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A b s t r a c t  

We will consider model based anticontrol of chaotic 
systems. We consider both continuous and discrete 
time cases. We Erst assnine t,hat the systems to be 
controlled are linear and time invariant. Under con- 
trollabilit,y assumption, we transform these systems 
into :jonie canonical forms. We assume the existence 
of chaotic systems which has similar forms. Then by 
using appropriate inputs, we match the dynamics of 
the systems to he controlled ;and the rnodrl chaotic 
syste1ns. 

1 In t roduc t ion  

The anitlysis arid control of chaotic behaviour in dy- 
iianiical systcrris has been investigated hy rnany re- 
searchers in various discipline:; on recent years. The 
literature is quite rich on the subject, and interested 
reader may consult to e.g. [2],[3], 141, [8],[!3]. 

The seminal work of [15] rnotivatad the research in 
t,he field of chaos control, arid the term “controlling 
cl!;ms” was introduced in the literature. In most of 
tho works in the area of chaos control the main aim 
is thc suppression of chaotic behaviour, see e.g. 141, 
191. On the other hand, the opposite aim i.a. to 
retain the chaotic behaviour, or even to force a regu- 
lar heheviour into a chaotic one, is also an interesting 
problcm and received attention hy many researchers. 
This prohleni may he called as “anticontrol”, see e.g. 
[IG], or as “chaotification”, see e.g. [18]. Apparcntly, 
this scheinc has many potential applications in many 
fields, see e .g .  [l], [SI, [F] 171. 

In this work, we will consider a model-based ap- 
proach to ths  anticontrol problem. We consider both 
continuous and discrete time citses for the systems to 
he coiitrolled. N’e first assiimc that the systems to 
hc contnollcd are linear and time invariant. By a.- 
suriiing the contrrrllability , we first transform these 

terns into some appropriate form We assume the 

existence of chaotic model systems in a similar form. 
Then we try to niatch.the dynamics of the system to 
be controlled with that  of the model chaotic system 
by means of an appropriate control input. We prove 
that  : 

i : any controllable linear time-invariant system can 
he chaotized with an appropriate input, 

ii ; this approach could be generalized to  a class of 
nonlinear systems. 

Since our approach relies on the existence of chaotic 
models in an appropriate form, whether there ex- 
ist such models in arhitrary dimensions is a relevant 
question. We propose a simple procedure to gen- 
erate such chaotic models in arhitrary dimensions. 
Another question we consider is the Computability 
of the required feedback law by using only the avail- 
able signals. To estimate the states of the system 
to be controlled, we propose an observer-based syn- 
chronization scheme. Under some mild conditions, 
exponentially fast synchronization may be achieved, 
and one can nse the estimated states to compute t.he 
feedback law. 

This paper is organized as follows. In .the next sec- 
tion we give the problems considered in this pa- 
per, considering both continuous and discrete. time 
cases. In the following sections, we propose solu- 
tion schemes for both cases. Then we present simple 
schemes to generate model chaotic systems. Finally 
we give some concludilig remarks. 

2 Problem S t a t e m e n t  

We will first consider the linear systems. We assume 
that the system to be controlled is given in continu- 
oils time case as 

0-7803-7939-W03/$17.00 0 2003 IEEE 440 PhysCon 2003, St. Petersburg. Russia 



;ind in the discrete time casc as follows 

:c (k  t 1) = Az(k)  + Bu(k)  , y(k) = Cz:(k)  , (2) 

where 2: E It", A E RnX" is a constant matrix, 
B, Cr E R" itre constant vectors, here superscript T 
denotes transpose, U is the (scalar) control input and 
:I, is the (scalar) output, which is assumed to he mea- 
surable, arld the discrete time index k = 0, l ,  2 , .  . . is 
i i i i  int,eger. For t,his system, we pose the following 
proh1i:ms : 

Prob lem 1 : Find a feedback law U = g(z), where 
y : R'L -+ R is an appropriate iunction, such that 
tlie resulting closed-loop system exhibits chaotic be- 
liwiour. U 

Prob lem 2 : Assume that  the feedback law U = 
y(zj ,  which solves problem 1, cannot he computed 
by using the output y alone. Find an approximate 
control law U = ,L, which can he computed by using 
oritput, such that lliL - g(z)I/ t 0 as t - CO in the 
continuous time case and as k - CO in the discrete 
tiriic citsc; here :c is the solution of ( I )  or (2) , and 
11 . 11 denot,es any norm in .R". 0 

A solution to  problem 1 will be provided in the next 
section. Lat,rr we will present an observer based 
scheme for problem 2. In this approach, the output 
y will be used as a synchronization signal, and an 
ohserver based synchronization scheme will he used 
to estimate the states z of (1) or (2), see e.g. [12], 
[13]. These estimates then will be used to oht,ain an 
appl-oxinlation of t h i  control law U = g(z). 

To simplify the analysis, we will first transform the 
syst:cm givcn by (1.) and (2) into an appropriate 
canoiiical form Lct us defiric the following matrix 

B . . .  AB B) , (3) - / l , . -2  ,! -- 

It i:i well-known that the system given by (1) or (2) 
is controllable (i.e. any state zti t R" can he steered 
to any state 2 1  E R" with an appropriate control 
input U) if and only if Turik(Qc) = n, see e.g. [I l l .  
We will msume that the systems given by (1) or (2) 
we  r:ontrollahle. hence Q. is invertible. 

L.et p(X) he. the characteristic polynomial of A given 
by (1) or (2). as follows : 

p ( X )  := dct(XI-A) = X"+alX"- ' t- .  . .+(Y~~-~X+LY,, 

Nom. let: us define the vectors U I  = (1 -a1 . . , a , , - ~ ) ~ ,  
q - 2 )  , ..,U, = (0 0 . .  , l)', and de- 

fine the matriccs U = (u1u2.. , un), l? = (QCU)-', 
By rising the coordinate transformation z = Rz,  (1) 
sind ( 2 )  can be transformed into the following form, 

(4) 

T 

respectively : 

i = . 4 z + B u  ~ y = c z  ~ (5) 

z ( k + l )  = A z ( k ) + B u ( k )  , y = dz , (6) 

where I = (ti za . . . zn) , A = RAR-I, B = EB,  
d = CR-'. After straightforward calculations and 
by using Cayley-Hamilton theorem (i.e. p ( A )  = 0; 
where p( . )  is given by (4)), it can be shown that A 
and B have the following form : 

T 

1 0 . . .  0 
0 1 . . .  0 ] (7) 

0 0 0 . . .  1 
--an --a,,+, . . .  --a1 

B = (0 0 0 0 1)' (8) 

3 A n  Anti-Control Scheme 

We assume the existence of a chaotic system which 
has the following form in the  continuous time case ( 
for n 2 3) 

w, = w2 
w 2  = W 3  

Wn-l = wn 
1 (9) 

](lo) 

W,, = f(uJl,UQ, ..., W n )  

and the following form in the discrete time case : 

IlJl(k + 1) = Wz(k) 
W Z ( k  + 1) = W3(k) 

W,,-l(k + 1) = w d k )  
W n ( k  + 1) = f ( w ( k ) , w z ( k ) ,  , , , ,wn(k ) )  

where f : R" -, R is an appropriate function. In 
the continuous t;ime case, for n = 3 there are many 
chaotic systems proposed in the literature which has 
the form given above, see e.g. [l2]> (131. In fact, 
many chaotic electronic oscillators proposed in the 
literature, including the well-known Chua's oscil- 
lator, are either in this form, or could be trans- 
formed into this form. For the discrete time case, 
for n = 1, tlie system given by (10) reduces to  
w ( k +  1) = f ( w ( k ) ) ,  and there are many one dimen- 
sional chaotic systems which has this form, e.g. logis- 
tic equation. For n = 2, the well-known Hdnon sys- 
tem can he easily transformed into this form. Later 
we will present a simple scheme to generate such 
model chaotic systems. 
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O u r  nnti-cont,rol st:liernc is based on matching the and 1181 into the following form : 
\ ,  - 

system giveti by (5) and (6) with the model chaotic 
systarn given 1,y (9) and ( 2 ) >  respectively, by using z ( k - t  I )  = a . ( k ) + B ( r ( . ( k ) ) + B ( z ( k ) ) u ( k ) )  I (20) 

nn appropriate control iiiput, 7 ~ .  Note that (9) could ? / ( k )  = C(Z(k)) , (21) 
lx: relvritten :LS 

where A,B are as given in (7) and (8). az,iA = 
1, . .  . , n  &re appropriate constants, and r,P,C : 
R '  + R are appropriate functions. Note that the 
teriiis multiplyini: ai in (20) could be included in 

l U  = A l U  -1- Uh(,rU) ~ 

whwe i o  ( u i l  U J ~  . . . U:,,) ?' I and 
-k). 

! L ( / l J )  ' - f ( l l r ) -~nI 'w, ,+n? ' lu ,_ l+  . . .+  u,,?/Jl . (12) 
In the continuous time case, bv usin-z the control law 

Siud:irIy, ( I O )  conld he.rewritten as 

iu (k . - t -  1) == .4ui(k) -t B/i . ( rr i (k) )  , (13) 

Y 

where h(.)  is given by (12), we can match the dy- 
namics of (19) with that of the model chaotic system mllrrr~ ( 1 :  =:,(I l l]  702 . , . U,,?)T,  and 

given by ( l l ) ,  provided that B(z )  + 0. This require- 
ment is natural, since otherwise the control input U h ( l / ! ( k ) )  .= S ( U J ( k ) )  +nlW,,(k)  $-CXz7U,L-l(k) . 

I / ,  . .  1- . .  . t O , W i j K )  has no effect on the system dynamics, see (19). 

Sirriilarly, in the discrete time-csse, an appropriate 
(14) 

Here, CY; are arbitrary constants. 
- .  

control input u ( k )  to obtain a model niatch between 
(20) and (10) is given EU follows : 

To achieve the matching between the model and the 
svsteiii to he controlled. we can choose the control 

(23) 
inpuf, as ' M+)) - r(z(k)) 

B M k ) )  
u(kj = 

i L  = / I ( ; )  == S ( z ) + a l z , , - t a z i , , ~ l i ~ .  . .+cX",Z1 * (15) 
where h.(.) is given by (14). Obviously, we require 
B ( z ( k ) )  # 0 along the solutions of (20). This re- 
quirement is natural, since otherwise the control in- 

t,o trmsform (5) into the chaotic system given by (9). 
Sirnil;trly, in the discrcte time case we may choose the 
1:oritrol illput as : 

u ( k )  = h ( z ( k ) )  = j ( z ( k ) )  i- a l z n ( k )  + a 2 z , , - 1 ( k )  , 

(16) 
-I-. . . 4- i l n Z 1  (i-) 

t.o t.raiisforni (6) into the chaot,ir: system givtln hy 
(10). 

The approach give11 abovo call also ho applied to a 
class of nonlincar systems. Let us assume that, the 
syst,ein ttr be controlled is given U : 

1. = A ( z )  -t B(z ) .u  , y = C(z) ~ (17) 

i i i  tlw i:ontinuous time case and a; 

.,2:(k+l) =. A ( ~ ( k ) ) i - ~ ~ ( z ( k ) ) Z L ( k )  , y(k) = C ( z ( k ) )  , 
(18) 

i n  the discrete time case, where A;B : R" -3 R" 
and C : R" -, R are appropriate functions; U and y 
are control inpiit and measurement oritput,s, respec- 
tively. wliicti are scalars. 

nrnr  t,liat there exists a coordinate change 
z = T ( z ) .  whme T. : R - R" is an approyriate 
frinct.iori, which transforms ( I  7) into the following 

put u ( k )  has no effect on the system dynamics. see 
(20). 

The results presented in this section can be surnnia- 
sized as follows 

i : Any controllable linear (single input) system can 
be chaotified with an appropriate control law. 

ii : Any nonlinear (single input) system which could 
be transfornied into the form (19) or (20) can be 
chaotified with an appropriate control law provided 
that , O ( z ( k ) )  # 0. 

4 Synchronization Based Implementation 

To implement the control laws given above the state 
vector P sliould be availahle. In most of the cascs, 
the availal~le output signal y.has lower dimension, 
which is a scalar in out case, and is not sufficient 
to compute the necessary control input U. In such 
cases, an appropriate approach would he to ohtairi 
an approximation 2 of 2, aiid use ,this estimate to 
approximate the required control signal. 

form 
Since the synchronization schemes may provide good 
estimates of the receiver states, which is z in our case, t = ,4; .t B[,-,(z) + /3(z)u) , y =: C ( z )  , ' (19) 
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a nat~iral appronch to solve the problem 2 given in 
section 2 is to use'a synchronizat.ion scheme for the 

For this aim, any syn- 
chronization scheme which uses the output y as a 
synchronization signal and provides estimates i of z 
COllld he used. 

'To elaborate further, let us consider the linear system 
given hy ( 5 ) .  Let us consider the following ohserver- 
I~ased synchronizution schen~e for the system given 

n i ' tu  be controlled , 

I,?. ( 5 )  : 

.at + h u + h ' ( y - ! j )  , $=e2 , (24) 

when? Z E R", K E R" is a gain vector to be deter- 
mined. Let us define the error in synchronization as 
r.' = .: -- 5. By using (5) and (24) we obtain : 

(25) B = (A - Ki.)e 

Hence, if A,: = A -- K C  is a stable matrix, then we 
have lle(t)ll 0 as t -t CO; moreover this decay is 
esponent,ial. Existence of such a vector K is guaran- 
L e d  if the system given by (5) is observable. More 
prccsely: let. 11s define the following observability ma- 
trix : / c \  

It is wcll-known that if rank(Q,,) = 71, then there 
exists a IC such that the matrix A,  is stable, hence 
thc solilt.ions of (25) satisfy : 

ile(t)II 5 A*le-6Llie(0)jl , (27) 

h r  so~no M :> 0 ,  5 > 0, for details see e.g. 1121, (131. 

Based on the estimate 2 of z ,  a natural approxima- 
tion of U given by (15) is U = h(2). To see th r  effect 
of this approximation, assume that h : R" 3 R is a 
Lipjchitz function, i.e. the following holds for some 
( > ( I :  

Ilh(z) - iL(i)ll 5 lllz - 211 (28) 
unie that we use U = ti(?) in ( 5 ) .  Then, the 

lattpr becmica : 

i .= i \z i- hh(2) = Az + B h ( z )  i- eJt) , 

where e,,(t) is an error term which satisfies : 

jle,.(t)II =- j l f i(h(i)-h(z))l l  5 ! M e - " ~ ~ e ( O ) ~ ~  , (30)  

set! ( E ) ,  (28). Since the error term decays 1.0 zero 
cxponerrtially fast, wc expect that the hehaviour of 
(29) ancl (11) he qualitatively similar, provided that 
tlis chiiot;ic hehaviour of (11) is structurally stable. 
If the chaoti(: solution of (11) is glohally attractive, 

(29) 

then since e,(t) decays to  zero exponentially fast, 
the solutions of (29) will eventually converge to the 
chautic solutions of (11). If the chaotic solutions of 
(11) are only locally attractive, let us assume that 
for some t > 0, the hehaviours of (29) and (11) are 
qualitatively similar, provided that liec(t)il 5 E. We 
will call this assumption as the structural stability 
assumption, see e.g. [SI. From (30) it  easily follows 
that this condition is satisfied for ile(O)li 5 E/M. 
Hence, if initial error is sufficiently small, then the 
hehaviours of (29) and (11) are qualitatively simi- 
lar under the structural stability 'assumption given 
above. On the other hand, assume that lle(0)ll 5 R 
for some R > 0. From (30) it  follows that Ilec(t)ll 5 E 
for t 2 7' = l/b'In(lMR/c). Hence we conld use a 
switching law to generate U as follows : 

(31) 

The same approach could be generalized to the dis- 
crete time case as well. There are many such schemes 
proposed in the literature, see e.g. [17]. For illustra- 
tive purposes, we will consider the following observer 
based synchronisation scheme 

i ( k + l )  = A i ( k ) + B U ( k ) + K ( y ( k ) - g k ) )  , ( 3 2 )  

$(k) = C i ( k )  , (33) 

where K E R" is a gain vector to be determined. 
Let the synchronization error be defined as e ( k )  = 
z(k) - Z ( k ) .  By using ( 6 )  and (32) we obtain ; 

e ( k  + 1) = (A - ~ C ) e ( k )  . (34) 

Therefore e(kj i q as k --t CO if and only if the 
matrix A, = A -~ KC is Schur stable ( i.e. any eigcii- 
value X of A,  satisfies I X I< 1). Moreover, in this 
case the decay is exponential, i.e. the following holds 
for some M > 0 and 0 < p < 1 : 

ll4k)ll 5 ~ P k / l e ( 0 ) l /  ( 3 5 )  

It is known that. there exists such a gain vector I< 
which m&es A,  Schur stable if the system given by 
( Z ) ,  or equivalently the system given hy ( 6 ) ,  is oh- 
servable, see e.g. [ll] . I t  is also known that the 
latter condition is satisfied if and only if the ohserv- 
ahility matrix Qo given by (26) has full rank. The 
same structural stability arguments presented above 
applies to this case as well. In particular, assume 
that for some E > 0, the behaviours of (13) and (20) 
are qualitatively similar provided that ~ ~ e c ( k ) / ~  5 t ,  

see e.g. 181, where e, is an error term similax to 
(30). It can he easily shown that this condition holds 
for lle(0)ll 5 t / c M .  Therefore, if the initial error is 
sufficiently small then the solntions of (20) will be 
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cli;iot;ic prcjvided that the chaotic attractor of (13) is 
l o ~ ~ I l y  ;ittrac!.ive and structurally stable in the sensc 
given ahrwe. On the other hand, if Ilr(0)II 5 R for 
snnit' 1Z > 0, it can be showwthat ~ ~ e c ( k ) ~ ~  5 c for 
i: > ;V = (111 F -~ InciZ.IR)/lnp. Hencc we: could use a 
sivit.ching law to generate 71 as follows : 

5 Model Chaotic Systems 

Onr <:oncrol scheme is bnsed on the existence of 
model chaotic. systems which has an appropriate 
form, In  this chapter, we will propose a siniple 
schmie to generate such modcl cha*,t:ic systems hoth 
for conhuous  and discrete time cases. 

First lct us consider the continuous time case. For 
n =:= :I, such cliaotic systems are abundant in the lit- 
c ra tuw In fact, all Lur'e type systems, which cover 
iiiost of the clectronic chaotic oscillators propose& in 
thi; literature including the well-known Chua's oscil- 
lator, <:an be transformed into this form. Some ays- 
LCII~S ,  which w e  not in this structure (e.g. Rijssler 
system), niay he trarisformed int,o this form, see e.g. 
[I31 , As a n  example, consider the following system 

(37) 1 ' IUI 7: 7 4  

'7112 = 7113 

W;I =: - - ~ z u J : ~  - b l w z  - holul -- 

This systcin exhibit.s chaotic behaviour for certain 
r;tnge of parameters. b,, see [IO], [14]. To generate 
chaotic syst,enis for i~ > 3 which hits the form of (9), 
let us consider the case TL = 3 ,  which is rqea ted  
helow for convciiieiice ; . .  

(38) 1 . ' f l J l  = w2 

w2 = w:j 
ir:, = j ( u ! ~ , 7 U ~ , 7 l J g )  

13v defining 2 i r  = 7 u l :  and noting that  'IUZ L w, 'w:, = 
li;. and hy using (38), we obtain the following scalar 
cqwtioii : 

J 3 )  1 J ( m ,  lu, ii) L (I (39) 

Ohvionsly, (39) and (38) arc equivalent through the 
t.ransf6rmation given above. Now let us considcr the 
followirig liighnr dimensional xystcm : 

7111 =: w> 

i1rq = --nwuiq 

wherc <t > 0 is i t l i  arbitrary constant. Note that 
u:.%(t) = ~ i ~ ( O ) e - " ~  i 0 as t i CO. Neiice asymp- 
t.otic;iiiy, (38) atid thc first 3 equations of ($0) are 

the same. Therefore, if (38) has a globally attractivc 
chaotic solution, so does (40). On the other hand, 
if (38) has only locally attractive chaotic solution, 
which is structurally stable in the sense given hefore, 
then so does (401, provided that  1 wq(0) 1 is suffi- 
ciently small. 

To transform the system given hy (40) into the form 
given by (9), first note that from the third equation 
in (40) we havew., = 1 + f ( w l , w ~ , 7 ~ ~ ) .  Bydefining 
w = tul ,  and noting that  wa = 2ii: 2113 = ,w, and using 
the last equrtt,ion in (40) we obtain : 

d 
dt 

which could he rewritten as 

- f ( W ; I ; J , G ) )  $-cU('Wi3) - f ( W , t b , < i ) )  = 0 , 

($1)  

r J 4 )  = F(w, 7 i ! , I i ,  U ) @ ) )  , (42) 

F(w.lb,tii,  w(3)) = & ( f ( W , l i J , d ) )  . (43) 

where 

-cu(w(3) .- f(w,?i) ,W)) 

Naturally, here we assume tha t  f is a differcntiahle 
function. Obviously, (43) is equivalent t o  (40). By 
using standard change of variables w l  = w, w2 = ,U!, 

.w3 G, .U4 wi:o, we can rewrite (42) as 

.w1 = w2 I 
(44) 

w 2  = wg 

w:3 = wg 

7ir4 := ~(w~,.w~,ws,ur,) J 
which has the form of (9) for n = 4. Obviously this 
procedure can be extended to arhitrary dimension 
provided that f is sufficiently smooth. 

Thc same approach could he geiieralized to discrete 
time case as well. Assume that  the model chaotic 
system is given hy (10) and consider the following 
system : 

I w , ( k + l )  = w , ( k )  
.(L.a(k + 1) = WQ(k) 

Z l I , ~ l ( k  t 1) = w,,(k) 
%(k  + 1) = f ( , % ( k ) , m ( k ) ,  . . , ,w, , (k) )  + 4 k )  

z ( k  + 1) = p z ( k )  
(45) 

where I p I< 'I is an arbitrary r e d  number. Oh- 
viously, z ( k )  = p'z(0) - 0 as k - 03, hence the 
first TL equations of (45) and (10) are asymptotically 
the same. Therefore if (10) has a globally attractive 
chaotic attractor, so does (45). On the other hand: 
i f  (10) has only locally actractive chaotic attractor, 
which is strrrcturdly stable in the sense given in the 
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6 Conclusion 

111 th is paper, we considered a model-based approach 
to the anticontrol of some linear, time invariant sys- 
t,eme. We considered both the continuous and the 

Our aim was to  generate a 
chaut,ic hehaviour which is determined by a chaotic 
model, hy means of an appropriate control input. To 
xhievc this task, we assumed the existence oi’a ref- 
crenct: modcl in an appropriate form which exhibits 
chaotic hehaviour. Then we determined an appropri- 
nto ~ x i t r o l  input to  match the dynamics of tho sys- 
tem to he controlled with that of the model chaotic 
systcrn We proved that : i : any controllable lin- 
ear t.imc-invariant system can he chaotified with an 
iqipropriate input, ii : this approach could be gener- 
alized to a class of nonlinear syst.ems. We proposed 
a simple procedure to generate such chaotic models 
i u  arbitrary dimension. We also considered the com- 
putnbility of the required feedback law by using only 
tlie available signals. To esti1nat.e the states of the 
systcrn t:o be controlled, we proposed a synchronixa- 
i;ion scheme. 

.ete time cases. 
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