Moreover, after some efforts one might show that the second term is

〈φ| (− ∂2

∂x2
)e−ikx |φ〉 = ρk(a+

k2

4
). (3.14)

Also, the last term in (3.11) can be expressed as:

〈φ| ξe−ikx |φ〉 = 2α′
√
a

π
ρk − 4α′

√
a

π
ρ

1/2
k . (3.15)
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Finally, carrying out more or less similar (in fact comparably easier) integrals in

(3.13)-(3.15), one can obtain

〈φ|Hu |φ〉 = 3a− 2α′
√
a

π
. (3.16)

Thus, the energy expression E in (3.2) which has to be minimized becomes

E = 3a− 2α′
√
a

π
+
X

2
(3.17)

where ρk is given by (3.8), X satisfies the integral equation (3.4), and the terms

D1 and D2 are given as:

D1 = k2 + (1 + ρ2
k)
(

3a− 2α′
√
a

π

)
− 2ρk

(
(3a+

k2

4
)ρk + 2α′

√
a

π
ρk − 4α′

√
a

π
ρ

1/2
k

)
(3.18)

and

D2 = (1− ρ2
k)
(

1− [3a− 2α′
√
a

π
]
)
. (3.19)

3.1.2 nD Polaron

In fact, if one uses the two and one dimensional Gaussian trial wave functions

(having the form of (2.58) and (2.64)) for the wave function of electron and carry

out the procedures within (3.8)-(3.16), the results given in (3.17)-(3.19) can be

generalized for the nD polaron (n = 1, 2, 3) as the following:

En = na− 2α′
√
a

π
+
X

2
(3.20)

where ρk is given by (3.8), X satisfies the integral equation (3.4), and the terms

D1 and D2 are given as:

D1 = k2 + (1 + ρ2
k)
(
na− 2α′

√
a

π

)
− 2ρk

(
(na+

k2

4
)ρk + 2α′

√
a

π
ρk − 4α′

√
a

π
ρ

1/2
k

)
(3.21)

and

D2 = (1− ρ2
k)
(

1− [na− 2α′
√
a

π
]
)
. (3.22)
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3.1.3 ”2-3” D Polaron

In this case, we consider exactly the same problem expressed in Strong-Coupling

Theory in the third chapter. So, we choose the external potential as:

Vconf =

∞, |z| ≥ L
2

0, otherwise.

Furthermore, we use following ground state trial wave function |φ〉 for the elec-

tron:

|φ〉 = Axe
−ax2

Aye
−ay2

Aze
−az2

cos(
π

L
z). (3.24)

Moreover, we consider k = kx̂. Then, the term D1 may be expressed as:

D1 = k2 + (1 + ρ2
k) 〈φ|Hu |φ〉 − ρk(〈φ| eikxHu |φ〉+ 〈φ|Hue

−ikx |φ〉). (3.25)

Note that

〈φ|Hue
−ikx |φ〉 = ρka+ 〈φ| − ∂2

∂z2
e−ikx |φ〉+ 〈φ| (− ∂2

∂x2
)e−ikx |φ〉+ 〈φ| ξe−ikx |φ〉

(3.26)

where ξ is defined by (3.12). The second term in (3.26) can be written by using

(2.76) as

〈φ|− ∂2

∂z2
e−ikx |φ〉 = ρk

(
(2a+

π2

L2
)− 4πa

L
〈φ| z tan

πz

L
|φ〉−4a2 〈φ| z2 |φ〉

)
. (3.27)

Notice that the third has already been calculated in equations (3.14). At that

point we assume (as we did in Strong-Coupling Theory) that for an arbitrary

squeezing length L the electron-phonon interaction can be considered as the same

with the interaction of (strict) 3D polaron or the interaction of (strict) 2D polaron.

With this assumption, then the fourth term in (3.26) is given by equation (3.15).

Finally, (using the same assumption made in the preceding paragraph) the

term 〈φ|Hu |φ〉 is calculated as

〈φ|Hu |φ〉 = 2a+(2a+
π2

L2
)− 4πa

L
〈φ| z tan

πz

L
|φ〉−4a2 〈φ| z2 |φ〉−2α′

√
a

π
. (3.28)
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Therefore, the ground state energy E which must be minimized with respect

to the variational parameter a has the final form:

E = 〈φ|Hu |φ〉+
X

2
(3.29)

where 〈φ|Hu |φ〉 is given by (3.28), X satisfies the integral equation (3.14) in

which the terms D1 and D2 are

D1 = k2 + (1 + ρ2
k) 〈φ|Hu |φ〉 − 2ρk 〈φ|Hue

−ikx |φ〉 (3.30)

and

D2 = (1− ρ2
k)(1− 〈φ|Hu |φ〉) (3.31)

where 〈φ|Hue
−ikx |φ〉 is given by equation (3.26).
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3.2 Numerical Results and Discussion

If we minimize equation (3.20) with respect to the variational parameter a for

n = 3, the results turn out as the following:

10-2 10-1 100 101 102
-102
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-100

-10-1

-10-2

E

Present(3D)

WCT(3D)

SCT(3D)

Figure 3.1: E vs α for the 3D polaron.

From Fig. 3.1 we observe that the present work(i.e. improved strong coupling

theory(ISCT)) provides better energy estimations compared to Strong Coupling

Theory(SCT) in strong coupling regime (i.e. α >> 1) for 3D polaron. Fur-

thermore, the present work calculates the energies in the intermediate-coupling

regime in which neither SCT nor Weak Coupling Theory(WCT) is valid. In the

weak-coupling regime (i.e. α << 1), we observe that the energy calculated by

the present work converges to the energy obtained by WCT for small coupling

constants. However, in such limit, the energy of WCT is smaller than the energy

the present work estimates. One possible explanation for this situation could be
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the fact that the Gaussian type trial wave function is not an appropriate wave

function for weak coupling regime.

If we perform the minimization procedure in equation (3.20) with n = 2, we

have the energies for all coupling regimes for the 2D polaron as seen in Fig. 3.2.
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Present(2D)

WCT(2D)

SCT(2D)

Figure 3.2: E vs α for the 2D polaron

From Fig. 3.2 we observe some facts similar to the 3D case. That is, in the

strong coupling regime, the present work gives us an upper bound for the ground

state energy of the 2D polaron which is smaller than the one obtained by SCT.

Moreover, in the intermediate-coupling regime (i.e. α > 1), present work gives

some data for the energy of 2D polaron which are more valid compared to other

two theories (i.e. WCT and SCT). On the other hand, in the weak-coupling

regime, the energy of the present work converges to the energy of WCT but it is

bounded below as opposite to the situation in the strong coupling regime.
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(a) Energies obtained by the present work for both (strict)

2D and 3D polarons vs standard coupling constant α.
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(b) Energies obtained by Present work, WCT and STC vs

the generalized coupling constant α′ for 2D and 3D polaron.

Figure 3.3: Energies of the 2D and 3D polaron.

41



One may observe some interesting properties when these two cases are plotted

in one graph as in Fig. 3.3.

From this graph (i.e. Fig. 3.3 (a)), we observe that for an arbitrary value

of α the energy of 2D polaron is less than the energy of 3D polaron; that is,

when the dimension decreases, the energy also decreases. Moreover, the same

figure shows that for a certain coupling constant value in the strong coupling

regime, the difference between energies calculated by Present (2D) and SCT(2D)

is smaller than the difference gained by Present (3D) and SCT(3D). However, the

same situation cannot be proposed in the weak-coupling regime; the differences

in this regime are approximately the same.

One can also express these results in terms of the generalized coupling constant

α′ as seen in Fig. 3.3 (b). From this figure we see that for both polarons,

the corresponding energies obtained by the present work lesser than the ones

calculated by SCT in the strong coupling regime. Moreover, in weak coupling

regimes, both energies obtained by ISCT in 2D and 3D converge to the energy−α′

that is exactly the energy obtained by WCT(2D) and WCT(3D) (see equations

(2.30) and (2.37)). And these energies are greater than −α′; that is, no energy

improvement occurs in this regime as it has been observed in previous three

graphs.

Now, we consider the confined polaron(i.e. ”2-3” D polaron) case. If one

minimizes equation (3.29), one may obtain a graph of the energy of the polaron vs

L for various α′ (see Fig. 3.4) . We observe that for increasing value of the distance

between the slabs (i.e. L) the energy converges to the energy improved strong

coupling(ISCT) predicts for (strict) 3D polaron(circles). Similary, on the opposite

limit, i.e. L −→ 0, the energy converges to the value ISCT provides for 2D

polaron case (i.e. squares). Note that this situation might be considered that the

formalism in (3.29) is correct. Furthermore, we observe that for increasing value

of the (generalized) coupling constant α′, the energy of the polaron decreases, as

expected, since stronger interaction leads to higher binding energy.
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Figure 3.4: Energy E (ISCT predicts) vs L for various α′.

To compare the (”2-3”D) energies obtained by SCT to ones calculated by the

present work (i.e. ISCT), one may plot the results in one graph (see Fig. 3.5).

From Fig. 3.5 (a) and (b) we observe that for an arbitrary coupling constant

α′ the present work predicts lesser energy compared to the energy calculated via

SCT for every possible slab distance L.

If we take into consideration the extreme cases of L (i.e. L < 0.5 and L > 2),

we may suggest some values about the critical length Lc as performed in Strong-

Coupling Theory. Based on the definitions of the critical length Lc given in (2.77)

and (2.78), if we assume the negligible energy Eneg = 0.1, the critical lengths Lc

resulting from the present work turn out as in Fig 3.6. We observe from Fig. 3.6

(a) that to consider the polaron as a strict 2D polaron, we must decrease the slab

distance for increasing value of the coupling constant. On the other hand, from

Fig. 3.6 (b) we see that for increasing α′, the greater values of L are need to be

able to consider (”2-3”D) polaron as strict 3D polaron.
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Figure 3.5: E (calculated by ISCT and SCT) vs L.
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Figure 3.6: Lc (obtained by ISCT) vs α′.
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One interesting question could be whether there is any difference between the

critical lengths obtained by SCT and ISCT. To find out, we combine two data

given in Fig. 2.3 and Fig. 3.6 (see Fig 3.7).

We observe from Fig. 3.7 (a) that for α′ = 4, the length Lc obtained by present

calculation is greater than Lc SCT gives. For the coupling constant α′ = 6, Lc

the present calculation gives is (with a small magnitude) greater compared to the

Lc of SCT. For the other values of the coupling constant (i.e. α′ = 8, 10) both

theories give the same critical length value. On the other hand, the subfigure

(b) shows that for α′ = 4, to be able to consider the polaron as 3D polaron, it

is sufficient to have a slab length L which is greater than 6.3 according to ISCT

while this value is calculated as 6.7 by SCT. For α′ = 6, Lc obtained by the

present work is smaller than the one SCT predicts but the magnitude of their

difference is small. For α′ = 8, 10, we obtain the same critical lengths by the two

theories.
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Figure 3.7: Lc (obtained by the theories SCT and ISCT) vs α′ (with Eneg = 0.1).
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Chapter 4

Summary and Conclusion

In this thesis, first, using Weak-Coupling Theory, we calculated the ground state

energies of the nD polaron in the weak-coupling regimes in terms of the gen-

eralized coupling constant α′, and found that the energy for all n is equal to

α′.

Furthermore, using Strong Coupling Theory, we obtained the (ground state)

energies of the nD polaron in strong-coupling regime in terms of α′ and we found

that there is a relation between the dimension n and the energy; which is, En =

−α′2/(nπ). Moreover, using the same theory, we have taken into consideration a

polaron which is confined in one dimension. In this case, we calculated the energy

of the confined polaron (”2-3” D polaron) as a function of the slab length L for

the certain values of α′. We observed that in the limits of the slab length L (i.e.

 L −→ 0 and  L −→ ∞) the energy converges to the energy of strict polaron (i.e.

E2D or E3D). Next, we introduced the critical length Lc concept and calculated

the such lengths in both 2D and 3D limits. Furthermore, we showed that Lc is

dependent on α′.

After completing the analysis of WCT and SCT, we introduced Improved

Strong Coupling Theory (ISCT), which is based on the variational principle and

the trial wave function Devreese et al [1] proposed. By using this theory, we
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calculated the energies of the nD polaron in all coupling limits (weak, interme-

diate, strong coupling). And we demonstrated that in the strong-coupling limit,

ISCT predicts better energy values than SCT. Furthermore, we proposed ener-

gies in intermediate-coupling limit where WCT and SCT are not very reliable. In

the weak-coupling regime, we have observed that the energy calculated by ISCT

converges to the energy of WCT while the coupling constant becomes smaller;

however, the energy of ISCT was bounded below. Using ISCT, we also considered

”2-3” D polaron and calculated the energies as a function of L for various α′. At

the limits of L we observed that the energy converges to the energy of the 2D

or 3D polaron that ISCT predicts. Furthermore, we also analyzed the critical

length concept in ISCT and showed that Lc is dependent on coupling constant

in this theory as well. Moreover, we compared the Lc’s obtained by two different

theories (i.e. SCT and ISCT) and conclude that the difference in Lc’s coming

from the different theories disappears when the coupling constant increases.

We note that although we gave the analytical expression for the 1D polaron

in the thesis, we preferred not to demonstrate the result of 1D since the result is

not convertible to standard coupling constant α.

As a final comment, we underline the fact that even though ISCT is superior to

SCT in strong coupling regime, it may not necessarily mean that ISCT is the most

powerful method to estimate the energy in such regime. In fact, in the reference

[3] it is mentioned that Feynman’s formalism is the one of the strongest estimator

of the energy. However, since we restrict ourselves to only WCT and SCT to test

the success of ISCT, we do not make any comment about the Feynman’s method.
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[9] H. Fröhlich, “Electrons in lattice fields,” Advances in Physics, vol. 3, no. 11,

pp. 325–361, 1954.

50



[10] S. D. Sarma, “S. das sarma and ba mason, ann. phys.(ny) 163, 78 (1985).,”

Ann. Phys.(NY), vol. 163, p. 78, 1985.

[11] T. Lee, F. Low, and D. Pines, “The motion of slow electrons in a polar

crystal,” Physical Review, vol. 90, no. 2, p. 297, 1953.

[12] R. P. Feynman, “Slow electrons in a polar crystal,” Physical Review, vol. 97,

no. 3, p. 660, 1955.

[13] F. Peeters and M. Smondyrev, “Exact and approximate results for the po-

laron in one dimension,” Physical Review B, vol. 43, no. 6, p. 4920, 1991.

[14] H. Haken, Quantum Field Theory of Solids: An Introduction. North-Holland,

1976.

[15] F. Peeters, W. Xiaoguang, and J. Devreese, “Ground-state energy of a po-

laron in n dimensions,” Physical Review B, vol. 33, no. 6, p. 3926, 1986.

[16] W. Xiaoguang, F. Peeters, and J. Devreese, “Exact and approximate results

for the ground-state energy of a fröhlich polaron in two dimensions,” Physical

Review B, vol. 31, no. 6, p. 3420, 1985.
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