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Abstract

We will consider model based anticontrol of chaotic
systems. We consider both continuous and discrete
time cases. We first assume that the systems to be
controlled are linear and time invariant. Under con-
troltability assumption, we transform these systems
into some canonical forms. We assume the existence
of chaotic systems which has similar forms. Then by
using appropriate inputs, we match the dynamics of
the systems to be controlled and the model chaotic
systems. ’

1 Introduction

The analysis and control of chaotic behaviour in dy-
namical systerns has been investigated by many re-
scarchers in various disciplines on recent years. The
literature is quite rich on the subject, and interested
reader may consult to e.g. [2],13], [4], [8].[9].

The seminal work of [15] motivated the research in
the field of chaos control, and the term “controlling
chaos” was introduced in the literature. In most of
the works in the area of chaos control the main aim
is the suppression of chaotic behaviour, see e.p. [4],
9. On the other hand, the opposite aim ie. to
retain the chaotic behavieur, or even to force a regu-
lar behaviour into a chaotic one, is also an interesting
problem and received attention by many researchers.
This prablem may be called as “anticontrol”, see e.g,
[16], or as “chaotification”, see e.g. [18]. Apparently,
this scherme has many potential applications in many
fields, see c.g. {1], [B], 6] [7].

In this work, we will consider a model-based ap-
proach to the anticontrol problem. We consider both
continuous and discrete time cases for the systems to
be controlled. We first assume that the systems to
be controlled are linear and time invariant. By as-
suming the controllability , we first transform these
systerns into some appropriate form. We assume the
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existence of chaotic mode] systems in a similar form.
Then we try to match the dynamics of the system to
be controlled with that of the model chaotic system
by means of an appropriate control input. We prove
that :

i : any controllable linear time-invariant system can
he chaotized with an appropriate input,

il ; this approach could be generalized to a class of
nonlinear systems.

Since our approach relies on the existence of chaotic
models in an appropriate form, whether there ex-
ist such models in arbitrary dimensions is a relevant
question. We propose a simple procedure to gen-
erate such chaotic models in arbitrary dimensions.
Another question we consider is the computability
of the required feedback law by using only the avail-
able signals. To estimate the states of the system
to he controlled, we propose an observer-based syn-
chronization scheme. Under some mild conditions,
exponentially fast synchronization may be achieved,
and one can use the estimated states to compute the
feedback law. '

This paper is organized as follows. In .the next sec-
tion we give the problems considered in this pa-
per, considering both continuous and discrete. time
cases. In the following sections, we propose solu-
tion schemes for both cases. Then we present simple
schemes to generate model chaotic systems. Finally
we give some concluding remarks.

2 Problem Statement

We will first consider the linear systems. We assume
that the system to be controlled is given in continu-
ous time case as

t=Ar+Bu , y=Cz , {1)
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and in the discrete time case as follows
afk+1) = Azx(k) + Bu(k) , y(k)=Cz(k) , (&)

where 22 € R*, A € R™™ is a constant matrix,
B,CT ¢ R™ are constant vectors, here superscript T
denotes transpose, u is the (scalar) control input and
1 is the (scalar) output, which is assumed to be mea-
surahle, and the discrete time index £k =0,1,2,...is
an integer. For this system, we pose the following
problems :

Problem 1 : Find a feedback law u = g{z), where
g : R® — R is an appropriate function, such that
the resulting closed-loop system exhibits chaotic be-
haviour. £

Problem 2 : Assume that the feedback law u =
g(z), which solves problern 1, cannot be computed
by using the output ¥ alone. Find an approximate
control law u = 4, which can be computed by using
output, such that |t — g(z) — 0 as t — oo in the
continuous time case and ag k — <o in the discrete
time case; here x is the solution of (1) or (2) , and
| - || denotes any norm in R™. O

A solution to problem 1 will be provided in the next
section.  Later we will present an ohserver based
scheme for problem 2. In this approach, the output
y will be used as a synchronization signal, and an
observer based synchronization scheme will be used
to estimate the states z of (1) or (2}, see e.g. [12],
[13]. These estimates then will be used to obtain an
approximation of the control law v = g(z).

To simplify the analysis, we will first transform the
system given by {1) and {2) into an appropriate
canonical form. Let us define the following matrix

Qu=(A"'B AM?B.. ABB) . (3)

It is weli-known that the system given by (1) or (2)
is controllable (i.e. any state 2 € R™ can be steered
to any state 2; € R™ with an appropriate control
input u) if and only if renk{Q.) = n, see e.g. [11].
We will assurne that the systems given by (1} or (2)
are controllable, hence Q. is invertible.

Let p{A) be the characteristic polynemial of A given
by (1) or (2}, as foliows :

PN = debAT—A) = A+ A% b Aot At
(4)

Now, let us define the vectors uy = (1 a; .. .ozn_l)T,
g = (01 . oopg)’, ottn = (00...1)7, and de-
fine the matrices U = (ujus...uy), R = (QCU)_I.
By using the coordinate transformation z = Rz, (1)
and (2} can be transformed into the following form,

respectively :

t=Az4+Bu , y=Cz , (5)

2k+1) = Azlk)+ Bulk) , y=0Cz |, (B

where z = (21 23 ... z.)', A = RAR™!, B = RB,
¢ = CR-!. After straightforward calculations and
by using Cayley-Hamilton theorem (i.e. p(A) = 0,
where p(-) is given by (4)), it can be shown that A
and B have the following form :

0 1 0 .0
0 0 i 0
A= (7)
0 0 0 1
—Cin | 2 —r
B=@ooo1)7 (8)

3 An Anti-Control Scheme

We assume the existence of a chaotic system which
has the following form in the continuous time case (
forn>3)

Ty = Wy
'Lf)g = W3
9
Uyl = W
p = f('w]_,'LUQ, [ :w‘n)
and the following form in the discrete time case :
wy(k+ 1) = walk)
wy(k + 1) = wa(k)
: (10)

w11wl(k + 1) = wn(k)
wn(k + 1) = flwi(k),wa(k), ..., wn(k))
where f : R” — R is an appropriate function. In
the continuous time case, for n = 3 there are many
chaotic systems proposed in the literature which has
the form given above, see e.g. [12], (13]. In fact,
many chaotic electronic oscillators proposed in the
literature, including the well-known Chua's oscil-
lator, are either in this form, or could be trans-
formed into this form. For the discrete time case,
for n = 1, the system given by (10} reduces to
w{k + 1) = f{w(k)}, and there are many one dimen-
sional chaotic systems which has this form, e.g. logis-
tic equation. For n = 2, the well-known Hénon sys-
tem can be easily transformed into this form. Later
we will present a simple scheme to generate such
model chaotic systerns.
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Our anti-contrel scheme is based on matching the
system given by {5) and {6) with the model chaotic
systemn given by (9) and (2), respectively, by using
an appropriate control input . Note that (9) could
he rewritten as

w = Aw -+ Bh(w) (1)
where w = (un wy ... 'wn}T, and
hiw) = fw)+ o wy + 0w, + coobomun L (12)
Similarly, (10} could be rewritten as
wik 1) = Aw(k) + Bh{w(k)) | (13)
where w ={w) wy ... wn_)T, and
h{w(k)}) = flw(k)) + cywn (k) + awy,-1 (k)
Aot anw (k)
(14)

Here, ar; are arbitrary constants.

To achieve the matching betwéen the model and the
systemn to be controlled, we can choose the control
input as -

w=h{z) = f(2)+taizn-+taozn_1+4.. . tanz , (15)

to transform (5) into the chaotic system given by (9).
Similarly, in the discrete time case we may choose the
control input as :

wlk) = h{z(k)) = f(z(k)) + cazn (k) + cazn 1 (k)
+oo Aoz (k)
(16)
to travsform {6) into the chaotic system given by
(10).

The approach given above can also he applied to a
class of nonlinear systems. Let us assume that the
system to be controlled is given as :

i = Alx) + B(z)u , y=C0C(x) (17)

i the continuous time case and as

aer1) = Ale(B) +Bla(e)ulk) . y(k) = Cl=(k) |

' (1)
in the discrete time case, where 4, B : R — R®
and €' : R® — R are appropriate functions, u and y
are control input and measurement outputs, respec-
tively. which are scalars.

We assume that there exists a coordinate change
s = T(z). where T : R™ — R" is an appropriate
function, which transforms (17} into the following
form .

LB - B L w=Cle) L (1)

and (18) into the following form :
2(k+1) = Az(k)+ B(y(z(k) + 8(2(k))u(k)) , (20)

ylk) = C(z(k)) (21)
where A, B are as given in (7) and (8), oui =
1,...,n are appropriate constants, and 'Y,ﬁ,é
R™ — R are appropriate functions. Note that the
terms multiplying o; in (20) could be included in

¥}
In the continuous time case, by using the control law

h(z) - Az
YRR (22)

where h{-) is given by (12), we can match the dy-
narnics of (19) with that of the model chaotic system
given by (11), provided that 3{z) # 0. This require-
ment is natural, since otherwise the control input «
has no effect on the system dynamics, see (19).

Similarly, in the discrete time case, an appropriate
control input u(k) to cbtain a model match between
(20) and (10) is given as follows :

h(z(k}) — 7(z(k))
B(=(k)) '

ulk) = (23)
where h{-) is given by (14). Obviously, we require
B{z(k)) # 0 along the solutions of (20). This re-
quirement is natural, since otherwise the control in-
put u(k) has no effect on the system dynamics, see
(20).

The results presented in this section can be summa-
rized as follows

i: Any controllable linear {single input) system can
be chaotified with an appropriate control law.

ii : Any nonlinear (single input) system which could
be transformed into the form (19) or (20} can be
chaotified with an appropriate control law provided

that B(z(k)) # 0.

4 Synchronization Based Implementation

To implement the control laws given above the state
vector z should be available. In most of the cases,
the available output signal y has lower dimension,
which is a scalar in our case, and is not sufficient
to compute the necessary control input . In such
cases, an appropriate approach would bhe to obtain
an approximation Z of z, and use -this estimate to
approximate the required control signal.

Since the synchronization schemes may provide good
estimates of the receiver states, which is 2 in our case,
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a natural approach to solve the problem 2 given in
section 2 is to use a synchronization scheme for the
system to be controlled . For this alm, any syn-
chronization scheme which uses the output y as a
synchronization signal and provides estimates £ of z
could be used.

To elaborate further, let us consider the linear system
giver: by (5). Let us consider the following observer-
hased synchronization scheme for the system given
by (5) : .
P A But Ky —9) ., §=C: , (29
where £ e R", K € R"® is a gain vector to be deter-
mined. Let us define the error in synchronization as
¢ = — 2. By using (5) and {24) we obtain -
é=(A-KC)e (25)
Hence, if A, = A - KC is a stable matrix, then we
have [le(t)] -» 0 as t — oo; moreover this decay is
exponential. Existence of such a vector K is guaran-
teed if the system given by {5) is ohservable, More
precisely, let us define the following observability ma-
trix
C
oF:
. (26)
CA‘TL—I

It is well-known that if rank(Q,) = n, then there
exists a /' such that the matrix A, is stable, hence
she solutions of (25) satisfy :

le(t)ll < Me ™ fie() (27)

for some M > 0, § > 0, for details see e.g. {12}, [13].

Based on the estimate Z of z, a natural approxima-
tion of u given by (15} is « = h{%). To see the effect
of this approximation, assume that b : R® - R is a
Lipschitz function, i.e. the following holds for some
>0

2(z) — A(2)) < I||2 - 2 (28)

Now, assume that we use w = h(2) in (5). Then, the
laster becomes :

P= Az Bh(3) = Az + Bh(z) + et} ,  (29)

where e.(t) is an error term which satisfies :
feot)]| = [ BCh(2)~h(2))| < IMe™®|e(0)) , (30)

see (27), (28). Since the error term decays to zero
exponentially fast, we expect that the behaviour of
(29) and (11) be qualitatively similar, provided that
the chaaotic behaviour of (11} is structurally stable.
If the chaotic solution of (11) is globally attractive,

then since e.(t) decays to zero exponentially fast,
the solutions of (29} will eventually converge to the
chaotic solutions of {11). If the chaotic solutions of
(11) are only locally attractive, let us assume that
for some € > 0, the behaviours of (29) and {11} are
qualitatively similar, provided that |je.(t)]] < e We
will call this assumption as the structural stability
assumption, see e.g. [8]. From (30) it easily follows
that this condition is satisfled for ||e(0}]| < ¢/IM.
Hence, if initial error is sufficiently small, then the
hehaviours of (29) and (11) are qualitatively simi-
lar under the structural stability assumption given
above. On the other hand, assume that ||e(0}|| < R
for some R > 0. From (30) it follows that |lec(t)]| <¢
fort > T = 1/6In{IMR/e). Hence we could use a
switching law to gencrate w as follows :

“:{h&

The same approach could be generalized to the dis-
crete time case as well. There are many such schemes
proposed in the literature, see e.g. [17]. For illustra-
tive purposes, we will consider the following observer
based synchronization scheme

t<T

t>T (31)

3k +1) = Az(k) + Bu(k) + K(y(k) - 9(k)) , (32)
§(k) = Cza(k)

where K € R™ is a gain vector to be determined.
Let the synchronization error be defined as e(k) =
z(k) — £(k). By using (6) and (32) we obtain :

(33)

ek +1) = (A - KC)elk) (34)
Therefore e(k) — 0 as k — oo if and only if the
matrix A, = A— K is Schur stable ( i.e. any eigen-
value A of A, satisfles | A |< 1). Moreover, in this
case the decay is exponential, l.e. the following holds
forsome M >0and 0 < p<1:
le(k)ll < Mp*|le(0)] (35)
It is known that there exists such a gain vector K
which makes A, Schur stable if the system given by
{2), or equivalently the system given by (8), is ob-
servable, see e.g. [11] . It is also known that the
latter condition is satisfied if and only if the observ-
ability matrix ), given by (26) has full rank. The
same structural stability arguments presented above
applies to this case as well. In particular, assume
that for some € > 0, the behaviours of (13) and (20)
are qualitatively similar provided that le.(k}| < ¢,
see e.g. [8], where e, is an error term similar to
{30). It can be easily shown that this condition holds
for [[e(0}|| < ¢/cM. Therefore, if the initial error is
sufficiently small then the solutions of (201 will be
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chaotic provided that the chaotic attractor of (13} is
locally attractive and structurally stable in the sense
given above. On the other hand, if [le(0)]] < R for

some K > 0, it can be shown that {le.(k)[| < ¢ for.

k> N={(lne-IneMRE}/np Hence we could use a
switching law to generate u as follows -

k<N

| 0 ,
u(k}) { h(3(k)) k> N (36)

5 Model Chaotic Systems

Our control scheme is based on the existence of
model chaotic systems which has an appropriate
form. In this chapier, we will propose a simple
scheme to generate such model chaotic systems both
for continuous and discrete time cases.

First let us consider the continuous time case. For
n = 3, such chaotic systems are abundant in the lit-
crature. In fact, all Lur’e type systems, which cover
most of the electronic chaotic oscilaters proposed in
the liferature including the well-known Chua’s oscil-
lator, can be transformed intéo this form. Some sys-
tems, which are not in this structure (e.g. Rossier
system), may be transformed into this form, see e.p.
[13] . As an example, consider the following system

Wy = Wy
'U')Q = Wy (37)
U');; = —-bg'u);; - b]ﬂ):)_ - bg’ﬂ)l — 'LU%

This system exhibits chaotic behaviour for certain
range of parameters b;, see [10], [14]. To generate
chaotic systems for n > 3 which has the form of (9),
let us consider the case n = 3, which is repeated
below for convenience : '

-’?jJ] = Wy
iy = Wy
'u');; = f('u)l, W, 11}3)

(38)

By delining w = w;, and noting that w, = w, wsy =
4, and by using (38}, we obtain the following scalar
cquation _

W™ flw, @) =0 (39)

Obvicusly, {39) and (38) are cquivalent through the
transformation given above. Now let us consider the
following higher dimensional system :

Uy = wy

U = W
y s (40)
1y = flwy, we, ws) + wy
Uy = —Og
where o > 0 is an arbitrary constant. Note that

wat) = wa()e™™ - 0 as t — oo, Hence asymp-
totically, (38) and the first 3 equations of {40) are

the same. Therefore, if (38) has a globally attractive
chaotic solution, so does {40). On the other hand,
if {(38) has only locally attractive chaotic solution,
which is structurally stable in the sense given hefore,
then so does (40), provided that | ws{0) | is suffi-.
clently small.

To transform the system given hy (40) into the form
given by (9), first note that from the third equation
in (40) we have wy = w3 — f(wy, wy,w3). By defining
w = wy, and noting that wy = 1, wy = 4, and using
the last equation in (40) we obtain :

d

2 (W — flw, i 1)) + alw — flw,w,16)) =0,
(41)
which could be rewritten as
w® = F(w,w,w, w'®) (42)
where
Flw,w,w,w®) = L(f(w,w,w)) (43)

fa(w(‘?) ~ flw,w, )

Naturally, here we assume that f is a differentiable
function. Obvicusly, (43) is equivalent to (40). By
using standard change of variables w = w, wa = 4,
wy = 0, wy = w™, we can rewrite (42) as

'bf}] = Wq

a2 = s (44)
w3 = Wy

Wy = Flwy, we, ws, wq)

which has the form of (9) for n = 4. Obviously this
procedure can be extended to arbitrary dimension,
provided that f is sufficiently smooth.

The same approach could be generalized to discrete
time case as well. Assume that the model chaotic
system is given by (10) and consider the following
system :

wy(k +1) = wp(k)
‘wg(}f + 1) = UJ3(JC)

wp_1{k + 1) = wy(k)
wall +1) = s (B, wa k), wa (k) + 2(K)
z(k+ 1) = pz(k)

(45)
where | p |< 1 is an arbitrary real number. Ob-
viously, z(k) = p*z(0) — 0 as & — oo, hence the
first n equations of (45) and (30) are asymptotically
the same. Therefore if (10) has a globally attractive
chaotic attractor, so does (45). On the other hand,
if {10) has only locally attractive chaotic attractor,
which is structurally stable in the sense given in the
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is

section 4, then so does (45) provided that | #(0)
sufficiently small.

To transform (45) into the form (10), let us define
the variahle w4 as follows :

“«"n~+l(k} = f(wi(k): ‘wz(k‘)a e a'wn(k)) + Z(k) *
(46)
Hence, from {45) we have wy,(k + 1) = wp+1(k). By
using (45) and (46) we obtain the following :

w (k4 1) = wa(k)
wolk 4+ 1) = ws(k)

Welk + 1) = wna (k)
wyp(k+ 1) = Flw, (k){um(k), w1 lk))

{47)

where F'is given as :

Flu(k)] = Fwa(R), .. s () & pronn ()
e f)f(wl (k)7 ‘wg(k_), S 1wn(k))
(48)

6 Conclusion

{n this paper, we considered a model-based approach
to the anticontrol of some linear, time invariant sys-
tems. We considered both the continuous and the
discrete time cases. Our aim was to generate a
chaotic hehaviour which is determined by a chaotic
model, by means of an appropriate control input. To
achieve this task, we assumed the existence of a ref-
crerice model in an appropriate form which exhibits
chanotic behaviour. Then we determined an appropri-
ate control input to match the dynamics of the sys-
tem to he controlled with that of the model chaotic
systemm. We proved that : ¢ : any controllable lin-
ear time-invariant system can be chaotified with an
appropriate input, 7 : this approach could be gener-
alized to a class of nonlinear systems. We proposed
a simple procedure to generate such chaotic models
in arbitrary dimension. We also considered the com-
putability of the required feedback law by using only
the available signals. To estimate the states of the
system to be controlled, we proposed a synchroniza-
ion scheme.
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