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ABSTRACT

ON COMPLETE INTERSECTIONS AND CONNECTEDNESS

Meltem Önal
M.S. in Mathematics

Supervisor: Assoc. Prof. Dr. Ali Sinan Sertöz
August, 2002

In this thesis, we study the relation between connectedness and complete

intersections. We describe the concept of connectedness in codimension k.

We also study the basic facts about Cohen-Macaulay rings, and give some

applications about these rings and complete intersections. Finally, we show

that certain rational curves of degree ≥ 4 in the projective 3-space are set-

theoretical complete intersections in all prime characteristics p > 0.

Keywords: Connectedness in codimension k, Cohen-Macaulay rings, set-

theoretical and ideal-theoretical complete intersections, characteristic p > 0.
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ÖZET

TAM KESİS.MELER VE BAG̃LANTILILIK

Meltem Önal
Matematik Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Ali Sinan Sertöz
Ag̃ustos, 2002

Bu tezde bag̃lantılılık ve tam kesişmeler üzerinde çalıştık. Eşboyutta

bag̃lantılılık kavramını açıkladık. Cohen-Macaulay halkalarını inceleyip bun-

ların tam kesişmeler ile ilişkisini açıklayan uygulamalar yaptık. Ayrıca, derecesi

≥ 4 olan bazı rasyonel eg̃rilerin projektif 3-uzayda tüm pozitif karakteristikler

için tam kesişme olduklarını inceledik.

Anahtar kelimeler: Eşboyutta bag̃lantılılık, Cohen-Macaulay halkaları, ideal

ve kümesel tam kesişmeler, karakteristik > 0.
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Chapter 1

Introduction

Complete intersections are one of the basic subjects of algebraic geometry.

Many different relations between algebra and geometry can be found by

understanding this subject. The purpose of this thesis is to describe a neces-

sary topological condition for an algebraic set V to be a complete intersection.

This condition is that V should be locally connected in codimension 1, which

means that removing a subvariety which have codimension 2 or more does

not make V disconnected. In order to achieve this result, we deal with the

concepts of connectedness and codimension. Then we pass to the property

of Cohen-Macaulay, which is a local property. Cohen-Macaulayness is also

an important property in algebraic geometry which makes it possible to have

links between geometry and algebra.

In chapter 2, we recall some topological concepts, such as connectedness.

We describe the codimension of a variety. Then we explain the concepts

of connectedness and locally connectedness in codimension k by giving the

relations between them.
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In chapter 3, we deal with Cohen-Macaulay rings. In order to understand

these rings, we give the definitions of depth of an ideal (which is a measure

of the size of the ideal), the height of an ideal, and R-sequences. We describe

the Cohen-Macaulayness for local rings and then we generalize this defini-

tion. We also give a theorem of Hartshorne [6] on local rings, from which we

get the necessary conditions for an algebraic set to be a complete intersection.

In chapter 4, complete intersections are studied in details. The definitions

of set-theoretical and ideal theoretical complete intersections are given. We

also study some basic examples of complete intersections in this chapter. We

state the popular example twisted cubic curve, which is not a complete inter-

section in the strong sense (this means ideal theoretically), but a complete

intersection set-theoretically. Then we restrict on Cohen-Macaulay rings and

we use some basic facts about them to achieve our result by which we can

make a connection between connectedness in codimension 1 and complete

intersections. At the end of this chapter, we state the main theorem of

Hartshorne about complete intersections and connectedness in codimension

1.

In chapter 5, we give various applications of this result. We study the

following examples:

• An example of a subset V ⊂ A4 which is not a complete intersection.

• An example of an irreducible surface in C4 which is not a complete

intersection.
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• A counter example to the situation: If V is a complete intersection,

then any two irreducible components of V passing through a given

point P have an intersection which is of codimension 1 with respect to

each of them at P .

• A remark of Serre: A complete intersection in the projective space is

connected in codimension 1.

• An example of an irreducible 3-dimensional algebraic set V in A5 with

char(k) = 2, such that V is a complete intersection set-theoretically,

but the coordinate ring k[V ] is not Cohen-Macaulay.

In the last chapter, we show that certain rational curves of degree ≥ 4 in P3

are set-theoretically complete intersections in all prime characteristics p > 0.

We state the other related results about characteristics p > 0 and give some

examples. When we give the proof of the theorem of Hartshorne [7], we also

give the procedure of finding the surfaces for complete intersections. We

apply this procedure to some curves and find some surfaces. And then we

observe that the intersection of these surfaces is the curve which we study.

So we say that these curves are complete intersections set-theoretically.

We will use the following notations:

An, for the affine n−space.

Pn, for the projective n−space.
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Chapter 2

Connectedness

In this chapter, we will give the definitions of connectedness and locally con-

nectedness in codimension k. By giving this property here, we will be able to

give a necessary condition for an algebraic set V to be a complete intersec-

tion. And this condition is about being locally connected in codimension one.

To give these definitions and some other concepts, we will report on

Hartshorne’s paper called Complete Intersections and Connectedness [6].

To introduce the concept of connectedness in codimension k, first let us

understand the meanings of connectedness and codimension:

Definition 2.1 Let A be a subset of a topological space X. We say that A is

connected if A cannot be written as a union A = B ∪ C with

B 6= ∅, C 6= ∅

and

B ∩ C = B ∩ C = ∅,
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where B and C are closures in X. Otherwise, A is called disconnected.

Definition 2.2 Let X be a noetherian topological space and Y be an irre-

ducible closed subspace of X. Then we define the codimension of Y in X to be

the supremum of those integers n such that there exists a sequence of closed

irreducible subspaces Xi of X,

Y ⊆ X0 ⊂ X1 ⊂ . . . ⊂ Xn ⊆ X.

And we denote it by codim(Y,X).

In the affine category, the codimension of a subvariety Y of X becomes

the number dimX − dimY . If Y is a subvariety of the affine space An of

dimension n − 1, then Y has codimension 1, and we say that Y is a hyper-

surface in An.

If we look at the equations which define the varieties and the dimension

of the variety, we see that each equation brings one restriction on the di-

mension of a variety, in general. So each variety defined by one equation has

dimension one less than the space it belongs; that is, as we defined above,

the variety has codimension one.

To give the definition of connectedness in codimension k, we should first

give the following proposition from Hartshorne [6]:

Proposition 2.3 Suppose that X is a noetherian topological space and k is

an integer with k ≥ 0. Then the following two conditions are equivalent:
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(i) If Y is a closed subset of X, and codim(Y, X)> k, then X − Y is

connected.

(ii) Let X ′ and X ′′ be irreducible components of X. Then we can find a

finite sequence

X ′ = X1, X2, . . . , Xn = X ′′

which is composed of irreducible components of X, such that for each i =

1, 2, . . . , n− 1, Xi ∩Xi+1 is of codimension ≤ k in X.

Proof : (i) ⇒ (ii) : Let us assume that (ii) does not hold, that is, there

exists two irreducible components X ′ and X ′′ of X such that for every finite

sequence of irreducible components

X ′ = X1, X2, . . . , Xr = X ′′,

we have an index i0 ∈ {1, 2, . . . , r − 1} for which

codim(Xi0 ∩Xi0+1, X) > k.

In particular, we can take codim(X ′ ∩X ′′, X) > k.

Let Y be the union of all subsets of X of the form Xi ∩ Xj where Xi,

Xj s are the irreducible components of X and codim(Xi ∩Xj, X) > k. Then

codim(Y,X) > k, and by (i), we have X − Y is connected.

For any irreducible component Xi of X, let Yi = Xi ∩ (X − Y ). Since

X − Y is connected and noetherian, there exists a finite sequence

Y1 = X ′ ∩ (X − Y ), Y2 = X2 ∩ (X − Y ) , . . . , Yr = X ′′ ∩ (X − Y ),
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such that Yi ∩ Yi+1 6= ∅. But this gives s finite sequence X1, X2, . . . , Xr with

codim(Xi ∩Xi+1) ≤ k, which is a contradiction. This proves that (ii) holds

when (i) holds.

(ii) ⇒ (i) : Suppose that (ii) is satisfied. Let Y be a closed subset of

X with codim(Y,X) > k. Since for any irreducible components Xi, Xj of

X, we must have codim(Xi ∩Xj, X) ≤ k by (ii), Y cannot contain any set

of the form Xi ∩Xj. The irreducible components of X − Y are of the form

Xi ∩ (X − Y ), where Xi is an irreducible component of X.

Let p 6= q be two points of X − Y . Let p ∈ X ′, q ∈ X ′′ where X ′

and X ′′ are irreducible components of X. Then there is a finite sequence of

irreducible components of X,

X ′ = X1, X2, . . . , Xr = X ′′

such that codim(Xi ∩ Xi+1, X) ≤ k, for some i = 1, 2, . . . , r − 1. Letting

Yi = Xi ∩ (X − Y ), for some i = 1, 2, . . . , r, we have Yi ∩ Yi+1 6= ∅, for

i = 1, 2, . . . , r − 1. This shows that X − Y is connected. �

Now, we can define connectedness in codimension k:

Definition 2.4 Let X be a noetherian topological space, and k ≥ 0 be an in-

teger. If X satisfies any of the equivalent conditions of the above proposition,

we say that X is connected in codimension k.

Geyer [5], also gives a similar definition in his lecture notes. He says

that a noetherian topological space X of finite dimension (so especially an
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algebraic set) is connected in codimension one, if X − Y is connected for

every closed subset Y with

1 + dimY < dimX.

We can see that, this easily follows from the definition of codimension. From

Definition 2.2, we have

codim(Y,X) = dimX − dimY,

and from the above definition of connectedness in codimension k, that is from

Proposition 2.3 (i), we have

codim(Y, X) > k.

So Geyer’s definition of connectedness in codimension 1 = k easily follows

from

codim(Y,X) = dimX − dimY > 1 = k,

hence

dimX > 1 + dimY.

From the definition of connectedness in codimension k, we can get the

following results:

Remark 2.5 (i) If X is connected in codimension k (for any k ≥ 0), then

X is connected.

Proof : Let X be connected in codimension k. Then there exists a closed

subset Y ⊂ X with codim(Y,X) > k such that X − Y is connected. If we
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suppose that X is not connected, then we can write X as a union of two sets

X = B ∪ C such that

B 6= ∅, C 6= ∅

and

B ∩ C = B ∩ C = ∅.

Now we have

X − Y = (B ∪ C)− Y = (B − Y ) ∪ (C − Y ),

but this contradicts with X − Y s being connected. Hence X must be con-

nected. �

(ii) If X is connected in codimension k, then for any l ≥ k, X is also

connected in codimension l.

We will give another remark now which will be used in the next chapter

to prove Theorem 3.9.

Remark 2.6 If a noetherian topological space X is connected in codimen-

sion 1, then the following conditions are satisfied:

(i) X is connected. This easily follows from Remark 2.5 (i).

(ii) The irreducible components Xi of X all have the same dimension as

X.

This can be proved as follows: Let us take dimX = r. If we suppose that

dimXi < dimX = r, for some irreducible component Xi, then we can find a
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subset

Y = Xi ∩ (∪Xj)

with i 6= j where Xj s are the other irreducible components of X. Since

dimY < dimXi,

we have that

1 + dimY ≤ dimXi < dimX.

But now, we find that X − Y is not connected; points in Xi which do not lie

in any other component form a set which is disjoint in X −Y from the other

components. This contradicts with our assumption.

(iii) If X ′ and X ′′ are any two irreducible components of X, then we can

find a chain

X ′ = W0, W1, . . . ,Ws = X ′′

such that Wk s are all irreducible components of X for k = 0, . . . , s satisfying

dim(Wk ∩Wk+1) = r − 1.

Conversely, if the above condition (iii) is satisfied, then the noetherian

space X of dimension r is connected in codimension 1. This is clear from

Definition 2.4, since

codim(Wk ∩Wk+1, X) = dimX − dim(Wk ∩Wk+1) = r − (r − 1) = 1.

Now we will give the definition of locally connectedness in codimension

k. But before giving this definition, we should give the following concepts:
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Definition 2.7 If Y is a closed irreducible subset of the topological space X,

y ∈ Y is called a generic point for Y if Y is the closure of the set consisting

of the single point y.

In the next chapter, we will deal with the spectrum of a ring. So let us

mention here the generic point in the spectrum of a ring. If R is a ring,

then a point x which is everywhere dense in Spec(R) is said to be generic.

For instance, if we take the ring Z of integers, the point Spec(Z), which

corresponds to the zero ideal of Z, is generic: that is, the ideal (0) is prime

and is contained in every prime ideal , therefore its closure is the whole space

and it is an everywhere dense point.

Definition 2.8 A topological space which has a single closed point is called

a local topological space. Let X be any topological space and y ∈ X. The local

space of X at the point y is defined to be the set of points z whose closures

contain y. This set is called the generalizations of y. And this local space of

X at y is denoted by Xy.

Lemma 2.9 (Hartshorne [6]) Suppose that X is a connected topological space

and Y is a closed subspace of X such that for every y ∈ Y , Xy − y is non-

empty and connected. Then X − Y is connected.

Proof: See [6], page 499.

Proposition 2.10 Suppose that X is a noetherian topological space, and k

is an integer with k ≥ 0. Then the following conditions are equivalent:

(i) The local space Xy is connected in codimension k, for any y ∈ X.

11



(ii) If y ∈ X is such that dim Xy > k, then Xy − y is connected.

Proof : (i) ⇒ (ii) : Let Xy be connected in codimension k for any y ∈ X,

then there exists a closed subset Y of Xy such that codim(Y, Xy) > k, and

Xy − Y is connected. Then we have Xy − y is connected for any y ∈ X.

(ii) ⇒ (i) : Let y ∈ X and Y be a closed subset of Xy, with codim(Y,Xy) >

k. Then for any z ∈ Y , we have dimXz > k. Therefore, from (ii), Xz − z is

connected. And since dimXz > k ≥ 0, Xz − z is non-empty. But since the

local space Xy is connected, we can now apply the above lemma. Here Xy is

our connected local space and Y is the closed subset of Xy. We have Xz − z

is non-empty and connected, for any z ∈ Y . So all conditions of the lemma

are satisfied. Hence, we say Xy − Y is connected. So by the definition, Xy is

connected in codimension k. �

Now, we can give the definition:

Definition 2.11 Suppose that X is a noetherian topological space and X

satisfies any of the equivalent conditions of the above proposition for any

integer k ≥ 0. Then X is said to be locally connected in codimension k.

Similar to the properties of connectedness in codimension k, we can state

the following:

Remark 2.12 (i) If X is locally connected in codimension k, then for any

l ≥ k, X is locally connected in codimension l.

12



(ii) If X is connected and locally connected in codimension k, then it is

connected in codimension k. Let us sketch the proof shortly:

Suppose that X is connected and locally connected in codimension k.

Let us take y ∈ X such that dimXy > k. Then from Proposition 2.10, we

have that Xy − y is connected. If we take a closed subset Y of X, then from

Lemma 2.9, it follows that X−Y is connected. Hence, from Proposition 2.3,

we say that X is connected in codimension k.

The converse of this statement is not true. (See Hartshorne [6], page 500).

(iii) For a local topological space X, being locally connected in codimen-

sion k implies being connected in codimension k.

Proof : If X is a topological space which is locally connected in codi-

mension k, then by Proposition 2.10, for a closed subspace Y of X, and for

every y ∈ X satisfying dimXy > k, we have Xy − y is connected. Then it

follows from Lemma 2.9 that X − Y is connected. And by Proposition 2.3

and Definition 2.4, we say that X is connected in codimension k.
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Chapter 3

Depth and Cohen-Macaulay

Rings

In this chapter, we will try to describe the facts about Cohen-Macaulay rings.

These rings are important, because by studying them many relations between

algebra and geometry are observed.

Our aim in giving Cohen-Macaulay rings is that in the next chapter, when

we study the concept of complete intersections, we will restrict ourselves to

Cohen-Macaulay rings to avoid some difficulties.

Cohen-Macaulay rings can be described in many different ways, by many

different approaches. Eisenbud [3] describes these rings as rings R in which

depth(I, R) = codimI

for every ideal I (it is enough to assume this when I is a maximal ideal).

The concept of codimI is explained below.
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Let us take the ring R, and let I ⊂ R be an ideal of R with I 6= R. The

dimension of I, denoted by dimI, is defined to be dimR/I. If I is a prime

ideal then the codimension of I, denoted by codimI, (also called height I and

rank I by various authors), is defined to be the dimension of the local ring

RI . In other words, codimI is the supremum of lengths of chains of primes

descending from I. If I is not a prime ideal, then codimI is the minumum

of the codimensions of the primes containing I, see Definition 3.5.

We will give a definition of Cohen-Macaulay rings which depends on the

depth of ideals in a ring. Before we can define depth, we need some defini-

tions:

Definition 3.1 Let R be a noetherian ring. A sequence r1, r2, . . . , rn of ele-

ments in R is called an R-sequence or a regular sequence on R if it satisfies

the following properties:

(i) R 6= (r1, r2, . . . , rn)R

(ii) For i = 1, . . . , n, the i th element ri is not a zero divisor on

R/(r1, r2, . . . , ri−1)R.

Example The basic example of a regular sequence is the sequence

x1, . . . , xn of indeterminates in a polynomial ring R = k[x1, . . . , xn].

Example Let us consider the ring

R = k[x, y, z]/(x− 1)z,
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and the sequence of elements x, (x − 1)y. The ideal generated by these two

elements is

(x, (x− 1)y) = (x, y) 6= R.

And x is not a zero-divisor in R, and R/(x) = k[y, z]/(z). So following the

definition, we see that the sequence x, (x− 1)y is a regular sequence.

Eisunbud [3] uses Koszul complex to show the basic properties about

depth. He mentions that depth is an algebraic concept which is parallel

to the geometric concept of codimension. And his approach to the Cohen-

Macaulayness is in a way such that it is a condition in which these two

concepts in algebra and geometry are given together.

Let us now give the definition of depth:

Definition 3.2 Let R be a noetherian ring, and I be an ideal in R. The

length of any maximal R-sequence in I is defined to be the depth of an ideal

I.

As we see in the definition, the depth of I is a measure of the size of I,

while the codimension of I is a geometric measure.

Instead of depth, the terms homological codimension, and grade is also

used.

It is necessary here to mention that all maximal R-sequences have the

same length (see [15], volume II, appendix 6).
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We should also mention here a property of depth which we will use in the

examples in chapter 5. But first, let us give the definition of the annihilator:

Definition 3.3 Let R be a ring, and M be a module of R. The set of elements

r of R such that rM = (0) is called the annihilator of M and is denoted by

ann(M), that is,

ann(M) = {r ∈ R : rM = 0}.

If P is an associated prime ideal of R, that is, a prime ideal which is the

annihilator of some non-zero element of R, then we have

depth(R) ≤ dimP

which implies

depth(R) ≤ dimR < ∞.

(See Geyer [5], page 232).

Now, we will give the definition of a Cohen-Macaulay ring. In the first

case, we will define Cohen-Macaulay rings for local rings. A ring is local, if it

is noetherian and has exactly one maximal ideal. If the ring R is local, and

M is the unique maximal ideal of it, we denote this by saying (R,M) is a

local ring.

Definition 3.4 Let R be a local ring. R is called a Cohen-Macaulay ring, if

the depth of R is equal to its dimension.

For some other approaches to Cohen-Macaulay rings one can refer to [9].
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Example The polynomial ring A = k[x1, . . . , xn] over a field k is a

Cohen-Macaulay ring.

Example Any regular local ring A is a Cohen-Macaulay ring. (We give

the definition of a regular local ring in page 28).

Example Any local domain A of dimension 1 is a Cohen-Macaulay ring.

Indeed, any single element 6= 0 of the maximal ideal of A constitutes a prime

sequence. (An example from [15], volume II, page 397).

Let us now define the height of an ideal:

Definition 3.5 In a ring R, the height of a prime ideal P is the supremum

of all integers n such that there exists a chain

P0 ⊂ P1 ⊂ . . . ⊂ Pn = P

of distinct prime ideals. The height of any ideal I is the infimum of the

heights of the prime ideals containing I.

When we give the definition of Cohen-Macaulay rings above, we defined

it for local rings. Let us now state the definition in a more general way.

We say that a noetherian ring R is a Cohen-Macaulay ring, if for every

maximal ideal P of R, the localization RP is Cohen-Macaulay with dimension

dimRP = dimR.

Then we have the equation

dimP + heightP = dimR

18



for all P ∈ Spec(R), where dimP is defined as dimR/P . (See Eisenbud [3],

page 225, or [1]).

Remark 3.6 Here, by Spec(R), we denote the set of all prime ideals in the

ring R.

For instance, if we take the ring Z of integers, then we see that Spec(Z)

consists of the ideal (0) and the ideals (p) for all prime numbers p.

Now, let us define the Zariski topology on Spec(R). Let R be any ring and

I be an ideal of R. The subsets

Z(I) = {P : P is a prime ideal of R and P ⊃ I} ⊆ Spec(R)

are called Zariski closed subsets (shortly closed subsets). Since any finite

unions and arbitrary intersections of closed subsets are closed, the closed

subsets define a topology on Spec(R), and this topology is called the Zariski

topology.

Remark 3.7 Geyer [5] gives the following properties of Cohen-Macaulay

rings, which we will use in the following chapters:

If R is a Cohen-Macaulay ring, then the following are all Cohen-Macaulay:

(i) RP , for every P ∈ Spec(R);

(ii) the completion R∗, if R is local;
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(iii) R/Rx, if x is not a zero-divisor.

A ring R is Cohen-Macaulay iff the polynomial ring R[x] is Cohen-Macaulay

(for the proof see [3], page 452).

The following theorem is important, since it is related with our main

results. We will also use the following theorems in the next two chapters.

Theorem 3.8 (Hartshorne, [6]). Suppose that (R,M) is a local ring and

Spec(R)−M is disconnected in Zariski topology. Then we have

depthR = 1.

Proof : See [5], page 234.

By using the concepts of connectedness in codimension 1, and Remark

2.6, we can restate the above theorem for Cohen-Macaulay rings as follows:

Theorem 3.9 (Hartshorne, [6]). Suppose that R is a Cohen-Macaulay ring,

and R cannot be written as a direct product of rings. Then X = Spec(R) is

connected in codimension 1.

Proof : (Geyer [5], page 237).

20



Chapter 4

Complete Intersections

In this chapter we will look deeper into algebraic geometry. We will introduce

the concept of complete intersections. This is a very basic subject of alge-

braic geometry and is related with different subjects of algebra and geometry.

We will first give the definitions of set-theoretically and ideal theoreti-

cally complete intersections. And then we will describe the relation between

connectedness and complete intersections. Finally, we will give a necessary

topological condition for an algebraic set V to be complete intersection. In

the next chapter, we will study some of the applications of this result.

We begin with the basic definitions:

Let k be an algebraically closed field of characteristic 0. If f is a nonzero

homogeneous polynomial in k[x0, . . . , xn], then algebraic varieties of the form

{f = 0} ⊂ Pn
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are called hypersurfaces. A hypersurface H in Pn has dimension n− 1.

An algebraic set V in Pn is the set of common zeros of a subset S of

homogeneous polynomials in the polynomial ring k[x0, . . . , xn]; that is,

V (S) = {P ∈ Pn : f(P ) = 0, for all f ∈ S}.

And if we take any subset V of Pn; we define the ideal of V as follows:

I(V ) = {f ∈ k[x0, . . . , xn] : f is homogeneous and f(P ) = 0, for all P ∈ V }.

(For details, see [8], chapter 1).

Definition 4.1 An algebraic set V (whose every irreducible component has

dimension n−r) is called a set-theoretically complete intersection, if it is the

intersection of r hypersurfaces {fi = 0} in the n-space; that is,

V = V (f1, . . . , fr).

In other words, a variety V of dimension r in the projective space Pn is a

set-theoretically complete intersection, if there are n− r = codim(V, Pn) hy-

persurfaces whose intersection is V .

Moreover, if the fi s can be chosen so that

I(V ) = (f1, . . . , fr),

then we say that V is ideal-theoretically a complete intersection.

Every ideal theoretical complete intersection is a set-theoretical complete

intersection, but the converse does not hold as we will demonstrate later.
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We can say that complete intersections are those algebraic sets which can

be described by the lowest possible number of equations. Let us give some

examples of complete intersections:

Example The trivial algebraic sets An and Pn are ideal theoretically

complete intersections . Because, An and Pn are both the intersection of 0

hypersurfaces.

Example Every point is ideal theoretically a complete intersection. If

we take the point

P = [p0 : p1 : . . . : pn] ∈ Pn,

and assume that pj 6= 0 for some j, then in k[x0, . . . , xn] we can write P as

the intersection of n hyperplanes

pjXi − piXj = 0 for (i = 0, . . . , n and i 6= j).

And the ideal I(P ) is generated by these polynomials.

Let us now give an example which includes basic facts about complete

intersections.

Example (i) Let X be a variety in the projective space Pn, and suppose

that X = Z(I) and I can be generated by r elements. Then let us see that

dimX ≥ n− r.

Since I is generated by r elements, we can take

I = (f1, . . . , fr),
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where fi s are homogeneous polynomials in k[x0, . . . , xn] for i = 1, . . . , r. And

since X = Z(I), where Z(I) is the zero set of I, then we have

X = Z(I) = Z(f1, . . . , fr) ⊆ Pn.

A hypersurface {f1 = 0} ⊂ Pn has dimension n− 1, so we get

dimZ(f1) = n− 1,

dimZ(f1, f2) ≥ n− 2.

If we continue in this way, we find that

dimZ(f1, . . . , fr) ≥ n− r.

Hence, we have

dimX ≥ n− r.

(ii) If Y is a complete intersection ideal theoretically (it is also said that

it is a complete intersection in the strong sense) with dimension r in Pn, then

Y is a complete intersection set-theoretically.

It is easy to show this: Since Y is a complete intersection in the strong

sense with dimension r, then we have the ideal

I(Y ) = (f1, . . . , fn−r)

generated by n− r = codim(Y, Pn) elements. Then we can write

Y = Z(f1) ∩ . . . ∩ Z(fn−r);

that is, we can write Y as an intersection of n − r hypersurfaces. So Y is

set-theoretically a complete intersection.
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(iii) The converse of the above statement (ii) is not true. That is, if Y

is set-theoretically a complete intersection, then it may not be a complete in-

tersection in the strong sense.

We can give the twisted cubic curve as an example of this situation: Let

us suppose that Y ⊆ P3 is the set

Y = {[s3 : s2t : st2 : t3] : s, t ∈ k and (s, t) 6= (0, 0)}.

Here, Y is a variety of dimension 1. And if we take

x = s3

y = s2t

z = st2

w = t3,

then it is easily seen that the ideal I(Y ) is generated by the polynomials

f1 = z2 − yw

f2 = y2 − xz

f3 = xw − yz, 0

that is,

I(Y ) = (f1, f2, f3).

Here, it can be shown that the ideal I(Y ) cannot be generated by 2 =

codim(Y, P3) polynomials, so Y is not a complete intersection in the strong

sense. But, we can find two hypersurfaces

H1 = Z(z2 − yw)
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and

H2 = Z(y3 − 2xyz + x2w)

such that Y = H1∩H2. And hence Y is a complete intersection set-theoretically

with these hypersurfaces.

Example We give an example of a set-theoretical complete intersection

in affine space which is not a complete intersection ideal theoretically. This

is an irreducible algebraic set V of dimension 1 in the affine 3-space A3. Let

V be as follows:

V = {(t3, t4, t5) ∈ A3 : t ∈ k}.

V has only one singularity, and that is the origin (0, 0, 0). This is indeed a

monomial space curve with

x1 = t3,

x2 = t4,

x3 = t5.

If we take the polynomials

f1 = x2
2 − x1x3,

f2 = x3
1 − x2x3,

f3 = x2
3 − x2

1x2,

then it can be shown that the prime ideal I(V) is generated by these polyno-

mials; that is

I(V ) = (f1, f2, f3).
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Here, we should mention that I(V ) cannot be generated by 2 polynomials.

(We can show this by considering the degrees: Suppose that I(V ) is generated

by 2 elements, that is, let

I(V ) = (g1, g2).

Let us take

deg(x1) = deg(t3) = 3,

deg(x2) = deg(t4) = 4,

deg(x3) = deg(t5) = 5;

so we find that

deg(f1) = 8,

deg(f2) = 9,

deg(f3) = 10.

If deg(g1) > 8, and deg(g2) > 8, then I = (g1, g2) cannot generate f1 =

x2
2− x1x3. So either g1 or g2 should have degree 8, without loss of generality

we can take deg(g1) = 8. It is easily seen that, a monomial xα
1 xβ

2x
γ
3 has de-

gree at least 3, and we see that a polynomial contained in the ideal generated

by g1 has degree at least 11. But now the ideal generated by g1 does not

include the elements f2 and f3. So let us choose deg(g2) = 9, then we cannot

obtain the element f3. So the ideal I(V ) cannot be generated by 2 elements. )

But V is set-theoretically a complete intersection, since it can be written

as the intersection of 2 = codim(V, A3) surfaces

V = H1 ∩H2,
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where

H1 : g1 = x2
3 − x2

1x2 = 0

H2 : g2 = x4
1 + x3

2 − 2x1x2x3 = 0.

We will now give the definition of locally complete intersections:

Definition 4.2 An algebraic set V is said to be locally a complete inter-

section, if every point of V has a neighborhood in which V is a complete

intersection.

In the above example, we see that

V = {(t3, t4, t5) ∈ A3 : t ∈ k} ⊆ A3

is a set-theoretical complete intersection. But since I(V ) cannot be gener-

ated by 2 elements, V is not a complete intersection ideal theoretically. And

V is not a local complete intersection.

The twisted cubic curve (given in page 25) is a local complete intersec-

tion, since we can write one of the generators f1 as a combination of the

others f2 and f3, when x is set to 1 for example.

Let us consider a local ring (R,M) with dimension r. By the Principal

Ideal Theorem (see [3], page 232), it follows that M cannot be generated by

less than r elements. And by Krull’s Principal Ideal Theorem (see [11]), we

say that R is called a regular local ring if M can be generated by exactly r

elements.
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Definition 4.3 We call that a local ring R of dimension r is a complete

intersection, if it can be written as the quotient of a regular local ring B by

an ideal I which can be generated by dimB − r elements.

It can be seen from the Cohen-Macaulay theorem ([15], volume II, page

397, Theorem 2), that if A = B/I is a complete intersection, then I can be

generated by a B−sequence, as in the definition, and A is a Cohen-Macaulay

ring.

The theorem we will state below is a basic theorem on which the general

concept of complete intersections in noetherian rings are based:

Theorem 4.4 (Krull’s principal ideal theorem). Suppose that I is an ideal

in the noetherian ring R, and P is a minimal prime ideal containing I. If

height(P ) = r, then I needs at least r generators as R−ideal.

For the proof see [10], page 110.

As we mentioned before, we will define complete intersections to be ide-

als which can be generated by the lowest possible number of polynomials or

the algebraic sets which can be described by the lowest possible number of

equations according to the above theorem.

From now on, we will restrict ourselves on Cohen-Macaulay rings to avoid

some difficulties.

Definition 4.5 Let R be a Cohen-Macaulay ring. We say that the ideal I

is a complete intersection (or equivalently we say that r elements f1, . . . , fr
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of R generate a complete intersection I = (f1, . . . , fr)) if all minimal prime

ideals P containing I are of maximal height = r with I 6= R.

I is called locally a complete intersection at P ∈ Spec(R), if IP is a

complete intersection in RP .

Proposition 4.6 Suppose that R is a Cohen-Macaulay ring, and f1, . . . , fr ∈

R. Then the following two conditions are equivalent:

(i) f1, . . . , fr generate a complete intersection I = (f1, . . . , fr).

(ii) f1, . . . , fr is an R−sequence.

Proof : See [5], page 239.

Proposition 4.7 Suppose that I is a complete intersection in the Cohen-

Macaulay ring R. Then R/I is also a Cohen-Macaulay ring.

The proof of this proposition is contained in the above proof of Proposi-

tion 4.6. Let us now state the proof in another way:

Proof : Let us take I = (r1, . . . , rn) in R which is generated by n =

codimI elements, where n is the largest possible value. This means that I

is a complete intersection. R is Cohen-Macaulay iff RP is Cohen-Macaulay

for every prime ideal P of R. So we may assume that R is a local ring with

maximal ideal M . If we choose a maximal regular sequence in M which

begins with (r1, . . . , rn), then we have

depth(R/I) = depthR− n.
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For i = 1, . . . , n, the i th element ri is not in any of the minimal primes of

(ri, . . . , ri−1), so we get

dim(R/I) ≤ dimR− n.

And since R is a Cohen-Macaulay ring, it implies that

dim(R/I) ≤ dimR− n = depthR− n = depth(R/I),

and since we always have

depth(R/I) ≤ dim(R/I),

it follows that

depth(R/I) = dim(R/I).

So we conclude that R/I is Cohen-Macaulay. �

Remark 4.8 For a Cohen-Macaulay ring R and a closed subset X ⊂ Spec(R);

we have the following:

X is a set-theoretical complete intersection in Spec(R), if X = V (I),

where I is a complete intersection. This means that for some fi ∈ R and for

all irreducible components of X which have codimension r in Spec(R), we

have X = V (f1, . . . , fr), where

V (f1, . . . , fr) = {P ∈ Spec(R) : (f1, . . . , fr) ⊂ P}.

Here we will shortly mention the concept of a coordinate ring which will

be used in the next chapter, in Example 5.5. Now, let us suppose that

f1 = . . . = fr = 0
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define a set-theoretically complete intersection, say V , in An. Since (f1, . . . , fr)

is a complete intersection in the Cohen-Macaulay ring k[x1, . . . , xn], from

Proposition 4.7, we have that

R = k[x1, . . . , xn]/(f1, . . . , fr)

is also a Cohen-Macaulay ring. The radical ideal associated to the algebraic

set V is

I(V ) = rad(f1, . . . , fr).

And the coordinate ring associated to V is

k[V ] = k[x1, . . . , xn]/I(V ) = R/rad(0).

In general when I is not a complete intersection ideal, the coordinate ring

k[V ] of V may not be a Cohen-Macaulay ring, although k[x1, . . . , xn] is

Cohen-Macaulay. We will study an example about a coordinate ring which

is not Cohen-Macaulay in the next chapter (in chapter 5, Example 5.5).

Here, we will state a property about completions for complete intersec-

tions:

Proposition 4.9 Let the local ring A be a complete intersection, then the

completion A∗ of A is also a complete intersection.

Proof : From Definition 4.3, let us write A as a quotient B/I, where B

is a regular local ring, and I can be generated by dimB− dimA elements. If

we take completions, we have

A∗ = B∗/I∗
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since completion is an exact functor (see [15], volume II, chapter VIII, § 2).

Now, since completion preserves the dimension and the regularity of a local

ring (see [15], volume II, chapter VIII, § 11); we have

dimA = dimA∗,

dimB = dimB∗,

and B∗ is regular. Moreover, we have

I∗ = IB∗.

So I∗ can be generated by

(dimB)− (dimA) = (dimB∗)− (dimA∗)

elements. So we see that A∗ is written as the quotient of a regular ring B∗

by an ideal I∗, which is generated by dim(B∗) − dim(A∗) elements. So we

find that A∗ is a complete intersection. �

Now, we will pass to the local conditions for complete intersections and

finally give the main theorem. We will use Proposition 4.7 stated above and

Theorems 3.8, 3.9 stated in the previous chapter.

Theorem 4.10 (Hartshorne, [6]). Suppose that (R, M) is a local Cohen-

Macaulay ring. Let V = V (I) be a set-theoretical complete intersection in

Spec(R) with dimension > 1. Then V −{M} is connected. And V ∗−{M∗}

is also connected.

Here V ∗ = Spec(R∗/I∗) is called the completion of V at R.
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Proof : Since R is a Cohen-Macaulay ring and V = V (I) is a set-

theoretical complete intersection, then by Proposition 4.7, we have that R/I

is Cohen-Macaulay. It follows from Proposition 4.9 that the completion

(R/I)∗ = R∗/I∗

is also a Cohen-Macaulay ring. Here R/I and R∗/I∗ both have dimension

bigger than 1. Since they are both Cohen-Macaulay rings, we have that

depth(R/I) = dim(R/I)

and

depth(R/I)∗ = dim(R∗/I∗).

So the depth is also bigger than 1. By the Theorem 3.8 in the previous

chapter, since we have

depth(R/I) > 1

and

depth(R∗/I∗) > 1,

it follows that both V − {M} and V ∗ − {M∗} are connected. �

We will use the above theorem in Example 5.6, in chapter 5.

As a result of the above theorem, we give the following:

Corollary 4.11 Let the algebraic set V ⊂ An be locally a set-theoretical

complete intersection at a point P ∈ V and suppose that codim(P, V ) > 1.

Then V − {P} is connected locally at P .
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Finally, we can state the main theorem:

Theorem 4.12 (Geyer [5]). Suppose that V is an algebraic set which is

locally a complete intersection everywhere. Then the connected components

of V are connected in codimension 1.

Proof : ([5], page 242). If we take the affine ring R = k[x1, . . . , xn]/I

with a connected spectrum, since the Cohen-Macaulayness condition is local,

the result follows from Theorem 3.9. And for the projective case, it follows

in the same way by Theorem 3.9. �

This theorem is stated for preschemes in Hartshorne’s paper [6].

By this theorem we get a necessary local condition for an algebraic set to

be a complete intersection, and this condition is that V should be connected

in codimension 1.

In chapter 5, we will study an example which is not a complete intersection

in Example 5.1 and 5.6.
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Chapter 5

Examples

In this chapter, we will give some applications of the things we have done

in the previous chapters. We will study examples about various complete

intersections and their connectedness in codimension k, Cohen-Macaulay

rings, some surfaces which are not complete intersections, and an exam-

ple about an irreducible algebraic set V whose coordinate ring k[V ] is not

Cohen-Macaulay.

Example 5.1 We will see that the subset of affine 4-space X = C4

consisting of two planes which meet in a single point is not a complete inter-

section in this example of Hartshorne [6]. Let V be the variety which is the

union of two planes

z1 = z2 = 0

and

z3 = z4 = 0.
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Now, let us show that V is not a complete intersection.

From Theorem 4.12, to say that V is not a complete intersection, it is

enough to show that V is not connected in codimension 1. By the definition

of connectedness in codimension 1; let us take

k = 1 > 0, Y = {(0, 0, 0, 0}).

We have that dimV = 2, codim(Y, V ) = 2 > 1, and

V − Y = V − {(0, 0, 0, 0})

is not connected by Definition 2.4. So we say that V is not connected in

codimension 1. Hence, we conclude that V is not a complete intersection.

Example 5.2 Let us find an irreducible surface in X = C4 which is not

a complete intersection. Suppose that V is a surface given parametrically by

z1 = t

z2 = tu

z3 = u(u− 1)

z4 = u2(u− 1),

where (t, u) ∈ C2.

It is easily seen that the points (0, 0) and (0, 1) are both mapped into the

origin (0, 0, 0, 0) of X. Since V is irreducible, it is locally connected in codi-

mension 1. But at the origin V is not formally connected in codimension 1

(from Proposition 2.3). So by Theorem 4.12, we say that V is not a complete

intersection. This example shows that two hypersurfaces are not sufficient
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to define an irreducible surface V in 4-space.

Example 5.3 One expects that if V is a complete intersection, then any

two irreducible components of V passing through a given point P have an

intersection which is of codimension 1 with respect to each of them at P , but

we have a counter example to this situation: Take X = C4, and let V be the

union of three planes Q1, Q2, Q3. Suppose that

Q1 is defined by z1 = z2 = 0,

Q2 is defined by z2 = z3 = 0, and

Q3 is defined by z3 = z4 = 0.

We can write V = V (f1, f2) where

f1 = z1z3 + z2z4,

and

f2 = z2z3,

that is we write V as the intersection of 2 = codim(V, X) hypersurfaces.

So V is a complete intersection. But the two components Q1 and Q3 of V

meet only in a point (0, 0, 0, 0), and this point is of codimension 2, not 1 in V .

Example 5.4 Now, we will study a remark of Serre given in [5], page

242. We will show that a complete intersection in projective space Pn is
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connected in codimension 1.

We state the proof given by Geyer. There is also another proof given by

Hartshorne [6], page 508.

Suppose that V is a complete intersection in Pn, and V is not connected

codimension 1. Then from Definition 2.4, we can say that there exists a

closed subset

W ⊂ V = V (f1, . . . , fr)

with

codimW > 1 = k

such that V −W is disconnected. Then there exists a linear subspace

L ⊂ Pn

with

dimL = r + 1

given by linear equations

fr+1 = . . . = fn−1 = 0,

satisfying L ∩ W = ∅. But L meets all irreducible components of V by a

theorem given in Geyer ([5], page 204, Theorem 4). Then we have

V (f1, . . . , fr, fr+1, . . . , fn−1) ⊂ V −W,

and since V −W is disconnected, V (f1, . . . , fr, fr+1, . . . , fn−1) is also discon-

nected. But this is a contradiction. Because we have n−1 < n, so by Geyer’s
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theorem V should be connected. But here we find that V is disconnected.

So if V is a complete intersection in Pn, then it must be connected in codi-

mension 1.

Example 5.5 (An example of Geyer ([5], page 244).) Now, we will

see an example of an irreducible 3-dimensional algebraic set V in A5 with

char(k) = 2, such that V is a complete intersection set-theoretically, but the

coordinate ring k[V ] is not Cohen-Macaulay.

First let us make some preparations:

The subring

T = k[ξ2, η, µ, ξη, ξµ]

of the polynomial ring k[ξ, η, µ] in 3 variables can be given by

T ∼= k[X1, X2, X3, X4, X5]/P

where

P = (X2
4 −X1X

2
2 , X

2
5 −X1X

2
3 , X5X2 −X3X4, X5X4 −X1X2X3).

Now, let’s look at the factor ring

T = T/Tx2
∼= k[X1, X3, X4, X5]/(X

2
4 , X

2
5 −X1X

2
3 , X3X4, X4X5).

We have that

Ann(x4) = (x3, x4, x5),
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since if f ∈ Ann(x4), this means that x4f = 0; that is, if

x4f(x1, x2, x3, x4, x5) ∈ (X2
4 , X

2
5 −X1X

2
3 , X3X4, X4X5) ⇒ f ∈ Ann(x4).

(x3 ∈ Ann(x4), because x3x4 = 0;

x4 ∈ Ann(x4), because x4x4 = 0;

x5 ∈ Ann(x4), because x5x4 = 0.)

Ann (x4) is an associated prime ideal in T ; that is a prime ideal which is

the annihilator of some non-zero element of T ; that is Ann (x4) is a prime

ideal which is the annihilator of the non-zero element x4 in T . Then we have

depthT = 1,

(since for the R−sequence {x1, x3, x4, x5}, only x1 is not a zero divisor in T .)

And dimT = 2. So we get

depthT 6= dimT ,

and hence T is not a Cohen-Macaulay ring. Since

T = T/Tx2

is not Cohen-Macaulay, T cannot be a Cohen-Macaulay ring.

In our example, we want to show that the coordinate ring k[V ] is not a

Cohen-Macaulay ring. We have char(k) = 2, let’s look at

f1 = X2
5 −X1X

2
3 ,
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f2 = X2
4 −X1X

2
2

in R = k[X1, X2, X3, X4, X5], f1 and f2 are relatively prime, so

V = V (f1, f2)

is a complete intersection in A5. Since R = k[X1, X2, X3, X4, X5] is a Cohen-

Macaulay ring and (f1, f2) is a complete intersection in R, then by Proposi-

tion 4.7, we have

R = R/(f1, f2)

is a Cohen-Macaulay ring.

x2
5 = x1x

2
3,

x2
4 = x1x

2
2

in R = R/(f1, f2) = k[X1, X2, X3, X4, X5]/(X
2
5 −X1X

2
3 , X

2
4 −X1X

2
2 )

it follows that

(x4x5)
2 = (x1x2x3)

2,

and

(x5x2)
2 = (x3x4)

2.

Since char(k) is 2, the elements

x4x5 − x1x2x3,

and

x5x2 − x3x4

are nilpotent in R. Therefore we have

k[V ] = k[X1, X2, X3, X4, X5]/I(V ) = R/I(V ) ∼= T.
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As we have shown above, T is not a Cohen-Macaulay ring, so we have that

the coordinate ring k[V ] is not a Cohen-Macaulay ring also.

Example 5.6 This is another example of an irreducible algebraic set

which is not a complete intersection. (This is the more explicit form of

Example 5.2 above). Let

V = {(t, tu, u(u− 1), u2(u− 1)) ∈ A4 : u, t ∈ k}

be the image of the (u, t)-plane in the 4-dimensional space. Let

f1 = X1X4 −X2X3 = 0,

f2 = X2
1X3 + X1X2 −X2

2 = 0,

f3 = X3
3 + X3X4 −X2

4 = 0.

It is easy to see that

V = V (f1, f2, f3)

and

I(V ) = (f1, f2, f3).

Now the morphism from the (u, t)-plane A2 onto V ⊂ A4 is obviously

bijective with one exception: (0, 0) and (1, 0) in A2 are both mapped onto

the origin P = (0, 0, 0, 0) ∈ V.

Since V is irreducible, V − {P} is locally connected at P , but this does

not hold formally.
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More explicitly:

If we look at the completion R∗ = k[[X1, X2, X3, X4]] of the local ring

k[X1, X2, X3, X4], we see that from (t, tu, u(u− 1), u2(u− 1)),

X3 = U2 − U

is solvable, this means that we can write U as a power series of X3 with

integer coefficients. (For more details see Geyer [5], page 249).

Now we have in R∗ the splittings

f2 = (UX1 −X2)(UX1 −X1 + X2),

f3 = (UX3 −X4)(UX3 −X3 + X4).

Then we get

I∗ = Q1 ∩Q2

where

Q1 = (UX1 −X2, UX3 −X4),

Q2 = ((U − 1)X1 −X2, (U − 1)X3 −X4),

so V splits at P into two surfaces which are complete intersections:

V ∗ = Spec(R∗/I∗) = V (Q1) ∪ V (Q2).

But if we look at the ideal generated by Q1 and Q2 together, we see that

Q1 + Q2 = (X1, X2, X3, X4).

This is the maximal ideal P ∗ of R∗, so

V (Q1) ∩ V (Q2) = {P ∗}.
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Therefore Spec(R∗/I∗)−{P ∗} is not connected. So by Theorem 4.10, we

say that V is not a set-theoretic complete intersection locally at P .
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Chapter 6

Complete Intersections in

Characteristic p > 0

In this chapter, we report on a paper of Hartshorne [7] called ‘Complete In-

tersections in Characteristic p > 0’ and we show that for an algebraically

closed field k, certain rational curves of degree d ≥ 4 in P3 are set-theoretical

complete intersections in all prime characteristics p > 0.

Recall that we call a variety V of dimension r in projective space Pn a

set-theoretical complete intersection if there are n − r hypersurfaces whose

intersection is V .

We list below some results about characteristic p > 0.

• Cowsik and Nori [2] have shown that every curve in affine n-space An

over a field of characteristic p > 0 is a set-theoretical complete inter-

section.
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• Ferrand [4] has found a class of curves, including those curves of degree

≥ 4 in P3 mentioned in this chapter, which are set-theoretical complete

intersections in every prime characteristic.

• Moh [12] has shown that every monomial curve in Pn
k is a set-theoretical

complete intersection, where k is a field of characteristic p > 0.

And the other result given by Moh in his paper is: Let k be a field

of characteristic p and C a curve of Pn
k . If there is a linear projection

Π : Pn
k → P2

k with center of Π disjoint of C, Π(C) is birational to C

and Π(C) has only cusps as singularities, then C is a set-theoretical

complete intersection.

• Robbiano and Valla [13] have shown that arithmetically Cohen-Macaulay

curves are set-theoretic complete intersections in any characteristic.

To define “arithmetically Cohen-Macaulay curves” let C be a monomial

space curve in P3 given parametrically by

x = um

y = untm−n

z = uptm−p

w = tm,

where m, n, p are positive integers such that m > n and m > p. The

curve C is called arithmetically Cohen-Macaulay iff the minimal num-
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ber of generators of the defining ideal I(C) is less than or equal to 3.

For example, the curve (t4, t6, t7, t9) is a set-theoretical complete inter-

section in A4. This curve is ‘associated’ to the curve (u5, u3v2, u2v3, v5),

and the binomial (u9 − v4) in the sense of Thoma (see [14], example

2.2). Here the latter curve (u5, u3v2, u2v3, v5) is arithmetically Cohen-

Macaulay and is therefore a set-theoretic complete intersection of

X2
2 −X1X

2
3

and

X5
3 − 3X2

2X
2
3X4 + 3X1X2X3X

2
4 −X2

1X
3
4 ,

(see [14]).

Another example of an arithmetically Cohen-Macaulay curve is the

curve (u7, u6v, u4v3, v7) in P3. This curve is a set-theoretic complete

intersection of

X3
2 −X2

1X3

and

X7
3 − 3X2

2X
4
3X4 + 3X2

1X2X
2
3X

2
4 −X4

1X
3
4

(see [14], example 3.5).

First let us define the curves which we will study:

Definition 6.1 Let d be a positive integer, and let Cd be the curve in P3
k

given parametrically by

x = tud−1
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y = td−1u

z = td

w = ud,

where u and t are in k, and (t, u) 6= (0, 0). This curve is a nonsingular

rational curve of degree d.

Let us show the nonsingularity of the curve Cd:

To see that this curve is nonsingular, we should look at the Jacobian :

 ∂x
∂t

∂y
∂t

∂z
∂t

∂w
∂t

∂x
∂u

∂y
∂u

∂z
∂u

∂w
∂u

 =

 ud−1 (d− 1)utd−2 dtd−1 0

(d− 1)tud−2 td−1 0 dud−1


For t 6= 0 and u 6= 0, we have that the rank of the above matrix is 2, so the

curve Cd is nonsingular.

For example, C4 is a set-theoretical complete intersection in characteristic

p = 3 in P3
k. In fact,

C4 = V (f1, f2)

where

f1 = y13 − x3z9w

and

f2 = z9w27 +
13∑

k=1

(−1)k

(
13

k

)
y13−kx36−3(13−k)w2(13−k).
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We find these surfaces by using the algorithm given in the proof of the

following theorem:

Theorem 6.2 Hartshorne [7]. Let k be an algebraically closed field of char-

acteristic p > 0, then Cd is a set-theoretical complete intersection in P3
k for

any d ≥ 4.

Proof : The degree d ≥ 4 of the curve, and the characteristic p > 0 of

the field are given. We will choose integers n > 0 and r such that, if q = pn,

then the following two inequalities are satisfied :

(1 +
1

(d− 1)
)q < r < (1 +

1

(d− 2)
)q

and

r ≤ (1 +
1

(d− 1)
)q + 1.

This is possible, by choosing n large enough so that

(1 +
1

(d− 1)
)q + 1 < (1 +

1

(d− 2)
)q

for example, and then taking r to be the largest integer ≤ (1 + 1
(d−1)

) q + 1.

From these inequalities, we can write the following:

r(d− 1)− dq > 0

q(d− 1)− r(d− 2) > 0

r(d− 1)− qd ≤ d− 1

Now, we will consider the two surfaces with the following equations;

yr = xr(d−1)−dqzqwq(d−1)−r(d−2)

50



and

zqwq(d−1) +
r∑

k=1

(−1)k

(
r

k

)
yr−kxdq−(r−k)(d−1)w(r−k)(d−2) = 0.

We know that all the exponents of the above equations are non-negative

by the choice of q and r.

Our aim is now to show that Cd can be written as the intersection of

these 2 = codim(Cd, P3
k) surfaces.

If w = 0, then from the second equation we find x = 0, and from the first

equation we find y = 0. So we say that there is only one point with w = 0,

and this point is on the curve Cd.

Similarly, if z = 0, then from the first equation we find y = 0, and from

the second equation we find x = 0. So there is only that one point, which is

on Cd. Hence, to show that Cd is the intersection of these two surfaces, we

can take w = 1, x = t, and assume t 6= 0. Now, it will be sufficient to show

that the only common solution of those two equations is

y = td−1

and

z = td.

Let us take the second equation. After substituting w = 1 and x = t, we get

zq−ryr−1tdq−(r−1)(d−1)+. . .+(−1)k

(
r

k

)
yr−ktdq−(r−k)(d−1)+. . .+(−1)rtdq = 0.
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Now, if we multiply the above equation by

tr(d−1)−dq,

we get

zqtr(d−1)−dq−ryr−1t(d−1) + . . .+(−1)k

(
r

k

)
yr−ktk(d−1) + . . .+(−1)rtr(d−1) = 0.

From the first equation, by making these substitutions, we get

yr = tr(d−1)−dqzq.

And we see that this is the first term of the above equation. So it becomes

yr − ryr−1td−1 + . . . + (−1)k

(
r

k

)
yr−ktk(d−1) + . . . + (−1)rtr(d−1) = 0.

It can be easily seen that, this is the expansion of the below expression

(y − td−1)r = 0.

Hence, we have that

y = td−1.

Now, from the first equation

yr = tr(d−1)−dqzq

and from the above conclusion we find

y = td−1,

we obtain

tr(d−1) = tr(d−1)−dqzq.
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Since t 6= 0 from our assumption, this implies

zq − tdq = 0.

And since q = pn is a power of the characteristic p, this implies

(z − td)q = 0.

Hence, we conclude that z = td. �

Remark 6.3 Here for d = 3, we see that this curve is the twisted cubic

curve, which is a set-theoretical complete intersection in any characteristic

with the equations, for example z2 = yw and y3 − 2xyz + x2w = 0, as we

have seen before (in page 25-26).

By applying the procedure given in the proof we can show that C4 is a

set-theoretical complete intersection in characteristic p = 2 with the surfaces

y11 = xz8w2

and

z8w24 +
11∑

k=1

(−1)k

(
11

k

)
y11−kx32−3(11−k)w2(11−k) = 0.

And, C5 is a set-theoretical complete intersection in characteristic p = 2

with the surfaces

y21 = x4z16w

and

z16w64 +
21∑

k=1

(−1)k

(
21

k

)
y21−kx80−4(21−k)w3(21−k) = 0.
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To conclude this chapter, let us mention that the general problem of

whether all projective curves are set-theoretical complete intersections in

characteristic p > 0 is an open problem. The problem of whether every

connected projective curve in P3 is a set-theoretical complete intersection is

even not solved.
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