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Abstract: This article proposes new location models for emergency medical service stations. The models are generated by incor-
porating a survival function into existing covering models. A survival function is a monotonically decreasing function of the response
time of an emergency medical service (EMS) vehicle to a patient that returns the probability of survival for the patient. The survival
function allows for the calculation of tangible outcome measures—the expected number of survivors in case of cardiac arrests. The
survival-maximizing location models are better suited for EMS location than the covering models which do not adequately differ-
entiate between consequences of different response times. We demonstrate empirically the superiority of the survival-maximizing
models using data from the Edmonton EMS system. © 2007 Wiley Periodicals, Inc. Naval Research Logistics 55: 42–58, 2008
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1. INTRODUCTION

The goal of this article is to question a widely-used mod-
eling construct (“coverage”) and a related performance mea-
sure (fraction of calls reached within some time standard) for
emergency medical service (EMS) systems, and offer a supe-
rior alternative which takes advantage of medical research on
the relationship between response times and survival rates.
We show how nonlinear survival functions can be incorpo-
rated into EMS location models, and we offer computational
evidence based on realistic data to support our claim of
superiority.

The units of measurement matter for EMS performance
measures, just like they matter for other organizations. Met-
rics in concrete, easily interpreted units, such as dollars or
lives saved, get more attention and facilitate comparisons
between competing uses of funds. Ideally, EMS planning
would be driven by input–output relations linking resource
allocation to patient outcomes, as argued by Willemain [42].
It also matters whether standards are set locally or nationally.
As an example, for fire services, standards that are followed
in the US and Canada are set by the National Fire Prevention
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Association. The insurance industry ranks fire departments
based on adherence to such standards, and when they are not
met, insurance rates may rise [33]. Thus, there is a direct
link between failure to meet standards and (monetary) out-
comes. This is not the case for EMS coverage standards,
which vary even between communities in close proximity
to each other (for example, see [32]). Davis [16] argues that
emergency services in most U.S. cities “do not know how
many lives they are losing, so they cannot determine ways to
increase survival rates.” We will take as given that the real
objective for an EMS system is to maximize the number of
patients that survive and that coverage is used as a proxy
for the real objective. There are other measures that mat-
ter, such as life expectancy and quality of life for survivors.
However, it is unclear to what extent faster EMS response
times influence such secondary measures. Yet there is clear
evidence that faster response times can save lives of cardiac
arrest patients.

The problem of selecting the locations of EMS vehicles has
been quite popular among operations researchers. Such mod-
els typically focus on either coverage or average response
time—two performance measures that were discussed in an
early survey paper by Chaiken and Larson [10]. In one of
the earliest papers on this topic, Toregas et al. [38] developed
a coverage model, which minimizes the number of facilities
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needed to serve a set of given demand nodes. The coverage
concept utilizes a travel distance (or time) standard for ser-
vice delivery. All demand points that are within this threshold
distance to a service facility are considered to be served by
the facility, i.e., covered. Hence, for a given set of facility
locations and demand points, the covering model classifies
the demand points into two sets: those that are covered and
those that are not. The set cover model of Toregas et al. [38]
minimizes the number of facilities so that all demand points
are covered, and the max cover model of Church and Revelle
[11] maximizes the demand covered with a given number of
facilities.

Coverage models have been used frequently by researchers
and practitioners for the following reasons:

– The concept is simple to communicate to decision-
makers and the public (a call is either covered or
not).

– Many EMS systems use the percentage of calls cov-
ered as a performance measure. Perhaps the most
common EMS standard is to respond to 90% of all
urgent calls within 8 min [18].

– Deterministic coverage models typically result in
integer programs that are easy to solve using standard
optimization software.

Despite these advantages, the black-and-white nature of
the coverage concept is an important limitation, and standard
coverage models should not be used for EMS vehicle loca-
tion. First, coverage can result in large measurement errors
because of their limited ability to discriminate between dif-
ferent response times. Second, these measurement errors are
likely to result in large optimality errors when one uses cover-
ing models to locate emergency facilities instead of a model
that takes survival probabilities into account. The follow-
ing example demonstrates that the optimality error can be
arbitrarily large.

EXAMPLE: Assume that demand locations A and B in
Fig. 1 are 18 min apart, and a station is located at X, halfway
between them. A covering model with a covering radius of
9 min would count all demand at A and B as covered, so
X is the optimal location, regardless of the relative mag-
nitude of the demands. Suppose the demand at A is 10,
the demand at B is 1, and the survival probability as a
function of the response time t is exp(−t). Hence, if the
emergency facility is located at X, then Pr{survival at A} =

Figure 1. An example depicting the difference between “cover-
age” and “survival.”

Pr{survival at B} = exp(−9) = 0.000123, and the expected
number of survivors in the system is 11 × 0.000123 =
0.001358. If the station is located at A instead, then the
expected number of survivors increases to 10, which is
over 7000 times better. This ratio can be made arbitrarily
large by increasing the demand at A. As this (admittedly
pathological) example demonstrates, covering models can
result in arbitrarily poor location decisions for emergency
facilities.

Although this example is artificial, it illustrates the real
and important issue of whether EMS response time stan-
dards should be the same regardless of population density.
Economies of scale make it less expensive to provide a given
level of service in urban areas than in rural areas. Simi-
larly, service can be provided more efficiently in the densely
populated center of a city than in the more spread out subur-
ban areas. The objectives of providing equal access to EMS
versus maximizing the total number of survivors lead to dif-
ferent deployment patterns [21]. Response time standards
and actual performance are typically different for urban and
rural areas in the US, UK, and Germany [21, 22], indicating
that the standard setters have decided against equal access.
According to these references, the most common standards
in North America are to reach 90% of calls in 9, 15, and
30 min for urban, rural, and wilderness areas, respectively.
In the UK, a national standard calls for reaching 75% of
calls in 8 min, regardless of location. Furthermore, 95%
of urban calls should be reached in 14 min in urban areas
and 19 min in rural areas. German standards vary across the
country, requiring that 95% of calls be reached within statu-
tory response times that range from 10 to 15 min. These
issues raise important ethical concerns, some of which are
addressed by Felder and Brinkmann [21]. As they point out,
although a policy of equal access seems difficult to criti-
cize, such a policy implies that lives are valued differently
in different areas, because the cost of saving a life can be
much higher in sparsely populated rural areas than in urban
centers.

To explicitly model the utility of response time for a patient,
we need a function that maps the response time of an EMS
vehicle to a patient, to the probability that the patient survives.
However, there are many different types of EMS calls and the
survival probabilities depend on the emergency. We focus on
one type of emergency: out-of-hospital cardiac arrest. There
are several reasons for our choice:

1. Cardiac arrest calls are of the highest priority, and
the response time is crucial. Davis [14] refers to such
calls as the most “saveable” and “the truest measure
of emergency medical performance.”

2. Current response time standards were derived from
cardiac arrest survival studies [22].
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3. Medical researchers have studied the relation
between survival probability and response time
extensively (see next section).

4. These calls account for a sizeable portion of high
priority EMS calls.

We have access to detailed call data for the Calgary,
Alberta, EMS system. In 2004, Calgary EMS responded to
14,152 Priority 1 (or “Delta”) calls. The leading Priority 1
call category was “chest pain–Delta” with 1865 calls. The
combined categories of “chest pain–Delta,” “cardiac arrest–
Delta,” and “heart problems–Delta” added up to 2463 (17.4%
of all Priority 1 calls). Furthermore, the top 10 Priority 1
categories not related to heart problems were the following:
breathing problems, unconscious, traffic accident, building
fire, house fire, fall, convulsions and seizures, hemorrhage
and lacerations, traumatic injuries, and unknown problem
(man down). While these categories are likely to have survival
functions different from cardiac arrest, it can be safely argued
that for each of these categories response time is important
and the probability of recovery decreases gradually with time.
These 10 categories, combined with chest pain, cardiac arrest,
and heart problems, add up to 11,187 calls, making up almost
80% of all Priority 1 calls.

In addition, there were a significant number of Priority
2 calls in critical categories, including 3961 “chest pain–
Charlie” calls, 3570 calls with breathing problems, 2278 calls
in the unconscious category, and 1395 stroke calls. While
these were classified as Priority 2 calls, some may have been
Priority 1 calls that were misclassified as Priority 2 calls, and
some Priority 2 conditions may have deteriorated to Priority
1 during the response period. The number of calls in these
four Priority 2 categories alone, where response time is crit-
ical, is 11,204. Hence, for a considerable number of EMS
calls, faster is better and OR models for EMS system design
should take this into account.

The rest of the article is organized as follows: Section 2
reviews relevant literature on ambulance location models and
cardiac arrest survival probabilities, Section 3 discusses how
to model the probability of survival, Section 4 introduces
the maximal survival model and compares it to two mod-
els from the literature numerically, Section 5 builds on the
maximal survival model from Section 4 and introduces cov-
erage models with increasing realism and shows how survival
functions can be incorporated into these more refined mod-
els, Section 6 provides computational results, and Section 7
offers concluding remarks.

2. LITERATURE REVIEW

The literature on ambulance location is quite rich. It has
been reviewed thoroughly by Swersey [37], Marianov and

Revelle [31], and more recently by Brotcorne et al. [4]
and Jia et al. [24]. We limit our discussion of this litera-
ture to papers that are most relevant to this article, namely
those that use generalizations of covering models where
numbers other than 0 or 1 are used to quantify the qual-
ity of coverage, as well as approaches to minimize average
response time. In this section we also discuss the litera-
ture on survival functions for EMS, which is central to our
article.

2.1. Generalizations of Coverage Models

Brotcorne et al. [4] provide a recent survey of the EMS
location literature, and identify 18 different models for ambu-
lance location. All of these models use the concept of cov-
erage. Deviations from a 0 or 1 for coverage occur for two
reasons:

1. Incorporating the probability that a station may have
no EMS vehicles to respond to a call: If the probabil-
ity of having an idle EMS vehicle at a given station
is p, then the expected coverage for a demand point
with a demand of one unit within the coverage radius
is not 1 but p (e.g., [14, 35, 36]).

2. Incorporating response time uncertainty: If the prob-
ability of responding from a station to a demand point
within the given time limit is q, then the expected
coverage for a demand point within the coverage
radius is q [15].

In a model that incorporates both EMS vehicle availabil-
ity and response time uncertainty, the expected coverage for
a unit demand would be pq, assuming the two sources of
uncertainty are independent.

While such models are more realistic than the basic cover-
age model, the deviation from zero or one in coverage is due
to factors other than the time-dependent utility of the response
time. All such models still use the covering concept with a
fixed (and arbitrary) coverage radius. The central assumption
is still the same: if the vehicle reaches the demand within a
specified time limit then the call is covered (the patient is
saved) and if not it is not covered (the patient is lost). Hence,
while these generalizations of the covering model have differ-
ent levels of sophistication in the way different uncertainties
are incorporated, all suffer from the same shortcoming in the
modeling of the patient’s utility as a function of the response
time. We discuss these models in more detail later in the
article.

We are aware of only three papers that take a critical
view of the 0–1 coverage concept and attempt to general-
ize it. Church and Roberts [12] suggest a piecewise linear
step function to incorporate quality of service in a cov-
ering model. They show that the piecewise linear utility
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function may result in solutions that are significantly dif-
ferent from those obtained using the standard max cover
model. While this is a step in the right direction, it is ad-hoc
and rather limited. More recently, Karasakal and Karasakal
[25] and Berman et al. [2] independently introduced cover-
age models where coverage decays gradually with distance.
Karasakal and Karasakal [25] focus on algorithmic issues,
and they design a Lagrangian heuristic to solve the problem.
In their computational experiments, they assume that cover-
age changes from 1 (full coverage) to 0 (no coverage) in a
narrower interval than would be appropriate for the context
we focus on, where survival probability might decay gradu-
ally from around 30% to 5% when response time varies from
0 to 10 min. Berman et al. [2] present a structural result that
allows one to limit candidate locations in a network to a finite
set without loss of generality. Then, they show how the prob-
lem can be formulated as an uncapacitated facility location
problem and they also provide an alternative and more effi-
cient formulation. Neither of these papers discusses how one
would quantify a coverage function, which is an issue that we
emphasize. We also emphasize estimation of the benefit of
using a finer graduation than 0–1 coverage. While Karasakal
and Karasakal [25] report on spatial differences between opti-
mal solutions to their model and corresponding instance of the
standard max cover model, they do not address differences
in the objective function value—the measure of quality of
service.

2.2. Average Response Time Minimization

In a deterministic setting, the p-median model can be
used to locate ambulance stations to minimize average dis-
tance from demand nodes to the closest ambulance station.
Larson’s [28, 29] exact and approximate hypercube mod-
els can be used to estimate average response time, taking
ambulance unavailability into account. Jarvis [23] developed
a locate–allocate heuristic that assigns ambulances to sta-
tions to minimize average response time, as evaluated by the
approximate hypercube model (see also [30]).

2.3. Survival Functions

Almost all of the published research we have found relat-
ing survival rates to EMS response times focuses on cardiac
arrest. One notable exception is Cretin and Willemain [13],
who focus on survival rates after myocardial infarction (heart
attack).

Eisenberg et al. [20] reviewed published reports from 29
cities on survival rates after out-of-hospital cardiac arrest.
They identified many factors besides response times that may
influence survival rates, including system design (how EMS
staff are trained; which procedures they perform), the consis-
tency with which procedures are applied, physiological and

demographic differences between regions, and inconsisten-
cies in definitions used for terms such as “cardiac arrest” and
“response time.”

They present hypothetical survival curves from the time of
collapse for five different EMS system types: EMS vehicles
staffed by emergency medical technicians only (EMT), EMT
with defibrillation capability (EMT-D), paramedic, EMT fol-
lowed by paramedic, and EMT-D followed by paramedic.
The hypothetical survival curves assume that without inter-
vention, the survival rate begins at 100% at the time of
collapse and decays linearly to zero after 10 min. When EMTs
arrive and administer cardiopulmonary resuscitation (CPR),
the slope of the survival curve is assumed to decrease, but
remain negative. If EMTs administer defibrillation as well,
then the slope is assumed to decrease further. The survival
curve is assumed to stabilize (have a slope of zero) either
when paramedics arrive and provide medication and intu-
bation, or, for EMS systems with no paramedics, when the
patient arrives in a hospital.

The authors suggest benchmark survival rates after sta-
bilization ranging from 10% for EMT systems to 35% for
EMT-D/paramedic systems. The benchmark values are close
to values that have been achieved in King County, WA,
where the EMS system has evolved from EMT, to EMT-D,
to EMT/Paramedic, to EMT-D/Paramedic over time.

Perhaps the most convincing evidence that short response
times improve survival rates of cardiac arrest patients comes
from a study conducted in casinos [40], where security offi-
cers were trained to administer CPR and defibrillation. The
exact time of collapse was determined from security videos
and times from collapse to CPR were typically under 3 min.
This separates this study from most others, where the time
of collapse is either subjectively estimated by bystanders
or ignored and times from collapse to CPR are consider-
ably longer. In this study, patients who received defibrillation
within 3 min after collapse had a 74% survival rate, while
those who received defibrillation later had a 49% survival
rate.

Of the many studies that Eisenberg et al. [20] surveyed,
some did not report response times at all, while others
reported only averages or percentiles, and a few reported
response time distributions and estimated how survival
depended on response time. We now discuss four relevant
studies that estimated such survival functions.

The first study was conducted by Larsen et al. [27]. The
authors used data from the cardiac arrest surveillance sys-
tem of King County (Washington, US). Using multiple linear
regression, they estimated the following equation for survival
probability:

s(ICPR, IDefib, IACLS) = 0.67 − 0.023ICPR − 0.011IDefib

− 0.021IACLS (1)
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where ICPR is the duration from collapse to CPR; IDefib is
the duration from collapse to defibrillation; and IACLS is the
duration from collapse to Advanced Cardiac Life Support
(ACLS), and all three durations are measured in minutes. The
authors reported that the interactions between the variables
were insignificant, and the additive model was accurate. A
comparison between the predicted and the observed survival
rates revealed that the largest difference was observed when
response time was very large. Where the model predicted a
survival rate of 0%, observed survival rates ranged from 3
to 20%, depending on specific attributes of the system, e.g.,
whether the ambulances have defibrillators and are staffed by
paramedics.

The second study is by Valenzuela et al. [39], who used data
from Tucson (Arizona, US) and King County (Washington,
US) and logistic regression to construct a survival func-
tion. The function included many factors: age, manual CPR
applied by bystanders, time interval from collapse to CPR,
time interval from collapse to defibrillation, and manual
CPR initiated by bystanders/collapse to CPR interval interac-
tion. Notably, the authors found that the site (Tucson or King
County) did not have a significant effect on survival after
controlling for the aforementioned variables, i.e., the same
survival function could be used for both urban areas. The
authors then gave a second survival function which included
only the time interval from collapse to CPR and the time
interval from collapse to defibrillation. This second function,
which quite accurately approximates their first function, is:

s(ICPR, IDefib) = (1 + e−0.260+0.106ICPR+0.139IDefib)−1 (2)

In contrast with the previous study, the authors reported
that the survival function overestimated the probability of
survival when the response time was large.

The third study is due to Waaelwijn et al. [41]. This
study used data from Amsterdam, Netherlands, and the sur-
rounding region. Using logistic regression, three different
survival functions were estimated, from the perspectives of
the bystander, the first responder, and the paramedic. Many
details were included in the last two functions such as the ini-
tially diagnosed heart rhythm and the necessity of advanced
CPR. The first function had three variables: a binary variable
to denote whether the collapse was witnessed by EMS staff
or not, the length of the time interval from collapse to basic
CPR, and the length of the time interval from basic CPR to
the arrival of the EMS vehicle. Their first function is:

s(XEMS, ICPR, IResponse)

= (1 + e0.04+0.7XEMS+0.3ICPR+0.14(IResponse−ICPR))−1 (3)

where XEMS is 1 if the cardiac arrest was witnessed by EMS
staff and 0 otherwise, and IResponse denotes the length of the
response time in minutes.

The fourth study was conducted by De Maio et al. [18],
using data from several municipalities in Ontario, Canada.
The authors used stepwise logistic regression to estimate
survival probability. The variables that remained in the final
model were EMS response time, age, whether the collapse
was witnessed, whether a bystander administered CPR, and
whether fire or police administered CPR. They then used
an ad-hoc procedure to average over the effects of all of
the explanatory variables except response time, resulting
in a function that predicts survival probability based solely
on EMS response time, for people in the population they
studied:

s(IResponse) = (1 + e0.679+0.262IResponse)−1 (4)

In using the four estimated survival functions, it is impor-
tant to consider how “survival” was defined, which cases were
included, and the type of EMS system in the study region.
All four studies defined “survival” to mean “survival until dis-
charge from hospital.” Larsen et al. [27] and Valenzuela et al.
[39] limited their study to patients with ventricular fibrilla-
tion (a type of heart rhythm that is classified as “shockable”)
whereas Waaelwijn et al. [41] and De Maio et al. [18] included
all cases that were treated for cardiac arrest by EMS person-
nel, regardless of whether the initial rhythm was shockable.
The former two studies were done in regions with a two-tier
EMS system, where first responders had EMT training and
second responders were paramedics. The latter two studies
were for single-tier EMS systems staffed by EMTs [18] or
personnel trained according to European standards [41].

The medical literature we have reviewed assumes, implic-
itly or explicitly, that EMS systems are driven by a coverage
standard, such as a target to reach 90% of the highest pri-
ority calls in 8 min. One study [3] reaches the pessimistic
conclusion that “there is little evidence . . . to suggest that
changing . . . response time specifications to times less than
current, but greater than 5 min, would have any beneficial
effect on survival.” Our contention is that the performance
measure (coverage) should be questioned, and that if EMS
systems are designed to directly maximize the expected num-
ber of survivors rather than using coverage as a proxy, then
improvement is possible.

In the next section we compare the four survival func-
tions introduced in this section, and discuss how one might
deal with variables other than response time that appear as
explanatory variables in the survival functions.

3. MODELING PROBABILITY OF SURVIVAL

3.1. Modeling the Response Time

The survival functions that we surveyed differ from each
other in many aspects. Some functions include additional
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explanatory variables besides response time. For example,
(1) includes the length of the time intervals from collapse
to CPR, defibrillation, and intensive care, and (3) requires
knowledge of whether EMS staff witnessed the collapse or
not. It is beneficial to include such additional explanatory
variables because it allows local calibration of the functions,
taking into account that the community where one wishes to
use the location model may differ systematically from the
community where the data that were used to estimate the sur-
vival function was collected. Such calibration involves, on
the one hand, ensuring that the estimated survival function is
based on data from an EMS system that is comparable to the
one where one wishes to use the location model. For example,
if the EMS system uses only emergency medical technicians,
then one should not use a survival function that is based on
an EMS system that uses paramedics. On the other hand, one
should “average over” behavioral explanatory variables such
as whether a bystander administers CPR, leaving only the
response time.

For illustration purposes, consider the following determin-
istic (and in some cases unrealistically optimistic) assump-
tions that one could use to eliminate all variables except the
response time:

• The collapse of the patient is not witnessed by an EMS
unit, i.e., XEMS = 0 in (3).

• A call is placed to EMS as soon as the patient
experiences cardiac arrest.

• CPR is performed by the responding EMS unit imme-
diately upon arrival. CPR is not performed by a
bystander. Together with the preceding assumptions,
this implies that IResponse = ICPR in (1)–(3).

• All EMS units are equipped with defibrillators and
staff who are trained to use them. Defibrillation is
performed 1 min after arrival, which implies IDefib =
IResponse + 1 in (1) and (2).

• ACLS is performed at the hospital which takes an
average of 16 min to reach after the first response
(i.e., IACLS = IResponse + 16 in (1)).

Considering we used assumptions in favor of the patient
(EMS contacted immediately, immediate CPR upon arrival,
defibrillation within 1 min of arrival), Fig. 2 clarifies two
sobering messages about the consequences of a cardiac arrest
where immediate response is not available and a call to EMS
must be made.

1. All survival functions start well below 100%. This
means a cardiac arrest is quite likely to result in death
even if the response is almost instantaneous.

2. All functions show survival probabilities below 10%
at 10-min response times.

Figure 2. A comparison of the four survival functions discussed,
plotted on the background of the step function of the standard cover
with a 9-min threshold.

Figure 2 also makes it rather clear that the standard max-
imal covering model with a response radius of, say, 9 min
is not likely to maximize the number of cardiac arrest sur-
vivors. The survival probability is about five times higher
when responding immediately than when responding in 9
min, but a covering model does not differentiate between
these two response times. Furthermore, response times of
9 and 10 min result in almost the same survival proba-
bility, while a covering model attaches a major difference
to these two response times. Finally, the survival prob-
ability is nonzero for response times over 9 min while
the covering model would place no value on responses
over 9 min.

3.2. Modeling Explanatory Variables Other than
Response Time

We now turn to incorporating the impact of explanatory
variables besides response time. Let s̄(d) be the probabil-
ity of survival as a function of distance d, for a patient at
a particular location, assuming the responding EMS vehicle
comes from a particular station. We fix the location and the
responding station to simplify the notation in this section.
The objective functions of the location models we present
aggregate over demand locations and stations. The distance
will determine the distribution for the response time R. The
probability of survival will also depend on a vector of other
explanatory variables, O. Medical studies attempt to quan-
tify the probability of survival as a function s(R(d), O) of
response time (which we show here as a function of dis-
tance) and other explanatory variables. To obtain appropriate
input for location models, we need to “average over” both
the response time and the other explanatory variables, i.e.,
s̄(d) = E[s(R(d), O)].
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The effort needed to quantify the variation in these other
explanatory variables depends on the variable. Some are
known system design features, e.g., whether ambulances are
staffed by paramedics or emergency medical technicians.
Others are measurable but typically not tracked, e.g., whether
cardiac arrest is witnessed by a bystander and whether the
patient receives CPR from a bystander. In the U.S., efforts
by the Centers for Disease Control and Prevention and
the American Heart Association are underway to facilitate
the routine collection of such data in a cardiac arrest reg-
istry ([1], p. 66) and a recent survey [43] indicates that
25.4% of big-city EMS systems in the U.S. track rates of
bystander CPR. Finally, some variables are difficult to mea-
sure and rough estimates must be used, e.g., for the time
from when a patient collapses due to cardiac arrest until a
phone call is placed to EMS. It is important to assess the
sensitivity of the model to estimates for variables in this last
category.

Assuming that one has information about the probabil-
ity distribution for R(d) and for O, one could attempt to
compute s̄(d) using exact or approximate closed-form rela-
tionships, numerical integration, or Monte Carlo simulation.
We now elaborate on the Monte Carlo approach, because
it is general and easy to implement. First, choose a set of
representative distances (d1, d2, . . . , dm). For each distance,
simulate n EMS calls, and let Rij , and Oij be the values
for the response time and other explanatory variables for
the i-th call and the j -th distance. Then, one can use the
function s(R(d), O) to compute the probability of survival
sij for the i-th call and j -th distance. The sample average∑n

i=1 sij /n provides an estimate for s̄(dj ). The estimates
(s̄(d1), s̄(d2), . . . , s̄(dm)) could then be used to approximate
the survival function, possibly by fitting some parameterized
function to them.

To illustrate the procedure, we will make the following
assumptions, which are roughly consistent with data reported
by Eisenberg et al. [19] for King County, WA. We focus on
cases where cardiac arrest occurs before an EMS vehicle is
called. The first time interval of interest is access time T1, the
time from when the patient collapses from cardiac arrest until
a phone call is placed to EMS. Consistent with Eisenberg et al.
[19], we assume that 61% of cardiac arrests are witnessed or
heard by a bystander, and in those cases access time is expo-
nentially distributed with a mean of 1.2 min. In the 39% of
cardiac arrests that are not witnessed, we assume that access
time is exponentially distributed with a mean of 30 min. This
is obviously a rough estimate; we discuss the sensitivity of the
estimated survival curve to it later. Second, we consider the
time T2 from the moment EMS is contacted until the patient
receives CPR. CPR could be administered by a bystander
or by EMS staff when they arrive. We assume that 64% of
bystanders will perform CPR on the patient, and that the time
until they do so, after contacting EMS, is an exponentially

distributed random variable B with a mean of 1 min. Thus,
with 36% probability, T2 will equal the EMS response time R

and with 64% probability it will equal min(R, B). Third, we
consider the time from beginning of CPR until the first EMS
unit arrives, T3. Consistent with our previous assumptions,
T3 will equal zero with 36% probability. Finally, let T4 be
the interval from arrival of an EMS unit until defibrillation,
which we’ll assume to follow an exponential distribution with
a mean of 2 min.

To simulate the response time R, we assume that it con-
sists of pretravel delay that is independent of distance, and
travel time, which depends on the shortest path distance d.
We assume the pretravel delay is lognormally distributed with
a mean of 3 min and a standard deviation of 1.5 min (consis-
tent with data from the City of St. Albert, as reported in [7]).
We also assume the travel time (in seconds) to be lognor-
mally distributed, with a median and multiplicative standard
deviation given as follows (based on [5]).

m(d) =
{

5.42
√

d for d ≤ 4400m

180 + 0.041d for d > 4400m
(5)

σ ∗(d) =
{

(0.277d0.123)−1.483 for d ≤ 4400m

(1.5d0.123/(180 + 0.041d))−1.483 for d > 4400m

(6)

For more on the modeling of travel times, see [8, 9, 26].
We used these assumptions, together with the survival

function (2) from Valenzuela et al. [40] to estimate the sur-
vival probability as a function of distance, in increments
of 500 m. This survival function has ICPR = T1 + T2 and
IDefib = T1 + T2 + T3 + T4 as explanatory variables. The
results are shown in Fig. 3.

Figure 3. Estimated survival probability as a function of distance
after averaging over the explanatory variables in the Valenzuela
et al. (2000) survival function. The “+” signs show 95% confi-
dence intervals around the estimated average survival probabilities.
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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To illustrate how one could assess the impact of para-
meter estimates for the explanatory variables, consider per-
haps the least reliable estimate, that of the mean access
time for cardiac arrests that are not witnessed. When we
decreased this estimate from 30 to 5 min, the survival curve
shifted up by anywhere from 3.6 percentage points (at a
distance of zero) to 0.2 percentage points (at a distance of
45 km). When we increased the estimate from 30 to 60
min, the survival curve shifted down by 0.7 to 0.02 per-
centage points. A more extensive sensitivity analysis would
determine how much this variation in the survival curve
impacts the optimal solution to the models that will follow,
and the resulting estimate of the total expected number of
survivors.

This brief discussion demonstrates that the response time
is the most important component of the survival functions,
and the other parameters are unlikely to impact significantly
the results of ambulance location studies. However, as we
described earlier, it is possible to conduct a parametric analy-
sis to fully assess the impact of the function parameters
on the results. In the next section, we introduce the maxi-
mal survival location problem and use a survival function
similar to the one in Fig. 3 to illustrate the benefits of
incorporating survival functions into a standard max cover
model.

4. THE MAXIMAL SURVIVAL LOCATION
PROBLEM

4.1. Formulation

The maximal covering location problem (MCLP) and the
q-median problem are the most basic models that one could
use to locate ambulances (see the appendices for formula-
tions). MCLP aims to maximize total covered demand with q

facilities and the q-median problem aims to minimize average
distance to the closest of q facilities.

We now formulate the maximal survival location problem
(MSLP), where the objective is to maximize the expected
number of patients who survive. Let pij denote the probabil-
ity that a patient at demand node i survives and is served by an
EMS vehicle from station j . We assume that every demand
node is served by the closest station. Then the objective
function is:

max
m∑

i=1

di

n∑
j=1

pij (7)

where m is the number of demand nodes, n is the number
of candidate locations, and di is the demand at node i. In
MSLP we need to keep track of which station serves which
demand point, so we define decision variables yij to equal

one if demand node i is served by an EMS vehicle at location
j , and zero otherwise. Then

pij =
{

s(tji + td) if yij = 1

0 if yij = 0

}
= s(tji + td)yij (8)

where tj i is the travel time from candidate location j to
demand node i and td is the pretravel delay. We assume
that the travel time and pretravel delay are deterministic,
but we relax this assumption later. Letting q be the num-
ber of facilities, and xj be equal to one is candidate location
j is selected (and zero otherwise), the formulation for the
maximal survival location problem (MSLP) follows:

MSLP:

max
m∑

i=1

di

n∑
j=1

pij =
m∑

i=1

di

n∑
j=1

s(tji + td)yij (9)

s.t.
m∑

i=1

yij ≤ mxj , j = 1, . . . , n, (10)

n∑
j=1

yij = 1, i = 1, . . . , m, (11)

n∑
j=1

xj ≤ q, (12)

xj ∈ {0, 1}, j = 1, . . . , n, (13)

yij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n. (14)

4.2. An Empirical Comparison of MSLP to Two
Models from the Literature

We now compare the MCLP, the q-median, and the MSLP
empirically. These three simple and deterministic models
allow us to focus on the impact of replacing zero-one cov-
erage or average response time with the survival probability.
For this comparison we use data from Edmonton, Canada,
with 180 demand points and 16 candidate locations for EMS
stations, and only the demand for Priority 1 calls. Using
CPLEX 8.11, we solved the MCLP, the q-median prob-
lem, and the MSLP on a Dell PowerEdge workstation with
1.13 GHz CPU clock and 1 GB of RAM, and experienced
run times of at most 1 CPU second. We use a survival
function based on the same assumptions as in the previ-
ous secton (see Fig. 3), except that uncertainty in response
times was ignored, i.e., we used E[s(E[R(d)], O)] instead of
E[s(R(d), O)].

We solved the models to optimality for q (number of sta-
tions) ranging from 1 to 16. Figure 4 shows the expected
number of survivors (evaluated using the approximate hyper-
cube model) for the optimal solution of each model. The
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Figure 4. The expected number of survivors for the optimal solu-
tions of MCLP and MSLP (top panel) and q-median and MSLP
(bottom panel) for 1 through 16 stations.

results demonstrate that using the optimal solution of the
MCLP or the q-median can lead a decision-maker to
select locations that are far worse than those which maxi-
mize the number of survivors. Using the MCLP solutions,
the expected number of survivors is up to 7.7% lower
than it could be, and using the q-median solutions, the
expected number of survivors is up to 23.5% lower than it
could be.

When used as proxies for MSLP, both the MCLP and q-
median have the weakness that when the number of stations
increases, the expected number of survivors may decrease—
see the MCLP results in Fig. 4 when q increases from 8
to 9. For MCLP, this can happen when the model sees an
opportunity to extend coverage to areas where the travel time
from the closest facility is just below the coverage standard,
and the survival probability is low. For the q-median, this
can happen when the model sees an opportunity to reduce
the longest response times at the expense of the shortest
response times. The shortening of the long response times
may not do anything to increase survivability, while length-
ening the short response times can decrease survivability
considerably.

We note one additional weakness of MCLP: With 13 sta-
tions, this model can cover all of the demand in the city.

Hence, the solutions of the problems with q > 13 are all
identical to the solution for q = 13. In contrast, MSLP (and
the q-median, with the exceptions noted in the previous para-
graph) is able to improve the expected number of survivors
each time a new station is added.

Finally, the objective function value of MSLP is more
meaningful than that of MCLP and q-median and it can be
more useful in deciding how many stations an EMS system
should have. For example, if a decision-maker is undecided
between 9 and 10 stations, all one can say based on MCLP
is that 10 stations will “cover” 23 more calls. In contrast,
based on MSLP one can state that the 10th station will
save an average of 15 more lives per year in cardiac arrest
cases.

We conclude that MCLP is a blunt tool for the task at hand.
It lacks the sophistication to properly differentiate between
different outcomes and oversimplifies the problem by classi-
fying the population into two sets (covered and uncovered).
It may be adequate for the design of non-emergency service
systems where the response time is not critical. However,
for EMS systems, MCLP is a poor model and MSLP is
superior. The q-median has a different limitation—it sees
a response time of 20 min as twice as bad as a response
time of 10 min, while in terms of survivability, there is little
difference.

4.3. Sensitivity of the MSLP Results to the Shape of
the Survival Function Used

We explored the sensitivity of our results to the shape of
the survival function by solving MSLP with two other sur-
vival functions—one with higher survival probabilities and
slower decay and the other with lower survival probabili-
ties. Figure 5 shows all three survival functions. Recall that
the base case survival function was the one from Fig. 3,
adjusted for the assumption of deterministic response times.

Figure 5. The survival functions used to compare the MCLP,
MSLP, and q-median models.
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The “high” survival function is the one from Fig. 3 and
the “low” survival function is the one from Fig. 3, divided
by two.

The solutions to MSLP were identical for the three sur-
vival functions, for all values of q. This provides us with
some empirical evidence that the optimal locations are not
sensitive to the parameters of the survival function.

In this section we have empirically demonstrated signifi-
cant differences between MCLP, q-median, and MSLP and
hopefully convinced the reader that MSLP is more suitable
than MCLP or q-median for EMS station location and that the
exact shape of the survival function is not very important. We
now present covering models with increased realism, each of
which can be enhanced further by incorporating a survival
function.

5. MORE REALISTIC EMS LOCATION MODELS

In Section 4 we focused on one weakness of MCLP; the
lack of discrimination between distances that are within (out-
side) the coverage standard. There are other shortcomings of
MCLP which have been addressed in the literature. MCLP
ignores two significant sources of uncertainty:

1. It assumes there is always an EMS vehicle available
at a station. However, in practice, EMS vehicles are
busy 30–70% of the time and stations are regularly
exposed (i.e., have no EMS vehicles to respond to a
call) during the course of a day.

2. It assumes response times are deterministic. Yet,
actual travel times between an origin and a desti-
nation show lognormal distributions with fairly high
coefficients of variation [5] and pretravel delays are
highly variable as well [7].

The Maximal Expected Covering Location Problem
(MEXCLP) and the Maximal Covering Location Problem
with Probabilistic Response Times (MCLP + PR) have been
proposed as extensions of MCLP to deal with these two
types of uncertainty. Finally the Maximal Expected Cov-
ering Location Problem with Probabilistic Response Times
(MEXCLP + PR) incorporates both types of uncertainty.
The two sources of uncertainty can also be incorporated
when minimizing average response time. Jarvis [23] pro-
posed a locate–allocate heuristic for this purpose; see also
Larson [30]. This heuristic uses the approximate hypercube
model to evaluate the average response time. The heuristic
iterates between evaluating the average response time and
dispatch probabilities (the allocation step) and moving ambu-
lances to different stations so as to minimize average response
time, assuming that the dispatch probabilities do not change
(the location step). Appendix A contains formulations for

MEXCLP, MCLP + PR, MEXCLP + PR, and a description
of Jarvis’s locate–allocate heuristic.

In the remainder of this section, we describe how survival
functions can be incorporated into MEXCLP, MCLP + PR,
and MEXCLP + PR models, replacing the maximization
of expected coverage with maximization of the expected
number of surviving patients. As in MSLP, let pij denote
the survival probability of a patient at demand node i,
when served by an EMS unit from station j . In what fol-
lows, we describe the computation of pij under different
assumptions about response time variability and ambulance
availability.

5.1. The Maximal Expected Survival Location
Problem (MEXSLP)

MEXCLP does not differentiate between locations cover-
ing a demand node so long as they are within the radius of
coverage. However, the use of the survival function neces-
sitates a model which recognizes EMS units from different
stations. The model for MEXCLP + PR, with its definitions
of preference orders and the way it handles the busy proba-
bilities, is suitable to integrate the survival function with the
assumptions of this model. In this case,

pi,k(i,j) = s(tji + td)

j−1∏
u=1

pzk(i,u) (1 − pzk(i,j) ) (15)

where p is the average fraction of time an EMS unit is busy,
k(i, j) is the j th preferred station for demand node i, and
zj is the number of EMS units allocated to station j . The
formulation is:

MEXSLP:

max
m∑

i=1

di

n∑
j=1

pij =
m∑

i=1

di

n∑
j=1

pi,k(i,j) (16)

=
m∑

i=1

di

n∑
j=1

s(tji + td)

j−1∏
u=1

pzk(i,u) (1 − pzk(i,j) )

(17)

s.t
n∑

j=1

zj ≤ r (18)

zj ∈ {0, 1, . . . , jc
j }, j = 1, . . . , n (19)

5.2. The Maximal Survival Location Problem with
Probabilistic Response Time (MSLP + PR)

For this case, the variable and constraint structure of MSLP
is sufficient and the only modification required is an updated
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objective function. We can express pij as pij = E[s(Rij )]yij ,
resulting in the following formulation:

MSLP + PR:

max
m∑

i=1

di

n∑
j=1

pij =
m∑

i=1

di

n∑
j=1

E[s(Rij )]yij

(20)

s.t. (10)–(14)

The coefficients E[s(Rij )] can be precomputed for each
demand node–station pair (i, j), using the methods discussed
in Section 3. Interestingly, the formulation for MSLP + PR
is structurally identical to that for MSLP, MCLP + PR, and
the q-median problem. The only difference between these
formulations is the constant that multiplies yij in the inner
summation of the objective function.

5.3. The Maximal Expected Survival Location
Problem with Probabilistic Response Time

(MEXSLP + PR)

Similar to the previous case, the constraint structure of the
original model (MEXCLP + PR) is sufficient and we only
need to modify the objective function. In accordance with
the assumptions of this model

pi,k(j) =
j−1∏
u=1

p̂
zk(i,u)

k(i,u)

(
1 − p̂

zk(i,j)

k(i,j)

)
E[s(Ri,k(i,j))] (21)

where p̂j is the average fraction of time an EMS unit at station
j is busy. The resulting model is:

MEXSLP + PR:

max
m∑

i=1

di

n∑
j=1

pij =
m∑

i=1

di

n∑
j=1

pi,k(i,j) (22)

=
m∑

i=1

di

n∑
j=1

E[s(Ri,k(i,j))]

×
j−1∏
u=1

p̂
zk(i,u)

k(i,u)

(
1 − p̂

zk(i,j)

k(i,j)

)
(23)

s.t. (18)–(19)

As in the previous case, we pre-compute E[s(Rij )] for each
demand node – station pair (i, j).

6. COMPUTATIONAL RESULTS

We used data from the Edmonton EMS system, as in
Section 4. The data are available from http://www.business.

Table 1. Sizes and characteristics of the optimization problems
solved (for 180 demand nodes and 16 candidate locations).

Binary Integer
Problem variables variables Constraints Linear

MCLP 196 181 Linear
MSLP 2,896 197 Linear
q-median 2,896 197 Linear
MCLP + PR 2,896 197 Linear
MSLP + PR 2,896 197 Linear
MEXCLP 180r 16 181 Linear
MEXSLP 16 1 Nonlinear
MEXCLP + PR 16 1 Nonlinear
MSLP + PR 16 1 Nonlinear

ualberta.ca/aingolfsson/data/. Table 1 compares the size of
the different optimization models. The linear models were
solved on a Dell PowerEdge workstation with 1.13 Ghz CPU
clock and 1 GB of RAM, using CPLEX 8.11 in under 1 CPU
second per problem. The nonlinear models were solved on a
PC with 3.0 GHz CPU clock and 1 GB of RAM, using the
student version of GAMS 22.0, with runtimes ranging from
10 to 300 CPU seconds. On the same PC the runtimes for the
locate–allocate average response time minimization heuristic
were no more than 5 s.

The algorithm of Budge et al. [7] to solve MEXCLP + PR
is reported to either converge to a single solution, or to cycle
between two solutions. In case of cycling, the objective func-
tion values of each of the two solutions are incorrect since they
are computed with respect to busy probabilities associated
with the other solution. To overcome this problem, at every
iteration we computed the “real” objective function value
associated with a solution by computing the corresponding
busy probabilities, and we chose the solution with the higher
“real” objective function value as the best solution in case of
cycling.

When computing the expected number of survivors, we
used only the arrival rate of urgent calls (about 29% of the
total), i.e., we assumed that the probability of survival for
all urgent calls varies similarly with response time as it does
for cardiac arrest calls, while for non-urgent calls, the prob-
ability of death is negligible. We used the survival function
from Fig. 3. When computing busy probabilities, we used the
arrival rate for all types of calls, because all calls contribute to
the workload of the EMS units. The same yardstick is used to
compare all solutions, i.e., the expected number of survivors
as evaluated with the approximate hypercube model.

6.1. Comparing Models Incorporating only
Randomness in Response Time: MCLP + PR versus

MSLP + PR

We begin by considering models that incorporate random-
ness in response times but assume perfect availability, i.e.,
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Table 2. The expected number of survivors for solutions to
MCLP + PR and MSLP + PR (i.e., the two models that incorporate
probabilistic response times) for 1 through 16 EMS stations.

q MCLP + PR MSLP + PR % Deviation

1 481.2 481.2 0.0
2 572.0 604.3 5.3
3 636.3 659.0 3.5
4 686.6 708.8 3.1
5 764.3 764.3 0.0
6 809.1 809.1 0.0
7 821.2 821.2 0.0
8 843.8 843.8 0.0
9 866.5 878.6 1.4

10 901.5 901.4 0.0
11 908.0 906.6 −0.1
12 913.6 914.0 0.0
13 930.1 932.7 0.3
14 931.8 934.0 0.2
15 944.8 953.4 0.9
16 959.0 959.0 0.0

The fourth column contains the percent deviation between the
entries in columns two and three.

we compare MCLP + PR to MSLP + PR. Recall that in
Section 4 we reported a comparison of MCLP and MSLP
and found that the number of survivors resulting from ambu-
lance locations generated by MCLP can be up to 7.7% lower
than the number of survivors resulting from MSLP. When
one incorporates random response times into MCLP, then
the coverage value for a particular demand node, instead
of being either zero or one, becomes a probability between
zero and one. As Table 2 shows, after this has been done,
the marginal benefit of incorporating a survival function is
smaller than before (as reported in Section 4). In 8 of the 16
problems MCLP + PR and MSLP + PR provide the same
expected number of survivors. The percent improvement due
to the incorporation of the survival function can be as high as
5.3%, and it averages 0.9% over the 16 problems. As shown
in Fig. 6, the incorporation of probabilistic response time
results in expected coverage decaying gradually with dis-
tance in a manner similar to the survival probability and this
leaves less room for improvement due to the use of a sur-
vival function. Nevertheless, the survival function improves
the performance of the model in the majority of the test
problems.

6.2. Comparing Models Involving Busy Probabilities:
MEXCLP versus MEXSLP, and MEXCLP + PR versus

MEXSLP + PR

For the models involving busy probabilities (namely the
MEX*** family), we used a two-dimensional experimental
design, the first parameter being r (number of EMS units) and
the second being p (system-wide average busy probability of

Figure 6. A comparison of the expected survival probability
E[s(R)] using (4) and the probability of coverage Pr{R <= tc}, as
a function of expected response time t ≡ E[R].

EMS units). We estimate the average system-wide busy prob-
ability for MEXCLP + PR and MEXSLP + PR as p = λτ/q

where λ = ∑m
i=1 di is the total arrival rate of calls to the

system, and τ is the average time that an EMS unit is tied up
with a call. We used the same formula in reverse by insert-
ing the number of EMS units and the targeted system-wide
busy probability, taking the total arrival rate of calls as out-
put, and scaling the demand data used for busy probability
estimation accordingly. The purpose of including p in the
experimental design is to control for the overall level of con-
gestion in the system. This does not mean that we force

Table 3. The percent improvement in the expected number of
survivors achieved by using MEXSLP instead of MEXCLP.

r\p 0.1 (%) 0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%)

5 3.2 3.2 1.7 1.2 1.9 1.9
6 0.0 0.0 0.0 0.0 3.1 1.9
7 −0.1 0.8 1.6 2.4 0.0 1.5
8 0.2 0.8 1.1 1.7 2.2 0.4
9 3.5 3.4 0.9 3.7 0.0 0.0

10 0.0 0.0 0.0 3.6 0.6 1.4
11 2.7 0.9 2.7 2.8 0.2 1.6
12 2.7 0.8 2.5 2.5 0.2 0.2
13 2.6 0.9 0.0 0.0 0.6 0.0
14 3.2 −1.4 −0.7 0.0 0.1 −0.4
15 0.1 1.0 0.7 −1.0 1.3 −1.0
16 −0.8 0.6 0.2 0.0 −1.3 −1.8
17 0.9 0.8 0.6 −0.3 0.0 −0.8
18 0.7 0.4 0.1 1.1 1.2 −0.7
19 0.0 −0.1 −0.8 −0.1 1.2 −1.2
20 −0.2 −0.9 0.7 0.2 0.6 −0.6
21 −0.3 −0.9 0.4 0.3 0.0 0.2
22 −0.4 −0.1 −0.3 −0.5 −0.4 0.8
23 −0.2 0.0 0.0 0.0 0.0 0.6
24 0.1 0.2 0.2 0.0 −0.3 −0.5
25 0.1 0.2 0.1 −0.1 −0.4 −0.5

The number of EMS vehicles is varied from 5 to 25 (with 16
stations), and the busy probability for the EMS vehicles is varied
from 0.1 to 0.6.
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Table 4. The percent improvement in the expected number of sur-
vivors achieved by using MEXSLP + PR instead of MEXCLP +
PR.

r\p 0.1 (%) 0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%)

5 0.0 0.0 −0.2 0.9 1.2 0.6
6 0.0 0.0 0.0 −0.5 0.6 0.0
7 0.0 0.9 0.8 1.8 −1.1 0.0
8 0.2 0.3 0.0 0.4 0.1 −0.9
9 0.0 0.0 0.0 0.2 0.0 −0.7

10 0.0 0.0 0.0 0.0 0.0 0.0
11 0.3 0.0 0.0 −0.5 0.0 −1.0
12 0.3 0.2 0.0 0.2 0.0 0.0
13 0.6 0.2 0.0 −0.1 −0.8 −0.7
14 0.5 0.7 0.0 0.0 0.0 0.0
15 1.1 1.4 −0.2 −0.7 0.0 −0.7
16 0.4 0.8 0.9 0.0 −1.3 −1.8
17 0.0 0.1 −0.2 −1.2 0.0 −1.3
18 0.0 0.0 0.0 0.8 0.0 −1.1
19 0.0 0.0 0.0 0.0 −0.5 −0.6
20 0.1 0.1 0.1 0.2 −0.5 −0.6
21 0.1 0.2 0.0 0.0 −0.5 −0.5
22 0.0 0.0 0.0 0.0 −0.4 0.6
23 0.0 0.0 0.0 0.0 −0.3 0.5
24 0.0 0.0 0.0 0.0 −0.6 0.0
25 0.0 0.0 0.0 0.0 −0.4 0.0

The number of EMS vehicles is varied from 5 to 25 (with 16
stations), and the busy probability for the EMS vehicles is varied
from 0.1 to 0.6.

the busy probabilities p̂j to be the same for all stations—
we still allow them to vary, as indicated in the formulations
for MEXCLP + PR and MEXLSP + PR. We caution that
for these models, our solutions may not be optimal since
the iterative algorithm is not guaranteed to find an optimal
solution.

Table 3 summarizes the comparison of MEXCLP with
MEXSLP. The expected number of survivors was computed
using the approximate hypercube model for the solutions to
both models. Table 3 shows the percent improvement in the
expected number of survivors achieved by MEXSLP over
MEXCLP. The average improvement is 0.6%, the maximum
improvement is 3.7%, and the maximum degradation is 1.8%.
The MEXSLP solution is superior to that of MEXCLP by at
least 1% in 32 instances, and the opposite is true in only 4
instances. It seems that the improvements are most signifi-
cant for smaller number of EMS vehicles and lower levels
of system congestion (the value of p). This makes sense
because it is more challenging to locate 9 EMS vehicles in
16 stations than it is to locate 24 EMS vehicles in 16 sta-
tions. With higher congestion, the locations of the vehicles
become less important. (To see why, consider the limiting
case when the congestion is so high that most of the time,
only one vehicle is available. In that case, the closest vehicle
to the call will usually be busy, and the vehicle that responds
will simply be the one that happens to be available.) On the
basis of our experiment, it is fair to say that the survival

function improves the performance of MEXCLP in most
instances.

Table 4 summarizes the comparison of MEXCLP + PR
with MEXSLP + PR. These results are mixed. The expected
number of survivors is the same in 51 cases (40%), higher
with MEXSLP + PR in 43 cases (34%), and higher with
MEXCLP + PR in 32 cases (25%). Overall, the two mod-
els appear to perform about equally well. MEXSLP + PR
appears to find solutions that perform a little better when
congestion is low and MEXCLP + PR appears to find solu-
tions that perform a little better when congestion is high. Our
earlier observation (when discussing the results in Table 2)
that once the probabilistic response times are included in the
models the survival function makes less of a difference is
probably relevant here as well. Note that Table 4 summarizes
the results for the most refined pair of models which include
probabilistic response times as well as busy probabilities.
MEXCLP+PR is a sophisticated model and the inclusion of
the survival function does not add much to the performance
of its solutions.

6.3. Comparing MEXSLP + PR with Solutions from
the Jarvis (1975) Heuristic

Table 5 compares MEXSLP + PR solutions to those ob-
tained with Jarvis’s [23] average response time minimization

Table 5. The percent improvement in the expected number of sur-
vivors when using MEXSLP+PR compared to minimizing average
response time using Jarvis’s heuristic.

r\p 0.1 (%) 0.2 (%) 0.3 (%) 0.4 (%) 0.5 (%) 0.6 (%)

5 21.6 16.3 4.4 5.4 5.1 7.2
6 9.8 12.0 7.9 12.2 6.1 7.0
7 11.3 13.9 16.1 10.8 9.3 13.2
8 8.8 10.2 12.7 15.7 9.6 12.0
9 9.9 12.0 13.8 13.5 11.6 8.2

10 8.8 10.1 13.1 8.4 13.0 12.9
11 6.7 8.5 10.2 11.6 14.9 14.9
12 6.3 7.5 8.8 11.0 13.4 8.5
13 1.6 3.0 4.6 6.7 8.4 12.4
14 1.6 3.2 4.8 6.9 8.5 10.3
15 1.5 3.0 4.8 6.3 8.4 7.9
16 1.3 2.4 4.4 5.8 6.9 8.3
17 0.0 0.0 1.4 2.2 4.6 5.4
18 2.2 3.9 4.7 5.5 7.4 8.2
19 2.5 4.4 5.4 5.2 7.2 8.1
20 2.4 4.0 4.8 5.1 5.8 7.3
21 2.4 4.0 4.8 5.1 4.7 6.9
22 0.5 1.5 2.3 2.6 2.3 4.4
23 0.4 1.2 1.7 1.8 1.9 3.9
24 0.0 0.0 0.0 0.0 0.0 1.4
25 0.6 1.4 1.6 1.6 1.5 1.9

The number of EMS vehicles is varied from 5 to 25 (with 16
stations), and the busy probability for the EMS vehicles is varied
from 0.1 to 0.6.
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Table 6. The comparison of the output of all 10 models, solved
for r = 6, p = 0.3, and using the approximate hypercube model to
evaluate the expected number of survivors.

Incorporation of uncertainty

Response Server
Type of model None times availability Both

Avg. response time 697.3 745.0
Coverage 761.6 809.1 809.1 809.1
Survival 809.1 809.1 809.1 809.1

heuristic. Somewhat surprisingly, this heuristic produces
solutions that perform quite poorly with respect to the
expected number of survivors. MEXSLP+PR improves these
solutions by 6.5% on average (and by as much as 21.6%). The
differences are higher when the number of vehicles is smaller
and (surprisingly) when the system congestion is higher.
These results may indicate either that average response time
is a poor proxy for the expected number of survivors, or
that Jarvis’s heuristic fails to globally minimize the average
response time.

6.4. Comparing All Models

As a final comparison of the 10 optimization models pre-
sented, we fixed the number of EMS vehicles r at 6 and the
average busy probability p at 0.3, solved all 10 models, and
then used the approximate hypercube model to evaluate the
expected number of survivors for each of the ten solutions.
The results are shown in Table 6.

The results summarized in Table 6 are quite striking. We
see that if average response time is used as a proxy for
expected number of survivors (by solving the q-median prob-
lem), then the inclusion of response time uncertainty and
server availability (using the Jarvis [23] heuristic) improves
the number of survivors, but it still falls far short of the
best possible. In contrast, if expected coverage is used as
a proxy, then the inclusion of either response time uncer-
tainty or server availability in the model brings the expected
number of survivors up to its best known value. More impor-
tantly, just changing the objective function to expected num-
ber of survivors achieves all of the benefits, even with-
out incorporating the two elements of uncertainty in the
model.

7. CONCLUDING REMARKS

This article points to a weakness of covering models for
locating emergency vehicles. We discuss research from the
medical literature that allows for accurate modeling of conse-
quences of different response times for cardiac arrest patients.
We then show how a survival function that maps response

time to survival probability can be incorporated into the
deterministic maximum covering model so that the objective
becomes one of maximizing the expected number of sur-
vivors. We proceed to modify three more sophisticated cov-
ering models by including the survival function in each. The
incorporation of the survival function does not complicate
the optimization problems much.

We highlight several weaknesses of the deterministic max-
imum covering model, including its inability to recommend
additional beneficial facilities once the whole region has been
covered and its use of the abstract concept of coverage. Our
computational experiment indicates that incorporating sur-
vival functions can result in EMS unit locations that save
more lives. The standard covering approach is a blunt tool
for emergency facility location and it should be used with
great caution. In terms of computational effort, optimiza-
tion models that maximize expected number of survivors are
only slightly less tractable than covering models. In terms of
data requirements, survival models are more data-intensive,
but some EMS agencies are already collecting the neces-
sary information. We have illustrated how this data can be
incorporated in the optimization models.

One obvious shortcoming of our approach is that we
only have survival functions for one type of emergency call.
The commonly used standard of responding to 90% of all
high priority calls within 9 min shares this shortcoming,
because it is also a cardiac arrest-driven standard [19]. The
EMS world seems to be paying considerable attention to
cardiac arrests given their relative frequency and their pos-
sible consequences. However, EMS practitioners and med-
ical researchers recognize that quantifying the impact of
response time for other call types is important [34]. If future
research leads to quantifiable survival functions for other
call types, then they can be incorporated in the models we
have presented, by combining survival functions for differ-
ent call types using weights corresponding to the frequency
of different call types.

In addition to the deployment of ambulances, the frame-
work we have used also permits study of broader policy
issues, such as the impact of actions to increase rates of
bystander CPR. We hope that this paper will help encour-
age further research on survival functions and other more
direct and realistic models of EMS operations.

APPENDIX A: MAXIMUM COVERAGE
FORMULATIONS

Define m : the number of demand nodes,
n : the number of candidate locations,
q : the maximum number of stations,
di : the demand of node i,
tc : the coverage radius of a station in time units,
tj i : the travel time from candidate location j to demand node i,
td : the pre-travel delay,
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xj =
{

1, if candidate location j is selected
0, otherwise

,

yi =
{

1, if demand node i is covered
0, otherwise

, and

aij =



1, if if demand node i is covered by candidate
location j , i.e. tj i + td ≤ tc

0, otherwise
.

The Maximum Coverage Location Problem (MCLP)

MCLP:

max
m∑

i=1

diyi (A1)

s.t.
n∑

j=1

aij xj ≥ yi , i = 1, . . . , m (A2)

n∑
j=1

xj ≤ q (A3)

xj ∈ {0, 1}, j = 1, . . . , n (A4)

yi ∈ {0, 1}, i = 1, . . . , m (A5)

The objective function (A1) maximizes total demand covered. Constraints
(A2) state that demand node i can only be covered if at least one candi-
date location that covers i is selected. Constraint (A3) limits the number of
facilities to q. In this model, each station houses one EMS vehicle.

The Maximal Expected Covering Location Problem
(MEXCLP)

There are two formulations for the MEXCLP in the literature. The first
formulation by Daskin [14] is an integer program and the second is a non-
linear integer program by Saydam and McKnew [36]. Both models account
for the probability that an EMS unit may be busy. We provide only the linear
model for the sake of brevity.

Let r denote the maximum number of EMS units,
p denote the average fraction of time an EMS unit is busy,
cj be the maximum number of EMS units that can be

stationed at candidate location j ,
zj be the number of EMS units allocated to station j , and

ŷik =



1, if demand node i is covered by at
least k units

0, otherwise
The linear programming model for the MEXCLP follows:

MEXCLP:

max
m∑

i=1

di

r∑
k=1

(1 − p)pk−1ŷik (A6)

s.t.
r∑

k=1

ŷik ≤
n∑

j=1

aij zj , i = 1, . . . , m (A7)

n∑
j=1

zj ≤ r (A8)

ŷik ∈ {0, 1}, i = 1, . . . , m; k = 1, . . . , r (A9)

zj ∈ {0, 1, . . . , cj }, j = 1, . . . , n (A10)

The inner summation of objective function (A6) calculates the probability
that there will be an EMS unit available to service demand node i. Therefore,
objective function (A6) maximizes the expected coverage of demand nodes.
Constraints (A7) state that the actual number of EMS units covering node i

(LHS of constraint) cannot exceed the total number of EMS units that can
cover node i (RHS). Constraint (A8) limits the total number of EMS units
to be allocated to all open candidate locations.

The Maximal Covering Location Problem with
Probabilistic Response Time (MCLP + PR)

Let yij equal 1 if demand node i is closest to candidate location j and let
Pij be the probability that an ambulance at station j can reach demand node
i within the coverage time standard.

Daskin [15] provides the following formulation for the Maximal Covering
Location Problem with Probabilistic Response Time:

MCLP + PR:

max
m∑

i=1

di

n∑
j=1

Pij yij (A11)

s.t.
m∑

i=1

yij ≤ mxj , j = 1, . . . , n (A12)

n∑
j=1

yij = 1, i = 1, . . . , m (A13)

n∑
j=1

xj ≤ q (A14)

xj ∈ {0, 1}, j = 1, . . . , n (A15)

yij ∈ {0, 1}, i = 1, . . . , m, j = 1, . . . , n (A16)

Objective function (A11) maximizes the total demand covered account-
ing for the coverage probabilities. Constraints (A12) and (A13) ensure that a
demand node is assigned to only one EMS facility. Constraint (A14) requires
that at most q candidate locations be chosen. As in MCLP, each candidate
location houses at most one vehicle. We note that the MSLP formulation
is structurally identical to the MCLP + PR formulation, with s(tji + td ) in
MSLP replacing Pij in MCLP + PR (i.e. {(10)–(14)}={(A12)–(A16)}).

The Maximal Expected Covering Location Problem
with Probabilistic Response Time (MEXCLP + PR)

Let k(i, j) denote the j th preferred station for demand node i, and p̂j

denote the average fraction of time an EMS unit at station j is busy.
Budge et al. [7] formulate the Maximal Expected Covering Location

Problem with Probabilistic Response Time as follows:

MEXCLP + PR:

max
m∑

i=1

di

n∑
j=1

Pi,k(i,j)

j−1∏
u=1

p̂
zk(i,u)

k(i,u)

(
1 − p̂

zk(i,j)

k(i,j)

)
(A17)

s.t.
n∑

j=1

zj ≤ r (A18)

zj ∈ {0, 1, . . . , cj }, j = 1, . . . , n (A19)

Objective function (A17) maximizes the total expected demand covered
accounting for the coverage probabilities Pi,k(i,j). Constraint (A18) ensures
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Erkut, Ingolfsson, and Erdoğan: Ambulance Location for Maximum Survival 57

that at most r EMS units are assigned to open candidate locations, with at
most cj units in location j .

The authors propose the following iterative heuristic:

1. Initialize the vector p̂1 of busy probabilities to an estimated
system-wide busy probability (p̂1j = p, ∀j).

2. Solve MEXCLP + PR for p̂1, and record the solution as z∗.
3. Compute a new vector of busy probabilities, p̂2, based on z∗.
4. If some convergence criterion is satisfied, stop. Else, replace p̂1

with p̂2 and go to Step 2.

To compute the busy probabilities, the authors generalize [6] and employ
an approximation scheme based on the well known hypercube queuing model
of Larson [28, 29]. A detail about the busy probabilities requires attention:
The busy probability associated with an EMS station with no allocated EMS
units is 1 (and not 0).

APPENDIX B: MINIMIZING AVERAGE RESPONSE
TIME

The qq-Median Problem

The q-median problem is structurally identical to the MCLP+PR formu-
lation. Using the notation for that formulation, the q-median problem can
be formulated as:

max
m∑

i=1

di

n∑
j=1

E[Rij ]yij (B1)

s.t. (A12)–(A16)

When incorporating ambulance unavailability, we use a locate–allocate
heuristic developed by Jarvis [23] and further discussed by Larson [30] to
minimize average response time. As described by Jarvis and Larson, the
heuristic uses the exact hypercube model to evaluate the average response
time. The exact hypercube model is computationally expensive but has
the advantage of permitting multiple vehicles per station. The approximate
hypercube model developed by Larson [28] assumes a single vehicle at each
station. We used a version of the approximate hypercube model that allows
multiple vehicles per station [7]. As presented by Jarvis and Larson, the
heuristic can be described as follows:

Initialization: Find an initial solution.
Allocation step: Evaluate the current solution using the hypercube model.

This includes computing f (i, j), the fraction of all demand that comes
from node j and is served by vehicle i, or in other words, the fraction of
patients that come from node j and are allocated to vehicle i.

Location step: For each vehicle, pretend that it is possible to move it to any
station without changing the f (i, j)’s. Move the vehicle to the station that
minimizes the average response time to calls that that vehicle responds
to. Note that in this step, multiple vehicles could be moved to the same
station.

Convergence check: if the new solution equals the previous solution, stop,
otherwise return to the allocation step.

Jarvis and Larson do not specify how to generate an initial solution. We
used the following approach to allocate r vehicles to q stations. First, we
solve an r-median problem. If r > q, then the solution will simply be to place
one vehicle at each station. In this case, we reduce each station’s capacity to
by one, and reduce the number of vehicles to be allocated by to r − q. Then
we solve an r − q median problem to allocate the remaining ambulances. If

any ambulances remain, then we repeat the procedure, until all ambulances
have been allocated.

We note the following property of the heuristic. Suppose that at some
point in the execution of the heuristic, the current solution has more than
one vehicle at a particular station. In the location step, all of these vehicles
will be seen as having the same f (i, j)’s, and therefore, they will either
remain at the current station or they will all be moved together to another
station. As a consequence, the maximum number of vehicles at a station
will never decrease during the algorithm. Possibly as a result of this prop-
erty, we found that the heuristic almost always cycled, sometimes between
5 solutions. To reduce the impact of such cycling, we used at least 50 itera-
tions when the heuristic did not converge. Furthermore, we kept track of the
solution with the lowest average response time throughout the algorithm,
and reported this solution at the end, even when the heuristic converged to
a different solution.
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