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ABSTRACT
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Advisor: Özgün Ünlü

January 2021

In this work, we study doing geometry on sheaves on sites. Categories of our sites

consist of objects that are building blocks for a given geometry. Generalized spaces then

will be sheaves on these sort of sites. Next we introduce the notion of varieties, and show

the relationship between certain class of varieties known as diffeologies with the category

of smooth manifolds. Along the way, the notion of schemes will be generalized as a variety

on symmetric monoidal categories. And we show how a differential geometric construction

on a site can be translated to a construction on generalized spaces.

.
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ÖZET

SİTELERDEKİ ŞEAFLERİN GEOMETRİSİ

Pejman Parsizadeh

Matematik, Yüksek Lisans

Tez Danışmanı: Özgün Ünlü

Ocak 2021

Bu çalışmada, sitelerdeki şeafler üzerinde geometri yapmayı inceliyoruz. Sitelerimizin

kategorileri belirli bir geometri için yapı taşları olan nesnelerden oluşur. Genelleştirilmiş

uzaylar o zaman bu tür sitelerde sheafler olacak. Daha sonra varyete kavramını tanıtıyoruz

ve diffeolojiler olarak bilinen belirli varyetelerin kategorisi ile pürüzsüz manifoldlar kate-

gorisinin ilişkisini inceliyoruz. Yol boyunca, schemeler de simetrik monodyal kategoriler

üzerinde varyeteler olarak genelleştirilecektir. Ayrıca, bazı iyi bilinen geometrik yapıların

genelleştirilmiş uzaylar üzerine yapılara nasıl çevrilebileceğini göstereceğiz.

Anahtar sözcükler : Şeafler, Siteler, Geometri.

iv



Acknowledgement

I would like to express my gratitude to the mathematics department of Bilkent University

for giving me the oppotunity to continue my study in theoretical mathematics.

My sincere appreciation goes to my advisor Dr. Özgün Ünlü for his patience and all the
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Chapter 0

Introduction

The usual categories where we do geometry on, lack enough (co)limits. Intuitively speak-

ing, they lack enough solutions spaces for equations, fiber products etc. The category

OpenC∞ is an important example of such categories.

The remedy for the aforementioned problem is to use the Yoneda embedding functor,

and fully faithful embed our category C into the category of presheaves on C, i.e. Ĉ. We

know that the category Ĉ has all limits and colimits.

Yet, another problem occurs. the embedding functor doesn’t preserve finite colimits.

An example of such situation is given in Chapter 6. This is exactly the reason why the

notion of sheaf on site was invented, to deal with the colimit problem. As soon as the

category C is equipped with a Grothendieck topology, we will be able to form nerves of

the coverings and then, The Yoneda embedding of C into the category of sheaves on site

Sh(C, τ), C ↪→ Sh(C, τ), will preserve the colimits that is taken along the nerves. This

makes the category Sh(C, τ) to be a very good environment for doing geometry.

In this work, we will take the first steps toward studying geometry on the category of

sheaves on sites(a.k.a. topoi) in a systematic way. We have adopted and closely follow

the approach taken in [Pau].

In the first chapter, We will introduce the notion of (pre)sheaf and some important
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notions related to it which will be used on later chapters.

Second chapter is the second step towards understanding the notion of sheaves on a

site, namely the notion of sites. Sites will be discussed with some nice examples there.

In Chapter 3, we will mention basics of monoidal categories which specifically play an

important role in generalization of schemes.

Chapter 4 is devoted to categorical approach to calculus which is based on the notion

of tangent category, and was introduced by Daniel Quillen [Pau].

In Chapter 5, we will show how categorical calculus combined with Monoidal category,

can be used in the differential geometric context.

And finally, in Chapter 6, we begin studying the notion of sheaves on sites in a geometric

context. we will call an object of the category Sh(C, τ), a generalized space. Certain

objects of this category which are called varieties will be introduced, and finally we will

make a connection between diffeologies and the category of smooth manifolds.
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Chapter 1

Sheaves

1.1 Definitions and Examples

Definition 1.1.1. A presheaf is a contravariant functor F : Cop −→M from an arbitrary

category C to a category M .

Notation: In what follows OpenX stands for the category of open subsets of topological

space X, and inclusions i.e.

HomOpenX
(U, V ) =

U ↪−→ V if U ⊂ V

∅ otherwise

In this chapter, we will restrict ourselves to the following specific presheaves:

Definition 1.1.2. Suppose that X is a topological space and C is a category. A presheaf

F of C on X is a contravariant functor OpenopX −→ C.

The above definition means that F is an assignment such that

1. For every open set U ⊆ X, F (U) ∈ Ob(C).
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2. For every inclusion i : U ↪−→ V in X, a morphism resVU := F (i) : F (V ) −→ F (U) is

called a restriction map exists and satisfies two conditions:

(a) resUU = idF (U) for every open set U ⊆ V .

(b) For inclusions of open sets U ↪−→ V ↪−→ W in X, the composition of restriction

maps exists i.e. resWU = resVU o resWV .

Elements of F (U) are called sections over U . When U = X, the elements of F (X) are

called global sections. As a convention, for opens U ⊆ V in X, and

s ∈ F (V ), s|U := resVU (s).

Example 1.1.3. 1. Presheaf of functions: Let E be a set. For every open subset U ⊂ X

of topological space X, we define MapE(U) to be the set of all functions from U to E.

Then MapE(−) : OpenopX → E with restriction maps resVU : MapE(U)→MapE(V )

being the usual restriction of maps from U to V (V ⊂ U) is a presheaf.

2. Presheaf of smooth functions on topological space X: This presheaf is defined as

F : OpenopX −→ k − algebras

U 7→ C∞(U)

where k = R or C, and restriction maps being the natural restriction functions i.e.

for opens V ⊂ U ⊂ X,

F (U) −→ F (V )

f 7→ f|V

3. E−valued constant presheaf: Let E be a set. A constant presheaf with value E, is

defined as F (U) = E, ∀ U ⊆ X and restriction maps resUV = idE ∀ V ⊆ U ⊆ X.

4. Presheaf of bounded functions: This sheaf is defined as F : OpenopX −→ Set such

that for every open U ⊆ X, F (U) is the set of bounded R (or C) valued functions on

U , and restrictions maps are (like previous examples) natural restriction functions.

For any two presheaves F and G, Hom(F,G) is not empty. This fact turns presheaves

into a category. A morphism f ∈ Hom(F,G) is actually a family of morphisms:
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Definition 1.1.4. For any two presheaves, F,G on X, their morphisms Hom(F,G) is

the set of natural transformations i.e. every f ∈ Hom(F,G), f : F −→ G is a family

of maps fU : F (U) → G(U) (for all opens U ⊆ V ) such that V ⊆ U ⊆ X, the following

diagram commutes:

F (U)

fU
��

resUV // F (V )

fV
��

G(U)
resUV

// G(V )

Definition 1.1.5. A presheaf F on topological space X is a called a sheaf iff it satisfies

the following two axioms:

1. Uniqueness axiom: For open set U ⊂ X and an open covering U =
⋃
i

Ui of U , if

s, s′ ∈ F (U) such that s|Ui
= s′|Ui

∀i ∈ I, then s = s′.

2. Gluing axiom: For every open set U ⊂ X and every open covering U =
⋃
i

Ui,

if si ∈ F (Ui) (∀i ∈ I) such that si|Ui∩Uj
= sj|Ui∩Uj

(∀i, j ∈ I), then there exist

s ∈ F (U) such that s|Ui
= s for all i ∈ I.

Remark 1.1.6. [Wed] The category of presheaves of C on topological space X will be

denoted by Psh /X . The category of sheaves of C on X is going to be denoted by Sh /X .

Sh /X is a full subcategory of Psh /X . Both Psh /X and Sh /X are (co)complete i.e.

limits and colimits always exist.

Definition 1.1.7. For a pair of morphisms A
f
−−⇒
g
B (where A,B ∈ Ob(C)), an equalizer of

(f, g) is a pair (Eq(f, g), h), where Eq(f, g) is an object, h is a monomorphism Eq(f, g)
h−→

A such that foh = goh, and (Eq(f, g), h) is subject to the universality condition. This

means that for every map h′ : X → A, there exist a unique map λ : X → Eq(f, g) such

that h′ = λ o h, i.e. the following diagram is commutative:

Eq(f, g) h // A
f //
g
// B.

X

λ

OO

h′

;;

.

Definition 1.1.8. A diagram K
h−→ A

f
−−⇒
g
B is called exact iff K ∼= Eq(f, g).
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There is a relationship between presheaf F being a sheaf, and exactness of a certain

diagram:

Theorem 1.1.9. [Kat] Let F be a presheaf on X, U ⊂ X an open subset of X, and

X =
⋃
i

Ui an open covering of X such that Ui ⊆ X are open subsets; F is a sheaf on

X iff the following diagram is exact: F (U)
ε−→ u

i∈I
F (Ui)

α
−−⇒
β

u
(i,j)∈I×I

F (Ui ∩ Uj). Here,

ε(s) =
(
resUUi

(s)
)
i
, α((si)i) =

(
resUi

Ui∩Uj
(si)
)

(i,j)∈I×I , β((si)i∈I) =
(
res

Uj

Ui∩Uj
(sj)

)
(i,j)∈I×I .

1.2 Stalks, Sheafification and Étalé Spaces

Let Openx := {Ux ⊂ X : x ∈ X and Ux open neighbourhood of x in X}, ordered by

inclusion. Openx is full subcategory of OpenX . For F ∈ P, F ∈ Ob(Psh /X ), its

restriction to Openx, F : Openopx → Set is a presheaf. Also Openopx is a filtered category.

Now we will focus on local strusture of sheaves:

Definition 1.2.1. The stalk of F at x, denoted by Fx is defined as Fx := lim−→
Ux∈Openx

F (Ux).

Remark 1.2.2. Fx has the following explicit construction: Fx = {(Ux, s) | Ux ∈ Openx, s ∈
F (Ux)}/∼ such that (Ux, s) ∼ (Vx, t) iff ∃ Wx ⊂ Ux ∩ Vx such that s|Wx = t|Wx .

Remark 1.2.3. For every open Ux ∈ Openx, there exist a canonical map

F (Ux) −→ Fx

s 7→ sx

where sx := [(Ux, s)] ∈ Fx (the class of (Ux, s) in Fx). sx is called the germ of s at x.

Proposition 1.2.4. For a sheaf F on a topological space X, and any open U ⊆ X, if

s, s′ ∈ F (U), then s = s′ iff sx = s′x ∀x ∈ U .

Proof. If s = s′ then clearly sx = s′x. Conversely, if sx = s′x ∀x ∈ U , then there exist an

open x ∈ Openx such that resUUx
(s) = resUUx

(s′) ∀x ∈ U . Applying the uniqueness axiom,

we get s = s′.
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Remark 1.2.5. For every natural transformation η : F −→ F ′ we get an induced map of

stalks ηx := lim−→
Ux

ηUx ,

ηUx : Fx −→ F ′x

sx 7→ s′x

where sx := [(Ux, s)] and s′x := [(Ux, ηUx(s))], s′ := ηUx(s).

Remark 1.2.6. Combining the results of Note 1.4 and Note 1.5, for every fixed x ∈ X, we

get a functor

ϕ : Psh /X −→ Set

F 7→ Fx

such that the following diagram is commutative:

F (U)

ηu

��

S 7→Sx // Fx

ηx

��
F ′(U)

S′ 7→S′x
// F ′x

Every presheaf F can be attached to a sheaf
∼
F :

Proposition 1.2.7. [Wed] For F ∈ Ob(Psh /X ), ∃ a pair (
∼
F , lF ) where

∼
F ∈ Ob(Sh /X )

and lF ∈ Hom(F,
∼
F ) such that (

∼
F , lf ) is universal i.e. the following diagram is commu-

tative for every G ∈ Ob(Sh /X ) and any ϕ ∈ Hom(F,G):

F

φ
��

lF // F̃

∃!ψ��
G

∼
F is called the sheafification of F .

Definition 1.2.8. For every E,X ∈ Ob(Top) and a continuous P : E → X, there exist

a sheaf of sections that is defined as follows: ∀ U ∈ OpenX , Γ(U,E) := F (U) = {s :

U → E | s is continuous and P ◦ s = idU}. For opens V ⊂ U ⊂ X, the restriction map is

defined as

resUV : F (U)→ F (V )
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s 7→ s|V

Remark 1.2.9. [Ten] Γ(−, E) satisfies both axioms of sheaves.

Definition 1.2.10. Let X ∈ Ob(Top). A pair (E,P ) consists of a E ∈ Ob(Top) and

P ∈ HomTop(E,X) is called an étalé space over X (or sheaf space over X) iff P is a local

homeomorphism.

Definition 1.2.11. A morphism of étalé spaces (E,P ) and (E ′, P ′) is a continuous map

f : E → E ′ such that P = P ′ ◦ f i.e. diagram E
f //

P   

E ′

P ′~~
X

is commutative. So,

étalé spaces over X form a category is denoted by Ét /X .

Remark 1.2.12. ∀ (E, p) ∈ Ét /X the functor ΓE := Γ(−, E),

Γ(−, E) : OpenopX → Set

U 7→ Γ(U,E)

is a sheaf and for any morphism of étalé spaces f : E → E ′, the map Γf : Γ(−, E) →
Γ(−, E ′), pointwise defined as

ΓfU : Γ(U,E)→ Γ(U,E ′)

s 7→ f ◦ s

(for every open U ⊂ X) is a morphism of sheaves Γf : ΓW → ΓE ′.

Remark 1.2.13. [Ten] For every G ∈ Psh /X , there exist an étalé space (LF, P ) such that

LF := tFx
x∈X

and P : LF → X is the natural projection i.e. P−1(x) = Fx. Here LF is

topologised as follows: for every open set U ∈ X, and s ∈ F (U), the map s̄ : U → LF is

defined by x 7→ sx ∈ Fx. And finally we define the open set in LF to be s̄(U) =: {sx| x ∈
U}.

Remark 1.2.14.
∼
F ∼= Γ(LF ) i.e. sheafification of F is isomorphic to the composition of

the two functors

Γ ◦ L : Psh /X
L−→ Ét /X

Γ−→ Sh /X

F 7→ LF 7→ Γ(−, LF )
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1.3 Direct And Inverse Image of Presheaves

Definition 1.3.1. Let X, Y ∈ Ob(Top), f : X → Y a continuous map and F ∈
Ob(Psh /X ) then a presheaf f∗F on Y is defined as (f∗F )(U) = F (f−1(U)) ∀U ∈ OpenY ,

and is called the direct image of F under f (aka pushforward sheaf). Restriction maps

then will be resUV = res
f−1(U)

f−1(V ) for opens V ⊆ U ⊆ Y .

Remark 1.3.2. For F1, F2 ∈ Ob(Psh /X ) and a natural transformation η : F1 −→ F2, f∗

induces a natural transformation f∗(η) : f∗F1 −→ f∗F2 (f∗(η)U := ηf−1(U)) where

f∗F1, f∗F2 ∈ Ob(Psh /X ). So we get a functor f∗ : Psh /X −→ Psh /Y .

Psh/X 3 F1

η

��

f∗ // f∗F1 ∈ Psh/Y
F∗(η)

��
Psh/X 3 F2

f∗ // f∗F2 ∈ Psh/Y

The dual notion of direct image of F is not exact, it is an approximation:

Definition 1.3.3. For a continuous map f : X → Y and F ∈ Ob(Psh /Y ), the inverse

image of F under f (aka the pullback sheaf) is defined as the sheafification of the presheaf

f−F : OpenopX −→ Set

U 7→ lim−→
f(U)⊂V

F (V )

(V ∈ OpenY ) the sheafified f−F is denoted by f ∗F or f−1F .

1.4 (Co)kernel Presheaves

In this section, we exclusively consider the category of presheaves of abelian groups on

topological space X, which we will be denoted it by AbPsh /X .

Definition 1.4.1. [Ten] Let F,G ∈ AbPsh /X , f ∈ HomAbPsh/X
(F,G). For open

subset U ⊂ X, define (kerf)(U) := {s ∈ F (U) | fU(s) = 0G(U)} ≤ F (U). Since f is a
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natural transformation, then for opens V ⊆ U ⊆ X and s ∈ kerf(U), fV (resUV (s)) =

resUV (fU(s)) = 0, which means that resUV (s) ∈ kerf(V ). So kerf and resUV |kerf(U) define a

presheaf over X which is called the kernel (presheaf) of f and is denoted by kerf .

kerf : OpenopX −→ Ab

U 7→ kerf(U)

Remark 1.4.2. The composition kerf → F
f−→ G is zero.

Remark 1.4.3. [Ten]The Relation Between kerf and f : If F,G ∈ Ob(AbPsh /X ) and

f ∈ Hom(F,G), then we will have the following : (kerf = 0) iff (∀ open U ⊂ X, fU

is injective) iff (f is monomorphism i.e. ∀ presheaf E and morphisms E
α
−−⇒
β
F

f−→ G s.t.

f ◦ α = f ◦ β, we will have α = β).

Having the same assumptions as above, we can define the cokernel presheaf:

Definition 1.4.4.

cokerf : OpenopX −→ Ab

U 7→ G(U)

im(fU)

(im(fU) = fU(F (U)) ≤ G(U)) for opens V ⊆ U ⊆ X, if s ∈ F (U), then resUV (fU(s)) =

fV (resUV (s)) ∈ im(fY ). Hence the map G(U) → G(V )
im(fV )

nullifies im(fU) and induces a

restriction map resUV : G(U)
im(fU )

→ G(V )
im(fV )

. So cokerf and resUV actually a presheaf.

Remark 1.4.5. [Ten] Cokernel sheaf is sheafification of the cokernel presheaf.

Remark 1.4.6. The composition F
f−→ G→ cokerf is zero.

Remark 1.4.7. [Ten] The relation between cokerf and f : If F,G ∈ Ob(AbPsh /X )

and f ∈ Hom(F,G), then the following is true: (cokerf = 0) iff (∀ open U ⊂
X, fU is surjective) iff (f is an epimorphism i.e. ∀ presheaf E and morphisms F

f−→ G
α
−−⇒
β
E

such that α ◦ f = β ◦ f ; α = β).
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1.5 The Yoneda Lemma

Definition 1.5.1. Let C be a category. We wil define Ĉ := Psh /C := Fct(Cop, Set) and

h : C −→ Ĉ

X 7→ hX := HomC(−, X)

The Yoneda Lemma: [KS]For F ∈ Ĉ and X ∈ C; HomĈ(hX , F ) ∼= F (X).

Corollary: The functor h is fully faithful (i.e. the category C can fully faithfully

embed in the category of presheaves over C).

Proof. Choosing hY for F and then applying the Yoneda lemma, we get ∀X, Y ∈
C, HomĈ(hX , hY ) ∼= hY (X) = HomC(X, Y ). So h is a fully faithfully functor.

Definition 1.5.2. Due to above property, the functor h is called the Yoneda embedding

functor.

Definition 1.5.3. A presheaf F : Cop → Set is called representable iff ∃X ∈ C such that

F ∼= hX in Ĉ. X is called a representative of F .

Example 1.5.4. [KS] For commutative ring k, let A be k−algebra, N a right A−module,

M a left A−module and L a k−module. By Bil(N×M,L) we mean the set of A−bilinear

maps from N ×M to L. Since Bil(N ×M,L) ∼= HomK(N ⊗
A
M,L), then the functor

Bil(N ×M,−) : Module(k)→ Set is representable and N ⊗
A
M is its representative.
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Chapter 2

Sites

2.1 Grothendieck Topologies, Sites, and Topos

Definition 2.1.1. Let C be a category. A Grothendieck topology τ on C is an assignment

to each object X ∈ C, coverings of X denoted by Cov(X) which is a collection of sets of

morphisms {Xi 7→ X}i∈I that satisfies the following axioms:

i. Isomorphism axiom: If Y
∼−→ X, then {Y → X} ∈ Cov(X).

ii. Change of base axiom: If {Xi → X}i∈I ∈ Cov(X) and Y → X is a morphism, then

the fibred products Xi ×
X
Y exist for all i, and {Xi ×

X
Y → Y }i∈I ∈ Cov(Y ).

iii. Refinement axiom: If {Xi
fi−→ X}i∈I ∈ Cov(X) and for any fixed i, the covering

{Xij

f ′ji−→ Xi}j∈Ji exist, then the compositions {Xij

fi◦f ′ji−−−→ X}i∈I,j∈Ji ∈ Cov(X).

Remark 2.1.2. In Grothendieck topology, open sets of a space X are replaced by maps

into space X. Instead of intersections, we have fibred products, and union play no role at

all.

Remark 2.1.3. The axioms describe the coverings of an object.

Definition 2.1.4. A category C that is equipped with a Grothendieck topology τ , (C, τ),

is called a (commutative) site.

Remark 2.1.5. Applying the second and third axioms, if {Xi → X}i ∈ Cov(X) and
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{Yj → X}j ∈ Cov(X), then {Xi ×
X
Yj → X}ij ∈ Cov(X).

Definition 2.1.6. A set of functions or morphisms {Ui
fi−→ U}i on topological spaces,

schemes etc, is called jointly surjective if and only if the (set-theoratic) union of their

images be equal to U .

2.2 Examples

Example 2.2.1. The site of usual topology. Let X ∈ Ob(Top) and OpenX be the category

of open subsets of X. Then ∀ U ∈ Ob(OpenX), τ will assign the coverings Cov(U), consist

of set of open coverings of U . Here U1 ×
U
U2 and U1 ∩ U2 coincide.

Example 2.2.2. The site of global topology. Let C = Top. If X ∈ Top, then any covering

of Cov(X) is a jointly surjective family of open embeddings {Xi → X}i. Note that by

open embedding, we mean an open continuous injective map, not the inclusion because

otherwise, the isomorphism axiom will be violated.

Example 2.2.3. [FGI+] The site of global étalé topology. Let C = Top and X ∈ Ob(C). A

covering of X then will be a jointly surjective family of local homeomorphism {Xi
fi−→ X}i.

The last two examples which are going to be introduced, are two of the most common

sites in algebraic geometry. But before we proceed to those examples, we need to review

some notions from algebraic geometry.

Definition 2.2.4. Let X be a topological space. The structure sheaf of X, denoted by

OX , is a sheaf of commutative rings on X.

Definition 2.2.5. [Gat] A morphism f : X → Y of schemes is called a closed immersion

(embedding) if and only if

1. X ≈ f(X) ⊂ Y , where f(X) is a closed subset.

2. The induced morphism OY → f∗OX is a surjection (OX and OY are structure

sheaves on X and Y respectively).

Definition 2.2.6. [Gat] The kernel sheaf of the morphism OY → f∗OX is called the ideal

sheaf of the embedding and is denoted by IX/Y .
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Definition 2.2.7. A morphism of commutative rings f : S → R (which makes R to be an

S − algebra) is said to be of finite type if and only if ∃ n ∈ N and a surjective S-algebras

morphism S[x1, . . . , xn]� R.

Definition 2.2.8. [Gat] Let R and S be commutative rings, and f : S → R a ring

homomorphism . Then the R-module of Kähler differentials (a.k.a module of relative

differentials) is defined to be the free R-module, generated by formal differentials {dr|r ∈
R} mod out the relations d(r1 + r2) = dr1 + dr2, ∀r1, r2 ∈ R, d(r1r2) = r1dr2 + r2dr1,

∀r1, r2 ∈ R, and ds = ◦, ∀s ∈ S. This module is denoted by ΩR/S.

Definition 2.2.9. A commutative ring morphism f : S → R is called unramified if and

only if

1. f is of finite type,

2. ΩR/S = 0.

Definition 2.2.10. A morphism of schemes f : X → Y is called unramified at x ∈ X if

and only if ∃ U an open neighbourhood of x, Spec(R) = U ⊂ X and an open Spec(S) =

V ⊂ Y , such that f(U) ⊂ V , and the corresponding induced ring morphism S → R is

unramified.

Definition 2.2.11. f : X → Y is unramified if and only if it is unramified ∀x ∈ X.

Definition 2.2.12. A scheme (X,Ox) is called regular if and only if for every x ∈ X,

OX,x (stalk of Ox at x) is regular local ring, i.e., a Noetherian local ring whose maximal

ideal has the minimal number of generators, equal to its Krull dimension.

Definition 2.2.13. A morphism of schemes f : X → Y is called smooth if and only if

1. f is locally of finite presentation, i.e., for every x ∈ X, ∃ an affine neighbourhood

Ux ⊂ X and Vf(x) ⊂ Y such that Ox(Ux) =
OY (Vf(x)[x1,...,xn]

I
, where I is finitely

generated.

2. f is flat, i.e. for every x ∈ X, the local ring OX,x is a flat module over OY,f(x).

3. For every geometric point Speck (k is an algebraically closed field), and morphism

Speck → Y , the fiber product X ×
Y

Speck is regular (scheme).

14



Definition 2.2.14. f : X → Y is called étalé if and only if f is unramified and smooth.

Example 2.2.15. Zariski Site. Let C = Scheme, the category of schemes, and X ∈ Scheme.

A (Zariski) covering for X is a family of morphisms of schemes {fi : Xi → X}i such that

fis are open embeddings and
⋃
i

fi(Xi) = X (i.e. fi’s are jointly surjective).

Example 2.2.16. Étale Site. Let X ∈ Ob(Scheme). An étale covering of X, is a family of

étale morphisms of schemes {fi : Xi → X}i, such that X =
⋃
i

fi(xi).

Definition 2.2.17. [Kat] A morphism of two sites (C, τ) and (C ′, τ ′), h, is a functor h :

C → C ′ such that for {Xi
fi−→ X}i ∈ Cov(X), we have {h(Xi)

h(fi)−−−→ h(x)}i ∈ Cov(h(X)),

and for Y → X, h(Xi ×
X
Y )→ h(Xi) ×

h(X)
h(Y ) is an isomorphism.

Remark 2.2.18. [Kat] A presheaf F ∈ Ob(Ĉ) is said to be a sheaf on (C, τ) if and only if

the following diagram is exact for all i and j:

F (X)→
∏
i

F (Xi)⇒
∏
i,j

F (Xi ×
X
Xj)

Applying the Yoneda lemma, the diagram can be written as

HomĈ(hX , F )→
∏
i

HomĈ(hXi
, F )⇒

∏
i,j

HomĈ(hXi×
X
Xj
, F ).

Definition 2.2.19. The full subcategory Sh(C, τ) of Psh(C, τ) (the subcategory of

sheaves on sites) is called a topos.

Definition 2.2.20. Topology τ is called sub-canonical if and only if ∀X ∈ C,

Hom(−, X) : Cop → Set is a sheaf for the given topology.

From now on, we will always assume that the topology τ is sub-canonical.

2.3 Nerves

Definition 2.3.1. [Pau] Let (C, τ) be a site, and Φ := {fi : Xi → Y }i ∈Cov(Y ). Then

the nerve of Φ, denoted by N(Φ), is the simplicial object in Build, with n-vertices defined

15



as

N(Φ)n := t
i1,...,in

Xi1 ×
Y
. . .×

Y
Xin .

Restrictions and inclusions will be faces and degeneracies respectively.

Proposition 2.3.2. [Pau] Let (Build, τ) be a site. F : Buildop → Set is a sheaf if and

only if F commutes with colimits along nerves of coverings, i.e.,

F (U) ∼= F (Colim[n]∈∆ N(Φ)n) ∼= lim
[n]∈∆

F (N(Φ)n) ∀Φ ∈ Cov(U)),

∆ is a Simplex category.

Theorem 2.3.3. [Pau] Let (C, τ) be a site where τ is sub-canonical. The Yoneda em-

bedding C ↪→ Sh(C, τ) preserve limits, and preserve colimits that has been taken along

nerves of coverings. So in contrast to embedding C ↪→ Ĉ, the embedding C ↪→ Sh(C, τ)

preserve coverings.
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Chapter 3

Monoidal Categories

Monoidal categories are somehow generalization of the algebraic structures which behave

like modules.

3.1 Modoidal Categories

Definition 3.1.1. A monoidal category (C,⊗) is a tuple (C,⊗,1, Unr, Unl, as) consists

of following datum:

1. A category C,

2. A functor ⊗ : C × C → C called tensor product,

3. A unit object 1 in C ,

4. ∀X ∈ Ob(C) two natural isomorphisms UnrX : X ⊗ 1 '−→ X and UnlX : 1⊗X '−→ X

called right and left unitors respectively,

5. ∀X, Y, Z ∈ Ob(C) a natural isomorphism asX,Y,Z : X ⊗ (Y ⊗ Z)
'−→ (X ⊗ Y ) ⊗ Z

called a associator, such that the following diagrams commute:

17



(a) Associators’ diagram

(X ⊗ (Y ⊗ Z)⊗W )
asX,Y⊗Z,W

**
((X ⊗ Y )⊗ Z)⊗W
asX⊗Y,Z,W

��

asX,Y,Z⊗idW
44

X ⊗ ((Y ⊗ Z)⊗W )

idX⊗asY,Z,W

��
(X ⊗ Y )⊗ (Z ⊗W )

asX,Y,Z⊗W // X ⊗ (Y ⊗ (Z ⊗W ))

(b) Compatibility of unitors and associator

(X ⊗ 1)⊗ Y
asX,1,Y //

Unr
X⊗idY ''

X ⊗ (1⊗ Y )

idX⊗Unl
Yww

X ⊗ Y

Definition 3.1.2. For two objects X, Y ∈ Ob(C), if Hom(X, Y ) ∈ Ob(C) as well, then

we call this object a hom-object and denote it by Hom(X, Y ).

Definition 3.1.3. A monoidal category is said to be

1. Closed iff it has inner homomorphism i.e. if ∀X, Y ∈ Ob(C), the functor (Hom(−⊗
X, Y )) ∼= hHom(X,Y ) := Hom(−, Hom(X, Y )).

2. Strict iff associator and unitors are equalities.

Example 3.1.4. 1. For commutative (unital) ring k , the category of modules over k,

Mod(k) is a closed monoidal category.

2. Any category C with finite products is monoidal where product is the tensor product.

3. The category of categories with their usual product is a monoidal category.

Definition 3.1.5. A monoid in a monoidal category (C,⊗) is a triple (X,µ, 1) consists

of:

1. An object X ∈ Ob(C),

2. A multiplication morphism µ : X ⊗X → X,
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3. A unit morphism 1 : 1 −→ X satisfying:

(a) Associativity condition

X ⊗ (X ⊗X)
idX⊗µ

ww

asX,X,X // (X ⊗X)⊗X
µ⊗idX

''
X ⊗X µ // X X ⊗Xµoo

(b) Unit condition

X ⊗ 1
idX⊗1//

Unr
X %%

X ⊗X
µ

��

1⊗idX // 1⊗X

Unl
Xyy

X

Definition 3.1.6. A (left) module over a monoid (X,µ, 1) in C is a pair (M,µM) such

that M ∈ Ob(C) and µM is a scalar multiplication map µM : X ⊗M → M and µM is

compatible with µ and 1 i.e. we have the following two commutative diagrams:

X ⊗X ⊗M idX⊗µM//

µ⊗idM
��

X ⊗M
µM
��

X ⊗M µM //M

1⊗M 1⊗idM //

Unl
M ##

X ⊗M

µMzz
M

Example 3.1.7. 1. Monoid objects in the monoidal category (Set,×) (the tensor prod-

uct is the Cartesian product, ant the unit object 1 is a set with one element) are

just ordinary monoids.

2. A monoid A in the monoidal category (Mod(k),⊗) is a k−algebra.
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3.2 Symmetric Monoidal Category

Definition 3.2.1. [Pau] A braided monoidal category is a monoidal category

(C,⊗,1, Unr, Unl, as) that is equipped with a natural isomorphism ComX,Y : X ⊗ Y '−→
Y ⊗X, ∀X, Y ∈ C that is called a commutator (aka a braiding) such that the following

diagrams commute:

1. Compatibility of commutator and associator:

X ⊗ (Y ⊗ Z)
ComX,Y⊗Z// (Y ⊗ Z)⊗X

asY,Z,X

))
(X ⊗ Y )⊗ Z

asX,Y,Z

66

ComX,Y ⊗idZ ))

Y ⊗ (Z ⊗X)

idY ⊗ComZ,Xvv
(Y ⊗X)⊗ Z

asY,X,Z // Y ⊗ (X ⊗ Z)

2. Compatibility of unitors and associator: Unr ◦ Com = Unl

1⊗X
Com1,X //

Unl
X ##

X ⊗ 1

Unr
X{{

X

Definition 3.2.2. A braided monoidal category that satisfies the condition ComX,Y ◦
ComY,X = idY⊗X (∀X, Y ∈ Ob(C)) is called a symmetric monoidal category.

Example 3.2.3. 1. Categories that accept finite products are symmetric monoidal.

2. The category of modules over (unital) rings, (Mod(k),⊗) is also a closed symmetric

monoidal.

3. [Fai] The category of graded modules (or Z−graded modules) over a commutative

(unital) ring k is denoted by gMod(k) (orModg(k)). ∀V ∈ Ob(gMod(k));V = ⊕
i∈Z
Vi

where ∀i ∈ Z, Vi ∈ Ob(Mod(k)). Also ∀V,W ∈ Ob(gMod(k)); T ∈ Hom(V,W )

such that T (Vi) ⊂ Wi ∀i every element x ∈ Vi is called a homogeneous element of

degree i (deg(x) := |x| = i).

∀ V,W ∈ Ob(gMod(k)), their tensor product defined as V ⊗W such that (V ⊗W )k =
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⊕
i+j=k

(Vi ⊗Wj). ⊗ is associative. The unit object of gMod(k) is 1 = k, and is of

degree zero. The commutator defined as

ComV,W : V ⊗W → V → W

V ⊗W 7→ (−1)|V ||W |W ⊗ V

gMod(k) admits inner homomorphism objects. ∀ V,W ∈
Ob(gMod(k), Hom(V,W ) := HomMod(k)(V,W ) (i.e. the module of all linear

maps from V to W ) with the grading Hom(V,W ) = ⊕
i∈Z
Homi(V,W ) where

∀ fi ∈ Homi(V,W ) and Vk ∈ V ; fi(Vk) ⊂ Vi+k. So the category gMod(k) is a

closed symmetric monoidal.

4. [CCF] A special case of the above example which is the main category of study in

super geometry, is the category of super modules (or Z2− graded modules ) over k

and is denoted by SMod(k) (or Mods(k)). Here ∀ V ∈ Ob(SMod(k)); V = ⊕
i∈Z2

Vi =

V0 ⊕ V1, with the same tensor product as gMod(k) .

Definition 3.2.4. [Pau] In a symmetric monoidal category (C,⊗), a commutative monoid

(aka a commutative algebras) is a monoid (X,µ, 1) that satisfies the commutativity con-

dition µ ◦ ComX,X = µ, i.e. we have the following commutative diagram:

X ⊗X
ComX,X //

µ
##

X ⊗X

µ
{{

X

The category of monoids (algebras) and commutative monoids ( commutative algebras)

in (C,⊗) denoted by ALGC and CALGC respectively.

Example 3.2.5. 1. In the symmetric monoidal category (Mod(Z),⊗), commutative

monoids are usual commutative rings.

2. In the the symmetric monoidal category (gMod(k),⊗), commutative monoids are

graded commutative k−algebras.

3. In the the symmetric monoidal category (Set,×), usual commutative monoids are

commutative monoids.
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Chapter 4

Categorical Calculus

4.1 Abelian Group Objects and Torsors

Before we start our main topics, we give a brief introduction to the notion of torsors in

the context of sheaves.

Definition 4.1.1. [Wed] Let X ∈ Ob(Top) and H : OpenopX → Grp an H-sheaf on X

is a pair (F, h) where F : OpenopX → Set and h : H × F → F (natural transformation

of sheaves of sets) such that ∀U ∈ OpenX ;hU : H(U) × F (U) → F (U) is a group H(U)

action on the set F (U).

For two H-sheaves F and G, a morphism f : F → G is a natural transformation such

that ∀ U ∈ OpenX the map fU : F (U)→ G(U) is H(U)-equvariant (i.e. ∀ t ∈ H(U) and

x ∈ F (U), fU(tx) = tfU(x)). So H-sheaves on X form a category which is denoted by

H − Sh/X .

Definition 4.1.2. [Wed] If for T ∈ Ob(H − Sh/X ) and every U ∈ OpenX the ac-

tion H(U) × T (U) → T (U) is simply transitive (i.e. a transitive action that ∀ x, y ∈
T (U), ∃! g ∈ H(U) such that gx = y) then T is called and H−Pseduotorsor.
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Definition 4.1.3. If there exist an open covering X =
⋃
i

Ui such that an H−Pseduotorsor

T , T (Ui) 6= ∅ ∀i, then T is called an H−torsor.

Example 4.1.4. [Wed] For all holomorphic functions f : W → C on open W ⊆ C,

define the sheaf
∫
f : OpenopW → C such that for U ⊂ W

∫
f(U) := {F : U →

C | F holomorphic and F ′ = f|U} then the constant sheaf WC, defined as WC(U) =

{k : U → C | k is locally constant} acts simply transitively on
∫
f by addition i.e.

WC(U)×
∫
f(U)→

∫
f(U)

(k, F ) 7→ k + F

and therefore
∫
f is a WC−Pseudotorsor and since we can cover W by convex opens

Ui,⊆ C such that
∫
f(Ui) 6= ∅ ∀i,

∫
f is a WC−torsor.

Remark 4.1.5. H− torsors form a full subcategory of H − Sh/X which is denoted by

H−torsors.

Categorical calculus is heavily rely on the notion of tangent categories, which will be the

subject of our study in Section 2. In order to define this category, we need to know what

abelian group objects and torsors are, in categorical context.

For any category C with terminal object PtC we have the following definitions:

Definition 4.1.6. [Pau] A triple (X,µ, 0) composed of an object X, a multiplication

morphism µ : X ×X → X and an identity morphism 0 : PtC → X, such that X induces

a functor Hom(−, X) : C → Ab is called an abelian group object. Here Ab denotes the

category of abelian groups.

The collection of all abelian group objects in C will be denoted by Ab(C).

Definition 4.1.7. [Pau] For an abelian group object (X,µ, 0) a pair (Y, ρ) made of Y ∈
Ob(C) and action morphism ρ : X × Y → Y that induces an action Hom(−, X) ×
Hom(−, Y ) → Hom(−, Y ) × Hom(−, Y ) is a set isomorphism which is called a torsor

over (X,µ, 0).
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Remark 4.1.8. In the above definition, Hom(−, X) : C → Ab, Hom(−, Y ) : C → Set,

and the map is defined by pair (ρ̄, id) where ρ̄ denotes the morphism induced by ρ, and

id, the morphism induced by idY .

4.2 Tangent Categories

Let I be the category with two objects and an arrow between them, and C any category

with pullbacks.

Definition 4.2.1. The arrow category which is denoted by [I, C], consists of Ob([I, C]) =

{[X → Y ] | X, Y ∈ Ob(C)} and ∀ [X
f−→ Y ] , [X ′

g−→ Y ′] ∈ Ob([I, C]) ;

Hom([X
f−→ Y ], [X ′

g−→ Y ′]) =

X Y

X ′ Y ′


.

f

g

Definition 4.2.2. The tangent category which is denoted by TC, is the category whose

objects are abelian group objects in the arrow category [I, C], i.e. Ob(TC) = {(Y →
X, Y ×

X
Y → Y, 0 : X → Y )}, and whose morphisms are commutative diagrams, such that

the arrow Y → X ×
X
Y is a morphism between abelian group objects in the over category

CX i.e.

Y X ×
X′
Y ′

�

X

.

Definition 4.2.3. [Pau] For object A in C, the category of modules over A (a.k.a Beck

modules) which is denoted by Mod(A), is the fiber of TC at A, i.e. Ob(Mod(A)) = {[B →
A] ∈ Ab(CA)}.

Definition 4.2.4. [Pau] For the domain functor

dom : TC → C
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[Y → X] 7→ Y

a left adjoint functor Ω1 : C → TC is called a cotangent functor.

Definition 4.2.5. Let R ∈ Ob(CRing), and A be an R−algebra. A square-zero extension

of A is a pair (A′, P ) where P : A′ → A is an R−algebra surjection whose kernel ideal

ker(P ) =: I is nilpotent of degree two i.e. I2 = 0.

Definition 4.2.6. A morphism between two square-zero extensions (A′, P ) and (A′′, q)

of R−algebra A is an R−algebras morphism ϕ : A′ → A′′ such that diagram

A′
φ //

p
  

A′′

q
~~

A

is commutative.

Definition 4.2.7. Let R be a commutative ring, A an R−algebra and J a A−module.

A square-zero extension of A by J is a triple (A′, P, σ) where (A′, P ) is a square-zero

extension of A and σ : ker(P )
'−→ J is an isomorphism.

A morphism of two square-zero extensions of A by J (A′, P, σ) and (A′, P ′, ρ) is a

ϕ : (A′, P ′)→ (A′′, P ′′) such that ϕσ = ρ

A′

P ′

  
ϕ

��

Ker(p′′) ∼= Ker(p′) ∼= J

σ

66

ρ
((

A.

A′′
P ′′

>>

Definition 4.2.8. [Pau] A symmetric monoidal category (C,⊗) is called pre-additive iff

C has zero object 0, finite (co)products, and for every X, Y ∈ Ob(C), X ⊕ Y ∼= X × Y
such that the monoidal structure commutes with (finite direct) sums.

Lemma 4.2.9. Let (C,⊗) be a pre-additive symmetric monoidal category, A ∈
(CALGC)(i.e. A is a commutative monoid), and M is a module over A. Then

A⊕M ∈ CALGC and the projection A⊕M → A is a monoid morphism.

Proof. The multiplication morphism on A⊕M is defined by µ′ : (A⊕M)⊗ (A⊕M) ∼=
(A ⊗ A) ⊕ (A ⊗M) ⊕ (M ⊗ A) ⊕ (M ⊗M) → A ⊕M where µ′ is the combination of
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the following four morphisms: µ ⊕ 0 : A ⊗ A → A ⊕M , 0 ⊕ µlM : A ⊗M → A ⊕M ,

0 ⊕ µrM : M ⊗ A → A ⊕M , and 0 : M ⊗M → M . The unit morphism 1 : 1 → A ⊕M
is going to be 1A ⊕ 0 (1A : 1 → A, and 0 : 1 → M). Both morphisms satisfy the

associativity and unit conditions therefore, A⊕M ∈ CALGC and Pr1 : A⊕M → A is a

monoid morphism.

Definition 4.2.10. Having the same assumptions as above, we will define A+εJ := {a+

εx | a ∈ A, ε ∈ J, x ∈ J}. A ring structure can be defined on A+εJ : 0 = 0+ε0, 1 = 1+ε0

(a+ εx) + (a′ + εx′) = (a+ a′) + ε(x+ x′)

(a+ εx)(a′ + εx′) = (aa′) + ε(ax′ + a′x)

then

A+ εJ → A

a+ εx 7→ a

and ∀ x ∈ J, σ(x) = 0 + εx = ker(P ) so (A + εJ, P, σ) becomes a square-zero extension

of A by J which is called the trivial square-zero extension of A by J .

Definition 4.2.11. For monoidal category (C,⊗) and X ∈ Ob(ALGC) (i.e. X being a

monoidal object in C), the category of (left) modules over X will be denoted by ModX

or XMod.

Definition 4.2.12. The category of modules over (all) monoidal objects which will de-

noted by ModALGC
or just Mod consist of Ob(Mod) = {(X,M) | X ∈ ALGC , M ∈

ModX} and ∀ (X,M), (X ′,M ′) ∈ Ob(Mod), HomMod((X,M), (X ′,M ′)) = {(f, f∗) | f ∈
HomALGC

(X,X ′), f∗ ∈ HomModX (M, f ∗(M ′))}.

Example 4.2.13. For monoidal category of abelian group (Mod(Z),⊗), ALGMod(Z) =

CRing, ModCRing = {(R,M) | R ∈ Ob(CRing), M ∈ ModR}. For a fixed ring R ∈
Ob(CRing), a module over R, M ∈ Ob(ModR) is an abelian group equipped with linear
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map µ : R⊗M →M, (r,m)→ rm such that the following diagrams commute:

R⊗R⊗M idR⊗µM //

µ⊗idM
��

R⊗M
µM
��

R⊗M µM
//M

1R ⊗M
1⊗idM //

Unl
R $$

R⊗M

µMzz
M

Proposition 4.2.14. Let R ∈ Ob(CRing). Then ModR ' Ab(CRingR) = Mod(R).

Proof. Any R−module R→ B is unit of the abelian group object CRingR i.e. a diagram

R
e //

idR ��

B

p��
R

where e is the section of P .

The unit diagram also identifies B with a ring such that its underlying abelian group is

R ⊕ ker(P ) =: R ⊕M ∼= B and P = Pr1. The product of R ⊕M → R with itself is the

fiber product over R. So, (R⊕M)×
R

(R⊕M) = R⊕M ⊕M .

The unit axiom of group objects on R⊕M ∼= B i.e. the commutative diagram

(R⊕M)×R idR⊕M×e //

Pr1 ''

(R⊕M)× (R⊕M)

µ
uu

R⊕M

((r,m), r) � idR⊕M×e //
�

Pr1 %%

((r,m), (r, o))0

µ
ww

(r,m)

defines the morphism R⊕M ⊕M //

&&

R⊕M

{{
R

to be idR ⊗ (idM + idM). Fi-

nally, using both sided unit axiom of group objects we get ∀r ∈ R and m,m′ ∈
M ; µ((r,m), (r,m′)) = (r,m+m′) and µ◦(e×idR⊗M) = Pr2 ⇒ µ(e×idR⊕M(r, (r,m))) =

µ((r, 0), (r,m)) = (r,m).
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The same way we get µ((r,m), (r, 0)) = (r,m′) = Pr1((r,m), (r, 0)). So, for m ∈M, m ∼=
(0,m) and µ((r, 0), (0,m)) = (0,m) ∼= m. µ((0,m′), (r, 0)) = (0,m′) ∼= m′.

mm′ = (0,m)(0,m′) = (0, 0(m + m′)) = (0, 0) = 0 =⇒ (ker(Pr1))2 = M2 = 0 →
R ⊕M Pr1−−→ R is a square-zero extension of R. So every abelian group object related to

R−module B is a square-zero extension of R, and vice versa.

Proposition 4.2.15. ModCRing ' TCRing.

Proof. The natural isomorphism map R1 ⊕ f ∗M2
'−→ R ×

R2

(R2 ⊕M2) together with the

following diagram shows that ModCRing ' TCRing iff ModR ' Ab(CRingR) for a fixed

R, which is what we showed in the previous proposition.

Mod

(R1,M1)

(R2, f
∗M2)

R1 ⊗M2

=

TCRing

R1 ⊕M1

R1 ⊕ f ∗M2 R2 ⊕M2

R1 ×R2 (R1 ⊕M2)

R1 R2

(f, f∗)

F

w

.

Remark 4.2.16. For ring homomorphism S → R and the map δ : R⊗
S
R→ R, (r1⊗ r2)→

r1r2, if I := kerδ then I /I2 ∼= ΩR/S
.

Example 4.2.17. In the category C = CRing, TC 'Mod where every (R,M) ∈ Ob(Mod)

corresponds to [R ⊕M
P−→ R] ∈ Ob(TC). Moreover [R ⊕M → R]

dom7−−→ R ⊕M , and

R
Ω1

7−→ [R⊕ I /I2 → R].

Definition 4.2.18. [Pau] In category C, let [M → A] ∈ Ob(Mod(A)). A section D :

A → M is usually called a (M−valued) derivation and the set of M−valued derivations

is denoted by Der(A,M).
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Remark 4.2.19. If there exist a cotangent module Ω1
A over A (i.e. the universal module over

A such that for every module M over A, M → A, there exist a unique map M → Ω1
A such

that the diagram M //

��

Ω1
A

~~
A

commutes) then Der(A,M) ∼= HomMod(A)(Ω
1
A,M).

Cotangent modules are very general objects in the sense that, some of the familiar

objects of study in differential and alegebraic geometry are just particular cotangent

modules. The following two examples will provide more clarification:

Example 4.2.20. In differential geometry, Ω1
A usually appears as a cotangent bundle with

following construction: Take three copies of a smooth manifold M . Form the Cartesian

product M×M . Let the diagonal map M
4−→M×M act on M . Define I to be the sheaf of

germs of smooth maps. f : 4(M)→M×M which vanishes on4(M). Form the quotient

sheaf I /I2 (i.e. the equivalence classes of smooth maps that vanish on diagonal modulo

all higher order terms). Pullback I /I2 along 4 i.e. 4∗(I /I2 ). 4∗(I /I2 ) is smooth

section of the cotangent bundle T ∗M which is isomorphic to the differential one-forms i.e.

Ω1
M := 4∗(I /I2 ) = Γ(T ∗M) ∼= Ω1(M).

Example 4.2.21. In algebraic geometry, Ω1
A is a cotangent sheaf with following construc-

tion: Take schemes X and S and a morphism f : X → S. Form the fiber product X×
S
X.

Act the diagonal map on X i.e. 4 : X → X ×
S
X. Define I to be the ideal sheaf of

4(X) (i.e. the kernel sheaf of the morphism OX×
S
X → f∗O4(X) that is induced from mor-

phism 4(X)→ X ×
S
X). Form the quotient sheaf I /I2 . The pullback sheaf 4∗(I /I2 ) is

the cotangent sheaf ΩX/S
. If X and S are affine schemes, then ΩX/S

is the module of

Kahler differentials.

4.3 Thickening and Jet Functors

Definition 4.3.1. [Pau] For category C, the first thickening category which is denoted

by Th1C is the category of torsos (X → Z, Y ×
Z
X

ρ−→ X) in the arrow category [I, C]

over abelian group objects (Y → Z, µ, 0
−

) ∈ Ob(TC).
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Definition 4.3.2. [Pau] The n−th thickening category, ThnC, is the category of objects

X ′ → Z in [I, C] such that there exist a sequence X ′ = Xn → Xn−1 → . . . → X0 = Z

where Xi → Xi−1 ∈ Ob(Th1C).

Definition 4.3.3. [Pau] For X ∈ Ob(C) and forgetful functor

forg : ThnCX −→ CX

[Xn → Xn−1 → . . . → X0 = X]→ [Xn → X]

a left adjoint functor to forg is called an infinitesimal functor and is denoted by Thn :

CX → ThnCX .

Definition 4.3.4. Let 4∗ denotes the codiagonal map i.e. for every X ∈
Ob(C), 4∗(X) := [X tX → X]. The functor Jetn := Thno4∗ : C → ThnC is called the

jet functor. We assume that the category C accepts finite (co)products.

Proposition 4.3.5. Suppose that C is a category that admits pullback and X ∈ On(C).

Then there exist a natural isomorphism Jet1(X)
'−→ Ω1

X in the category Th1CX .

Definition 4.3.6. Let X and Y be two generalized spaces (i.e. X, Y ∈ SH(Build)−, τ)

where Build is a category of building blocks for a given geometry) and f a morphism

f : X → Y . Then the relative k−th jet space, Jetk(X /Y ) is defined as the space

Jetk(X /Y ) := X ×
Y
Jetk(Y ).

Definition 4.3.7. For every two objects U, V ∈ Ob(Build), an infinitesimal thickening

object is a morphism U → V is an object in ThnBuild, for some n ≥ 1.

Remark 4.3.8. The usual notion of Jets in differential geometry is the following: Let

C∞(Rn,Rm) denote the vector space of smooth functions f : Rm → Rm for k ≥ 0 and

p ∈ Rn, (f ∼ g) if (f−g ≡ 0 to the k−th order, i.e. f and g have the same value at p and

all their partial derivates agree at p up to k−th order derivations). The k−th order Jet

space of C∞(Rn,Rm) is them defined as the set of equivalence classes of ∼ and is denoted

by J∞p (Rn,Rm).

Example 4.3.9. In algebraic geometry, a thickening usually refers to a closed immersion

of schemes X ↪−→ X ′ whose ideal is nilideal.

One of the prototype examples of thickenings which shows up in algebro-geometric

context, is the the formal spectrum:
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Example 4.3.10. [FGI+] Formal spectrum of an I−adic Noetherian ring A, SpfA, is an-

other geometric object whose construction relies on the concept pf thickening: an I−adic

Noetherian ring is a Noetherian ring A equipped with the powers In (n > 0) of an ideal

I of A as a fundamental system of open neighbourhoods of zero in A. For n ∈ N, let

Xn := SpecAn where An := A /In+1 . Affine schemes Xn form an increasing sequence of

closed immersions.

X0 := Spec A /I ↪−→ X1 := A /I2 ↪−→ . . . ↪−→ Xn ↪−→ . . .

They all have the same underlying space, namely |X0| which will be denoted by X :

colim
n

Spec A /In . The colimit is taken in the category of topologically ringed spaces, i.e.

objects (X,OX) where X ∈ Ob(Top) and OX is a sheaf of topological rings. The family

of structure sheaves {OXn} (each OXn is the structure sheaf of Xn) is a projective system.

Hence we define OX := lim
←
n

OXn . The formal spectrum of A then is defined to be the

(topological) ringed space SpfA := (X , OX ). SpfA is an example of a formal scheme.

Definition 4.3.11. [Pau] A sheaf X ∈ SH(Build, τ) is called:

1. Formally smooth (resp. formally unramified, resp. formally étale) iff for every in-

finitesimal thickening U → V , the map X(V )→ X(U) is surjective (resp. injective,

resp. bijective);

2. Locally finitely presented iff X commutes with directed limits;

3. Smooth (resp. unramified, resp. étale) iff it is locally finitely presented and formally

smooth. (resp. formally unramified, resp. formally étale).
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Chapter 5

Categorical Geometric Invariants

Equipped with some categorical calculus tools from the previous chapter, we are now able

to introduce some categorical differential geometric notions.

Theorem 5.0.1. [Pau]Let C = (Mod(Z),⊗) be the monoidal category of abelian groups.

Then:

1. The category ThnCALGC is the subcategory of [I, C] whose objects are quotient

morphisms [A → A /J ] i.e. [A → A /Jn → A /Jn−1 → . . . → A /J ] where

A ∈ CALGMod(Z) = CRing, with kernel being the nilpotent ideal J of order n+ 1.

2. The jet functor Jetn : CALGC → ThnCALGC is given by the jet algebra Jetn(X) =
X⊗X
Jn+1 where X ∈Mod(Z) and J is the kernel of the multiplication map X⊗X → X.

Definition 5.0.2. [Pau] Let A be a commutative monoid. Then the A−module of vector

fields is defined by θA := HomModA
(Ω1

A, A).

Definition 5.0.3. [Pau] The A-module of n-th order differential operators is defined by

Dn
A := HomModA

(Jetn(A), A).

The tensor structure on Dn
A is defined as follows: For every D1, D2 ∈ Dn

A, D1 ⊗D2 7→
D1 o D2 := D1 o d1 o D2 where d1 : A → Jetn(A) is the section of Jetn(A) → A and

Jetn(A)
D2−→ A

d1−→ Jetn(A)
D1−→ A.
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Definition 5.0.4. The A−module of differential operators is defined by DA : lim
−→
n

Dn
A.

Definition 5.0.5. [Pau] Let M ∈ ModA where A ∈ CALGC for a category C. The

inner derivation object denoted by Der(A,M), is defines as the equilizer of morphisms

Hom(A,M)
β
−−⇒
α
Hom(A ⊗ A,M) where α(D) = D o µ and β(D) = µlM o (idA ⊗ D) +

µrM o (D ⊗ idA) for every Hom(A,M).

Note that in the above definition, µ : A⊗ A→ A, µlM : A⊗M →M and

µrM : M ⊗ A→M .

In what follows, we will assume that (C,⊗) = (Mod(K),⊗) where K is a commutative

(unital) ring and A ∈ CALGC .

Definition 5.0.6. A lie bracket on module θA is defined by [−,−] : θA⊗θA → θA, (f, g) 7→
[f, g] := fg − gf for f, g ∈ θA.

Note that Hom(Ω1
A, A) ∼= Der(A,A) ⊂ Hom(A,A). So the above definition is

meaningful.

There is a natural action [−,−] : θA ⊗ A→ A defined by (f, a) 7→ [f, a] := f(a) for

a ∈ A and f ∈ θA.

Every f ∈ θA induces a derivation ∂ ∈ Der(A,A) defined by ∂ := [f,−] : A→ A.

Definition 5.0.7. A Lie algebroid over A is an A−module L equipped with a Lie bracket

[−,−] : L ⊗ L → L and an anchor map τ : L → θA such that for every x, y, z ∈ L and

a ∈ A, the following conditions are satisfied:

1. [x, [y, z]] = [[x, y], z] + [y, [x, z]] (Jacobi’s identity).

2. [x, y] = −[y, x] (anti-commutativity).

3. [x, ay] = (τ(x))(a)y + a[x, y] (compatibility of anchor with bracket).
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Definition 5.0.8. For any Lie algebroid L, an L−module is defined as an A−module

M with an action L × A → A in the following sense: for every a ∈ A, m ∈ M and

x ∈ L; x(am) = x(a)m+ a(x(m)).

Remark 5.0.9. The Lie bracket [−,−] : θA⊗ θA → θA defines a Lie algebroid structure on

θA.

Definition 5.0.10. Commutative monoid A is called smooth if Ω1
A is a projective

A−module of finite type.

Proposition 5.0.11. [Pau] Let A be smooth. Then DA is the enveloping algebra of the

Lie algebroid θA i.e. if B is an A−algebra in (C,⊗) equipped with and A−linear map

i : θA → B, then there exist a unique morphism DA → B that extends the map i.

Definition 5.0.12. A left DA−module in (C,⊗) is an object M ∈ C that is equipped

with a left multiplication morphism µlDA
: DA ⊗ M → M which is compatible with

multiplication in DA.

Definition 5.0.13. A graded A−module M equipped with a (DA−)linear morphism

d : M ⊗DA →M ⊗DA[1] is called a differential complex.

Proposition 5.0.14. [Pau] Let A ∈ CALGC be smooth. Then the category of

(left) DA−modules is equipped with a symmetric monoidal structure defined by

M ⊗N := M ⊗
A
N and the DA− module structure is induced by the action of derivations

∂ ∈ Der(A,A) by ∂(m⊗ n) = ∂(m)⊗ n+m⊗ ∂(n) for every m ∈M and n ∈ N .

The symmetric monoidal category of differential complexes is denotes by

(DiffModg(A),⊗)

Definition 5.0.15. The algebra of differential forms on A is a free algebra in

(DiffModg(A),⊗) on the differential d : A → Ω1
A, given by the symmetric algebra

Ω∗A := SymDiffModg(A)([A
d−→ Ω1

A]).

Proposition 5.0.16. [Pau] The natural map θA → Hom(Ω1
A, A) extends to a morphism

i : θA → HomDiffModg(A)(Ω
∗
A,Ω

∗
A[1]) which is called the inner product map. The map i

can be depicted diagrammatically as below:

(Ω1
A

f−→ A)
i7−−−−→


A //

i0

��

Ω1
A

i1
��

// S2Ω1
A

//

i2
��

S3Ω1
A

i3
��

// . . .

0 // A // S1Ω1
A

// S2Ω1
A

// . . .
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Proposition 5.0.17. [Pau] The natural map θA → Hom(A,A) extends to a morphism

L : θA → HomDiffModg(A)(Ω
∗
A,Ω

∗
A) which is called the Lie derivative. The map L dia-

grammatically looks as follows:

(A
f−→ A)

L7−−−−→


A //

L0
��

Ω1
A

L1
��

// S2Ω1
A

//

L2
��

S3Ω1
A

L3
��

// . . .

A // Ω1
A

// S2Ω1
A

// S3Ω1
A

// . . .


Definition 5.0.18. For k ≤ ∞, Ck − AFF denotes the category whose objects are the

affine spaces Rn (for varying n ≥ 0), and morphisms being the Ck−maps between them.

Ck − AFF has finite products.

Definition 5.0.19. [Pau] A product-preserving functor F : Ck − AFF → Set is called

Ck−algebra. The category of Ck−algebras is denoted by AlgCk .

Note that the category OpenCk (the category of open subsets of Rn for varying n with

Ck−maps between them as morphisms) fully-faithfully embed into AlgCk by

Openop
Ck −→ AlgCk

U 7→ Hom(U,−) : Ck − AFF → Set.

Definition 5.0.20. Let M be a smooth manifold. Then the smooth algebra of functions

on M is defined by C∞(M) := C∞(M,−) :

C∞ − AFF → Set

Rn 7→ C∞(M,Rn).

Theorem 5.0.21. [Pau] C∞(JnM,−) ∼= Jetn(C∞(M,−)) where JnM is the jet space

(bundle) of smooth functions M , and Jetn(C∞(M,−)) is the n−th jet functor on smooth

algebra of functions on M .
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Chapter 6

Geometry of Sheaves on Sites

6.1 Sheaves on Sites, and Varieties

By Build, we mean a category where its objects are building blocks for a given geometry

which we want to study. For example, for differential geometry, Ob(Build) = Ob(OpenC∞)

with smooth maps as morphisms.

Some notations:

� (Build, τ) denotes a site,

� B̂uild := PshBuild := Fct(Buildop, Set),

The category of OpenC∞ is neither complete nor cocomplete, i.e., it lacks enough limits

and colimits. The first step towards resolving this issue was to use the Yoneda embed-

ding, Build
h
↪−→ Fct(Buildop, Set) where the latter category is (co)complete. However,

Fct(Buildop, Set) still has one drawback: The image of Yoneda embedding functor does

not preserve finite colimits. For example, in category OpenC∞ , V1 ∪ V2 = V1 tV1∩V2 V2

for V1, V2 ∈ OpenC∞ but the morphism V1 tV1∩V2 V2 = V1 tV1∩V2 V2 in B̂uild is not an

isomorphism in general. The notion of sheaf on sites was invented to resolve this issue.
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Definition 6.1.1. The category of sheaves on site (Build, τ) which is denoted by

Sh(Build, τ) is called a (Grothendieck) topos.

Definition 6.1.2. An object X ∈ Ob(Sh(Build, τ)) is called a generalized space.

Let (Build, τ) be a site, X, Y ∈ Ob(Sh(Build, τ)), and f : X → Y a morphism between

them. Then:

Definition 6.1.3. [Pau] f is called an open embedding iff f is pointwise injective (i.e.

fU : X(U) � Y (U), ∀U ∈ Ob(Build) ), and if X and Y are representable, then there

exists an open covering of Y , {Ui
fi−→ Y }i ∈ Cov(Y ) in τ such that f is the image of

a morphism tiUi
ψ−→ Y . Otherwise, if X is not representable or Y is not representable,

then for every map U → Y (U is representable), the fiber X ×
Y
UX is isomorphic to an

embedding W ⊂ U .

Diagrammatically the above definition can be seen as below when X and Y are

representable:

⊔
i

Ui
ψ // Y

φ // Coker(ψ).

X ∼= Im(ψ) = Ker(φ)

f

OO

Now we introduce an important class of a topos Sh(Build, τ), where its objects

correspond to objects of a usual category in which we do geometry:

Definition 6.1.4. [Pau] (Generalized) space X is called a variety iff X can be covered

by a family of open embeddings, i.e., there exists a family of open embeddings fi : Ui →
X where Ui ∈ Sh(Build, τ) are representable, and the map ψ : tiUi → X is a sheaf

epimorphism (i.e., ψ can be canceled from the right).

The category of varieties is denoted by V AR(Build, τ) ⊂ Sh(Build, τ).
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Definition 6.1.5. If Build = OpenCk for k ≤ ∞ (i.e., the category of open subsets of

R
n for varying n with Ck-maps between as morphisms), and τ is usual topology, then

V AR(OpenCk , τ) is called Ck-manifolds.

Definition 6.1.6. If Build = CRingop (i.e., the category of affine schemes), and τ is the

Zariski covering {Spec Ai → Spec R}i ∈ Cov(Spec R) where R ∈ CRing, Ai = R[r−1
i ] for

ri ∈ R, Spec R ∈ CRingop, then V AR(CRingop, τ) is called schemes.

6.2 Generalized Spaces of Symmetric Monoidal Cat-

egories

We know that an affine scheme is an object in category CRingop, and CRing is

the category of commutative monoids (algebras) in the symmetric monoidal category

(Mod(Z),⊗), i.e. CRing = CALGMod(Z). This fact can leads to an idea, which generalize

the notion of schemes for every symmetric monoidal category:

Definition 6.2.1. Let (C,⊗) be a symmetric monoidal category, BuildC := CALGop
C and

X ∈ Ob(CALGop
C ). The spectrum of X, denoted by Spec(X) is a functor defined by

Spec(X) : BuildopC =CALGC → Set

Y → Hom(X, Y ).

Definition 6.2.2. [Pau] For X, Y ∈ Ob(CALGC), an algebra morphism f : X → Y or

its corresponding morphism Spec(f) : Spec(Y )→ Spec(X) is called:

1. monomorphism iff ∀Z ∈ Ob(CALGC), Spec(Y )(Z) ⊂ Spec(X)(Z);

2. flat iff the base change functor −⊗XY : ModX →ModY is left exact, i.e., commutes

with finite limits;

3. finitely presented iff Spec
X

(Y ) denotes Spec(Y ) restricted to X-algebra commutes

with filtered colimits.

Definition 6.2.3. [Pau] Morphism Spec(f) : Spec(Y )→ Spec(X) is called Zariski open

iff it is a flat, finitely presented monomorphism.
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Definition 6.2.4. [Pau] A family of morphisms {Spec(Xi)
fi−→ Spec(X)} is called a Zariski

covering iff fi is Zariski open for every i, and there exists a finite subset J ⊂ I such that

the functor uj∈J −⊗XXj : ModX → uj∈JModXj
preserves isomorphisms.

Definition 6.2.5. The Grothendieck topology τ that is generated by Zariski coverings

on BuildC is called Zariski topology.

Definition 6.2.6. [Pau] V AR(CALGop
C , τ) is called schemes.

Remark 6.2.7. [Pau] Usual schemes are schemes of the symmetic monoidal category

(Mod(Z),⊗), i.e., X ∈ V AR(CRingop, τ).

6.3 Diffeologies and Differential Geometric Con-

structions

Definition 6.3.1. A usual smooth manifold is a topological space X, equipped with an

atlas (i.e., a family of open embeddings {fi : Ui → X}i with Ui ⊆ R
n open subsets)

such that for every Ui, Uj, the transition map ψUiUj
:= fj

−1 ◦ fi : Uj ∩ f−1
i

(
fj(Uj)

)
→

Ui ∩ f−1
j

(
fi(Ui)

)
is smooth (i.e., ψUiUj

∈Mor(OpenC∞) ).

Each atlas is included a maximal one. A morphism of manifolds X and Y is a

continuous map which induces a morphism of maximal atlases as can be seen form the

following diagram:

Ui
fi //

φi:=g
−1
i φfi

��

X

φ.
��

Vi gi
// Y

We will denote the category of (usual) smooth manifolds by MfdC∞ .

Definition 6.3.2. The topos Sh(OpenC∞ , τ) is called diffeologies.

Now we show how a differential geometric construction on generalized spaces in

Sh(Build, τ) can be derived from a construction on site (Build, τ).

39



Definition 6.3.3. Let C be a category and (Build, τ) a site. A (differential geometric)

construction on Build is a sheaf of Ω on site (Build, τ) with values in C, Ω : Buildop → C.

Construction on Sh(Build, τ):[Pau] Let X ∈ Ob(Sh(Build, τ)) be a generalized space,

BuildX denotes the category whose objects are Ob(BuildX) = {x : Ux → X|Ux ∈
Ob(Build)}, and Ω : Buildop → C be a construction. Then the differential geometric

construction on Sh(Build, τ) is defined as Ω(−) : Sh(Build, τ) → C, X 7→ Ω(X) :=

lim←−
x∈BuildX

Ω(Ux). We assumed that the limit exists.

In general, if U → X is an open embedding of generalized spaces, Ω(U) ∈ C can be

defined.

Example 6.3.4. Suppose (Build, τ) = (OpenC∞ , τ) where τ is the usual topology. Let

Ω := Ω1 : OpenopC∞ → R−V ect, U 7→ Ω1(U) = {ω : U → T ?U} be the sheaf of differential

one-forms field (i.e., sections of P : T ?U → U). For diffeology X ∈ Ob
(
Sh(OpenC∞ , τ)

)
,

X : OpenC∞ →Set, a differential one-form field on X is Ω1(X) := lim←−
x

Ω1(Ux), denoted

by x?ω such that if f : x→ y is a morphism in BuildX , then we have f ?(y?ω) = x?ω. f

is shown in the following commutative diagram

Ux
f //

x
��

Uy.

y
~~

X

Finally, there is a relationship between the category of smooth manifolds, and the

category of diffeologies.

Theorem 6.3.5. The category MfdC∞ fully faithfully embed into category Sh(OpenC∞ , τ)

via the map

MfdC∞ → Sh(OpenC∞ , τ)

M → Hom(−,M).

Moreover, this map induces an equivalence between categories MfdC∞ and

V AR(OpenC∞ , τ).
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Proof. The category MfdC∞ is equipped with the global topology τ and form the site

(MfdC∞ , τ). The Yoneda embedding functor h : MfdC∞ → Sh(MfdC∞ , τ) embeds

MfdC∞ fully faithfully into Sh(MfdC∞ , τ). Let N ∈ Ob(MfdC∞), and Φ := {Ui →
N}i ∈ Cov(N) where Ui ∈ Ob(OpenC∞). We form the nerve N(Φ) and note that for

Pj := Ui1 ×N Ui2 ×N · · · ×N Uin , j := (i1, · · · , in); Pj ∈ Ob(OpenC∞) for all j. More-

over, colimjPj = N . The inclusion map OpenC∞ ↪→ MfdC∞ induces the natural functor

η : Sh(MfdC∞ , τ) → Sh(OpenC∞ , τ) given by X 7→ X|OpenC∞ , where X|OpenC∞ is the

restriction of sheaf X to OpenC∞ . Applying the Yoneda lemma and above facts, for every

N ∈ MfdC∞ , we get X(N) ∼= Hom(N,X) ∼= Hom(colimjPj, X) ∼= limjHom(Pj, X) ∼=
limjX(Pj). This means that X(N) is determined by values of X at Pj, and η is fully

faithful. The composition functor ηh : MfdC∞ ↪→ Sh(OpenC∞ , τ) is the required map.

For the second part of the proof, we first observe that the fact in both categories

Sh(MfdC∞ , τ) and Sh(OpenC∞ , τ), varieties are colimits of nerves for the same topol-

ogy with same covering objects, i.e., objects in OpenC∞ . Therefore, Sh(MfdC∞ , τ) ⊃
V AR(MfdC∞ , τ) ' V AR(OpenC∞ , τ) ⊂ Sh(OpenC∞ , τ). Using the above equivalent of

categories and replace V AR(OpenC∞ , τ) with V AR(MfdC∞ , τ), we finish the proof by

showing that the map ψ : (MfdC∞ , τ) → V AR(MfdC∞ , τ) is an equivalent. We already

showed that ψ is fully faithful. So it only remains to prove that ψ is essentially surjective.

Suppose that X ∈ V AR(MfdC∞ , τ). By definition of variety, there exists a family

{Ui → X}i of open embeddings where Ui ∈ OpenC∞ and tiUi → X is a sheaf epimor-

phism. So X = colimiUi in V AR(MfdC∞ , τ). We define Y := colimjPj ∈ Ob(MfdC∞).

Using the fact that nerves of coverings in V AR(MfdC∞ , τ) correspond to the colimits in

the category MfdC∞ , we conclude that X will be correspond to Y , and Y ∼= X. So ψ is

essentially surjective.
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