
A UNIFIED GRAPHICS RENDERING PIPELINE FOR AUTOSTEREOSCOPIC RENDERING

Aravind Kalaiahl, Tolga K Capin2

1NVIDIA Inc.
2Bilkent University

ABSTRACT

Autostereoscopic displays require rendering a scene from
multiple viewpoints. The architecture of current-generation
graphics processors are still grounded in the historic
evolution of monoscopic rendering. In this paper, we
present a novel programmable rendering pipeline that
renders to multiple viewpoints in a single pass. Our
approach leverages on the computational and memory fetch
coherence of rendering to multiple viewpoints to achieve
significant speedup. We present an emulation of the
principles of our pipeline using the current-generation GPUs
and present a quantitative estimate of the benefits of our
approach. We make a case for the new rendering pipeline by
demonstrating its benefits for a range of applications such as
autostereoscopic rendering and for shadow map
computation for a scene with multiple light sources.

Index Terms- Computer Graphics, 3D Graphics,
autostereoscopic rendering.

1. INTRODUCTION

Computer graphics has traditionally focused on rendering to
one viewpoint at a time. Consequently, most of the
rendering algorithms and speciality graphics hardware are
geared towards handling Single Viewpoint Rendering
(SVR). While this approach addresses the core applications
of the graphics industry, we are witnessing a rapid growth in
alternate scenarios that require rendering a scene from
multiple viewpoints. A good example of the application of
Multiple Viewpoint Rendering (MVR) are the
autostereoscopic displays [Hal97]. Autostereoscopic
displays are a generalization of the conventional displays by
their ability to emit different light in different directions.
This allows them to convey stereo parallax to multiple
viewers at the same time [SS99, MP04, SMG05]. Recent
technological advances have brought several commercial
products to the market place (e.g. 42-inch Philips 3D6C01
display, Sharp Corporation's LL- 151-3D monitor and
Actius AL3D laptop, and NTT DoCoMo SH505i mobile
phone).

Current graphics standards and rendering hardware
provide mechanisms for rendering to multiple viewpoints.

However, this is mainly a basic system that invokes the
traditional SVR rendering system multiple times: once for
each viewpoint. This is a correct but very costly solution
since it ignores the inherent coherence in the computation
and memory access of the rendering process. Currently, the
only way to do such a concurrent rendering is to use
multiple-GPU solutions such as NVIDIA's SLI architecture.

In this paper we propose modifications to the OpenGL
graphics pipeline which allows rendering to multiple
viewpoints in a single pass. Our approach is to make MVR a
generalization (as opposed to a specialization) of SVR. Our
approach leverages on the coherence of computation and
memory access of MVR and leads to faster rendering and
conserves other resources such as bus bandwidth and battery
power. While current GPUs cannot be configured to directly
implement our new pipeline, we emulate our approach
indirectly on the GPU.

2. RELATED WORK

2.1. Stereoscopic Rendering
Multiple viewpoint rendering is a generalization of
stereoscopic rendering. Traditionally, stereoscopic rendering
involves processing separately the left and right eye. This is
still the model in use in graphics APIs such as OpenGL
[SA04]. Adelson et al. [ABC91] were the first to walk
through the rendering pipeline and discuss how the x-axis
coherence in device coordinates can be used for
simultaneously rendering a triangle to both images.

Adelson and Hodges [AH93] accelerate stereoscopic
raytracing by warping a raytraced left image to the right eye
view and raytracing the right image only for a subset of the
pixels. He and Kaufman [HK96] accelerate stereoscopic
volume rendering by re-projecting the samples made while
ray casting for the left view to the right image plane. Fu et
al. [FBP96] compute the left image of a polygonal scene and
compute the right image by warping it. The holes in the
right image are filled by interpolation. Wan et al.
[MZQK04] accelerate stereoscopic rendering of opaque
volumes by computing the left image and warping it to the
right image and filling the leftover gaps of the right image
by raycasting. Fehn [FehO4] generates multiple views from
a single image with an accompanying depth buffer using 3D
warping. Fehn handles the hole filling problem by
smoothing the depth buffer with a Gaussian filter.

1-4244-0722-2/07/$20.00 ©2007 IEEE

2.2. Multiple Viewpoint Rendering
We refer to the process of rendering a scene from several
arbitrary viewpoints as multiple viewpoint rendering. Halle
[Hal98] discusses a method for rendering to an
autostereoscopic display from a spatio-perspective volume
representation after it is constructed from the epipolar
images of the scene. His method can be extended to
rendering to arbitrary viewpoints. Govindarju et al.
[GLY03] use two different Graphics Processing Units
(GPUs) for visibility processing from the eye point and the
light position. The multiple render target feature of OpenGL
2.0 [SA04] can be used to render to multiple buffers at the
same time. However, since all the buffers share the same
rasterization process, it cannot be used for MVR. Nvidia's
dual-GPU SLI combination can accelerate rendering by
designating each GPU to compute a different frame. Our
approach can do this with a one frame delay at a much
lower hardware cost.

2.3. Autostereoscopic Displays
Autostereoscopic displays have a rich history. We refer the
reader to Sexton and Surman [SS99], Matusik and Pfister
[MP04] and Sandin et al. [SMG05] for a good overview of
the technology behind autostereoscopic displays.

Halle [Hal97] discusses the guidelines to display 3D
content for autostereoscopic displays. Yoshida et al.
[YMH99] present ways to configure the viewing parameters
for a better control of the perceived depth. Jones et al.
[JLHEO1] discuss the mathematics behind setting up the
virtual camera for a given viewer position relative to the
autostereoscopic display.

3. UNIFIED RENDERING PIPELINE
We refer to our new rendering pipeline as the unified
pipeline since the task of rendering to the different
viewpoints is done in a single pass (see figure 1). In our
model, the GPU pipeline begins with the vertex shader
receiving the vertices with attributes. The Vertex Shading
Unit has both viewpoint-independent and viewpoint-specific
global registers to hold the uniform variables. The
viewpoint-independent registers can carry information such
as the surface material and the light sources while the
viewpoint-specific registers can hold information such as
the projection matrix, the viewport matrix, and the eye
position. The Vertex Shaders can also allow per-vertex view
dependent information such as the reflection vector. The
vertex shaders then output both viewpoint-independent
information such as diffuse lighting and viewpoint-specific
information such as post-projection vertex positions through
the appropriate registers. This model allows the vertex
shader to compute complex view-independent computation
such as precomputed radiate transfer only once and reuse
the results for all the viewpoints. Subsequently, after all the
vertices of a primitive have been processed by the vertex
shader, it is assembled together into a primitive and is

replicated into multiple primitives, one for each viewpoint,
by the Primitive Replication Unit. This adds a unique tag,
called the view tag, to the primitive which identifies the
viewpoint that the primitive is destined for and it also
ensures that a replicated primitive only carries the
information that is relevant for its designated viewpoint.
Each of the replicated primitives is then clipped to the
frustum corresponding to its viewpoint generating multiple
primitives in the process if necessary. These primitives can
then be processed by the traditional rasterizer which outputs
pixels with both interpolated viewpoint-specific and
viewpoint-dependent parameters. The rasterizer also adds a
view tag to each output pixel to help identify the pixel
buffer that the pixel is destined for. The pixels can then be
processed by the traditional pixel processing model. The
Pixel Shading Unit can be preloaded with both viewpoint-
specific and viewpoint-independent information. Pixel
processing tests such as the alpha test, the depth test and the
stencil test will require a separate buffer for each viewpoint
and a separate framebuffer (or render target) has to be
maintained for each viewpoint as well. After a pixel is
processed by the pixel shaders, and if it passes all the pixel
tests, it is written to the framebuffer (or render target)
designated to its viewpoint. Our approach seamlessly
upgrades the current rendering pipeline and should fit well
with architectural enhancements such as the Unified Shaders
[DogO5] and Geometry Shaders [BlyO6].

Figure 1: The Unified Rendering pipeline for multi-view
autostereoscopic rendering. Here VI and VS refer to viewpoint-

independent and viewpoint-specific registers respectively.

Our approach ensures that the most common computation
and memory fetch requirements for the different viewpoints
are done only once. In particular, barring viewpoint-specific
information, the data traffic going into the GPU is still the
same as a pipeline for monoscopic rendering. Unlike before,
the vertex shader does not have to redo viewpoint-specific
computation and does not have to fetch the texels multiple
times. Similarly the pixel shaders make better use of the
texture cache since the pixels of the replicated primitives are
likely to have similar texture fetch patterns. All these serve
to reduce computation, power consumption, memory fetch,
and the bus bandwidth consumption of autostereoscopic
graphics applications.

We note here that in the pipeline described above, the
number of viewpoints supported by the pipeline can be
different from the number of viewpoints required for
stereoscopic rendering. For example, if the display device
requires rendering from six views and the pipeline supports

rendering to at most fours viewpoints, a multi-pass scheme
can be used which renders to four viewpoints in one pass
and to the remaining two viewpoints in the next pass. Also,
since the viewpoints can be any arbitrary viewpoints, it can
be used for other purposes such as rendering for the rear
view mirror in games and for shadow computation from
multiple light sources.

4. EMULATING THE UNIFIED PIPELINE
Our new pipeline described in section 3 serves as the
guideline for future GPU implementations for
autostereoscopic rendering. In this section we emulate the
unified rendering pipeline using current GPUs. Our
emulation serves to estimate the performance gains to be
obtained from the unified rendering pipeline.

Our emulation pipeline is illustrated in figure 2. It
follows the principles of the unified rendering pipeline by
rearranging the order of the operations. The emulation
pipeline addresses all these essential issues: 1) pixel buffer
replication, 2) primitive replication, 3) vertex processing, 4)
clipping, and 5) interlacing. Pixel buffer replication refers to
assigning a separate pixel buffer for each viewpoint. We
handle this by rendering to an offscreen buffer that is
partitioned according to the viewpoint configuration.
Alternately, if the Multiple Render Target (MRT) feature
[SA04] is available in the GPU, separate buffers can be
directly assigned to individual viewpoints.

FecPh b f ¢

0t;11;g}ll 00. *
Figure 2: The modified rendering pipeline for Stereoscopic

Primitive replication is not directly supported by the
current generation of GPUs without geometry shaders. We
emulate this indirectly by using the vertex array capability
of OpenGL. We explain our approach for the case of
triangle replication using the glDrawArrays function
call. A similar approach can be employed for replicating
other primitives. In our approach we preload V dummy
triangles in the graphics memory as a primitive array (V
denotes the number of viewpoints). We pack the vertex
position of each of the three vertices of the triangle into
unused attribute slots of the vertex such as the texture
coordinate slot. For rendering a triangle, instead of
rendering it by making three giVertex calls, we render
multiple triangles by making a call to glDrawArrays to
render the V dummy triangles. This has the effect of sending
nearly as much information to the GPU as the monoscopic
case, avoiding the traditional approach of sending the
information V times. This approach to primitive replication
can also be implemented using similar OpenGL functions

functions such as glDrawElements.
When the replicated vertices arrive at the pixel shader

for the vertex processing we need to assign each incoming
vertex of the array to act as one of the original vertex being
rendered to a unique viewpoint. In other words, each
incoming vertex from the array needs to be assigned a
unique (triangle vertex, viewpoint) combination. For this we
assign the (x, y)- coordinate values of a vertex vi of a
dummy rectangle t, to be (i, j). When a dummy vertex
arrives at the vertex shader, its (x, y, z)-coordinate is set to
the appropriate vertex attribute that holds the original vertex
coordinate.

After a vertex has been assigned its (x, y, z)-coordinate
value it has to be transformed and the projected to its
designated viewpoint. For this we multiply it by the
common modelview matrix and the viewpoint-specific
matrix. This has be to be followed by a viewpoint-specific
viewport transformation. Since the OpenGL library does not
expose viewport transformation to the vertex shader we use
an indirect approach to viewport transformation, by
computing the same transformations on vertex shaders.

5. RESULTS
Rendering to autostereoscopic displays requires careful
placement of the virtual cameras. The actual configuration
of the virtual cameras in terms of their numbers, relative
position, and their view frustum depends on the physical
properties of the display system, the depth range of the
scene, and the desired perceived depth. In this paper we
work with a symmetric grid configuration (see figure 3(a))
but our approach is extensible to any arbitrary
configuration.

We compute the camera properties using the techniques
proposed by Jones et al. [JLHEO1]. We maintain a common
modelview matrix for the scene. We also maintain a
viewpoint-specific matrix that will induce a translation to
the eye of the viewpoint from the common eye followed by
a projection according to that viewpoint's camera
parameters. Rendering by the conventional approach would
involve rendering the scene to an offscreen- or a back-buffer
for each of the viewpoints and combining the images
together in a final pass by interlacing. For a two-view
display with horizontal parallax, the interlacing would
involve mixing the columns of the two images such that the
final image would have odd-column pixels from the left
image and the evencolumn pixels from the right image. In
our case, turning on the autostereoscopic feature of the
display of our hardware reduced the horizontal resolution by
half. Hence a renderer can work with half the half-resolution
for the offscreen/back buffers.

We implemented our work on a Sharp Actius AL3D
laptop with a two-view parallax-barrier autostereoscopic
display. We consider the following viewpoint
configurations: 1 viewpoint (1 x1), 2 viewpoints (2X1), 3
viewpoints (3xl), 4 viewpoints (2X2), 6 viewpoints (3x2),

and 9 viewpoints (9x9). We render our test cases to a fixed
800X600 offscreen buffer (p-buffer). This means higher
number of viewpoints decrease the resolution of individual
viewpoints.

Figure 3: The viewpoint configurations and experiment models
usedfor our experiment. (a) Alien (3280 tris.), (b) Head (11556
tris.), (c) Bee (37420 tris), (d) Gargoyle (40348 tris.), (e) Atrium
(2 7542 tris.), (Gi Werewolf (133536 tris.).

We detail our results in table 1. We measure the speed of
rendering in terms of the time taken to render to the
offscreen buffer (reported in frames per second (FPS)). As
the table shows, our rendering speed is slower than
conventional rendering when only one viewpoint is
rendered to. However, when the number of view points
becomes 2 we see a sudden jump to a positive gain.
Thenafter the gain continues to rise in the positive territory.
All but one of the test cases were at least 50%0 better than
the conventional approach for a 9 viewpoint configuration.
We found no consistent relationship between the number of
polygons and the speedup in rendering except that the gains
of the unified pipeline apply to models of all sizes. For
small models, the time of rendering did not differ
significantly for small viewpoint numbers but as the number
of viewpoints increased it began to make an impact on their
speed. Amongst the larger models, some had more speedup
than others. We attribute this to the coherence in their
triangle ordering.
Table 1: Comparison of FPS speeds of conventional
autostereoscopic rendering (C) with proposed emulation (U)

if Ahi =kd Antu I Be J wa ~rw

3XI217A 969.) 257 10S 6 73 41 .8 656 4 7 61A M& 1}
L2. 2 _8 _ 95_I 914A _37, a_ 3 L _ 1 4 _I& 5

5 . n',f S43A<d ~M @. lsI '>' I1 ,at 32,, 2. l ut0
94-5 S4.95'2PFi4_S06 OA 21 -3_.6 14;114.S3

CONCLUSIONS
We presented a new rendering pipeline for autostereoscopic
displays which hinges on the principle of primitive
replication. Our new pipeline seamlessly upgrades the
existing pipeline and can be used for other applications such
as shadow computation from multiple light sources that
require multiple viewpoint rendering. We presented an
emulation of our pipeline using current GPUs. Our results
show that the emulation pipeline outscores the conventional

approach by a large margin and shows much promise for a
hardware implementation of our pipeline.

For future work we would like to point out that the
OpenGL API is inadequate for multiple viewpoint
rendering. Ideally, the application should simply specify the
multiple viewpoints once and send the geometry
information to the GPU only once while the GPU should
generate the images with this information. Our unified
pipeline handles this model and the OpenGL API should be
modified to handle such a model. Our emulation approach
can be used for several multiple viewpoint rendering use
cases such as rendering large LoD datasets, shadow
computation, and precomputing future frames during
interactive navigation.
Acknowledgments. This work was partially supported by EC FP6
3DTV Project (Grant no: FP6-511568).

REFERENCES
[ABC_91] ADELSON S.J., BENTLEY J.B., CHONG I.S.,

HODGES L.F., WINOGRAD J.: Simultaneous Generation of
Stereoscopic Views. Tech. Rep. GIT-GVU-91-07, 1991.

[AH93] ADELSON S., HODGES L.: Stereoscopic ray tracing. The
Visual Computer 10, 3 (1993), 127-144.

[BlyO6] Blythe, D. 2006. The Direct3D 10 system, SIGGRAPH
'06. ACM Press, New York, NY, 724-734.

[DogO5] DOGGETT M.: Xenos: XBOX360 GPU. In
EUROGRAPHICS, New console architectures (Sept. 2005).

[FBP96] FU S., BAO H., PENG Q.: Accelerated rendering
algorithm for stereoscopic display. Computers and Graphics
20, 2 (1996), 223-229.

[FehO4] FEHN C.: Depth-image-based rendering (DIBR),
compression, and transmission for a new approach on 3DTV.
In Proc. SPIE Vol. 5291, 2004, pp. 93-104.

[GLY03] GOVINDARAJU N. K., LLOYD B., YOON S., SUD A.,
MANOCHA D.: Interactive shadow generation in complex
environments. ACM Trans on Graphics 22, 3 (2003), 501-510.

[Hal97] HALLE M.: Autostereoscopic displays and computer
graphics. SIGGRAPH Comput. Graph. 31, 2 (1997), 58-62.

[Hal98] HALLE M.: Multiple viewpoint rendering. In SIGGRAPH
Conference Proceedings (1998), pp. 243-254.

[HK96] HE T., KAUFMAN A.: Fast stereo volume rendering. In
IEEE Visualization (1996), pp. 49-57.

[JLHEO1] JONES G. R., et al. .: Controlling perceived depth in
stereoscopic images. In Proc. SPIE Vol. 4297, p. 42-53, 2001.

[MP04] MATUSIK W., PFISTER H.: 3D TV: A Scalable system
for real-time acquisition, transmission, and autostereoscopic
display of dynamic scenes. SIGGRAPH2004, pp. 814-824.

[MZQK04] M.WAN, ZHANG N., QU H., KAUFMAN A. E.:
Interactive stereoscopic rendering of volumetric environments.
IEEE Trans. on Vis. and Comp. Graphics 10, 1 (2004), 15-28.

[SA04] SEGAL M., AKELEY K.: The OpenGL Graphics System:
A Specification (Version 2.0), 2004.

[SMG 05] SANDIN D. J., et al. The varrier autostereoscopic
virtual reality display. Proc. SIGGRAPH 2005, 894-903.

[SS99] SEXTON I., SURMAN P.: Stereoscopic and
autostereoscopic display systems. In IEEE Signal Processing
Magazine (May 1999), pp. 85-99.

[YMH99] YOSHIDA S., et al. : A technique for precise depth
representation in stereoscopic display. In Computer Graphics
International (June 1999), pp. 80-84.

