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ABSTRACT 

 

INVESTIGATION OF THE EFFECTS OF MAS5, RMA AND GCRMA 

PREPROCESSING METHODS ON AN AFFYMETRIX ZEBRAFISH 

GENECHIP
®
 DATASET USING STATISTICAL AND NETWORK 

PARAMETERS 

Ahmet Raşit Öztürk 

MSc, in Molecular Biology and Genetics 

Supervisor: Assist. Prof. Özlen Konu 

January, 2010, 125 pages 

 

Microarray data preprocessing is an important determinant of the accuracy and 

repeatability of expression profiling studies. Recent studies have focused on 

comparison of preprocessing methodologies using differential expression analysis of 

spike-in datasets and qRT-PCR confirmations. Other approaches include comparison 

of array-wise and probe-wise correlation and of selected gene network parameters. 

However, zebrafish GeneChip datasets have not been used in such comparisons; 

furthermore, detailed analysis of upregulated and downregulated gene sets with 

respect to known network parameters are not well characterized across different 

preprocessing methodologies. In this study we re-analyzed a public zebrafish hypoxia 

microarray dataset (GSE4989; Marques et al. 2008) using MAS5, RMA, and gcRMA 

methods. Comparisons were made in terms of differentially expressed gene sets and 

defined network parameters, namely, clustering coefficient, degree distribution, and 

betwenness centrality. Our findings indicated that gcRMA and RMA exhibited greater 

similarity to each other in terms of differentially expressed genes, and network 

parameters. In addition, the network analysis demonstrated that upregulated and 

downregulated gene sets had distinct network structures; downregulated probesets had 

greater clustering coefficients and degree distributions for positively correlated 

probesets in all three preprocessing methods. However, gcRMA and RMA methods 

accentuated this difference further than MAS5 did, suggesting that preprocessing 

methods differ in their modulation of gene expression network structure. A selected 
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group of probesets that showed invariant network structure parameters across RMA, 

gcRMA and MAS5 was determined and analyzed functionally for the zebrafish 

hypoxia dataset. The results of this thesis suggest that preprocessing methods may 

alter network structure of the datasets differentially with respect to upregulated and 

downregulated gene sets. Accordingly, it might be beneficial to filter differentially 

expressed genes that are robust to such network topology modulation to increase the 

repeatability of gene sets. 
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ÖZET 

 

MAS5, RMA VE GCRMA ÖN İŞLEME METOTLARININ BİR 

AFFYMETRIX ZEBRAFISH GENECHIP
®
 VERİ KÜMESİ ÜZERİNE 

ETKİLERİNİN İSTATİSTİKSEL PARAMETRELER VE AĞ 

PARAMETRELERİ KULLANILARAK ARAŞTIRILMASI 

Ahmet Raşit Öztürk 

Moleküler Biyoloji ve Genetik Yüksek Lisansı 

Tez Yöneticisi: Yrd. Doç. Dr. Özlen Konu 

Ocak, 2010, 125 sayfa 

Mikrodizi veri ön işlemesi, ifade profili çıkarma çalışmalarının kesinlik ve tekrar 

edilebilirliğinin önemli bir belirleyici faktörüdür. Güncel çalışmalar, farklılaşmış ifade 

analizleri kullanılarak ön işleme metodolojilerinin kontrol probları içeren mikrodizi 

veri kümeleri ve qRT-PCR doğrulamaları yoluyla karşılaştırılması üzerine 

yoğunlaşmıştır. Diğer yaklaşımlarsa dizi ve prob boyunca karşılaştırmalarla birlikte, 

seçilmiş gen ağ parametrelerinin karşılaştırmalarını içermektedir. Ancak zebrabalığı 

GeneChip veri kümelerinde henüz böyle bir karşılaştırma kullanılmamıştır, ayrıca, 

bilinen ağ parametreleriyle ilgili olarak anlatımı artan veya azalan gen öbeklerinin 

detaylı analizi farklı ön işleme metodolojileri üzerinden iyi bir biçimde 

tanımlanmamıştır. Bu çalışmada bir zebrabalığı hipoksi mikrodizi veri seti (GSE4989; 

Marques et al. 2008) MAS5, RMA ve gcRMA metodları ile analiz edilmiştir. 

Karşılaştırmalar, farklı ifade edilen gen öbekleri açısından “öbeklenme katsayısı”, 

“derece dağılımı” ve “aradalık merkeziyeti” olarak adlandırılan ağ parametreleri 

referans alınarak yapılmıştır. Bulgularımız gcRMA ve RMA metotlarının farklı ifade 

edilen genler ve ağ parametreleri açısından daha yüksek bir benzerlik gösterdiğini 

işaret etmektedir. Bunun yanı sıra ağ analizi, anlatımı artan ve azalan gen öbeklerinin 

farklı ağ yapılarına sahip olduğunu, pozitif korelasyon gösteren probsetler açısından 

anlatımı azalan probsetlerin her üç ön işleme metodunda da daha yüksek öbeklenme 

katsayısı değerleri ve ağ grafiğinde daha fazla bağlantıya sahip olduğunu göstermiştir. 

Bu durum MAS5 metoduna göre gcRMA ve RMA metotları tarafından işlenen 

verilerde daha ön plana çıkmıştır. Bu durum da ön işleme metotlarının gen ifade 
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ağlarının yapılarını şekillendirmekte farklı etkilerinin olduğunu göstermektedir. 

RMA, gcRMA ve MAS5 ile ön işlemeye tabi tutulan verilerden oluşturulan ağlar 

arasında ağ topolojisi bakımından en az değişiklik gösteren bir probset öbeği seçilmiş 

ve zebrabalığı hipoksi veriseti için fonksiyonel olarak analiz edilmiştir. Bu tezin 

sonuçları, ağ yapılarının anlatımı artan ve azalan gen kümeleri açısından ön işleme 

metotları tarafından değiştirildiğini önermektedir. Buna göre, farklı ifade edilen gen 

kümelerinin tespitinin tekrarlanabilirliğini arttırmak için ağ topolojilerindeki 

değişimlere dayanıklı genleri filtrelemek yararlı olabilir.  
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CHAPTER 1: INTRODUCTION 
 

1.1. Microarrays in human disease 

Every year millions of people die because of various cancer types and other diseases.  

The reason for most treatment to fail is the lack of understanding of the nature of the 

disease.  Since the cellular mechanisms causing a disease is complex, high-throughput 

methods are necessary in order to show the relationships between different genes or 

proteins (Draghici 2003). Bio-molecular interaction networks, which can be partly 

assessed through characterization of gene expression profiles and can be relatively 

easily obtained using microarray techniques, provide extensive information to 

understand the organization and interactivity of a biological system involved in 

disease (Draghici 2003).  

The main advantage of microarrays is the ability of quickly and inexpensively getting 

the gene expression profile of a certain tissue or cell type at the transcriptome level 

(Seidel and Niessner 2008). Today, nearly all of the known transcriptome can be 

mapped and expression values can be obtained (Yauk et al. 2007). This notion gains 

importance especially in the case of cancer and drug treatment where a certain 

condition affects the behavior (or in other terms, expression pattern) of a group of 

cells. Transcriptome studies might be beneficial in the areas of drug development, 

diagnosis, comparative genomics, and functional genomics (Thorgeirsson et al. 2006; 

Wiltgen et al. 2007). It’s also important to increase understanding of mechanisms of 

physiological and cellular processes that might contribute to disease process, such as 

hypoxia, ischemia, and oxidative stress. Micorarray studies allow for expression 

profiling at a large scale; and functional annotation of the gene lists obtained from 

such analyses leads to novel signaling pathway characterizations involved in different 

pathologies (Quackenbush 2002).  

 

1.2. Zebrafish as a model for human disease and gene networks 

Model organisms are widely used in biomedical research (Amatruda et al. 2008; 

Gonzalez-Nunez et al. 2009). Zebrafish is a model organism that help the researcher 

find the effect of a condition within a short time due to its high reproductive capacity 
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and relatively short embryonic and larval development (Dooley et al. 2000). In 

addition, zebrafish has been shown to share common properties in terms of molecular 

response in human cancer models such as liver cancer (Berghmans et al. 2005). These 

characteristics make zebrafish an excellent good organism for studying human 

disease. 

A limited number of protein-protein interaction and gene regulatory networks of 

zebrafish have been generated in the literature and some web tools generated for the 

visualization and the basic analysis of those networks also include zebrafish datasets. 

In a recent study (Sorathiya et al. 2009), a microarray dataset has been normalized 

using the RMA method and a gene expression network was generated. Network 

topology analysis revealed a group of genes which may have a role in the early stages 

of vasculogenesis in zebrafish. In another study (Webb et al. 2009), visualization of 

an in silico network was performed to identify the effects of amphetamine on gene 

expression. Other two studies (Bacha et al. 2009; Jupiter et al. 2009) focus on the 

development of web-based tools for network visualization and analysis using 

zebrafish protein-protein interaction and gene expression networks for demonstration 

of the tools. 

 

1.3. DNA microarrays 

Several types of microarrays are available for a wide variety of purposes (e.g., DNA, 

protein, and tissue microarrays). DNA microarrays can be separated into two types as 

cDNA and oligo arrays where a cDNA or a 25-80 base long oligonucleotide is spotted 

microscopically onto a solid surface (Schena et al. 1995). Another way of producing 

microarrays is through lithography where oligonucleotides are synthesized on the 

array using a special technique of light masking (Pease et al. 1994). 

The working principle of microarrays is the hybridization of two oligonucleotides 

which is detected by the fluorescence emitted during the hybridization process 

(Draghici 2003). The signal from the oligonucleotide pair is read from special optic 

devices where the intensity of the signal represents the amount of hybridization for a 

specific oligonucleotide, namely the amount of gene expression. However, the 

intensity value can only be interpreted with respect to control spots or intensity values 

of a set of housekeeping genes (Millenaar et al. 2006; Irizarry, Bolstad, et al. 2003). 
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Getting a relative gene expression value dictates the necessity of utilizing a 

normalization method in order to make the comparison between different arrays 

possible (Geller et al. 2003). Normalization is also necessary to handle the differences 

between arrays in terms of RNA extraction, labeling, hybridization, and scanning as 

well as other types of systematic error (Draghici 2003). 

 

1.4. Preprocessing of Microarrays 

Although microarray technology promises great advantages, it also has its problems 

(Quackenbush 2002; Hill et al. 2001; Bilban et al. 2002; Boes et al. 2005; Kreil et al. 

2005; Grewal et al. 2007; Canales et al. 2006; Steinhoff et al. 2006; Zakharkin et al. 

2005; Smyth et al. 2003). One of the handicaps is the fact that one can obtain relative 

gene expression values, not the actual ones using the hybridization based techniques 

(Schena et al. 1995; Geller et al. 2003). Second, since the experimental procedures 

from RNA isolation to hybridization are error prone and also affected by the 

experience of the technician, non-biological noise is inserted into the microarray data 

(Bolstad et al. 2003). In addition, the distribution of different probe sets on different 

microarray platforms makes the comparison of different studies more difficult 

(Irizarry, Hobbs, et al. 2003). Although the first problem mentioned depends on the 

nature of microarrays, the latter ones can be solved through data transformations 

(Geller et al. 2003). The data preprocessing is a necessary step to remove the non-

biological noise from the real signal as much as possible. Several preprocessing and 

normalization techniques have been proposed including RMA (Irizarry, Hobbs, et al. 

2003), gcRMA (Wu et al. 2004), MAS5.0 (Hubbell et al. 2002), dChip (Li et al. 

2001), PLIER (Affymetrix), and others (Shedden et al. 2005). 

Despite the fact that proposed preprocessing techniques are useful for reducing 

systematic technical noise, there is no golden standard. One of the suggested methods 

is MAS5.0, a method proposed and suggested for Affymetrix for data preprocessing. 

In this method, mismatch probes, with a single mismatch from the perfect match 

probes, are taken into account for calculating the amount of true hybridization; and a 

scaling approach is used for data normalization (Hubbell et al. 2002). In addition, 

many studies use RMA since it has been shown to outperform other preprocessing 

techniques. RMA depends only on the perfect match probes from the microarray raw 
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data (Irizarry, Hobbs, et al. 2003; Katz et al. 2006; Bolstad et al. 2003; Chiogna et al. 

2009). Another method called gcRMA has been introduced to improve the 

performance of RMA method by considering the effect of probe GC content (Wu et 

al. 2004). Although these methods are successfully utilized for the detection of 

differentially expressed genes (Draghici 2003; Shedden et al. 2005), it is also shown 

that the array platform, tissue type, sample size of the study, or numerous other 

conditions can affect the performance of the applied method (Giles et al. 2003). 

 

1.5. Comparative analysis of Preprocessing Methods 

1.5.1 Description of Methods 

Preprocessing of microarray raw data is a three-step process for Affymetrix data that 

aims to result in the summed normalized signal intensity measurements (Draghici 

2003; Irizarry, Hobbs, et al. 2003). Due to non-specific and false binding, filtering 

background noise from the data is the first crucial step. This step is called background 

correction. After filtering out the systematic noise from the data, normalization is 

applied. Normalization enhances the comparison of different data from different 

microarray experiments adjusting and scaling the main characteristics of the data, 

such as mean/median, distribution and/or standard deviation. After the normalization 

of the signal intensities of each nucleotide, the last step is summarization of the 

normalized values. Typically, a transcript is represented by 11 to 20 different short 

oligonucleotides and combining these multiple signal intensities is a crucial operation 

(Affymetrix). Summarization is usually the last step where signal intensities of 

multiple oligonucleotides, which represent a single transcript, are collected and 

summed into a single signal intensity value. Although some methods might have a 

different order or extra steps during preprocessing (Schuster et al. 2007), 

preprocessing methods that we refer in this thesis follow the steps mentioned above. 

A summary of each preprocessing method’s approaches for background correction, 

normalization, and summarization is shown below (Lim et al. 2007) in Table 1. 

According to a study in 2009, MAS5 is the most preferred method in the literature for 

the preprocessing of Affymetrix HG-U133 array whereas RMA is the second 

preferred method (Kadota et al. 2009).  
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Table 1. Summary of each step of different preprocessing methods (modified from Lim et al., 

2007). 

Method Background correction Normalization Summarization 

MAS5 MM Subtraction Constant Tukey biweight 

RMA RMA transformation Quantile Median polish 

gcRMA gcRMA transformation Quantile Median polish 

 

1.5.2 MAS5 

As shown in Table 1, MAS5 utilize PM-MM subtraction for background correction. 

For each oligonucleotide on the array, Affymetrix has designed a corresponding 

mismatch oligonucleotide in order to take the effect of non-specific binding into 

account. In addition, the method gives detection calls that represent the presence or 

absence of the expression of a gene. Using this property of arrays, MAS5 corrects the 

perfect match signal intensities using mismatch signal intensities for each 

oligonucleotide. MAS5 assumes a linear approximation of background correction. For 

the normalization step, this method uses constant scaling to normalize different 

arrays. Lastly, for summarization, Tukey’s biweight approach is preferred (Hubbell et 

al. 2002). This summarization method is an efficient method for removing large 

median absolute deviations from the data. MAS5 removes background noise for each 

array independent from other arrays in the dataset. Thus, it is a single-chip method for 

preprocessing. So, preprocessing is not affected by addition or subtraction of arrays to 

the dataset (Binder et al. 2010).  

Robust averages of PM-MM values are calculated in MAS5 method for background 

correction. However, variation of probes with low signals is increased. Also the 

subtraction adds extra noise to the data (Pepper et al. 2007). Obtaining MM values 

larger than PM values is another possible problem of MAS5 method, generally 

handled by using idealized MM values. 

 

1.5.3. RMA 

Due to the ineffective utilization of mismatch probes on the array, a new method was 

proposed depending just on the perfect match signal intensities (Irizarry, Hobbs, et al. 
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2003). Another property of this method is the utility of quantile normalization, which 

is a linear method for array-wise adjustment. Decomposition of the frequency 

distribution of signal intensities into an exponential signal and a Gaussian background 

distribution is the main approach of this method. Arrays are then normalized using 

quantile normalization, which scales the data across arrays in quantiles. Lastly, 

median polish, a summarization method, is used for getting a single signal intensity 

value for a transcript from multiple oligonucleotides (Lim et al. 2007). Median polish 

minimizes the residual log error. As a result, different signal intensities are 

transformed into one average distribution. RMA method decreases the variance of 

probes with low signal values (Binder et al. 2010). 

 

1.5.4. gcRMA 

gcRMA is the enhanced version of RMA method that uses GC content information of 

each nucleotide to calculate binding efficiency and thus, signal intensity. Since the 

strength of G-C hybridization is stronger than A-T, the GC content of an 

oligonucleotide affects the binding tendency of each oligonucleotide pair after 

washing the arrays (Wu et al. 2004). Normalization and summarization steps are the 

same as the RMA method. However, for background correction, gcRMA background 

correction method is applied (Lim et al. 2007). It is a multi array approach that is 

affected by addition or subtraction of arrays into a dataset. As a result, weighted 

averages of arrays are calculated and replaced with the original values (Binder et al. 

2010). 

 

1.5.5. Comparative preprocessing method studies and gene networks 

In the literature, advantages and disadvantages of each preprocessing method is 

widely discussed (Kadota et al. 2008; Kadota et al. 2009; Hua et al. 2008; Verhaak et 

al. 2006; Qiu et al. 2005; Beyene et al. 2007; Liu et al. 2006; Reverter et al. 2005; 

Fujita et al. 2006; Harr et al. 2006; Shedden et al. 2005; Bolstad et al. 2003; Autio et 

al. 2009). Although a single method is not superior to others, it is concluded that the 

efficiency of the method is affected by the nature of the study (Verhaak et al. 2006). 

In addition, it is stated that MAS5 has more reliable results than other methods when 

applying a correlation-based statistical analysis like clustering analysis (Lim et al. 
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2007). In another case, RMA has been found superior when a list of significantly 

expressed genes was identified (Zakharkin et al. 2005). Although clustering and 

significantly expressed genes are investigated through different preprocessing 

methods, comparative gene network analysis has not been widely studied in the 

literature in this respect, to our knowledge. Most notably, Lim et al. (2007) has 

introduced the concept of normalization method comparisons in terms of reverse 

engineering gene networks. Another important landmark was a study performed by 

Ahn et al. (2009), which compared different networks with each other using specified 

network characteristics.  

Although the generation of the network is usually performed using a correlation 

method like Pearson correlation (Selga et al. 2009; Baralla et al. 2009), network 

structure is thought to be robust and main parameters like clustering coefficient is a 

characteristic property of a network independent of the data (Strogatz 2001; Watts et 

al. 1998). Since it is shown that different tissue and cell types affect the efficiency of 

preprocessing method (Shedden et al. 2005; Gyorffy et al. 2009), it should be 

assessed if different preprocessing methods have significant effects on the network 

structure and the characteristics of network properties. 

 

1.6. Zebrafish Microarrays 

The microarray that is studied in this thesis belongs to the Affymetrix GeneChip 

Zebrafish Genome Array. The Affymetrix GeneChip Zebrafish Genome Array 

platform consists of 15,509 different probe sets for the detection of more than 14,900 

zebrafish transcripts. Array is designed using the sequences from 2003 builds of 

RefSeq, Genbank, dbEST, and Unigene sequence databases. Each probeset includes 

16 different 25-mer oligonucleotides long probes. Detection sensitivity scale is 

1:100,000 (Affymetrix).  

According to GEO database, there are currently 46 GeneChip Zebrafish Genome 

Array series representing 610 samples at the time this thesis is written. To our 

knowledge, there is no study in the literature focusing on the effects of normalization 

methods on Genechip Zebrafish Genome Array data. It is shown in the literature that 

different cell or tissue types can affect the statistical properties of data that affects the 

performance of preprocessing methods (Gyorffy et al. 2009; Shedden et al. 2005). 



8 
 

CHAPTER 2: AIMS AND STRATEGY 

 

Microarray data analysis includes steps and methods such as preprocessing of raw 

data, differentially expressed gene identification, clustering, and visualization of gene 

regulatory networks. In this thesis, the aim is to investigate whether there is an 

advantage applying either the MAS5, RMA or gcRMA preprocessing algorithms to 

raw microarray data, using an exemplary dataset from zebrafish, to perform a more 

accurate gene profiling analysis.  

Motivation behind the thesis is that although these three methods have been 

previously compared using human microarrays from different tissues and 

experiments, the effect of normalization on Affymetrix Zebrafish arrays has not been 

studied, to our knowledge. Since preprocessing is likely to affect the analysis results 

at different levels, better knowledge of the characteristic changes introduced by 

normalization and development of novel statistical analysis approaches would lead to 

a) a more suitable selection of normalization methods; and b) a more reliable 

interpretations of the obtained results. 

To achieve the goal of this thesis, zebrafish Affymetrix microarray data on hypoxia 

(Marques et al. 2008) were obtained from GEO database of NCBI . The dataset was 

normalized using MAS5, RMA and gcRMA. Different analysis approaches were 

applied to compare the characteristic effects of the mentioned 

normalization/preprocessing methods: 1) assessment of data distribution; 2) 

assessment of differentially expressed genes; 3) determination and comparison of 

gene regulatory network characteristics. The reason for using a wide variety of 

analysis approaches is that different aspects of data characteristics could be influenced 

by each method. Thus, one can obtain a more thorough understanding of all facets of 

the problems and/or advantages associated with each method. For example, results of 

a t-test are affected by the extent of variation for each gene whereas the gene 

regulatory networks are affected by the relative rank of a gene among samples (Lim et 

al. 2007).  

This thesis also aims to test whether upregulated and downregulated probesets have 

distinct network structure and properties (i.e., clustering coefficient, degree 

distribution, and betweenness centrality) in zebrafish hypoxia and normoxia 
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experiments; and whether these differences are affected differentially by application 

of microarray preprocessing algorithms. To test this hypothesis, positively correlated 

edges were used for network comparisons that were made between the up- and down-

regulated probesets for each method and between methods using visualization 

techniques such as scatterplots and correlation analyses, and tests between real and 

randomized networks. 

Finally, we also aimed to identify a subset of significantly differentially expressed 

probesets, with invariant network properties that are independent of the normalization 

method using the zebrafish hypoxia dataset.  This study will help increase our 

understanding of the degree to which preprocessing can alter differentially expressed 

gene lists as well as the network structure in microarray datasets. 
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CHAPTER 3: MATERIALS AND METHODS 

 

3.1. Dataset 

In this study, a public microarray dataset (GSE4989; Marques et al. 2008) was 

downloaded from the NCBI GEO database (Barrett et al. 2005) to test the effects of 

normalization on differentially expressed gene lists and gene network characteristics. 

In GSE4989 expression series, gene expression in response to chronic constant 

hypoxia in the heart of adult zebrafish has been profiled. Data consisted of 10 

Affymetrix GeneChip Zebrafish microarrays, five of which belonged to normoxia and 

the other five arrays were of the hypoxia group. Maques et al. (2008) identified 376 

differentially expressed genes with a p value of 0.05 or less and a minimum fold 

change of 2. Although not mentioned in the paper, the preprocessing method used by 

the Marques et al. (2008) was RMA. 

Hypoxia is the lack of getting enough oxygen into the body. It can be either 

generalized or tissue hypoxia depending on the severity and the location of the 

oxygen deprivation (Semenza 2001). Although mammals are not tolerant to hypoxia, 

it is known that some teleosts –such as zebrafish- have the ability to cope with 

extreme oxygen deprivation (Stecyk et al. 2004). The aim of the paper of Marques et 

al. (2008) has been to identify differentially expressed genes in hypoxia in order to 

understand the mechanism of developing such a tolerance. They have suggested that 

understanding the mechanism of zebrafish’s response to chronic constant hypoxia in 

heart might have clinical implications in the future (Marques et al. 2008). In the 

present thesis, we aim to test whether such an expression profile is robust to 

differences in preprocessing methods particularly in terms of differentially expressed 

gene lists and gene network parameters. 

 

3.2. Preprocessing Methods 

MAS5, RMA, and gcRMA methods were utilized to preprocess the raw data obtained 

in the form of .CEL files. To automate the normalization process, an R script was 

written using the functions of Bioconductor R packages (APPENDIX A). Once .CEL 

files were read into a variable, data were preprocessed with the abovementioned 
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methods and written into a tab separated file for further use (APPENDIX A). In 

addition, each generated file was also saved in an MS Excel 97-2003 compatible 

format for further use. Since the rma() and gcrma() methods give log2 transformed 

data, log2 transformation also was applied to the data obtained from the mas5() 

function to make the preprocessed data values comparable (BioconductoR).  

 

3.3. Assessment of Differentially Expressed Genes upon preprocessing 

Bioinformatics Toolbox of MatLab 2008a was used for the current and the following 

steps. Once the preprocessed data have been read into variables, samples from each of 

the two different groups (e.g., hypoxia vs normoxia; GSE4989) were labeled for a t-

test (APPENDIX B). mattest() function was used for calculation of p-values to 

identify differentially expressed genes by applying this function to each preprocessed 

dataset; and the probeset lists were obtained. Upon retrieval of the differentially 

expressed gene lists from each preprocessed data, union or intersection of these lists 

were obtained using a code that made use of the ‘union’ and ‘intersect’ functions 

(APPENDIX B).  

3.4. Generation and comparison of gene expression networks  

To generate gene expression networks, the Pearson correlation values (Equation 1) 

were calculated for each probe set pair within an experiment (e.g., GSE4989). 

Covariance of two datasets X and Y is divided by the multiplication of the standard 

deviations of X and Y.  

 (Equation 1) 

Only the positively correlated gene pairs having an r value greater than or equal to 0.6 

were considered to have an edge between them. The positively correlated gene pairs 

were analyzed in this study to simplify the network generation and decrease 

complexity. In this approach, each node represented a gene (probe set) and each edge 

represented coexpression of the two nodes. Resulting graph, a gene expression 

network, could be shown as an n-by-n matrix, where n is the number of nodes in the 

graph. A sparse matrix also was generated to be used for further investigation of 

network topology (APPENDIX C). 
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The distribution of correlation pairs across different correlation thresholds (Lim et al., 

2007) were calculated and plotted using the plotting functions of MatLab. The 

average value of the positive correlation values from all pairwise probeset correlations 

(i.e., a mean edge correlation value) was compared between any two preprocessing 

method. Random networks (Lim et al., 2007) were generated to establish the extent of 

differences between observed and random correlations for each preprocessed dataset 

(APPENDIX C).  

Since a differentially expressed gene list obtained from each preprocessed data 

contained different probe sets, the probesets of the union and those of the intersection 

lists were used to generate networks where all networks had the same number of 

nodes (APPENDIX D).  Frequency distribution plots of bins of correlated pairs were 

compared among datasets obtained from different preprocessing methods for union 

and intersection datasets. 

In this study, the following network measures were investigated: degree distribution 

(Newman 2003), clustering coefficient (Watts et al. 1998), and betweenness centrality 

(Freeman 1977).  

Degree distribution is the number of edges in and out of a node. 

 

 (Equation 2) 

Ci (clustering coefficient of the node i) is the proportion of neighboring subgraphs 

having 3 edges and 3 nodes to the number of neighboring subgraphs with 2 edges and 

3 nodes (Equation 2; Watts et al. 1998).  

  (Equation 3) 

CB(v) value is the sum of all possible ratios of shortest paths passing the node v over 

the total number of those shortest paths (Equation 3; Freeman 1977) where σst(v) is 

the number of shortest paths from s to t crossing the node v. σst is the total number of 

shortest paths from s to t.  
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For these calculations, a set of related functions from the GAIMC BGL Toolbox 4.0 

was utilized in Matlab (Anon 2008). This toolbox has been previously used in a brain 

network analysis study to calculate network properties (Sporns et al. 2007).  

Comparison of networks from different preprocessing methods as well as comparison 

of a network with a randomized counterpart we used a series of methodologies. To 

find the conserved correlations (i.e., the conserved edges) among the networks of 

differently preprocessed data, union and intersection methods were used (APPENDIX 

D). Scatterplots were generated to visualize network parameters in a pairwise fashion 

between any two preprocessing method. Spearman correlation coefficients for a 

compared network parameter across probesets (Ahn et al., 2009) were calculated 

between preprocessing methods for the intersection and union datasets (APPENDIX 

G). 

Paired t-tests were used to test the differences between any two preprocessing method 

for the three network parameters, separately. Furthermore, data from each 

preprocessing method was also compared with those from a randomized dataset using 

paired t-tests (APPENDIX B). 

Upregulated and downregulated probeset lists were generated and plotted against the 

fold change values and p-values obtained, for each preprocesing method separately 

using plot() function of Matlab (APPENDIX H).  

 

3.5. Zebrafish Gene Symbol Annotation 

Affymetrix IDs were converted to corresponding zebrafish gene symbols using 

Biomart Martview service (Biomart). Affymetrix IDs were given as an input to 

appropriate fields and associated gene symbols were retrieved using the GUI of the 

web tool. 8517 genes were found corresponding to the probesets in Affymetrix 

Zebrafish GeneChip array. 

 

3.6. Drawing Graphs 

For the generation of boxplots and histograms, MatLab’s boxplot() and hist() 

functions were utilized with appropriate input variables (APPENDIX D). In addition, 

suitable functions of AutoCAD 2008 were used for generating figures 9 and 10.  
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3.7. Random Network Generation 

In order to compare the network topology measures with random networks, the node 

pairs were randomly shuffled in the upper triangle of the adjacency matrix using the 

code in APPENDIX E. Accordingly, given a network, the code generates a random 

network with the same number of nodes and edges. For comparing network results 

with respect to fold change and p-value distributions, actual networks were compared 

with random networks sampled from the original normalized dataset keeping the 

number of probesets the same with the intersection dataset (APPENDIX H) 

 

3.8. Analysis of Hypoxia Dataset 

To identify genes that were the least variant in both networks of different 

preprocessing methods, difference of a network parameter in each network was 

calculated and converted to its absolute value. Then, sum of the differences were 

sorted in order to identify the least-changed top 20% of the genes for each network 

topology measure. Lastly, intersection of the least-changed probeset lists was 

generated to show the most stable genes in all networks in terms of network topology. 
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CHAPTER 4: RESULTS 

 

4.1. Effects of Preprocessing on Data Disribution 

Since each preprocessing method aims to remove non-technical variation in the 

microarray data in different ways, they alter the distribution of the data differently. In 

order to show the effects of each preprocessing method, boxplots and histograms were 

used for visualization of each preprocessed data’s numerical properties. Figure 1 

demonstrates that the distribution of the raw data before any kind of preprocessing 

suggesting that GSE4989 arrays have comparable raw data distributions where 50% 

of the data resided between log2 values of 6 and 8. Raw data distribution resembled 

an extreme value distribution (Gumbel 1958) with a small number of probe sets with 

high expression values whereas close to 50% of the probes accumulated closer to the 

lower limit of the distribution (Figure 2). Upon preprocessing, raw data distribution 

has changed drastically; the shape of the distribution was dependent on the type of the 

preprocessing method (Figures 3, 4, and 5). 

 

 

Figure 1. Data distribution of each array before preprocessing 
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Figure 2. Raw data expression value frequencies. 

 

 

Figure 3. RMA-preprocessed data expression value frequencies. 



17 
 

 

Figure 4. gcRMA-preprocessed data expression value frequencies. 

 

 

Figure 5. MAS5-preprocessed data expression value frequencies. 

Based on the histogram representations, preprocessing procedures altered the data 

distribution.  While RMA and MAS5 have produced distributions closer to normal 
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distribution, gcRMA led to a distribution with features of bimodality (Figure 3, 4, and 

5). To be able to observe each experiment within the experiment set, boxplots were 

drawn. Figure 6 indicated that each method within itself was highly consistent thus 

arrays could be compared with each other. However, there were drastic differences 

with respect to the median values as well as Inter Quartile Ranges (i.e., IQRs, which 

is described as showing the robust 50% of the data between 25% and 75%) among 

different methods (Figure 6). Accordingly, MAS5 normalized experiments had higher 

IQRs when compared to others; the normalization method that generated the least 

variable experiment set was RMA. gcRMA resulted in a skewed distribution where 

the lower 95% confidence interval of the boxplots was truncated relative to those 

obtained using other methods (Figure 6). 

 

Figure 6. Comparison of distributions of raw and preprocessed data. 

 

Different normalizations resulted in different medians (Figure 7). Also seen from the 

previous boxplot representation of the raw and preprocessed datasets (Figure 6), the 

mean of the medians from all 10 microarray experiments were less in gcRMA when 

compared with those from RMA and MAS5 (Figure 7). RMA data followed gcRMA 

data and had a 1.5 fold greater median value than gcRMA. In RMA, median values of 

each array seemed to be stable around the expression value of 6.3, in log2. Raw data 
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exhibited a higher median value compared to RMA, and lower median value 

compared to MAS5 (Figure 7). Since the raw data was not processed, the figure 

reflected the actual median expression values of each probe. In particular, the 8
th

 array 

seemed to have an upward shift in expression values which could be observed from 

the value distribution shown in Figure 6. Since RMA and gcRMA utilizes quantile 

normalization method normalizing each array via exchange of actual expression 

values between arrays, the upwards shift in the 8
th

 array was not observed in data 

normalized with RMA or gcRMA. Lastly, MAS5 had the highest median value for 

each array and also showed the widest data distribution as seen from the Figures 6 and 

7. Since MAS5 used a scaling approach for preprocessing of the data, the 

normalization was likely to be affected by the deviation and shifts in the raw data. The 

median of the 8
th

 array of the MAS5 data was shifted upwards as in the raw data. 

The differences in the distribution of each preprocessed data also were reflected in the 

standard deviation of the arrays. As seen in Figure 8, raw data exhibited the least 

amount of standart deviation among arrays whereas gcRMA had the highest standard 

deviation values. Raw data was followed by RMA and then MAS5 datasets. One clear 

observation from Figure 8 was that RMA and gcRMA tended to decrease the 

variability in distribution across arrays and standardized the distributions of each 

array in order to make them more comparable.  



20 
 

 

Figure 7. Plots of medians of each raw and preprocessed datasets. 

 

 

Figure 8. Plots of standard deviations of each raw and preprocessed datasets. 
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4.2. Effects of Preprocessing on Differently Expressed Gene Lists 

Based on the findings from the histograms and boxplots of data distributions of both 

the raw and preprocessed data, it was clear that each preprocessing method altered the 

distribution and original data values in different ways. Therefore, we hypothesized 

that this situation also might affect the results of statistical tests based on these 

normalized datasets.  

For each dataset, the number of differentially expressed genes was obtained using two 

sample equal variance t-tests with an alpha value of 0.05; and the results were 

represented as the number of probesets differentially expressed as well as the 

corresponding percentage they fell into (Tables 2 and 3). Accordingly, all three 

methods identified close to 20% of all probesets in the GeneChip as significant. Since 

gcRMA and RMA were similar in their background correction, normalization and 

summarization steps, the number of genes common to both methods was greater than 

that observed between MAS5 and RMA or MAS5 and gcRMA (Table 3). 1932 probe 

sets were common in these three significant gene lists, each obtained from RMA, 

gcRMA, and MAS5 preprocessed data, respectively (Table 3). Percentage of the 

common probesets among these significant gene lists was greater than 50% in all 

three methods (Table 4). Moreover, the union of these three gene lists consisted of 

5048 unique probe sets. Union of significant gene lists of each dataset were compared 

and results also indicated that RMA and gcRMA gene lists were the most similar ones 

compared to MAS5 (Table 5). Lastly, Table 6 demonstrated the ratio of significant 

gene list of each dataset to the union gene list. Accordingly, MAS5 had the biggest 

contribution to the MAS5 list as expected. 

Table 2. Number of differentially expressed genes that are detected by t-test, after each 

preprocessing method. 

 # of probe sets % of probe sets 

RMA 3397 21.75 

gcRMA 3224 20.64 

MAS5 3508 22.46 
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Table 3. Numbers of common probe sets among pairs of differentially expressed gene lists. 

Intersection RMA gcRMA MAS5 

RMA 3397 2612 2221 

gcRMA 2612 3224 2180 

MAS5 2221 2180 3508 

 

Table 4. Percentage of common probe sets that are shared in all three differentially expressed 

gene lists. 

Intersection % of common probe sets 

RMA 56.87 

gcRMA 59.92 

MAS5 55.07 

 

Table 5. Numbers of union of differentially expressed gene list pairs. 

Union RMA gcRMA MAS5 

RMA 3397 4009 4684 

gcRMA 4009 3224 4552 

MAS5 4684 4553 3508 

 

Table 6. Percentage of differentially expressed gene lists to the union of all probe sets. 

Union 
%  of gene lists to the 

union of all probe sets 

RMA 67.29 

gcRMA 63.86 

MAS5 69.49 

 

 

The results were also visualized for a better understanding of the number of probe sets 

that were commonly or uniquely identified by each one of the methods tested in the 

present study. Graphical representation and a Venn-diagram representation were 
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shown in the following figures (Figure 9, 10). Accordingly, each method identified a 

considerable number of probe sets uniquely, where MAS5 identified the most. 

Accordingly, gcRMA and RMA were more related to each other in terms of the 

number of differentially expressed probe sets.  

 

Figure 9. Distribution of intersection of probe sets generated from RMA, gcRMA, and MAS5 

preprocessed data. Number of unique probe sets in each category is shown on the figure. Colored 

areas are proportional to the number of probe sets. 
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Figure 10. Venn diagram of intersection of probe sets generated from RMA, gcRMA, and MAS5 

preprocessed data. Number of unique probe sets in each category is shown on the figure. 

 

 

4.3. Effects of R-Value Thresholds and Preprocessing Methods on Network 

Generation 

A landmark study performed by Lim et al. (2007) for investigation of the effects of 

normalization on gene network structure suggested of using a) arraywise correlations 

of real and randomized datasets; b) distribution of correlation pairs across different 

correlation thresholds; c) pairwise mutual information between networks; and d) 

functional enrichment of highly correlated pairs.  

In the present study, similarly we tested whether the distribution of correlation pairs 

across different correlation thresholds differed according to the preprocessing method 

used. However, instead of analysis of arraywise correlations, we compared the 

average value of the positive correlation values from all pairwise probeset correlations 

(i.e., a mean edge correlation value). These comparisons were made between any two 
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preprocessing method as well as against a randomly generated network as suggested 

in the Lim et al. (2007) study. In addition, we used paired t-tests instead of mutual 

information indices to compare the network edge correspondence differences. Finally, 

frequency distribution plots of bins of correlated pairs were compared among datasets 

obtained from different preprocessing methods. Our analyses also made use of two 

different, namely the union and intersection, lists of differentially expressed genes 

from each method.  

Probeset pairwise correlation value distributions varried from one preprocessing 

method to another for the union and intersection datasets (Figures 11, 12). For both 

datasets, correlation values were scattered to the positive and negative ends while 

most of the correlations were found in between 0 and -0.2. In addition, the 

intersection dataset had pairwise correlations accumulating at extremes of both 

directions suggesting a greater proportion of significant pairwise correlations. In the 

union data, however, except the values between 0.2 and -0.2, correlation values were 

relatively more uniformly distributed.  

Distribution of positive correlation values (r>0) was visualized using boxplot 

representations (Figures 13, 14). Positive correlation can identify the pairs of genes 

having a similar expression profile among different arrays. Boxplot representations 

also showed a similar pattern as observed in Figures 11 and 12. Union data exhibited 

a more uniform distribution of correlation values whereas the median positive ‘r’ 

value was higher in the intersection data with lower interquartile of the distribution 

spanning a greater range of correlation values.  

One additional observation from the Figures 13 and 14 was that the effect of 

preprocessing such that the nature of correlation could be more clearly seen in 

intersection data. RMA and gcRMA had similar positive correlation profiles whereas 

MAS5 preprocessed data had relatively lower correlation among pairs of genes. 

Possible reason for this difference is mentioned in Discussion section. 
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Figure 11. Histogram of correlation values from union data of each preprocessing method. 

 

 

Figure 12. Histogram of correlation values from intersection data of each preprocessing method. 



27 
 

 

Figure 13. Distribution of positive correlation values in each preprocessed union data 

. 

 

Figure 14. Distribution of positive correlation values in each preprocessed intersection data. 
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To demonstrate the effects of varying the r-value threshold on the number of edges in 

each network, distribution of sum of all gene correlations above the threshold (edges) 

were plotted separately for the union and intersection data (Figures 15, 16). These 

graphs showed that although there was a slight difference between the correlation 

distributions of differently preprocessed data, choosing an r-value of 0.6 and greater 

could minimize the nonlinearity due to methodology. For example, the distribution of 

all three methods ran parallel to each other when r equaled to or was greater than 0.6. 

Although RMA- and gcRMA-based correlation values had similar slopes, MAS5-

based correlation values decreased faster as the r-value increased (Figure 15). The r-

value around 0.45 was critical in this context so that MAS5-based data became the 

least correlated in terms of the number of gene pairs. Since intersection data had more 

significant genes having similar gene expression profiles, MAS5 remained the least 

correlated data however the slopes were parallel exhibiting linearity among 

preprocessing methods (Figure 16). 

 

 

Figure 15. Sum of edges for networks generated at different r-value thresholds for union data. 
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Figure 16. Sum of edges for networks generated at different r-value thresholds for intersection 

data. 

 

4.4. Effects of preprocessing methods on network structure 

To assess the effects of preprocessing methods on network structure, three network 

topology measures have been widely utilized: betweennes centrality, clustering 

coefficient, and the degree distribution or connectivity (Barrat et al. 1999; Freeman 

1977; Newman 2003). Indeed, these three important network parameters also were 

previously used in comparison of networks generated from protein-protein interaction, 

radiation hybrids, functional annotation, and gene expression datasets (Ahn et al. 

2009). 

 

4.4.1. Betweenness centrality 

Genes located among the shortest paths between any other two genes have a higher 

betweenness centrality value. Thus, genes with a higher betweenness centrality are 

thought to have a central role for cellular functions especially having roles for 

communication between modules (Hintze et al. 2008).  
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Distribution of betweenness centrality was calculated for correlation networks of each 

preprocessed data for union (Figures 17-18) and intersection (Figure 19) data. Each 

preprocessing method was analyzed separately, a boxplot was drawn showing the 

distribution of the betweenness centrality value distribution when compared with that 

from a random distribution. Network of original data and random data distribution 

significantly differed with respect to the range of distribution (Figure 17-19); for both 

the union and intersection data, RMA, gcRMA, and MAS5 betweenness centrality 

values were significantly different from their random counterparts with a p-value of 

zero (less than 10E-16).  The random networks were designed to have the same 

number of genes and pairwise edges, with a randomized correlation distribution. 

Compared to the random networks, each preprocessed original data had a wide 

spectrum of betwenness centrality values expected to be seen in a real situation.  

On the other hand, preprocessing methods did not differ among each other with 

respect to betweenness centrality data distribution based on the paired-t-tests (Table 

7) in the union data. However, usage of intersection data accentuated the differences 

among the preprocessing methods such that there was an increase in the median and 

IQR of the between centrality measurements obtained via MAS5 normalization (Table 

8). These might show that the different preprocessing methods affected the highly 

significantly expressed genes in a network setting. 

 

Table 7. Comparisons of the betweenness centrality distributions of  RMA, gcRMA, and MAS5 

preprocessed correlation networks using one-sampled t-test, for union data. 

Betweenness 

Centrality gcRMA MAS5 

RMA 0.6167 0.0923 

gcRMA  0.3536 
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Table 8. Comparisons of the betweenness centrality distributions of  RMA, gcRMA, and MAS5 

preprocessed correlation networks using one-sampled t-test, for intersection data. 

Betweenness 

Centrality gcRMA MAS5 

RMA 0 0 

gcRMA  0 
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Figure 17. Boxplots representing the distribution of betweenness centrality values in each 

network for union data. 
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Figure 18. Detailed representation of Figure 17 for better visualization of the distributions 

between the first and the third quarter. 
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Figure 19. Boxplots representing the distribution of betweenness  centrality values in each 

network for intersection data. 

 

4.4.2. Clustering coefficient 

Clustering coefficient is a network topology parameter for measuring the clustering 

tendency of nodes/genes. Lower clustering coefficients are the indicators of random 

networks (de Haan et al. 2009). A gene with a higher clustering coefficient is thought 

to have an actively interacting profile with other genes (Horvath et al. 2008).  

To assess the clustering tendency of each network, the clustering coefficient 

distributions were calculated; boxplotted; and compared with their random networks 

in pairs (Figures 20-21). Results of comparisons with random networks gave similar 

results with those of betweenness centrality; clustering coefficients of networks of 

actual data were significantly different from random counterparts with p-values of 

zero (less than 10E-16). Strikingly, random networks exhibited very low clustering 

coefficient values as expected. When the clustering coefficients of RMA, gcRMA, 

and MAS5 networks were compared in a pairwise fashion, it was observed that 

clustering coefficient distributions of each preprocessing network was significantly 

different from each other for both the union and intersection data (Tables 9-10). This 
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result indicated that the clustering tendency of differentially expressed genes’ were 

highly affected by the nature of the preprocessing method. Although RMA and 

gcRMA had very similar protocols for preprocessing, the correction for the GC bias in 

probesets seemed to have an affect the network structure significantly. 

 

Table 9. Comparisons of clustering coefficient distributions of  RMA, gcRMA, and MAS5 

preprocessed correlation networks using one-sampled t-test, for union data. 

Clustering 

coefficient gcRMA MAS5 

RMA 0 0 

gcRMA  0 

 

 

Table 10. Comparisons of clustering coefficient distributions of  RMA, gcRMA, and MAS5 

preprocessed correlation networks using one-sampled t-test, for intersection data. 

Clustering 

coefficient gcRMA MAS5 

RMA 0 0 

gcRMA  0 
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Figure 20. Distributions of clustering coefficients among different networks, for union data. 
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Figure 21. Distributions of clustering coefficients among different networks, for intersection data. 
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4.4.3. Degree distribution 

Degree distribution or connectivity of a network is another measure for understanding 

the dynamics of a network. Degree of a node/gene shows the number of its correlated 

pairs of genes. Connectivity has been shown to be correlated with essentiality of gene 

function (Caretta-Cartozo et al. 2007). 

Following figures helped visualize the effects of preprocessing methods on 

connectivity (Figures 22-23). When compared with the random networks, actual 

networks were not significantly different (p-values greater than 0.99) in terms of 

median values for both the union and intersection data. However, when IQR of the 

actual and random networks were considered, random networks have a much more 

uniform distribution of node-degree (Figures 22-23). Pairwise comparisons of actual 

networks were significantly different with very low p-values indicating that the 

network structure was highly affected in terms of the number of correlations (Tables 

10-11). gcRMA and MAS5 resulted in a decrease in nodes with greater number of 

edges when compared with RMA especially for the intersection dataset (Table 12; 

Figure 23). Interestingly, random networks also exhibited similar declines in node-

degree in the same direction, e.g., RMA>gcRMA>MAS5. Median connectivity was 

greater in the random network in comparison with the real in RMA and gcRMA, 

Strikingly, in MAS5 median connectivity of the random network was less than that of 

the real network.  

 

Table 11. Comparisons of degree distributions of  RMA, gcRMA, and MAS5 preprocessed 

correlation networks using one-sampled t-test, for union data. 

Degree 

distribution gcRMA MAS5 

RMA 0 0 

gcRMA    06.0209e-006 
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Table 12. Comparisons of degree distributions of  RMA, gcRMA, and MAS5 preprocessed 

correlation networks using one-sampled t-test, for intersection data. 

Degree 

distribution gcRMA MAS5 

RMA 0 0 

gcRMA  0 
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Figure 22. Degree distribution in different networks, calculated for union data. 
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Figure 23. Degree distribution in different networks, calculated for intersection data. 

 

4.5. Up- and Down-regulated Probeset Network Structure Comparisons  

Comparisons between actual and random networks indicated that intersected data 

might reflect the differences among preprocessing methods better since all the nodes 

in this network were significantly regulated in hypoxia in zebrafish. The networks 

were also characterized by only the positive correlations thus representing the 

upregulated and downregulated probesets in hypoxia, which might result in separation 

of network into two accordingly. To test whether upregulated and downregulated 

probesets exhibited differences in their betweenness centrality, degree distribution, 

and clustering coefficients, we used fold change and p-values as indicators of network 

classification. In the literature, analysis of upregulated and downregulated gene 

networks represent a promising area of research (Hernández et al. 2007; Swindell 

2008; Wachi et al. 2005) suggesting distinct differences inbetween. 

In the present thesis as well, the upregulated and downregulated genes showed 

different network characteristics for the selected network measures. In the Figure 24, 

the difference in terms of clustering coefficient was apparent when it was plotted 

against the values of the fold change. It was observed that clustering coefficients were 
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higher on average in the downregulated genes of RMA and gcRMA networks. 

However, MAS5 data did not exhibit such a strong difference. In addition, in terms of 

the cluster of the clustering coefficient measure, it was seen in both gcRMA and 

RMA datasets that upregulated genes were more scattered in their range than the 

downregulated ones.  

Furthermore, clustering coefficients were also plotted against the p-value of each 

probeset in the intersection data (Figure 25). The results indicated that there was a 

non-linear decrease in the clustering coefficients as the p-values got more significant 

for both the upregulated and downregulated probesets. Although the trajectories 

resembled each other, the downregulated probesets (represented by blue dots) had 

relatively higher clustering coefficients in comparison with upregulated probesets 

(represented by red dots) for RMA and gcRMA. However, MAS5 normalized data 

exhibited such a difference only for the genes with relatively low p-values thus more 

significantly differentially expressed (Figure 25). As the p-values became higher, the 

difference between upregulated and downregulated probeset distributions in terms of 

clustering coefficient decreased. 

 

-5 0 5 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
RMA intersection - FC vs CC

-5 0 5 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
gcRMA intersection - FC vs CC

-5 0 5 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
MAS5 intersection - FC vs CC

 

Figure 24. Fold change versus clustering coefficient for the networks of intersection data. Red dots 

represent upregulated genes. 
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Figure 25. P-value versus clustering coefficient for the networks of intersection data. Red dots represent 

upregulated genes. 

 

The difference between upregulated and downregulated genes was also observed for 

betweenness centrality (Figure 26). RMA and gcRMA networks had relatively low 

betweenness centrality values whereas MAS5 has a similar maximum and minimum 

values for both upregulated and downregulated genes. However, downregulated genes 

were clustered in terms of betweenness centrality in gcRMA and RMA preprocessed 

dataset when compared with upregulated genes, which were scattered across a greater 

range of network parameter measurement.  

Similar differences among preprocessing methods were observed when betweenness 

centrality was plotted against the range of p-values in the intersection dataset (Figure 

27). Downregulated genes had lower values in RMA and gcRMA data. Also, the 

difference between the distrubutions of the upregulated and downregulated genes was 

highly accentuated in the lower p-value intervals. This difference could not be 

observed in MAS5 network even for the low p-values. 
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Figure 26. Fold change versus betweenness centrality for the networks of intersection data. Red dots 

represent upregulated genes. 

 

0 0.01 0.02 0.03 0.04 0.05
0

200

400

600

800

1000

1200

1400

1600

1800
RMA intersection - Pval vs bc (upregulated:red)

0 0.01 0.02 0.03 0.04 0.05
0

200

400

600

800

1000

1200

1400

1600

1800
gcRMA intersection - Pval vs bc (upregulated:red)

0 0.01 0.02 0.03 0.04 0.05
0

200

400

600

800

1000

1200

1400

1600

1800
MAS5 intersection - Pval vs bc (upregulated:red)

 

Figure 27. P-value versus betweenness centrality for the networks of intersection data. Red dots represent 

upregulated genes. 
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Lastly, degree distribution versus fold change graphs were plotted in Figure 28. 

Strikingly, upregulated genes were less correlated among themselves in comparison 

with the downregulated genes. Major difference between RMA versus gcRMA and 

MAS5 was that the network of MAS5 and to a lesser degree that of gcRMA contained 

downregulated genes spanning a greater range of node-degrees for the down regulated 

genes (Figure 28). This might be the reason behind the relatively higher clustering 

coefficients in downregulated genes in RMA and gcRMA. Upregulated genes had 

similar boundaries among different networks whereas gcRMA and MAS5 had greater 

scatter across the fold change values. 

Interestingly, in the case of degree distribution, all three preprocessing methods 

showed similar patterns with respect to up- and down-regulated genes across p-

values; genes with lower p-values tended to have more degrees suggesting that they 

had more correlated pairs compared to the rest. Downregulated genes had higher 

degrees which might explain the clustering tendency among those genes in terms of 

clustering coefficient. Although RMA network had a more scattered distribution of 

values compared to gcRMA and MAS5. Moreover, this network had a lower slope 

among downregulated genes as the p-value increased. 
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Figure 28. Fold change versus degree distribution for the networks of intersection data. Red dots represent 

upregulated genes. 
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Figure 29. P-value versus degree distribution for the networks of intersection data. Red dots represent 

upregulated genes. 

 

To get a better comparison of each network topology measure among methods, scatter 

plots among pairs of different preprocessing methods were plotted as used by Ahn et 

al. (2009). Common to the following figures (Figures 30-32) was that, RMA and 

gcRMA had very similar network topology measures since the scatter was located 

mostly diagonally. However, comparisons with MAS5 indicated a higher scatter, a 

sign of lower similarity. In terms of gene regulation, upregulated genes were highly 

conserved among different networks whereas downregulated genes were more 

sensitive to the preprocessing method. This was more easily observed in the scatter 

plot of degree distribution in Figure 32. Also, Spearman correlation coefficients for 

the comparison of each network topology measure for each preprocessing dataset 

were shown in Table 13. It is observed that RMA is more similar to gcRMA, 

especially for clustering coefficient. 

Each scatter plot was characterized with a correlation coefficient and summary of the 

rho values calculated from the spearman correlation is given in the table below: 
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Table 13. Spearman correlation rho values of pairwise comparison of each network topology measure 

matrix 

 Clustering 

coefficient 

Betweenness 

centrality 

Degree 

distributon 

gcRMA MAS5 gcRMA MAS5 gcRMA MAS5 

RMA 0.88 0.56 0.79 0.55 0.94 0.82 

gcRMA  0.61  0.59  0.83 
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Figure 30. Scatter plots of clustering coefficients for each network pair. Red dots represent upregulated 

genes. 
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Figure 31. Scatter plots of betwenness centrality values for each network pair. Red dots represent 

upregulated genes. 
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Figure 32. Scatter plots of degree distribution values for each network pair. Red dots represent upregulated 

genes. 

 

4.6. Comparison of Network Topology Measures between the Real and 

Randomly Generated Networks 

The zebrafish GeneChip contains 15617 probesets, 1932 of which were contained in 

the intersection dataset. These probesets exhibited significant differences under 

hypoxia (down- or up- regulated). Therefore, the analyses explained in Section 4.5 

reflected the network structure and its variation with respect to fold change and p-

value distritutions of a highly significant gene list. A random sampling of the same 

data size as the intersection dataset was performed to visualize how the network 

parameters from a network containing probesets with p-values ranging between 0 and 

1 behaved with respect to fold change and p-values. The corresponding networks for 

each RMA, gcRMA, and MAS5 preprocessed data were generated for the random 

selection; the network topology measures for each network were calculated and 

corresponding graphs were plotted in the following figures. 

First, the relationship between fold change and clustering coefficient was investigated 

in the random data. As seen in Figure 33, the previously observed pattern of the 

difference among upregulated and downregulated genes in RMA and gcRMA was not 

apparent. In figure 34, this situation was more clearly seen such that clustering 

coefficient was scattered mostly when p-value was lower than 0.05. This might mean 

that non-significant genes did not show a pattern for either of the preprocessing 

datasets. 
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Figure 33. Fold change versus clustering coefficient for the networks of random data. Red dots represent 

upregulated genes. 
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Figure 34. P-value versus clustering coefficient for the networks of random data. Red dots represent 

upregulated genes. 
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Betweenness centrality when plotted against fold change was symmetrically 

distributed around 0 in random data (Figure 35) unlike the intersection data (Figure 

26). In contrast to the intersection networks, networks of the random data seemed to 

be scattered randomly when betweenness centrality was plotted against the p-value 

(Figure 36). In addition, there was no cluster of genes in terms of up or 

downregulation. 
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Figure 35. Fold change versus betweenness centrality for the networks of random data. Red dots represent 

upregulated genes. 
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Figure 36. P-value versus betweenness centrality for the networks of random data. Red dots represent 

upregulated genes. 

 

In addition to the previous network topology measures, degree distribution was 

investigated in the networks of random data. Although node-degrees of 

downregulated genes were higher in intersection data (Figure 28), networks of the 

random data showed a different pattern from one preprocessing method to another 

(Figure 37). From the point of view of p-value versus degree distribution, there again 

was no consensus among the networks of different preprocessing methods (Figure 

38). Although RMA network seemed to have a random distribution of node-degree 

versus p-value, the upregulated and downregulated genes clustered in gcRMA and 

MAS5 graphs. In addition, degree distribution of non-significant genes did not show a 

consistent profile among different networks of preprocessing methods. This might 

show the sensitivity of the node-degree to different normalization methods where 

there is no significant regulation in a cellular condition. 
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Figure 37. Fold change versus degree distribution for the networks of random data. Red dots represent 

upregulated genes. 
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Figure 38. P-value versus degree distribution for the networks of random data. Red dots represent 

upregulated genes. 
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To compare different networks of random data among preprocessing methods, scatter 

plots were drawn (Figures 39-41). Accordingly, there was no significant correlation 

among any of the network pairs for none of the network topology measures (Table 

14). 

 

Table 14. Spearman correlation rho values of pairwise comparison of each network topology measure 

matrix for random data. 

 Clustering 

coefficient 

Betweenness 

centrality 

Degree 

distributon 

gcRMA MAS5 gcRMA MAS5 gcRMA MAS5 

RMA 0.10 0.13 0.29 0.17 0.11 0.14 

gcRMA  0.08  0.13  0.12 
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Figure 39. Scatter plots of clustering coefficient values for each network pair or random data. Red dots 

represent upregulated genes. 
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Figure 40. Scatter plots of betweenness centrality values for each network pair or random data. Red dots 

represent upregulated genes. 
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Figure 41. Scatter plots of degree distribution values for each network pair or random data. Red dots 

represent upregulated genes. 

 

Lastly, to allow a better visual comparison of networks of the intersection and the 

random data, fold change versus network topology measures were plotted below 

(Figures 42-44). To conclude, network topology measures that were calculated from 

the networks of intersection data for each preprocessing method was significantly 

different from random counterparts. Cellular regulation in response to a condition 

gives a certain structure to the gene regulatory network and differentiates the network 

from random data. In addition, random data is highly sensitive to different 

preprocessing methods so that the similarities between the distributions of network 

topology measures are highly reduced compared to the network measures of 

intersection data. Lastly, although network topology measures from networks of 

different preprocessing methods exhibited similar characteristics compared to the 

random, there were still differences in terms of values and the distribution of 

upregulated and downregulated genes. 
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Figure 42. Fold change versus clustering coefficient for both intersection and random networks. Network 

topology measures from random data is plotted in yellow. 
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Figure 43. Fold change versus betweenness centrality for both intersection and random networks. Network 

topology measures from random data is plotted in yellow. 
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Figure 44. Fold change versus degree distribution for both intersection and random networks. Network 

topology measures from random data is plotted in yellow. 

 

4.7. Properties of conserved genes in terms of aforementioned network topology 

measures 

Although there were significant differences between the network structures of 

differently preprocessed data, some genes exhibited similar properties across the 

networks of RMA, gcRMA, and MAS5 data. To find those genes, the code in 

APPENDIX F was utilized. Top 20% least-changed genes were identified for both 

union and intersection data. There are 81 genes in union-based gene list and there are 

91 genes in intersection-based gene list (Tables 15, 16). In addition, there are 31 

genes that are common for both of the gene lists. 

Since the intersection data generated the most variation among the preprocessing 

methods, 91 genes with the least variation were analyzed in more detail. Table 15 

summarizes the network parameters of these 91 genes. These differentially expressed 

probesets had on average 377, 359, and 375 k-neighbors for RMA, gcRMA, and 

MAS5 datasets, respectively. Also, mean clustering coefficient values were 0.84, 

0.83, and 0.84. Lastly, average betweenness centrality values were 117.4, 118.8, and 

114.48. 
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There were 81 least variant genes in union data according to our criteria (Table 16). 

Average k-neighbor values for RMA, gcRMA, and MAS5 datasets were 784, 698, 

and 908. Mean betweenness centrality values were 2484, 2713, and 2527. Lastly, 

average clustering coefficient values for each dataset were 0.69, 0.66, and 0.67. 

Functional enrichment analysis for those genes was conducted using FatiGO feature 

of Babelomics v3.2 . The top five categories for intersection least variant gene list in 

GO Biological Process were: ‘cellular metabolic process’, primary metabolic 

process’, macromolecule metabolic process’, ‘establishment of localization’, and 

‘regulation of biological quality’. For GO Molecular Function, top five terms were: 

‘ion binding’, ‘oxidoreductase activity’, enzyme inhibitor activity’, ‘transferase 

activity’, and ‘protein binding’. Lastly, KEGG networks having more than one gene 

were: ‘Tyrosine metabolism’ and ‘Glycolysis/Gluconeogenesis’. 

The top five categories for union least variant gene list in GO Biological Process 

were: ‘establishment of localization’, ‘cellular metabolic process’, ‘primary metabolic 

process’, macromolecule metabolic process’, and ‘regulation of biological process’. 

For GO Molecular Function, top five terms were: ‘ion binding’, ‘transferase activity’, 

oxidoreductase activity’, ‘protein binding’, and ‘nucleotide binding’. Lastly, there 

were no KEGG networks having at least two genes; there are 11 one-gene networks. 
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Table 15. Least-variant genes in terms of network topology measures for intersection dataset 

Intersection list RMA gcRMA MAS5 

Probe Set ID fold 

change 

degree clust. 

coef. 

betw. 

cent. 

p-

value 

fold 

change 

degree clust. 

coef. 

betw. 

cent. 

p-

value 

fold 

change 

degree clust. 

coef. 

betw. 

cent. 

p-

value 

Dr.10083.1.S1_at 1.4422 418 0.8320 128.9247 0.0100 2.3589 373 0.8440 99.7848 0.0108 2.7602 365 0.8672 74.8006 0.0130 

Dr.10650.1.A1_at 1.6043 355 0.8584 80.9883 0.0439 2.4725 331 0.8584 73.5246 0.0313 2.0586 336 0.8542 78.4487 0.0219 

Dr.11033.1.S1_at 0.8783 335 0.8928 50.5002 0.0250 1.2945 300 0.8893 45.8628 0.0464 1.3483 343 0.8824 56.9227 0.0199 

Dr.11306.1.S1_at 0.5902 383 0.8624 85.8448 0.0160 0.9144 391 0.8361 114.4221 0.0106 0.6392 410 0.8401 109.7026 0.0127 

Dr.11427.1.S1_at 0.5496 507 0.7502 312.9532 0.0044 0.7787 478 0.7336 328.7310 0.0040 0.5910 493 0.7417 305.3502 0.0058 

Dr.118.1.S1_at 0.1463 454 0.7640 242.5115 0.0185 0.2628 402 0.7418 245.2834 0.0114 0.2720 411 0.7740 197.7830 0.0193 

Dr.1202.1.S1_at 2.0657 352 0.8657 73.2498 0.0089 2.6113 320 0.8685 64.9676 0.0153 1.9281 355 0.8756 63.9683 0.0139 

Dr.12107.1.A1_at 0.6074 370 0.8425 98.4312 0.0292 0.8037 338 0.8267 104.6938 0.0114 0.8481 323 0.8081 104.2321 0.0165 

Dr.12439.1.S1_at 0.1769 316 0.8182 92.6836 0.0212 0.2132 272 0.8265 70.1738 0.0429 0.1818 312 0.8601 59.2823 0.0391 

Dr.1246.1.S1_at 1.4146 389 0.8476 98.7830 0.0122 1.9904 373 0.8310 112.2276 0.0136 1.4807 407 0.8230 130.0214 0.0095 

Dr.12525.1.A1_at 0.1592 350 0.8869 56.7750 0.0347 0.1277 292 0.8870 43.1212 0.0301 0.2030 352 0.8597 70.1141 0.0300 

Dr.12584.1.S1_at 1.2891 370 0.8419 100.6427 0.0457 1.8685 317 0.8638 64.6751 0.0404 1.5839 325 0.8601 70.3888 0.0249 

Dr.12596.1.S1_at 0.5632 426 0.8384 122.8714 0.0110 0.8586 406 0.8194 142.1929 0.0050 0.6418 443 0.8235 145.6160 0.0039 

Dr.12602.1.S1_at 1.2793 305 0.9080 37.0254 0.0419 1.7834 313 0.8801 52.8932 0.0407 1.3334 264 0.9078 26.5220 0.0489 

Dr.1307.1.S1_at 0.4484 288 0.8976 39.5578 0.0330 0.4617 309 0.8696 59.8006 0.0468 0.9365 313 0.8777 54.1560 0.0289 

Dr.13466.1.A1_at 1.1918 294 0.9184 29.2498 0.0346 1.9883 299 0.8942 42.7663 0.0278 2.0138 289 0.9269 24.4773 0.0350 

Dr.13681.1.S1_at 2.6589 426 0.8237 136.2818 0.0036 3.6952 395 0.8122 137.6355 0.0047 2.8537 429 0.8183 142.3998 0.0042 

Dr.1383.1.S1_at 0.2392 538 0.7462 354.6132 0.0012 0.2268 513 0.7306 384.6579 0.0003 0.1943 556 0.7277 414.0584 0.0013 

Dr.14073.1.A1_at 0.4271 332 0.8537 90.9098 0.0323 0.5541 353 0.8456 90.6406 0.0271 0.5240 384 0.8454 98.7177 0.0126 
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Dr.14502.1.S1_at 0.9319 311 0.8658 63.2195 0.0241 1.6707 341 0.8451 89.9015 0.0280 1.2464 356 0.8297 102.8151 0.0262 

Dr.15161.1.S1_at 1.5669 363 0.8757 68.4049 0.0168 2.6125 344 0.8751 64.0300 0.0149 2.6788 308 0.9132 32.8938 0.0255 

Dr.15343.1.A1_at 0.3506 356 0.8663 74.1638 0.0155 0.4996 325 0.8779 56.6606 0.0121 0.4346 344 0.8364 85.7960 0.0133 

Dr.15373.1.A1_at 0.3034 314 0.8278 92.1330 0.0177 0.2980 290 0.8526 64.6102 0.0399 0.7937 331 0.8464 73.3426 0.0175 

Dr.1565.1.S1_at 0.7434 383 0.8480 97.1109 0.0070 1.1047 344 0.8592 76.0591 0.0154 1.1919 390 0.8331 112.4682 0.0102 

Dr.1566.1.S1_at 0.3075 371 0.8265 116.1370 0.0398 0.4646 373 0.8218 123.4658 0.0159 0.6343 332 0.8293 94.8577 0.0236 

Dr.15949.2.S1_a_at 0.2037 303 0.8276 81.8274 0.0306 0.3267 325 0.8031 109.7830 0.0221 0.2344 309 0.8372 72.3474 0.0416 

Dr.1605.1.S1_at 2.4660 379 0.8311 112.7778 0.0059 3.1242 354 0.8221 114.0626 0.0087 2.6294 371 0.8460 92.0051 0.0105 

Dr.16720.1.A1_at 1.7378 461 0.7925 209.9562 0.0094 2.4658 440 0.7688 235.9172 0.0053 2.0307 440 0.7899 191.5601 0.0038 

Dr.16820.1.S1_at 0.3115 417 0.8508 104.9260 0.0173 0.3915 422 0.8154 151.4586 0.0055 0.4152 452 0.8237 150.7011 0.0043 

Dr.169.1.S1_at 0.1534 502 0.7820 243.2909 0.0046 0.1682 447 0.7933 194.4199 0.0056 0.2777 473 0.7858 206.8389 0.0065 

Dr.17437.1.S1_at 2.2139 446 0.7965 187.4608 0.0025 3.2136 443 0.7634 236.9798 0.0026 2.6943 482 0.7777 227.9354 0.0025 

Dr.17450.2.S1_at 0.4642 286 0.8230 74.3203 0.0277 0.6913 263 0.8410 58.1222 0.0402 0.5555 321 0.8631 59.4253 0.0322 

Dr.17459.1.S1_a_at 1.6692 406 0.8345 120.5968 0.0063 2.9326 408 0.7966 169.4862 0.0056 2.7816 437 0.8089 157.4794 0.0054 

Dr.17693.1.A1_at 2.0152 357 0.8618 75.7644 0.0093 2.8371 351 0.8369 99.3509 0.0088 2.4861 320 0.8791 54.5175 0.0223 

Dr.18175.2.S1_at 0.4555 379 0.7983 166.5328 0.0123 0.6748 387 0.8215 126.7970 0.0137 0.6363 389 0.8427 100.9352 0.0193 

Dr.18429.1.A1_at 0.9574 477 0.7813 227.3856 0.0016 1.6394 433 0.7878 190.6312 0.0033 1.5632 458 0.7935 197.2216 0.0028 

Dr.18433.1.A1_at 0.4493 406 0.8047 173.2363 0.0119 0.6946 405 0.8256 129.0342 0.0125 0.6512 435 0.8287 133.7239 0.0067 

Dr.18473.1.A1_at 1.4449 389 0.8576 89.2140 0.0114 2.2828 402 0.8161 136.4945 0.0050 1.5779 387 0.8424 104.4613 0.0086 

Dr.1889.1.S1_at 1.3437 298 0.8905 43.7825 0.0223 1.5946 285 0.8759 51.2847 0.0238 1.4324 302 0.9059 35.3029 0.0276 

Dr.1889.2.A1_a_at 1.4612 315 0.8767 54.9238 0.0141 1.8265 319 0.8548 74.9655 0.0134 1.1596 318 0.8714 58.2424 0.0229 

Dr.1909.1.S1_at 1.4624 436 0.8046 171.1042 0.0065 2.3807 432 0.7787 206.3316 0.0057 1.7597 454 0.7818 210.3173 0.0050 

Dr.19224.1.S1_at 2.2057 487 0.7768 238.8845 0.0012 2.8408 464 0.7609 251.5596 0.0015 2.3043 468 0.7906 202.4760 0.0018 

Dr.20125.1.A1_at 1.9969 353 0.8717 68.6326 0.0299 2.7756 353 0.8571 82.1149 0.0199 2.8511 380 0.8388 103.9149 0.0137 

Dr.20125.1.A1_s_at 2.1182 368 0.8608 81.3666 0.0283 3.0631 375 0.8296 115.9568 0.0189 2.9974 394 0.8258 125.4568 0.0090 

Dr.20198.2.S1_x_at 0.4974 362 0.8763 67.2388 0.0333 0.8082 339 0.8662 68.7801 0.0177 0.6738 346 0.8570 73.4149 0.0142 
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Dr.20270.1.S1_at 2.6310 400 0.8198 139.8986 0.0032 3.6010 341 0.8415 92.0049 0.0101 2.9382 386 0.8487 94.2655 0.0098 

Dr.20291.1.A1_at 2.2522 424 0.8119 154.0834 0.0036 3.3508 402 0.7956 167.0332 0.0044 2.7028 432 0.8097 156.1078 0.0040 

Dr.2059.1.A1_at 1.2208 396 0.8495 100.9117 0.0140 2.0363 371 0.8485 93.9231 0.0093 2.5424 428 0.8186 140.7996 0.0046 

Dr.20610.1.S1_at 1.4995 456 0.7990 191.4333 0.0061 2.1309 448 0.7713 228.0377 0.0037 1.8052 456 0.7763 222.5600 0.0051 

Dr.21064.1.S1_at 1.7548 326 0.8768 58.5721 0.0126 2.3248 313 0.8681 64.0348 0.0160 1.9659 322 0.8991 43.0623 0.0224 

Dr.21879.1.A1_at 0.4181 378 0.8271 118.0150 0.0482 0.5297 342 0.8533 81.5824 0.0213 0.5184 358 0.8257 111.3994 0.0157 

Dr.22139.1.A1_at 1.6390 393 0.8166 145.3264 0.0032 2.5416 354 0.8304 106.8621 0.0079 1.8801 352 0.8568 79.6681 0.0171 

Dr.2426.1.S1_at 1.5811 287 0.8939 40.4865 0.0299 2.3374 254 0.9045 31.2350 0.0412 2.0914 305 0.8978 41.5365 0.0309 

Dr.24311.1.S1_at 1.1960 542 0.7070 496.5489 0.0001 2.2782 555 0.6866 550.0544 0.0002 1.6379 595 0.7002 550.6426 0.0010 

Dr.2452.1.A1_at 1.6102 457 0.7960 193.3901 0.0046 2.8619 416 0.7918 175.1884 0.0037 1.9932 432 0.8029 171.8218 0.0044 

Dr.2452.2.A1_x_at 2.2113 440 0.8123 157.5769 0.0043 3.2116 386 0.8170 129.3305 0.0056 2.5723 437 0.8084 159.1714 0.0036 

Dr.2528.2.S1_at 0.1463 387 0.7684 207.3199 0.0095 0.2306 405 0.7963 173.4559 0.0126 0.3721 351 0.7851 137.7906 0.0240 

Dr.25822.1.S1_at 0.2835 252 0.8426 54.6969 0.0299 0.3403 242 0.8577 43.9518 0.0486 0.2689 267 0.8673 42.0610 0.0456 

Dr.25893.1.A1_at 1.5359 356 0.8630 77.6803 0.0373 2.3880 355 0.8516 87.7165 0.0167 2.1272 353 0.8608 78.1277 0.0157 

Dr.2596.1.S1_a_at 0.9097 353 0.8765 63.6742 0.0191 1.1604 320 0.8769 57.2367 0.0198 0.8835 321 0.8974 44.7333 0.0262 

Dr.26328.1.A1_at 0.7039 397 0.8214 129.6359 0.0292 1.0736 358 0.8173 117.8454 0.0195 0.8463 349 0.8297 100.0420 0.0165 

Dr.26428.1.A1_at 0.2560 414 0.7950 203.2180 0.0184 0.3529 457 0.7864 213.5322 0.0049 0.3159 468 0.8070 181.6931 0.0048 

Dr.2890.1.A1_at 0.3275 418 0.8171 147.4048 0.0066 0.3795 377 0.8337 111.2460 0.0119 0.5614 371 0.8240 112.4227 0.0147 

Dr.2960.1.A1_at 1.7664 411 0.8317 122.3043 0.0045 2.8388 358 0.8463 91.6383 0.0090 2.2778 397 0.8386 107.5812 0.0081 

Dr.3004.1.A1_at 1.5983 307 0.8878 47.0386 0.0268 2.4313 268 0.9009 33.2461 0.0424 1.9405 297 0.8871 45.6818 0.0340 

Dr.3025.3.S1_at 1.6400 431 0.8247 139.1880 0.0054 2.9047 380 0.8383 107.0443 0.0090 2.1874 432 0.8148 150.2986 0.0037 

Dr.3374.2.S1_at 0.3753 266 0.8170 88.0121 0.0331 0.4624 305 0.8407 87.3886 0.0341 0.3386 318 0.8491 71.3644 0.0372 

Dr.3529.1.S1_at 0.9687 331 0.8741 61.6824 0.0143 1.7289 334 0.8664 68.4174 0.0195 1.0901 284 0.9074 33.4027 0.0457 

Dr.3613.1.S1_at 1.6917 314 0.9077 38.2392 0.0243 2.4522 284 0.9206 27.2448 0.0326 1.7892 289 0.9293 23.9456 0.0405 

Dr.382.2.S1_at 0.9810 426 0.8224 146.0384 0.0130 1.2618 390 0.8223 129.3607 0.0121 1.1171 437 0.7951 184.7048 0.0043 

Dr.4111.1.S1_at 1.7983 383 0.8475 96.0250 0.0058 2.7542 330 0.8607 73.3332 0.0117 2.2144 375 0.8547 85.5516 0.0104 
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Dr.4744.1.S1_a_at 1.7621 352 0.8675 71.2388 0.0333 2.8378 354 0.8412 95.4053 0.0278 2.1339 347 0.8523 81.4562 0.0211 

Dr.4907.1.S1_at 2.4190 322 0.8810 55.4930 0.0158 3.3166 291 0.8932 43.3212 0.0263 2.5360 351 0.8754 63.2060 0.0158 

Dr.4961.1.A1_at 1.6086 370 0.8358 106.9488 0.0076 2.6971 373 0.8124 133.5757 0.0076 2.0121 369 0.8336 105.4383 0.0179 

Dr.4968.1.A1_at 0.3566 446 0.8065 176.2252 0.0208 0.5649 418 0.7921 187.1157 0.0047 0.3132 459 0.7875 206.6735 0.0035 

Dr.4975.1.A1_at 1.0895 501 0.7670 284.2636 0.0091 1.5322 472 0.7505 294.3565 0.0033 1.5222 506 0.7588 295.8125 0.0012 

Dr.5462.1.S1_at 2.2073 317 0.8917 45.4384 0.0172 3.0788 257 0.9101 29.6479 0.0370 2.3117 295 0.9229 26.3572 0.0327 

Dr.5467.1.A1_at 1.4544 327 0.8925 48.7453 0.0224 2.2720 310 0.8957 43.4191 0.0233 1.8206 310 0.9132 33.5952 0.0294 

Dr.5562.1.S1_at 1.8048 308 0.8597 66.8386 0.0207 2.3576 274 0.8593 57.3169 0.0245 1.8471 315 0.8674 59.4095 0.0232 

Dr.5674.2.S1_at 1.7958 276 0.9017 33.3377 0.0265 2.1870 260 0.8990 35.2253 0.0312 1.9289 257 0.9267 21.9633 0.0488 

Dr.6550.1.A1_at 0.7249 387 0.8551 92.7600 0.0142 1.1912 366 0.8413 101.9364 0.0149 0.9850 395 0.8386 110.0411 0.0087 

Dr.6787.1.S1_at 1.3627 405 0.8359 119.2509 0.0119 2.2903 394 0.8241 126.7245 0.0071 1.5177 352 0.8560 80.0484 0.0146 

Dr.7171.1.S1_at 0.9196 362 0.8702 72.2950 0.0215 1.4182 368 0.8361 105.8985 0.0148 1.2390 395 0.8326 114.4521 0.0098 

Dr.7599.1.A1_at 1.7602 378 0.8592 83.5027 0.0077 2.2994 342 0.8603 75.4826 0.0103 2.0128 358 0.8758 64.0533 0.0118 

Dr.7692.1.A1_at 1.2143 402 0.8448 107.3664 0.0153 1.8535 349 0.8621 76.9618 0.0236 1.8199 403 0.8206 135.4845 0.0072 

Dr.845.1.A1_at 1.8391 266 0.9336 20.0143 0.0373 2.4863 252 0.9276 20.7175 0.0464 1.8661 268 0.9427 16.0624 0.0469 

Dr.848.1.S1_at 1.4282 322 0.9018 42.4586 0.0281 2.0632 325 0.8835 54.6485 0.0207 1.7777 335 0.8882 50.8818 0.0174 

Dr.8750.1.A1_at 0.4569 411 0.8221 141.4153 0.0061 0.6682 435 0.7872 198.5422 0.0047 0.5562 437 0.8087 161.2360 0.0054 

Dr.8947.1.A1_at 1.1202 423 0.8122 159.9608 0.0206 1.6358 398 0.8071 153.3707 0.0081 1.2976 387 0.8271 121.8439 0.0111 

Dr.9025.1.A1_at 1.0317 262 0.9056 32.2742 0.0444 1.4788 247 0.8809 44.2285 0.0433 1.3835 300 0.8904 44.7290 0.0347 

Dr.938.1.S1_at 0.4423 442 0.8078 172.5354 0.0140 0.6179 450 0.7674 235.3578 0.0046 0.5001 418 0.7954 167.2451 0.0096 
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Table 16. Least-variant genes in terms of network topology measures for union dataset 

Union list RMA gcRMA MAS5 

Probe Set ID fold 

change 

degree clust. 

coef. 

betw. 

cent. 

p-

value 

fold 

change 

degree clust. 

coef. 

betw. 

cent. 

p-

value 

fold 

change 

degree clust. 

coef. 

betw. 

cent. 

p-

value 

Dr.10283.1.A1_at 0.5987 1211 0.5403 6058.2121 0.0001 0.7234 1175 0.5028 7089.0780 0.0000 0.5529 1535 0.5500 5703.3336 0.0001 

Dr.1064.1.S1_at 0.8697 702 0.7279 1369.0736 0.0224 1.6003 587 0.6951 1634.7103 0.0347 1.2515 834 0.6961 1260.2518 0.0137 

Dr.11022.1.A1_at 0.2447 726 0.6665 3418.2778 0.0355 0.3399 685 0.6137 2730.9087 0.0083 0.3093 849 0.6370 3902.4308 0.0147 

Dr.11302.1.A1_at -0.5253 1167 0.7663 2889.3121 0.0022 -0.8441 810 0.7855 2732.6287 0.0507 -0.7422 844 0.7561 1646.0926 0.0121 

Dr.11551.1.S1_at 0.5158 612 0.7219 1392.0663 0.0614 0.6814 560 0.7364 1936.3196 0.1125 1.2611 906 0.7666 2240.9364 0.0443 

Dr.1201.1.S1_at -0.1659 925 0.7951 1892.3787 0.0099 -0.1873 702 0.8240 1965.1412 0.0411 -0.2184 787 0.7622 2271.8737 0.0163 

Dr.1202.1.S1_at 2.0657 678 0.7261 1003.6984 0.0089 2.6113 533 0.7434 2473.0475 0.0153 1.9281 853 0.6957 1207.1885 0.0139 

Dr.12227.1.A1_at 0.7429 655 0.7653 782.2777 0.0452 1.0512 554 0.7236 953.3935 0.0469 1.0193 838 0.7033 1154.2571 0.0141 

Dr.12439.6.S1_at 0.2453 1034 0.5633 5766.3740 0.0012 0.3203 1106 0.5313 5209.6086 0.0002 0.2096 1113 0.5949 4936.8284 0.0062 

Dr.1246.1.S1_at 1.4146 781 0.6976 1492.6945 0.0122 1.9904 735 0.6465 1816.0787 0.0136 1.4807 971 0.6560 2174.0725 0.0095 

Dr.12671.1.S1_at 0.2205 665 0.6731 3842.9678 0.0786 0.4617 412 0.7029 2269.9528 0.0835 0.3551 681 0.6866 2303.1738 0.0346 

Dr.13635.1.S1_at 0.2841 451 0.7084 1119.2865 0.0998 0.5511 604 0.7117 1991.6230 0.0869 0.5719 745 0.7611 1936.4097 0.0461 

Dr.13681.1.S1_at 2.6589 831 0.6807 1470.3795 0.0036 3.6952 748 0.6438 1720.9211 0.0047 2.8537 1046 0.6412 2401.4048 0.0042 

Dr.14502.1.S1_at 0.9319 651 0.6918 1652.5514 0.0241 1.6707 653 0.6421 1905.6200 0.0280 1.2464 913 0.6546 1975.3856 0.0262 

Dr.1458.1.S1_at 0.7937 839 0.6400 3774.4634 0.0111 1.1560 925 0.5905 3008.8399 0.0047 1.0413 1201 0.6314 3592.2167 0.0061 

Dr.15050.2.S1_at -0.1663 408 0.7761 3418.0436 0.0475 -0.0968 471 0.7783 3260.2699 0.0889 -0.3325 475 0.7757 1996.4016 0.0473 

Dr.15161.1.S1_at 1.5669 734 0.7289 1200.1159 0.0168 2.6125 691 0.6793 1265.0392 0.0149 2.6788 760 0.7174 1101.9825 0.0255 

Dr.15373.1.A1_at 0.3034 620 0.6369 2588.6622 0.0177 0.2980 597 0.6461 3503.0321 0.0399 0.7937 895 0.6575 2189.8161 0.0175 

Dr.15824.1.S1_at 0.2528 829 0.6468 3876.1568 0.0387 0.3108 638 0.6459 3551.1544 0.0777 0.9388 698 0.6868 2387.5348 0.0326 

Dr.15949.2.S1_a_a

t 

0.2037 616 0.6258 2510.6725 0.0306 0.3267 573 0.6319 3500.7494 0.0221 0.2344 916 0.6657 3284.6624 0.0416 
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Dr.1605.1.S1_at 2.4660 708 0.6921 1169.9543 0.0059 3.1242 568 0.7076 838.7443 0.0087 2.6294 886 0.6742 1425.5731 0.0105 

Dr.16687.2.A1_at 0.2474 755 0.7111 5644.3346 0.0406 0.5342 648 0.6657 4687.8877 0.0651 0.2951 626 0.7279 5608.1156 0.0741 

Dr.17459.1.S1_a_a

t 

1.6692 813 0.6759 1718.1232 0.0063 2.9326 774 0.6273 1934.0320 0.0056 2.7816 1086 0.6342 2421.5845 0.0054 

Dr.1756.1.S1_at 0.1985 808 0.6067 3592.7297 0.0172 0.2652 812 0.5430 4665.5239 0.0283 0.2541 1090 0.6044 3130.7788 0.0092 

Dr.18429.1.A1_at 0.9574 940 0.6238 2481.8712 0.0016 1.6394 860 0.5980 2605.2085 0.0033 1.5632 1072 0.6369 2203.2984 0.0028 

Dr.1889.1.S1_at 1.3437 566 0.7388 1318.9764 0.0223 1.5946 464 0.7542 638.1520 0.0238 1.4324 698 0.7308 790.4809 0.0276 

Dr.1889.2.A1_a_at 1.4612 602 0.7270 1036.0476 0.0141 1.8265 534 0.7195 754.9281 0.0134 1.1596 782 0.6870 1083.2679 0.0229 

Dr.19224.1.S1_at 2.2057 936 0.6331 2324.0187 0.0012 2.8408 885 0.5871 2739.0937 0.0015 2.3043 1122 0.6226 2594.6324 0.0018 

Dr.20010.3.S1_at 0.1431 679 0.6441 3668.5484 0.0095 0.1725 749 0.6056 3523.6622 0.0061 0.1416 1042 0.6209 4164.5639 0.0186 

Dr.20291.1.A1_at 2.2522 819 0.6643 1721.1783 0.0036 3.3508 695 0.6509 1514.1011 0.0044 2.7028 1039 0.6413 1965.4362 0.0040 

Dr.2059.1.A1_at 1.2208 814 0.6922 1602.6744 0.0140 2.0363 760 0.6463 1899.2521 0.0093 2.5424 1030 0.6506 1914.2302 0.0046 

Dr.21064.1.S1_at 1.7548 636 0.7323 1035.0732 0.0126 2.3248 519 0.7393 2437.9260 0.0160 1.9659 795 0.7045 1366.8609 0.0224 

Dr.2117.1.S1_at 1.2772 763 0.7059 3635.9734 0.0391 2.1448 615 0.6648 3347.3567 0.0960 1.8154 720 0.7273 2503.1325 0.0337 

Dr.22100.1.A1_at 1.8940 786 0.6348 2658.1522 0.0085 2.9863 812 0.5836 3609.3688 0.0033 1.9541 1024 0.6224 2488.9895 0.0047 

Dr.22139.1.A1_at 1.6390 774 0.6450 2484.9647 0.0032 2.5416 582 0.7084 3133.1717 0.0079 1.8801 919 0.6691 1606.8244 0.0171 

Dr.22721.1.A1_at -0.3477 820 0.8084 1915.2492 0.0138 -0.3602 587 0.7935 2179.9547 0.0871 -0.4364 450 0.7688 3488.3973 0.0882 

Dr.24220.1.A1_at 0.1351 617 0.6864 2744.2351 0.0772 0.1666 572 0.6293 3819.2617 0.0646 0.1770 907 0.6333 3377.6077 0.0103 

Dr.2452.1.A1_at 1.6102 891 0.6548 2520.7213 0.0046 2.8619 790 0.6219 2397.4926 0.0037 1.9932 1003 0.6453 2147.5685 0.0044 

Dr.2452.2.A1_a_at 2.0261 860 0.6657 2329.5106 0.0063 3.0575 744 0.6357 2180.5373 0.0063 2.4560 809 0.6994 1138.0723 0.0143 

Dr.2452.2.A1_x_at 2.2113 846 0.6761 1591.6557 0.0043 3.2116 721 0.6509 1802.2186 0.0056 2.5723 1028 0.6472 2039.3736 0.0036 

Dr.24867.2.A1_at 0.3427 686 0.7472 1493.4852 0.0480 0.3258 490 0.7218 1972.0357 0.1195 1.2124 690 0.7456 802.8607 0.0349 

Dr.25607.1.S1_at 0.4249 1084 0.5702 4491.9567 0.0009 0.5836 976 0.5339 6001.4454 0.0021 0.4495 1233 0.5796 5356.3056 0.0075 

Dr.25759.2.A1_a_a

t 

0.4686 1190 0.5378 6006.7261 0.0001 0.6632 1076 0.5192 5776.3145 0.0000 0.4880 1317 0.5789 4366.3795 0.0014 

Dr.2596.1.S1_a_at 0.9097 704 0.7417 788.2018 0.0191 1.1604 639 0.6910 1319.6866 0.0198 0.8835 759 0.7160 1334.3166 0.0262 
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Dr.2596.3.A1_at 0.8335 646 0.7669 1016.1392 0.0420 1.1160 580 0.7227 1048.7299 0.0564 0.8958 660 0.7434 981.4599 0.0452 

Dr.26025.1.A1_at 0.1809 555 0.6507 1671.4191 0.0611 0.2445 501 0.6478 1337.9574 0.0549 0.2145 808 0.6834 1881.5532 0.0395 

Dr.26266.1.A1_at 0.5621 716 0.7276 2122.6997 0.0374 0.6742 578 0.6843 2793.0832 0.1160 0.7498 604 0.6910 1913.6797 0.0878 

Dr.26321.1.S1_at -0.1226 735 0.8080 3467.7072 0.0467 -0.0747 637 0.7865 4511.3919 0.2271 0.1760 725 0.7441 4692.7345 0.1029 

Dr.26343.1.A1_at 0.4737 975 0.5941 5056.0425 0.0023 0.6392 1031 0.5550 4241.0024 0.0005 0.5581 1316 0.5914 5304.7879 0.0010 

Dr.3004.1.A1_at 1.5983 641 0.7260 1029.8433 0.0268 2.4313 496 0.7253 775.2294 0.0424 1.9405 684 0.7159 1584.6930 0.0340 

Dr.3025.2.S1_at 1.1051 790 0.6966 1291.9058 0.0077 1.7346 715 0.6641 1443.9563 0.0107 1.9000 843 0.6910 1679.3797 0.0196 

Dr.3025.3.S1_at 1.6400 866 0.6685 2023.6693 0.0054 2.9047 786 0.6303 2350.2076 0.0090 2.1874 1036 0.6457 2046.1160 0.0037 

Dr.3436.1.A1_at 0.9481 886 0.6511 3561.2310 0.0129 1.4025 598 0.6720 3510.0171 0.1018 1.6881 787 0.6886 3475.9938 0.0170 

Dr.4002.1.A1_at 1.4124 813 0.6697 2472.1012 0.0116 2.2227 657 0.6695 1620.6445 0.0127 1.6863 771 0.6955 1476.9336 0.0172 

Dr.4094.1.S1_at 0.2353 636 0.7261 1255.1763 0.0300 0.0995 482 0.7447 2420.4900 0.1771 0.6340 711 0.6821 1138.0484 0.0313 

Dr.4111.1.S1_at 1.7983 739 0.7014 1173.3239 0.0058 2.7542 560 0.7237 704.6941 0.0117 2.2144 923 0.6772 1325.3613 0.0104 

Dr.4186.1.S1_at 0.3994 879 0.6312 4430.7344 0.0094 0.4702 956 0.5825 3368.2092 0.0035 0.4473 1174 0.6297 3703.8633 0.0038 

Dr.4723.1.A1_x_at -0.4831 1164 0.8163 1213.7157 0.0090 -0.4878 910 0.8047 1449.0434 0.0232 -0.5842 808 0.7615 1898.5578 0.0156 

Dr.4867.1.A1_at 1.9146 1057 0.5719 4393.0340 0.0008 2.5950 1021 0.5339 4659.1799 0.0004 2.1851 1372 0.5785 4067.3191 0.0006 

Dr.523.1.A1_at 0.4412 751 0.6718 1912.1156 0.0096 0.6330 626 0.6368 3345.2207 0.0048 0.5255 937 0.6347 2042.8686 0.0089 

Dr.5462.1.S1_at 2.2073 620 0.7581 699.4417 0.0172 3.0788 429 0.7893 1833.2971 0.0370 2.3117 714 0.7375 945.7710 0.0327 

Dr.5562.1.S1_at 1.8048 579 0.7175 1328.3704 0.0207 2.3576 457 0.7266 812.8500 0.0245 1.8471 718 0.7029 1030.5393 0.0232 

Dr.5674.2.S1_at 1.7958 512 0.7704 637.9079 0.0265 2.1870 424 0.7823 2055.6611 0.0312 1.9289 600 0.7582 630.1531 0.0488 

Dr.6007.1.S1_at 1.2442 875 0.6586 3196.8687 0.0103 1.9371 831 0.5983 2648.1591 0.0071 1.6238 1040 0.6400 2425.6604 0.0053 

Dr.6349.1.A1_at 0.8398 833 0.6555 2157.9793 0.0022 1.4110 783 0.6171 2099.5578 0.0027 1.9916 1008 0.6535 1980.6415 0.0073 

Dr.6550.1.A1_at 0.7249 795 0.6967 1531.1854 0.0142 1.1912 725 0.6443 1669.9272 0.0149 0.9850 986 0.6476 2882.2804 0.0087 

Dr.6787.1.S1_at 1.3627 839 0.6734 2115.4994 0.0119 2.2903 805 0.6235 2477.7169 0.0071 1.5177 871 0.6810 1230.1938 0.0146 

Dr.6807.1.S1_at 0.1051 644 0.7042 2882.1534 0.0837 0.2465 693 0.6655 1943.7223 0.0134 0.2423 1011 0.6761 3289.8490 0.0228 

Dr.701.1.S1_at 0.1127 564 0.7049 7964.8691 0.1839 0.1562 622 0.6467 9335.6527 0.0940 0.2222 799 0.7077 8074.2616 0.0444 

Dr.728.4.S1_at 1.6042 426 0.7986 677.5884 0.0470 2.0273 362 0.8022 1622.0957 0.0580 1.5748 540 0.7828 1371.7265 0.0774 



62 
 

Dr.7599.1.A1_at 1.7602 726 0.7242 893.5280 0.0077 2.2994 624 0.6917 1069.3522 0.0103 2.0128 857 0.6998 1191.8177 0.0118 

Dr.7722.1.A1_at 1.3694 873 0.6440 2212.2793 0.0029 2.1334 835 0.5994 2463.1252 0.0025 1.7676 1189 0.6123 3050.7932 0.0044 

Dr.845.1.A1_at 1.8391 541 0.8104 451.6694 0.0373 2.4863 450 0.7767 1916.4866 0.0464 1.8661 643 0.7600 702.4166 0.0469 

Dr.8497.1.A1_at 1.1335 593 0.7914 657.9382 0.0577 1.8064 527 0.7406 2096.2970 0.0608 1.5631 739 0.7287 1148.6928 0.0364 

Dr.8516.1.S1_at 1.7795 704 0.7261 959.0614 0.0105 2.5894 573 0.7174 776.5566 0.0140 2.0569 916 0.6757 1359.3390 0.0095 

Dr.8587.1.A1_at 1.4329 1228 0.5392 6437.8991 0.0002 1.8579 1127 0.5080 7866.1942 0.0001 1.4803 1481 0.5422 6756.7905 0.0001 

Dr.8587.1.A2_at 1.4169 1210 0.5430 6079.5360 0.0002 1.8390 1080 0.5197 6559.9418 0.0001 1.3805 1446 0.5506 6765.5736 0.0002 

Dr.8750.1.A1_at 0.4569 840 0.6228 3446.3214 0.0061 0.6682 859 0.5952 4485.2267 0.0047 0.5562 1191 0.6376 3808.6929 0.0054 

Dr.885.1.S1_at -0.4508 1069 0.8077 1909.1040 0.0129 -0.5606 872 0.7708 1946.3783 0.0319 -0.5674 801 0.7491 2310.2945 0.0195 

Dr.994.3.S1_at -0.5050 1449 0.7673 3037.9088 0.0008 -0.5969 1339 0.7416 2217.8731 0.0019 -0.6672 1113 0.7048 2951.4539 0.0010 

DrAffx.2.103.S1_at 0.5964 534 0.7222 2347.1801 0.1095 0.5300 416 0.7365 2055.2755 0.3026 1.3252 749 0.7048 2601.4420 0.0451 
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CHAPTER 5: DISCUSSION 

 

Microarray data give quantitative yet relative information about a gene’s expression 

(Irizarry, Hobbs, et al. 2003; Millenaar et al. 2006). Thus, expression values in each 

array should be standardized when comparing a batch of arrays. In addition, 

microarray experiment is prone to technical errors which do not have a biological 

source (Hill et al. 2001; Bilban et al. 2002; Grewal et al. 2007; Kreil et al. 2005; 

Zakharkin et al. 2005). Separation of technical noise from biological variation poses a 

challenge for the analysis of microarray data (Quackenbush 2002; Boes et al. 2005; 

Giles et al. 2003). To overcome these problems, different preprocessing algorithms 

(RMA, gcRMA, MAS5 etc.) have been developed. Each algorithm aims to filter a 

typical noise by modifying the raw data. In this study, RMA, gcRMA, and MAS5 

were used for a comparison of the preprocessing methods in terms of data 

distribution, differential expression lists, and network parameters using the Zebrafish 

GeneChip array. This study is the first to compare different preprocessing methods in 

an exemplary zebrafish gene expression data (i.e., GSE4989). Furthermore, it 

proposes novel methods of exploratory analysis of network parameters to understand 

the nature of correlations in up- and down-regulated probesets in any two-group 

expression data. 

Since there is no reference dataset for Affymetrix Zebrafish GeneChip arrays, the 

dataset that was used for the present study has been examined in terms of array 

quality based on selected R packages and BRB-ArrayTools (APPENDIX I). 

Accordingly, the profiles of RNA degradation plots for normoxia and hypoxia were 

similar. The percent presence ratio of the probesets ranged between 64.5 and 72.1 

percent and the background level of the arrays were low and comparable; these 

indicated that arrays had high quality hybridization (APPENDIX I). According to 

affyPLM package of array quality control, images of some arrays exhibited blotches 

(data not shown). Although NUSE plots and statistics indicated consistent probeset-

wise variability across arrays, two arrays, namely GSM112800 and GSM112806 had 

relatively greater variability (APPENDIX I). However, since the GSE4989 dataset 

had considerably high number of replicates for each group (n=5) and our 

methodology depended on gene network comparisons of significantly differentially 
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expressed genes (p<0.05), the effects of array quality differences were considered 

minimal. In addition, the scatterplot comparisons of the full dataset and the reduced 

dataset excluding GSM112800 and GSM112806 revealed that data points along the 

diagonal line were distributed similarly between plots (APPENDIX I). Future studies 

might include testing of the effects of array quality on the network structure using a 

leave-one-out crossvalidation approach.  

 

Comparative correlation structure and DEG analysis 

RMA method considers only the perfect match (PM) probes of the Affymetrix 

GeneChip array and performs quantile normalization for a better standardization of 

arrays (Irizarry, Bolstad, et al. 2003). gcRMA is a modified version of RMA so that 

takes into account the GC content of each probe for removing non-biological noise 

where the method MAS5 is a scaling approach considering perfect match probes after 

the effect of mismatch probe intensity is removed (Binder et al. 2010). Ploner et al. 

(2005) suggested that the differences in the background correction step might result in 

the observed statistical differences between the preprocessed data. Similarly, all three 

methods used in this study exhibited characteristic differences in terms of the 

parameters examined, which partly may be due to the background adjustment 

differences. 

It is essential to understand the change in the nature of data before making any 

comparisons and/or performing a statistical test. The differences observed among the 

preprocessed datasets were striking and showed that preprocessing might drastically 

alter the data distribution and location of median (Figures 6, 7, and 8). Since statistical 

tests for identification of differentially expressed genes, for example t-test, may make 

use of the mean and standard error, alterations in those values dramatically change list 

of significant genes (Ploner et al. 2005). Furthermore, t-test requires assumptions on 

distribution and variance of the data to be compared (Murie et al. 2009). Since MAS5 

has a scaling approach, MAS5-preprocessed data might be affected by the upwards or 

downwards shift of medians in arrays (Binder et al. 2010). Existence of shifts or 

alterations still after the preprocessing would affect the performance of the test 

(Freeman et al. 2007). Compared to MAS5 preprocessed data, RMA and gcRMA 

standardize the data much more efficiently and yield reliable results when identifying 
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differentially expressed genes; this is also stressed in the literature (Bolstad et al. 

2003; Autio et al. 2009; Lim et al. 2007). Although RMA and gcRMA more 

efficiently standardize the general characteristics of arrays, they alter the data 

dramatically as shown in Figures 1-4. Thus, for the statistical analysis based on the 

correlation of data like clustering or classification, MAS5 has been favored (Lim et al. 

2007). On the other hand, realtime qRT-PCR confirmation of microarray analyses 

suggested that MAS5, gcRMA, and dChip might be favorable for medium and high-

intensity genes (Qin et al. 2006). Similarly transcripts found changing by MAS5 but 

not gcRMA and RMA could be confirmed by qRT-PCR (Pepper et al. 2007).  On the 

other hand, RMA produced the most reproducible results with highest correlation with 

the qRTPCR in other studies (Millenaar et al. 2006).  

Other methods of comparing preprocessing algorithms include study of spike-in 

datasets, measurement of FDR and randomization (Lim et al. 2007; Shedden et al. 

2005; Vardhanabhuti et al. 2006). For example, spike-in dataset analysis suggested 

that a combination of gcRMA with Cyber-T or SAM performed the best for 

identification of differentially expressed genes (Vardhanabhuti et al. 2006). 

Randomization of actual expression network was also used to test across different 

preprocessing. It was found that background adjustment of gcRMA was problematic, 

truncation of expression resulted in flaws in analysis since adjusted gcRMA was able 

to fix these problems. Accordingly the authors suggested that normalization affected 

correlation structure and their results favored MAS5 (Lim et al. 2007). 

As a result, different studies and analytic approaches favor different preprocessing 

algorithms thus it is important to apply an appropriate algorithm considering the type 

of the dataset and its correlation structure. Our findings further emphasize that the 

correlation structure of the datasets is affected by preprocessing methodology thus 

one should be aware of its extent for the dataset in consideration before generation of 

differentially expressed gene lists. 

Identification of differentially expressed genes was performed using a two-sample t-

test in this study. Although this is a parameteric test and a raw p-value threshold of 

0.05 has been used with higher false discovery rate, this is justifyable since it allows 

for selection of a large number of probesets in the intersection dataset where all 

preprocessing algorithms resulted in a significant call. According to our results MAS5 
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provided the highest number of genes in contrast to gcRMA (Table 1). When the 

intersection of gene lists was compared, RMA and gcRMA exhibited a greater 

amount of overlap. This was due to the nature of the mentioned preprocessing 

methods where the only difference was in background correction approach (Binder et 

al. 2010). Also in various studies, it is shown that differentially expressed gene lists 

from RMA and gcRMA preprocessed data has higher similarity compared to MAS5 

(Binder et al. 2010; Lim et al. 2007; Freeman et al. 2007). 

In the literature, there are many studies demonstrating that the identity and number of 

differentially expressed genes can be influenced by the preprocessing method chosen. 

For example, genes altered in myeloid differentiation were affected by normalization 

methodology such that using RMA, gcRMA, MAS5, and MBEI different numbers of 

differentially expressed genes were identified and only 12 of them were in common 

(Berkofsky-Fessler et al. 2004). It has been suggested that narrowing down the gene 

lists by excluding contradicting results from different methods might help increase 

reproducibility (Millenaar et al. 2006). Other studies compared the consistency among 

normalization methods at both the gene level and at the functional level (Raghavan et 

al. 2007). A better concordance was found at the functional biological level than at 

the gene level. 

At the functional level, GO and KEGG Pathway annotations were consistent among 

the differentially expressed gene lists from different preprocessing methods although 

each list diffrered in terms of identity of the gene sets. For example, oxidative 

phosphorylation pathway was at the top of the lists for all there gene lists, which was 

also expected since hypoxia is an oxygen dependent condition. Although oxidative 

phosporylation pathway was the largest pathway in terms of significantly expressed 

genes, genes that were mapped to the pathway were not the same from one 

preprocessing method’s list to another. In addition, top five GO categories that were 

shared by the largest number of genes were also consistent among the differentially 

expressed gene lists of each preprocessing method, for the level 3 categories of 

biological process, molecular function, and cellular component classes.  

Finally, several studies suggest use of multiple normalization procedures at a time and 

importance of presence/absence thresholds to arrive at a more consistent gene list 

(Labbe et al. 2007). Williams et al. (2006) suggests guidelines to clean the data by 
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using platform specific normalizations, removal of absent data points, and inclusion 

of probesets that are robust to normalization procedures. Hubner et al. (2005) suggests 

that ranks in different gene lists may not be concordant but these lists may overlap to 

a greater extent when ranks not considered; Hubner et al. also goes against using 

probesets robust to normalization differences suggesting that RMA gives a lower 

FDR in their hands.  

Our findings are in accord with obtaining a differentially expressed gene list that is 

significant in different preprocessing methods. Furthermore, a shorther list with 

invariant network parameters might help to select candidate genes for further study. 

 

Gene Correlation Networks 

Although differentially expressed genes are most of the time the major focus of 

microarray experiments, networks generated using correlated gene pairs are also 

beneficial for understanding gene function and gene interactions in a cellular context 

(Draghici 2003; Margolin et al. 2006). Tools of graph theory have been utilized for 

generating and analyzing gene expression correlation networks (Wang et al. 2006; 

Carter 2005).  

For correlation networks, nodes represent genes and edges represent correlations. In 

order to compare different networks, topology measures are calculated to understand 

the overall characteristics of the network such as the clustering tendency of the 

network and the distribution of degrees of each node. Another crucial approach is to 

investigate genes in the network to see the relationships between groups of genes 

(Draghici 2003). With this approach, a gene’s importance in a cell or its interactions 

with other genes can be identified using measures such as clustering coefficient, 

betweenness centrality, and degree distributions (Newman 2003; Verkhedkar et al. 

2007). For example, Verkhedkar et al. (2007) showed that biological networks of M. 

tuberculosis, M. leprae, and E. coli exhibit a scale-free network structure.  

However, it is difficult to assess a gene’s or network’s topological properties without 

a reference; thus networks are compared to each other or to random networks having 

similar or the same number of nodes and edges (Baralla et al. 2009; Newman 2003; 

de Haan et al. 2009; Wang et al. 2006; Verkhedkar et al. 2007). According to the 
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analysis of each network in this study, the network topology measures of interest such 

as clustering coefficient, average path length, and degree distribution values were 

significantly different from those generated from random counterparts.  

In the present study, another reason that led us to use a randomly generated network 

for comparison with the hypoxia network was the lack of a public reference data for 

Affymetrix Zebrafish Genechip arrays, to the best of our knowledge. In addition, it is 

debatable that whether or not to use spike-in data since each cell type or condition 

impose its statistical properties on the data (Gyorffy et al. 2009; Shedden et al. 2005). 

Thus, spike-in data might be misleading for assessing the performance and efficiency 

of different preprocessing methods. In addition, since network topology parameters 

can differ from one network to another and topology measures cannot be interpreted 

without a reference network (Verkhedkar et al. 2007; Newman 2003), we used 

topology measures of random networks with similar nodes and degrees as a reference. 

Interestingly, networks of union and intersection data were also significantly different 

from each other showing the amount of variability among genes that were significant 

in at least one of the preprocessed datasets. This finding suggested a potential benefit 

in using intersection data for a more conservative analysis and comparison of different 

preprocessing methods’ networks. Robustness of using a gene list that is intersection 

of differentially expressed gene lists derived from differently preprocessed versions of 

a data is mentioned in a previous study (Rotter et al. 2008). They suggest that using 

such an intersection list would increase the likelihood of getting de facto differentially 

expressed genes in an experiment. 

  

Comparison of Correlation Distributions  

After the investigation of the basic characteristics of differently preprocessed data, 

correlation networks were constructed using only the positive Pearson correlation 

values. Two different datasets have been utilized for this purpose; union and 

intersection gene lists. The union gene list was constructed using the union of the 

significant gene lists of three preprocessing methods. The intersection gene list was 

also created using the intersection of these lists. Genes in intersection gene list 

expectedly were more correlated with each other than the ones in union gene list 

(Figures 11, 12). The reason behind this phenomenon might be the existence of 
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regulated transcription factors controlling the highly significant genes. In addition, a 

study from Rotter et al. (2008) also showed that significant genes that are verified 

from different approaches also have a higher likelihood of being de facto 

differentially expressed genes. Also, the link between the differentially expression of 

a gene and its connectivity in a protein-protein interaction network has been 

mentioned in the literature (Camargo et al. 2007). Thus, a list with genes more likely 

to be differentially expressed includes more connected pairs. 

When comparing correlation distributions of each preprocessing method for union and 

intersection groups (Figures 13-16), RMA had the highest mean value of correlation 

coefficients whereas MAS5 had comparatively low values. This difference in terms of 

correlation coefficients has also been shown in the literature in different studies 

(Ploner et al. 2005; Lim et al. 2007).  

One interesting pattern was the interchange of the mean of correlation values in union 

data around 0.45 which was not observed in intersection data. However, since the 

threshold for generating our network was 0.6, networks could be considered to be 

insensitive to the interchange between gcRMA and MAS5. Regarding the ranking of 

the mean values of correlation coefficients, it is mentioned in the literature that RMA 

and gcRMA might introduce false correlations between gene pairs (Lim et al. 2007). 

In the study of Lim et al. (2007), they have also shown that correlated gene pairs 

deducted from MAS5 preprocessed data was more related with actual protein-protein 

interaction data compared to RMA and gcRMA. Also, the effect of preprocessing 

methods in terms of correlation coefficient was in accord with our findings so that 

MAS5 had the lowest correlation values in randomly generated data. A possible 

explanation of the difference between the correlation distributions generated from 

different preprocessing methods has been given by Ploner et al. (2005). Accordingly 

different preprocessing methods efficiently remove the noise from different segments 

of data that differ in variability, i.e., low, medium, and high. 

 

Overview of Network Topology Measures 

Betweenness centrality: In this study, positive correlations were taken into account 

(Figures 13 and 14) and the slopes of the correlation curves were similar to each other 
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(Figures 15 and 16). Although the correlation structures were similar, network 

characteristics could not be deducted from those figures. So, betweenness centrality 

was measured for each network of union and intersection data. Random networks 

having the same number of genes and correlations with their counterparts were also 

generated for each preprocessing method’s network in order to allow a better 

comparison for a reference. Betweenness centrality shows the number of times a gene 

is located on the shortest path of two different genes (Newman 2003). It can be 

thought as the popularity of a road that connects many cities (Lämmer et al. 2006). 

Genes with higher betweenness centrality values may have essential roles in 

regulation of other genes or establishing complexes (Hernández et al. 2007; Ahn et al. 

2009). In this study we found that intersection data produced significant differences 

between preprocessing methods while no such difference could be observed for the 

union data.  

Expectedly, each distribution highly significantly differed from its random network 

counterpart. Betweenness centrality is the measure of a gene’s role of communication 

between two genes in a cellular process even the influence of that two genes is direct 

or indirect (Joy et al. 2005; Wang et al. 2009). Thus, it is expected that higher 

betweenness centrality measures would not be seen in random networks. Our findings 

are in parallel to the literature that betweenness centrality measures show a significant 

difference from randomly generated data (Hintze et al. 2008).  

The differences between the intersection and union dataset in terms of network 

topology could be caused by the increased correlation coefficients due the the 

increased level of differential expression of gene lists. Thus, as networks get smaller 

and more clustered, due to the effects of preprocessing methods on network structure, 

distributions of betweenness centrality values cannot be generalized among the 

networks of differently preprocessing data. As shown in the study of Ploner et al. 

(2007), groups of genes with different variability have to be efficiently normalized by 

different preprocessing methods. 

There also is an ongoing debate on the essentiality of a gene that whether essentiality 

can be represented better by betweenness centrality or node degree of that gene (Kar 

et al. 2009) (Yu et al. 2007; Zotenko et al. 2008). It might be interesting to compare 
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the essential and non-essential genes in their robustness to preprocessing algorithms 

using betweenness centrality measures in future studies. 

Clustering coefficient: Clustering coefficient is a network topology measure to assess 

the tendency of establishing a cluster around a gene (Caretta-Cartozo et al. 2007). If a 

gene’s clustering coefficient value is higher, its interaction with other gene groups and 

forming complexes in terms of interaction might be stronger (Newman 2003). In 

addition, clustering coefficient would reveal the importance of a gene in terms of a 

modular role in a cellular process (Ma'ayan 2009). Also, clustering coefficient would 

show the completeness and connectivity of a network (Horvath et al. 2008; Wang et 

al. 2009). From a different point of view, clustering coefficient would show the fault 

tolerance of a network; thus, it is expected to be higher than a random network as our 

study also shows (Supekar et al. 2008). 

Looking at the results of the comparisons of distributions, it can be said that clustering 

coefficient is sensitive to the type of the preprocessing method (Tables 9 and 10). This 

is also in parallel to the study of Ploner et al. (2005) where the effects of different 

preprocessing methods on the correlation structure of genes have been assessed 

explained. Since every distribution is significantly different from each other, selecting 

an appropriate preprocessing method has a real importance in terms of getting a more 

reliable result. However, it seems to be almost impossible to find the appropriate 

preprocessing method without any reference; supportive information from RT-PCR 

yet would be invaluable for such a decision (Bolstad et al. 2003; Lim et al. 2007; 

Autio et al. 2009).  

Degree distribution: Lastly, degree distribution has been the focus of this study in 

terms of network topology. Degree of a gene shows the number of correlations with 

other genes (Caretta-Cartozo et al. 2007). Interestingly, degree distributions of each 

preprocessing data were not significantly different from their random counterpart. 

However, it is mentioned in the literature that using only degree distribution for 

comparing different network topologies is not sufficient (Hormozdiari et al. 2007). 

This might be because random networks are generated based on the actual network’s 

number of genes and correlations. However, apart from random networks, each 

degree distribution of actual data is significantly different from each other. This again 
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shows the differences of correlations among gene pairs changing from one 

preprocessing method to another one, as suggested by Ploner et al (2005). 

As mentioned in the the betweenness centrality part, there is a debate on the 

importance of degree of a gene for estimating essentiality. However, it is not a 

resolved issue (Kar et al. 2009; Zotenko et al. 2008). Future studies might analyze the 

effect of preprocessing on essential and non-essential genes since their network 

structures are known to differ from each other. 

 

Comparison of Network Topology Measures 

In order to reveal the distribution of each network topology measure in response to the 

significance and fold change, various graphs have been plotted for intersection data 

(Figures 24-32). The reason for focusing on intersection data is that it leads to a more 

conservative comparative study when the main interest is on the significant genes 

between two groups of samples. 

The difference of the upregulated and downregulated genes in terms of network 

topology measures has been studied in the literature (Wachi et al. 2005; Swindell 

2008; Hernández et al. 2007). Accordingly, upregulated genes show weaker centrality 

values and are weakly connected (Swindell 2008). However, in another study, 

upregulated genes show higher correlation coefficients and better connectivity (Wachi 

et al. 2005). These differences between upregulated and downregulated genes might 

be either biological or due to type of the preprocessing method (Ploner et al. 2005). 

Although such differences have been observed, there is not a clear explanation for this 

phenomenon. We have also seen a difference between upregulated and downregulated 

gene groups in terms of network topology measures in our study focusing on 

positively correlated probesets. 

In literature, different distributions of downregulated genes compared to upregulated 

ones in terms of network topology have been presented using gene expression and 

protein interaction networks (Hernández et al. 2007; Swindell 2008; Ahn et al. 2009). 

However, there is no clear explanation for this phenomenon (Hernández et al. 2007; 

Swindell 2008; Wachi et al. 2005). In our study, when network topology measures 

have been plotted against fold change, it was observed that in RMA and gcRMA 
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networks, downregulated genes have distinct values compared to upregulated genes 

(Figures 24, 26, 28). However, such a difference was not so obvious in MAS5 

networks. This shows that network structure is affected by the preprocessing method. 

To the best of our knowledge, there is no comparative study in the literature on the 

effects of preprocessing methods on network topology to the best of our knowledge. 

Thus, our findings might reveal the disadvantage of MAS5 approach for reducing 

such effects from biological data. One possible explanation is mathematical; 

expression of a gene can be limitless whereas the minimum value of expression is 

zero. Thus, downregulated gene pairs might have higher correlation coefficients and 

interactions. Another explanation might be a biological one that downregulation 

might be a more controlled event than upregulation when a group of genes is shut 

down by the cell. Yet another explanation is that the phenomenon observed for the 

zebrafish hypoxia dataset might be condition and/or taxon-specific. Future studies 

should be performed to test the generality of our findings in other datasets from 

zebrafish and other organisms. 

In order to compare interaction networks with random counterparts that are generated 

from actual data, 1932 genes (the number of genes in interaction data gen list) were 

randomly selected from each preprocessed data and corresponding networks were 

generated. Network topology measures of random networks seemed to be scattered 

randomly whereas the measures of significant genes in each random network showed 

similar distributions to the network measures of interaction data. In addition, network 

topology measures were symmetrical in terms of upregulated and downregulated 

genes when plotted by fold change. This might reveal the fact that the asymmetrical 

nature of network topology measures of significant genes for upregulated and 

downregulated lists occurred due the existence of a biological process (Figures 33 - 

38). In terms of network topology measures, RMA, gcRMA and MAS5 do not 

significantly resemble each other. Low correlation coefficients of pair wise 

comparisons imply that each preprocessing method have distinctive network structure 

(Table 14). However, when networks of intersection data were compared using 

Spearman correlations RMA and gcRMA resembled each other with the highest 

correlation coefficient values (Table 13). The most distinctive pair is RMA-MAS5 

where they have the lowest correlation coefficient value for each network topology 

measure. Even the lowest value is 0.55 which might show a true correlation in such a 
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network having ~2000 genes. This situation also suggests the usage of the intersection 

of significantly expressed gene lists from each preprocessing method since the 

network structure could be more conserved for those genes.  

 

Genes having similar network topology measures 

Although the general picture indicates that preprocessing methods radically alter the 

topology of correlation networks, genes that are the least affected by different 

preprocessing methods have been further investigated in this study. To find those 

genes, the same topologies for each preprocessing method’s network were summed. 

For each network topology measures, sums of absolute differences were sorted and 

the least 20% was filtered. Accordingly, there were 91 and 81 genes for intersection 

and union data, respectively. Interestingly, although the number of genes in the 

intersection data had almost 40% of the genes of union data, the number of least-

affected genes was higher. In addition, intersection of these gene lists had 31 genes 

common, suggesting that union and intersection data exhibited different characteristic 

properties in terms of network structure. It can be stressed again that each 

preprocessing method adds certain statistical properties to the data after the 

transformation (Draghici 2003; Irizarry, Hobbs, et al. 2003). 

Investigating the GO categories of invariant genes in terms of network topology 

measures, it is intersting to observe biological categories that are relevant to a change 

in cellular profile as a result of hypoxia. Categories implying cell signaling and 

oxygen-related pathways show that the genes in those categories show a very robust 

expression and are insensitive to the preprocessing method. Further investigation of 

the expression profile and cellular characteristics of those genes might reveal the 

importance of using a network-based analysis to extract preprocessing-tolerant genes 

and pathways. 
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CHAPTER 6: FUTURE PERSPECTIVES 

 

This study explored the effects of preprocessing algorithms on data distribution, 

differentially expressed genes, and network parameters using a Zebrafish GeneChip 

dataset. Accordingly, only positively correlated pairs of genes were considered to 

generate a network, for simplicity of the analysis. A detailed study considering 

negatively correlated gene pairs and all correlations would be meaningful in order to 

assess the effects of preprocessing on the network structure. Indeed, in a preliminary 

analysis of negatively correlated probeset pairs (r<-0.6) the pattern observed for 

positively correlated pairs was reversed (data not shown). Accordingly, upregulated 

genes instead of downregulated probesets exhibited greater connectivity and 

clustering coefficients. This suggests that one might lose the divergence between up- 

and downregulated probeset network topology if absolute correlation between 

probeset pairs is considered. Our study suggests that analyzing the gene networks for 

positively and negatively correlated pairs separately presents advantages for 

comparative studies. Furthermore, changing the threshold limit for the correlation 

coefficient as well as set p-value could affect the results and should be further studied. 

Effects of array quality might also be further tested on the observed patterns of 

divergence between up- and down-regulated genes. 

In addition to the Pearson correlation method for identifying edges between genes as 

used in this thesis, usage of different distance metrics such as Spearman correlation or 

Euclidean distance might generate different networks. Thus, the extent of the effects 

of type of distance metrics used also can be evaluated in the future to understand the 

structural effects of such a choice on gene expression networks. This might be also 

beneficial to suggest a method for network generation that is least affecting the 

network structure. 

In this study, a microarray dataset with 5 replicates in each group was used. Many 

microarray studies contain 3 or less replicates per group. The possibility of extending 

our method to experiment sets with low sample size could further be tested to define 

the limitations of the present method. 

Detailed examination of the preprocessing methods could reveal the mechanistic 

effects of each preprocessing method. For example, changing the normalization or the 
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summarization method would also show the effect of the individual steps of 

preprocessing method on the structure of gene expression networks as well as the 

differentially expressed genes. Lastly, focusing on the sub-groups of data with 

different variabilities or coefficient of variations would reveal any regional effect that 

is caused by the preprocessing method. 

In this study, we have applied a methodology minimizing the absolute differences 

between network parameters to obtain a robust set of probesets affected by hypoxia 

regardless of preprocessing method. Future studies might include extending this to 

usage of ranked parameter estimates. 

In addition, applying the presented methodolgy to other zebrafish datasets from 

different tissues and/or pathologies would allow for its generalization. Applications to 

the datasets from other species would further contribute to the generalization of the 

findings in this thesis.  
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APPENDIX A 

 

R script for preparing the preprocessed data is given below: 

 

affydata = ReadAffy(); # read .CEL files from the current directory 

outputfileprefix = ‘GSE4989’; # prepare output file name for saving 

 

mas5data = mas5(affydata) # apply MAS5 algorithm to affymetrix 

data 

exprsvalues = exprs(mas5data) # get expression values of the 

structured data 

log2data = log(exprsvalues, 2) # calculate log2 values of data 

outputfile = paste(outputfileprefix, '.MAS5.txt', sep = "", collapse 

= NULL) 

write.table(log2data, file=outputfile, quote=F, sep="\t") #save 

data 

 

rmadata = rma(affydata) # apply RMA algorithm to affymetrix data 

log2data= exprs(rmadata)# get expression values of the structured 

data 

outputfile = paste(outputfileprefix, '.RMA.txt', sep = "", collapse = 

NULL) 

write.table(log2data, file=outputfile, quote=F, sep="\t") #save 

data 

 

gcrmadata = gcrma(affydata) # apply gcRMA algorithm to affymetrix 

data 

log2data= exprs(gcrmadata) # get expression values of the 

structured data 

outputfile = paste(outputfileprefix, '.gcRMA.txt', sep = "", collapse 

= NULL) 

write.table(log2data, file=outputfile, quote=F, sep="\t") #save 

data 
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APPENDIX B 

 

MatLab script applying t-test for each differently preprocessed data is given below: 

 

function [pvalues ids 

data]=aro_ttest(xls_file,controlgroup,experimentgroup) 

 %read excel data and do a ttest to get pvalues 

[data text] = xlsread(xls_file); % read excel data 

controldata = data(:, controlgroup);  

experimentdata = data(:, experimentgroup); 

ids = text(2:end, 1); % assign probe names 

pvalues = mattest(controldata, experimentdata); % apply t-test 

 

 

hypoxiaindex = [1 3 5 8 9]; % column index of conditions with 

hypoxia 

normoxiaindex = [2 4 6 7 10]; % column index of conditions with 

normoxia 

 

[rmapvalues ids rmadata] = aro_ttest('GSE4989.RMA.xls', 

normoxiaindex,hypoxiaindex); 

[gcrmapvalues ids gcrmadata] = 

aro_ttest('GSE4989.gcRMA.xls',normoxiaindex,hypoxiaindex); 

[mas5pvalues ids mas5data] = 

aro_ttest('GSE4989.MAS5.xls',normoxiaindex,hypoxiaindex); 

 

 

% get significant probe set lists from each differently preprocessed 

dataset 

rmaindex = rmapvalues <= 0.05; 

rmaprobes = ids(rmaindex); 

 

gcrmaindex = gcrmapvalues <= 0.05; 

gcrmaprobes = ids(gcrmaindex); 

 

mas5index = mas5pvalues <= 0.05; 

mas5probes = ids(mas5index); 

 

 

% get union of differentially expressed genes of each preprocessed 

data pair 

unionprobes = union(rmaprobes, union(gcrmaprobes, mas5probes)); 

unionrma_gcrma = union(rmaprobes, gcrmaprobes); 

unionrma_mas5 = union(rmaprobes, mas5probes); 

uniongcrma_mas5 = union(gcrmaprobes, mas5probes); 

 

%get intersection of differentially expressed genes of each 

preprocessed data pair 

intersectprobes = intersect(rmaprobes,intersect(gcrmaprobes, 

mas5probes)); 

intersectrma_gcrma = intersect(rmaprobes, gcrmaprobes); 

intersectrma_mas5 = intersect(rmaprobes, mas5probes); 

intersectgcrma_mas5 = intersect(gcrmaprobes, mas5probes); 
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APPENDIX C 

 

MatLab script for generating networks of each union and intersection data for each 

differently preprocessed data is given below: 

 

 
function corrnet = aro_corrnet(data, message, limit) 

 %generates 0-1 correlation network 

 disp(['Generating network: ' message]); 

datasize = size(data,1); 

tempcorr = corr(data’); 

corrnet = tempcorr; 

corrnet(tempcorr>=limit) = 1; 

corrnet (tempcorr<limit) = 0; 

corrnet(isnan(corrnet)) = 0; 

 

 

function randmat = aro_randmatrix(rt)  

%rt is the original matrix to be randomized 

merged = []; 

lenrt = length(rt) 

for i = 1:(lenrt-1) 

    merged = [merged rt(i, (i+1):end)]; 

end 

merged = merged(randperm(length(merged))); 

randmat = zeros(lenrt, lenrt); 

for i = 1:(lenrt-1) 

    curr = merged(1:(lenrt-i)); 

    merged = merged((lenrt-i+1):end); 

    randmat(i,(i+1):end) = curr; 

end 

randmat = randmat + randmat’; 

for i = 1:lenrt 

    randmat(i,i) = 1; 

end 

 

 

rlimit=0.6; % setting threshold of r-value for network generation 

probes = ids; 

 

%generating correlation networks using union of gene lists 

[nosense1 unionprobesindex nosense2] = intersect(probes, 

unionprobes); 

unioncontrolprobes = probes(unionprobesindex); 

 

%filtering union data from each whole-data 

unionrmadata = rmadata(unionprobesindex, :); 

uniongcrmadata = gcrmadata(unionprobesindex, :); 

unionmas5data = mas5data(unionprobesindex, :); 

 

%generating correlation networks and random networks 

unionrmanet = aro_corrnet(unionrmadata, 'Union RMA', rlimit); 

unionrmanetsparse = sparse(double(unionrmanet)); 

unionrmanetsparserandom = 

sparse(double(aro_randmatrix(unionrmanet))); 
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uniongcrmanet = aro_corrnet(uniongcrmadata, 'Union gcRMA', rlimit); 

uniongcrmanetsparse = sparse(double(uniongcrmanet)); 

uniongcrmanetsparserandom = 

sparse(double(aro_randmatrix(uniongcrmanet))); 

 

unionmas5net = aro_corrnet(unionmas5data, 'Union MAS5', rlimit); 

unionmas5netsparse = sparse(double(unionmas5net)); 

unionmas5netsparserandom = 

sparse(double(aro_randmatrix(unionmas5net))); 

 

%generating correlation networks using intersection of gene lists 

[nosense1 intersectprobesindex nosense2] = intersect(probes, 

intersectprobes); 

intersectcontrolprobes = probes(intersectprobesindex); 

% filtering intersection data from each whole-data 

intersectrmadata = rmadata(intersectprobesindex, :); 

intersectgcrmadata = gcrmadata(intersectprobesindex, :); 

intersectmas5data = mas5data(intersectprobesindex, :); 

 

%generating correlation networks and random networks 

intersectrmanet = aro_corrnet(intersectrmadata, 'Intersect RMA', 

rlimit); 

intersectrmanetsparse = sparse(double(intersectrmanet)); 

intersectrmanetsparserandom = 

sparse(double(aro_randmatrix(intersectrmanet))); 

 

 

intersectgcrmanet = aro_corrnet(intersectgcrmadata, 'Intersect 

gcRMA', rlimit); 

intersectgcrmanetsparse = sparse(double(intersectgcrmanet)); 

intersectgcrmanetsparserandom = 

sparse(double(aro_randmatrix(intersectgcrmanet))); 

 

intersectmas5net = aro_corrnet(intersectmas5data, 'Intersect MAS5', 

rlimit); 

intersectmas5netsparse = sparse(double(intersectmas5net)); 

intersectmas5netsparserandom = 

sparse(double(aro_randmatrix(intersectmas5net))); 
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APPENDIX D 

 

MatLab Script for calculating network topology measures is given below: 

 

 

% calculate clustering coefficient for each intersection data 

disp('CC for intersect RMA')  

ccintrma = clustering_coefficients(intersectrmanetsparse); 

ccintrmarand = clustering_coefficients(intersectrmanetsparserandom); 

 

disp('CC for intersect gcRMA')  

ccintgcrma = clustering_coefficients(intersectgcrmanetsparse); 

ccintgcrmarand = 

clustering_coefficients(intersectgcrmanetsparserandom); 

  

disp('CC for intersect MAS5')  

ccintmas5 = clustering_coefficients(intersectmas5netsparse); 

ccintmas5rand = 

clustering_coefficients(intersectmas5netsparserandom); 

  

  

% calculate betweenness centrality for each intersection data 

disp('BC for intersect RMA')  

bcintrma = betweenness_centrality(intersectrmanetsparse); 

bcintrmarand = betweenness_centrality(intersectrmanetsparserandom); 

  

disp('BC for intersect gcRMA')  

bcintgcrma = betweenness_centrality(intersectgcrmanetsparse); 

bcintgcrmarand = 

betweenness_centrality(intersectgcrmanetsparserandom); 

  

disp('BC for intersect MAS5') 

bcintmas5 = betweenness_centrality(intersectmas5netsparse); 

bcintmas5rand = betweenness_centrality(intersectmas5netsparserandom); 

 

  

% calculate degree distribution for each intersection data 

disp('DD for intersect RMA') 

ddintrma = sum(intersectrmanetsparse); 

ddintrmarand = sum(intersectrmanetsparserandom); 

  

disp('DD for intersect gcRMA') 

ddintgcrma = sum(intersectgcrmanetsparse); 

ddintgcrmarand = sum(intersectgcrmanetsparserandom); 

  

disp('DD for intersect MAS5') 

ddintmas5 = sum(intersectmas5netsparse); 

ddintmas5rand = sum(intersectmas5netsparserandom); 

  

 

% calculate clustering coefficient for each union data 

disp('CC for union RMA')  

ccunirma = clustering_coefficients(unionrmanetsparse); 

ccunirmarand = clustering_coefficients(unionrmanetsparserandom); 

  

disp('CC for union gcRMA') 

ccunigcrma = clustering_coefficients(uniongcrmanetsparse); 
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ccunigcrmarand = clustering_coefficients(uniongcrmanetsparserandom); 

  

disp('CC for union MAS5') 

ccunimas5 = clustering_coefficients(unionmas5netsparse); 

ccunimas5rand = clustering_coefficients(unionmas5netsparserandom); 

  

  

% calculate betweenness centrality for each union data 

disp('BC for union RMA') 

bcunirma = betweenness_centrality(unionrmanetsparse); 

bcunirmarand = betweenness_centrality(unionrmanetsparserandom); 

  

disp('BC for union gcRMA') 

bcunigcrma = betweenness_centrality(uniongcrmanetsparse); 

bcunigcrmarand = betweenness_centrality(uniongcrmanetsparserandom); 

  

disp('BC for union MAS5') 

bcunimas5 = betweenness_centrality(unionmas5netsparse); 

bcunimas5rand = betweenness_centrality(unionmas5netsparserandom); 

  

  

  

% calculate degree distribution for each union data 

disp('DD for union RMA') 

ddunirma = sum(unionrmanetsparse); 

ddunirmarand = sum(unionrmanetsparserandom); 

 

disp('DD for union gcRMA')  

ddunigcrma = sum(uniongcrmanetsparse); 

ddunigcrmarand = sum(uniongcrmanetsparserandom); 

  

disp('DD for union MAS5') 

ddunimas5 = sum(unionmas5netsparse); 

ddunimas5rand = sum(unionmas5netsparserandom); 

 

 

% plotting figures for intersection data 

figure(); 

boxplot([bcintrma bcintrmarand bcintgcrma bcintgcrmarand bcintmas5 

bcintmas5rand]) 

set(gca, 'XTickLabel', [{'RMA'} {'RMA-Random'} {'gcRMA'} {'gcRMA-

Random'} {'MAS5'} {'MAS5-Random'} ]) 

xlabel('') 

ylabel('Betweennes Centrality') 

title('Intersection Data') 

 

figure(); 

boxplot([ccintrma ccintrmarand ccintgcrma ccintgcrmarand ccintmas5 

ccintmas5rand]) 

set(gca, 'XTickLabel', [{'RMA'} {'RMA-Random'} {'gcRMA'} {'gcRMA-

Random'} {'MAS5'} {'MAS5-Random'} ]) 

xlabel('') 

ylabel('Clustering Coefficient') 

title('Intersection Data') 

 

figure(); 

boxplot([ddintrma' ddintrmarand' ddintgcrma' ddintgcrmarand' 

ddintmas5' ddintmas5rand']) 

set(gca, 'XTickLabel', [{'RMA'} {'RMA-Random'} {'gcRMA'} {'gcRMA-

Random'} {'MAS5'} {'MAS5-Random'} ]) 

xlabel('') 
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ylabel('Degree Distribution') 

title('Intersection Data') 

 

 

% plotting figures for union data 

figure(); 

boxplot([bcunirma bcunirmarand bcunigcrma bcunigcrmarand bcunimas5 

bcunimas5rand]) 

set(gca, 'XTickLabel', [{'RMA'} {'RMA-Random'} {'gcRMA'} {'gcRMA-

Random'} {'MAS5'} {'MAS5-Random'} ]) 

xlabel('') 

ylabel('Betweennes Centrality') 

title('Union Data') 

 

figure(); 

boxplot([ccunirma ccunirmarand ccunigcrma ccunigcrmarand ccunimas5 

ccunimas5rand]) 

set(gca, 'XTickLabel', [{'RMA'} {'RMA-Random'} {'gcRMA'} {'gcRMA-

Random'} {'MAS5'} {'MAS5-Random'} ]) 

xlabel('') 

ylabel('Clustering Coefficient') 

title('Union Data') 

 

figure(); 

boxplot([ddunirma' ddunirmarand' ddunigcrma' ddunigcrmarand' 

ddunimas5' ddunimas5rand']) 

set(gca, 'XTickLabel', [{'RMA'} {'RMA-Random'} {'gcRMA'} {'gcRMA-

Random'} {'MAS5'} {'MAS5-Random'} ]) 

xlabel('') 

ylabel('Degree Distribution') 

title('Union Data') 
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APPENDIX E 

 

MatLab Script for generating a random correlation matrix with the same number of 

nodes and edges of a given network is given below: 

 

function randmat = aro_randmatrix(rt)  

    %rt is the original matrix to be randomized 

    merged = []; 

    lenrt = length(rt); 

    for i = 1:(lenrt-1) 

        merged = [merged rt(i, (i+1):end)]; 

    end 

    merged = merged(randperm(length(merged))); 

    randmat = zeros(lenrt, lenrt); 

    for i = 1:(lenrt-1) 

        curr = merged(1:(lenrt-i)); 

        merged = merged((lenrt-i+1):end); 

        randmat(i,(i+1):end) = curr; 

    end 

    randmat = randmat + randmat'; 

    for i = 1:lenrt 

        randmat(i,i) = 1; 

    end 
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APPENDIX F 

 

Matlab scripts for listing the least-changed genes in each network topology measure, 

for both union and intersection data. 

 

 
function sorted = aro_mergeandsort(probenames, rmavalues, 

gcrmavalues, mas5values) 
    rm = rmavalues - mas5values; 
    rg = rmavalues - gcrmavalues; 
    mg = mas5values - gcrmavalues; 
    rg = abs(rg); 
    rm = abs(rm); 
    mg = abs(mg); 
    sumofmeasures = rg + rm + mg; 
    [empty sortindex] = sort(sumofmeasures); 
    sorted = probenames(sortindex); 

 

 

bcunisorted = aro_mergeandsort(unionprobes, bcunirma, bcunigcrma, 

bcunimas5); 
bcintsorted = aro_mergeandsort(intersectprobes, bcintrma, bcintgcrma, 

bcintmas5); 

 
ccunisorted = aro_mergeandsort(unionprobes, ccunirma, ccunigcrma, 

ccunimas5); 
ccintsorted = aro_mergeandsort(intersectprobes, ccintrma, ccintgcrma, 

ccintmas5); 

 
ddunisorted = aro_mergeandsort(unionprobes, ddunirma, ddunigcrma, 

ddunimas5); 
ddintsorted = aro_mergeandsort(intersectprobes, ddintrma, ddintgcrma, 

ddintmas5); 

 

 

n = round(length(unionprobes) * 0.20); %top 20% 

unicommon = intersect(bcunisorted(1:n), intersect(ccunisorted(1:n), 

ddunisorted(1:n))); 

n = round(length(intersectprobes) * 0.20); % top 20% 

intcommon = intersect(bcintsorted(1:n), intersect(ccintsorted(1:n), 

ddintsorted(1:n))); 
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APPENDIX G 

 

Following scripts are utilized for Spearman correlation calculation for each network 

topology parameters of pairs of different preprocessing datasets. 

 

 
corr(ccrmarand, ccmas5rand, 'type', 'Spearman') 

corr(ccrmarand, ccgcrmarand, 'type', 'Spearman') 

corr(ccgcrmarand, ccmas5rand, 'type', 'Spearman') 

 

corr(bcrmarand, bcmas5rand, 'type', 'Spearman') 

corr(bcrmarand, bcgcrmarand, 'type', 'Spearman') 

corr(bcgcrmarand, bcmas5rand, 'type', 'Spearman') 

 

corr(ddrmarand', ddmas5rand', 'type', 'Spearman') 

corr(ddrmarand', ddgcrmarand', 'type', 'Spearman') 

corr(ddgcrmarand', ddmas5rand', 'type', 'Spearman') 
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APPENDIX H 

 

Following functions are used to generate plots of each network topology measure 

versus p-value and fold change. 

 

 

Plotting random data: 

 
%calculating network topology measures for random data with the size 

of 

%intersection data 

lenrandom = 1:length(rmadata); 

randomindex = lenrandom(randperm(length(intersectprobes))); 

randomprobes = probes(randomindex); 

 

rmarand = rmadata(randomindex, :); 

gcrmarand = gcrmadata(randomindex, :); 

mas5rand = mas5data(randomindex, :); 

 

 

rmarandpval = mattest(rmarand(:,normoxiaindex), 

rmarand(:,hypoxiaindex)); 

rmarandfc = mean(rmarand(:,hypoxiaindex)') - 

mean(rmarand(:,normoxiaindex)'); 

 

gcrmarandpval = mattest(gcrmarand(:,normoxiaindex), 

gcrmarand(:,hypoxiaindex)); 

gcrmarandfc = mean(gcrmarand(:,hypoxiaindex)') - 

mean(gcrmarand(:,normoxiaindex)'); 

 

mas5randpval = mattest(mas5rand(:,normoxiaindex), 

mas5rand(:,hypoxiaindex)); 

mas5randfc = mean(mas5rand(:,hypoxiaindex)') - 

mean(mas5rand(:,normoxiaindex)'); 

 

 

 

rmarandnet = aro_corrnet(rmarand, 'random-RMA', rlimit); 

rmarandnetsparse = sparse(double(rmarandnet)); 

gcrmarandnet = aro_corrnet(gcrmarand, 'random-gcRMA', rlimit); 

gcrmarandnetsparse = sparse(double(gcrmarandnet)); 

mas5randnet = aro_corrnet(mas5rand, 'random-MAS5', rlimit); 

mas5randnetsparse = sparse(double(mas5randnet)); 

 

 

disp('CC for random RMA')  

ccrmarand = clustering_coefficients(rmarandnetsparse); 

disp('BC for random RMA')  

bcrmarand = betweenness_centrality(rmarandnetsparse); 

disp('DD for random RMA') 

ddrmarand = sum(rmarandnetsparse); 

 

 

disp('CC for random gcRMA')  

ccgcrmarand = clustering_coefficients(gcrmarandnetsparse); 

disp('BC for random gcRMA')  

bcgcrmarand = betweenness_centrality(gcrmarandnetsparse); 
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disp('DD for random gcRMA') 

ddgcrmarand = sum(gcrmarandnetsparse); 

 

 

disp('CC for random MAS5')  

ccmas5rand = clustering_coefficients(mas5randnetsparse); 

disp('BC for random MAS5')  

bcmas5rand = betweenness_centrality(mas5randnetsparse); 

disp('DD for random MAS5') 

ddmas5rand = sum(mas5randnetsparse); 

 

 

%PLOTTING FIGURES 

 

%fc vs. cc 

figure; 

subplot(1,3,1) 

rmarandfcp = rmarandfc > 0; 

rmarandfcn = rmarandfc < 0; 

plot(rmarandfc(rmarandfcp), ccrmarand(rmarandfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(rmarandfc(rmarandfcn), ccrmarand(rmarandfcn), '.b', 

'MarkerSize', 5); 

title('RMA random - FC vs CC') 

xlim([-10 10]) 

ylim([0 1]) 

 

%fc vs. cc 

subplot(1,3,2) 

gcrmarandfcp = gcrmarandfc > 0; 

gcrmarandfcn = gcrmarandfc < 0; 

plot(gcrmarandfc(gcrmarandfcp), ccgcrmarand(gcrmarandfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(gcrmarandfc(gcrmarandfcn), ccgcrmarand(gcrmarandfcn), '.b', 

'MarkerSize', 5); 

title('gcRMA random - FC vs CC') 

xlim([-10 10]) 

ylim([0 1]) 

 

%fc vs. cc 

subplot(1,3,3) 

mas5randfcp = mas5randfc > 0; 

mas5randfcn = mas5randfc < 0; 

plot(mas5randfc(mas5randfcp), ccmas5rand(mas5randfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(mas5randfc(mas5randfcn), ccmas5rand(mas5randfcn), '.b', 

'MarkerSize', 5); 

title('MAS5 random - FC vs CC') 

xlim([-10 10]) 

ylim([0 1]) 

 

 

%fc vs. bc 

figure; 

subplot(1,3,1) 

hold on; 

plot(rmarandfc(rmarandfcp), bcrmarand(rmarandfcp), '.r', 

'MarkerSize', 5); 
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plot(rmarandfc(rmarandfcn), bcrmarand(rmarandfcn), '.b', 

'MarkerSize', 5); 

title('RMA random - FC vs BC') 

xlim([-4 6]) 

ylim([0 25000]) 

 

%fc vs. bc 

subplot(1,3,2) 

hold on; 

plot(gcrmarandfc(gcrmarandfcp), bcgcrmarand(gcrmarandfcp), '.r', 

'MarkerSize', 5); 

plot(gcrmarandfc(gcrmarandfcn), bcgcrmarand(gcrmarandfcn), '.b', 

'MarkerSize', 5); 

title('gcRMA random - FC vs BC') 

xlim([-4 6]) 

ylim([0 25000]) 

 

%fc vs. bc 

subplot(1,3,3) 

hold on; 

plot(mas5randfc(mas5randfcp), bcmas5rand(mas5randfcp), '.r', 

'MarkerSize', 5); 

plot(mas5randfc(mas5randfcn), bcmas5rand(mas5randfcn), '.b', 

'MarkerSize', 5); 

title('MAS5 random - FC vs BC') 

xlim([-4 6]) 

ylim([0 25000]) 

 

%fc vs. dd 

figure; 

subplot(1,3,1) 

hold on; 

plot(rmarandfc(rmarandfcp), ddrmarand(rmarandfcp), '.r', 

'MarkerSize', 5); 

plot(rmarandfc(rmarandfcn), ddrmarand(rmarandfcn), '.b', 

'MarkerSize', 5); 

title('RMA random - FC vs DD') 

xlim([-4 6]) 

ylim([0 500]) 

 

%fc vs. dd 

subplot(1,3,2) 

hold on; 

plot(gcrmarandfc(gcrmarandfcp), ddgcrmarand(gcrmarandfcp), '.r', 

'MarkerSize', 5); 

plot(gcrmarandfc(gcrmarandfcn), ddgcrmarand(gcrmarandfcn), '.b', 

'MarkerSize', 5); 

title('gcRMA random - FC vs DD') 

xlim([-4 6]) 

ylim([0 500]) 

 

%fc vs. dd 

subplot(1,3,3) 

hold on; 

plot(mas5randfc(mas5randfcp), ddmas5rand(mas5randfcp), '.r', 

'MarkerSize', 5); 

plot(mas5randfc(mas5randfcn), ddmas5rand(mas5randfcn), '.b', 

'MarkerSize', 5); 

title('MAS5 random - FC vs DD') 

xlim([-4 6]) 

ylim([0 500]) 
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%pval vs. dd 

figure; 

subplot(1,3,1) 

hold on; 

plot(rmarandpval(rmarandfcp), ddrmarand(rmarandfcp), '.r', 

'MarkerSize', 5); 

plot(rmarandpval(rmarandfcn), ddrmarand(rmarandfcn), '.b', 

'MarkerSize', 5); 

title('RMA random - Pval vs DD (upregulated:red)') 

ylim([0 500]) 

 

%pval vs. dd 

subplot(1,3,2) 

hold on; 

plot(gcrmarandpval(gcrmarandfcp), ddgcrmarand(gcrmarandfcp), '.r', 

'MarkerSize', 5); 

plot(gcrmarandpval(gcrmarandfcn), ddgcrmarand(gcrmarandfcn), '.b', 

'MarkerSize', 5); 

title('gcRMA random - Pval vs DD (upregulated:red)') 

ylim([0 500]) 

 

%pval vs. dd 

subplot(1,3,3) 

hold on; 

plot(mas5randpval(mas5randfcp), ddmas5rand(mas5randfcp), '.r', 

'MarkerSize', 5); 

plot(mas5randpval(mas5randfcn), ddmas5rand(mas5randfcn), '.b', 

'MarkerSize', 5); 

title('MAS5 random - Pval vs DD (upregulated:red)') 

ylim([0 500]) 

 

 

%pval vs. cc 

figure; 

subplot(1,3,1) 

plot(rmarandpval(rmarandfcp), ccrmarand(rmarandfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(rmarandpval(rmarandfcn), ccrmarand(rmarandfcn), '.b', 

'MarkerSize', 5); 

title('RMA random - Pval vs CC (upregulated:red)') 

 

%pval vs. cc 

subplot(1,3,2) 

plot(gcrmarandpval(gcrmarandfcp), ccgcrmarand(gcrmarandfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(gcrmarandpval(gcrmarandfcn), ccgcrmarand(gcrmarandfcn), '.b', 

'MarkerSize', 5); 

title('gcRMA random - Pval vs CC (upregulated:red)') 

 

%pval vs. cc 

subplot(1,3,3) 

plot(mas5randpval(mas5randfcp), ccmas5rand(mas5randfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(mas5randpval(mas5randfcn), ccmas5rand(mas5randfcn), '.b', 

'MarkerSize', 5); 

title('MAS5 random - Pval vs CC (upregulated:red)') 
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%pval vs. bc 

figure; 

subplot(1,3,1) 

plot(rmarandpval(rmarandfcp), bcrmarand(rmarandfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(rmarandpval(rmarandfcn), bcrmarand(rmarandfcn), '.b', 

'MarkerSize', 5); 

title('RMA random - Pval vs BC (upregulated:red)') 

ylim([0 25000]) 

 

%pval vs. bc 

subplot(1,3,2) 

plot(gcrmarandpval(gcrmarandfcp), bcgcrmarand(gcrmarandfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(gcrmarandpval(gcrmarandfcn), bcgcrmarand(gcrmarandfcn), '.b', 

'MarkerSize', 5); 

title('gcRMA random - Pval vs BC (upregulated:red)') 

ylim([0 25000]) 

 

%pval vs. bc 

subplot(1,3,3) 

plot(mas5randpval(mas5randfcp), bcmas5rand(mas5randfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(mas5randpval(mas5randfcn), bcmas5rand(mas5randfcn), '.b', 

'MarkerSize', 5); 

title('MAS5 random - Pval vs BC (upregulated:red)') 

ylim([0 25000]) 

 

 

 

%SCATTER PLOTS 

%cc 

figure; 

subplot(1,3,1) 

scatter(ccrmarand, ccgcrmarand, '.b'); 

xlim([0 1]) 

ylim([0 1]) 

title('Clustering Coefficient - random - RMA vs gcRMA'); 

subplot(1,3,2) 

scatter(ccrmarand, ccmas5rand, '.b'); 

xlim([0 1]) 

ylim([0 1]) 

title('Clustering Coefficient - random - RMA vs MAS5'); 

subplot(1,3,3) 

scatter(ccgcrmarand, ccmas5rand, '.b'); 

xlim([0 1]) 

ylim([0 1]) 

title('Clustering Coefficient - random - gcRMA vs MAS5'); 

 

 

%bc 

figure; 

subplot(1,3,1) 

scatter(bcrmarand, bcgcrmarand, '.b'); 

xlim([0 25000]) 

ylim([0 25000]) 
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title('Betweenness Centrality - random - RMA vs gcRMA'); 

subplot(1,3,2) 

scatter(bcrmarand, bcmas5rand, '.b'); 

xlim([0 25000]) 

ylim([0 25000]) 

title('Betweenness Centrality - random - RMA vs MAS5'); 

subplot(1,3,3) 

scatter(bcgcrmarand, bcmas5rand, '.b'); 

xlim([0 25000]) 

ylim([0 25000]) 

title('Betweenness Centrality - random - gcRMA vs MAS5'); 

 

%dd 

figure; 

subplot(1,3,1) 

scatter(ddrmarand, ddgcrmarand, '.b'); 

xlim([0 500]) 

ylim([0 500]) 

title('Degree Distribution - random - RMA vs gcRMA'); 

subplot(1,3,2) 

scatter(ddrmarand, ddmas5rand, '.b'); 

xlim([0 500]) 

ylim([0 500]) 

title('Degree Distribution - random - RMA vs MAS5'); 

subplot(1,3,3) 

scatter(ddgcrmarand, ddmas5rand, '.b'); 

xlim([0 500]) 

ylim([0 500]) 

title('Degree Distribution - random - gcRMA vs MAS5'); 

 

 

Plotting intersection data: 

 
%calculating network topology measures for intersection data  

 

rmaintpval = rmapvalues(intersectprobesindex); 

rmaintfc = mean(intersectrmadata(:,hypoxiaindex)') - 

mean(intersectrmadata(:,normoxiaindex)'); 

 

gcrmaintpval = gcrmapvalues(intersectprobesindex); 

gcrmaintfc = mean(intersectgcrmadata(:,hypoxiaindex)') - 

mean(intersectgcrmadata(:,normoxiaindex)'); 

 

mas5intpval = mas5pvalues(intersectprobesindex); 

mas5intfc = mean(intersectmas5data(:,hypoxiaindex)') - 

mean(intersectmas5data(:,normoxiaindex)'); 

 

%fc vs. cc 

figure; 

subplot(1,3,1); 

rmaintfcp = rmaintfc > 0; 

rmaintfcn = rmaintfc < 0; 

plot(rmaintfc(rmaintfcp), ccintrma(rmaintfcp), '.r', 'MarkerSize', 

5); 

hold on; 

plot(rmaintfc(rmaintfcn), ccintrma(rmaintfcn), '.b', 'MarkerSize', 

5); 

title('RMA intersection - FC vs CC') 

ylim([0.55 1]) 

xlim([-5 10]) 
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%fc vs. cc 

subplot(1,3,2); 

gcrmaintfcp = gcrmaintfc > 0; 

gcrmaintfcn = gcrmaintfc < 0; 

plot(gcrmaintfc(gcrmaintfcp), ccintgcrma(gcrmaintfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(gcrmaintfc(gcrmaintfcn), ccintgcrma(gcrmaintfcn), '.b', 

'MarkerSize', 5); 

title('gcRMA intersection - FC vs CC') 

ylim([0.55 1]) 

xlim([-5 10]) 

 

%fc vs. cc 

subplot(1,3,3); 

mas5intfcp = mas5intfc > 0; 

mas5intfcn = mas5intfc < 0; 

plot(mas5intfc(mas5intfcp), ccintmas5(mas5intfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(mas5intfc(mas5intfcn), ccintmas5(mas5intfcn), '.b', 

'MarkerSize', 5); 

title('MAS5 intersection - FC vs CC') 

ylim([0.55 1]) 

xlim([-5 10]) 

 

 

%fc vs. bc 

figure; 

subplot(1,3,1); 

plot(rmaintfc(rmaintfcp), bcintrma(rmaintfcp), '.r', 'MarkerSize', 

5); 

hold on; 

plot(rmaintfc(rmaintfcn), bcintrma(rmaintfcn), '.b', 'MarkerSize', 

5); 

title('RMA intersection - FC vs BC') 

ylim([0 1800]) 

xlim([-10 10]) 

 

%fc vs. bc 

subplot(1,3,2); 

plot(gcrmaintfc(gcrmaintfcp), bcintgcrma(gcrmaintfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(gcrmaintfc(gcrmaintfcn), bcintgcrma(gcrmaintfcn), '.b', 

'MarkerSize', 5); 

title('gcRMA intersection - FC vs BC') 

ylim([0 1800]) 

xlim([-10 10]) 

 

%fc vs. bc 

subplot(1,3,3); 

plot(mas5intfc(mas5intfcp), bcintmas5(mas5intfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(mas5intfc(mas5intfcn), bcintmas5(mas5intfcn), '.b', 

'MarkerSize', 5); 

title('MAS5 intersection - FC vs BC') 

ylim([0 1800]) 

xlim([-10 10]) 
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%fc vs. dd 

figure; 

subplot(1,3,1) 

plot(rmaintfc(rmaintfcp), ddintrma(rmaintfcp), '.r', 'MarkerSize', 

5); 

hold on; 

plot(rmaintfc(rmaintfcn), ddintrma(rmaintfcn), '.b', 'MarkerSize', 

5); 

title('RMA intersection - FC vs DD') 

xlim([-5 10]) 

ylim([0 1200]) 

 

%fc vs. dd 

subplot(1,3,2) 

plot(gcrmaintfc(gcrmaintfcp), ddintgcrma(gcrmaintfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(gcrmaintfc(gcrmaintfcn), ddintgcrma(gcrmaintfcn), '.b', 

'MarkerSize', 5); 

title('gcRMA intersection - FC vs DD') 

xlim([-5 10]) 

ylim([0 1200]) 

 

%fc vs. dd 

subplot(1,3,3) 

plot(mas5intfc(mas5intfcp), ddintmas5(mas5intfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(mas5intfc(mas5intfcn), ddintmas5(mas5intfcn), '.b', 

'MarkerSize', 5); 

title('MAS5 intersection - FC vs DD') 

xlim([-5 10]) 

ylim([0 1200]) 

 

 

 

%pval vs. dd 

figure; 

subplot(1,3,1) 

plot(rmaintpval(rmaintfcp), ddintrma(rmaintfcp), '.r', 'MarkerSize', 

5); 

hold on; 

plot(rmaintpval(rmaintfcn), ddintrma(rmaintfcn), '.b', 'MarkerSize', 

5); 

title('RMA intersection - Pval vs DD (upregulated:red)') 

ylim([1 1200]) 

 

%pval vs. dd 

subplot(1,3,2) 

plot(gcrmaintpval(gcrmaintfcp), ddintgcrma(gcrmaintfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(gcrmaintpval(gcrmaintfcn), ddintgcrma(gcrmaintfcn), '.b', 

'MarkerSize', 5); 

title('gcRMA intersection - Pval vs DD (upregulated:red)') 

ylim([1 1200]) 

 

%pval vs. dd 

subplot(1,3,3) 

plot(mas5intpval(mas5intfcp), ddintmas5(mas5intfcp), '.r', 

'MarkerSize', 5); 
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hold on; 

plot(mas5intpval(mas5intfcn), ddintmas5(mas5intfcn), '.b', 

'MarkerSize', 5); 

title('MAS5 intersection - Pval vs DD (upregulated:red)') 

ylim([1 1200]) 

 

 

%pval vs. cc 

figure; 

subplot(1,3,1) 

plot(rmaintpval(rmaintfcp), ccintrma(rmaintfcp), '.r', 'MarkerSize', 

5); 

hold on; 

plot(rmaintpval(rmaintfcn), ccintrma(rmaintfcn), '.b', 'MarkerSize', 

5); 

title('RMA intersection - Pval vs CC (upregulated:red)') 

ylim([0.55 1]) 

 

%pval vs. cc 

subplot(1,3,2) 

plot(gcrmaintpval(gcrmaintfcp), ccintgcrma(gcrmaintfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(gcrmaintpval(gcrmaintfcn), ccintgcrma(gcrmaintfcn), '.b', 

'MarkerSize', 5); 

title('gcRMA intersection - Pval vs CC (upregulated:red)') 

ylim([0.55 1]) 

 

%pval vs. cc 

subplot(1,3,3) 

plot(mas5intpval(mas5intfcp), ccintmas5(mas5intfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(mas5intpval(mas5intfcn), ccintmas5(mas5intfcn), '.b', 

'MarkerSize', 5); 

title('MAS5 intersection - Pval vs CC (upregulated:red)') 

ylim([0.55 1]) 

 

 

%pval vs. bc 

figure; 

subplot(1,3,1) 

plot(rmaintpval(rmaintfcp), bcintrma(rmaintfcp), '.r', 'MarkerSize', 

5); 

hold on; 

plot(rmaintpval(rmaintfcn), bcintrma(rmaintfcn), '.b', 'MarkerSize', 

5); 

title('RMA intersection - Pval vs bc (upregulated:red)') 

ylim([0 1800]) 

 

%pval vs. bc 

subplot(1,3,2) 

plot(gcrmaintpval(gcrmaintfcp), bcintgcrma(gcrmaintfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(gcrmaintpval(gcrmaintfcn), bcintgcrma(gcrmaintfcn), '.b', 

'MarkerSize', 5); 

title('gcRMA intersection - Pval vs bc (upregulated:red)') 

ylim([0 1800]) 
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%pval vs. bc 

subplot(1,3,3) 

plot(mas5intpval(mas5intfcp), bcintmas5(mas5intfcp), '.r', 

'MarkerSize', 5); 

hold on; 

plot(mas5intpval(mas5intfcn), bcintmas5(mas5intfcn), '.b', 

'MarkerSize', 5); 

title('MAS5 intersection - Pval vs bc (upregulated:red)') 

ylim([0 1800]) 

 

 

 

%SCATTER PLOTS 

%cc 

figure; 

subplot(1,3,1) 

scatter(ccintrma(rmaintfcn), ccintgcrma(gcrmaintfcn), '.b'); 

hold on; 

scatter(ccintrma(rmaintfcp), ccintgcrma(gcrmaintfcp), '.r'); 

title('Clustering Coefficient - intersection - RMA vs gcRMA'); 

xlim([0.5 1]) 

ylim([0.5 1]) 

 

subplot(1,3,2) 

scatter(ccintrma(rmaintfcn), ccintmas5(mas5intfcn), '.b'); 

hold on; 

scatter(ccintrma(rmaintfcp), ccintmas5(mas5intfcp), '.r'); 

title('Clustering Coefficient - intersection - RMA vs MAS5'); 

xlim([0.5 1]) 

ylim([0.5 1]) 

 

subplot(1,3,3) 

scatter(ccintgcrma(gcrmaintfcn), ccintmas5(mas5intfcn), '.b'); 

hold on; 

scatter(ccintgcrma(gcrmaintfcp), ccintmas5(mas5intfcp), '.r'); 

title('Clustering Coefficient - intersection - gcRMA vs MAS5'); 

xlim([0.5 1]) 

ylim([0.5 1]) 

 

 

%bc 

figure; 

subplot(1,3,1) 

scatter(bcintrma(rmaintfcn), bcintgcrma(gcrmaintfcn), '.b'); 

hold on; 

scatter(bcintrma(rmaintfcp), bcintgcrma(gcrmaintfcp), '.r'); 

title('Betweenness Centrality - intersection - RMA vs gcRMA'); 

xlim([0 1800]) 

ylim([0 1800]) 

 

subplot(1,3,2) 

scatter(bcintrma(rmaintfcn), bcintmas5(mas5intfcn), '.b'); 

hold on; 

scatter(bcintrma(rmaintfcp), bcintmas5(mas5intfcp), '.r'); 

title('Betweenness Centrality - intersection - RMA vs MAS5'); 

xlim([0 1800]) 

ylim([0 1800]) 

 

subplot(1,3,3) 

scatter(bcintgcrma(gcrmaintfcn), bcintmas5(mas5intfcn), '.b'); 

hold on; 
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scatter(bcintgcrma(gcrmaintfcp), bcintmas5(mas5intfcp), '.r'); 

title('Betweenness Centrality - intersection - gcRMA vs MAS5'); 

xlim([0 1800]) 

ylim([0 1800]) 

 

%dd 

figure; 

subplot(1,3,1) 

scatter(ddintrma(rmaintfcn), ddintgcrma(gcrmaintfcn), '.b'); 

hold on; 

scatter(ddintrma(rmaintfcp), ddintgcrma(gcrmaintfcp), '.r'); 

title('Degree Distribution - intersection - RMA vs gcRMA'); 

xlim([0 1200]) 

ylim([0 1200]) 

 

subplot(1,3,2) 

scatter(ddintrma(rmaintfcn), ddintmas5(mas5intfcn), '.b'); 

hold on; 

scatter(ddintrma(rmaintfcp), ddintmas5(mas5intfcp), '.r'); 

title('Degree Distribution - intersection - RMA vs MAS5'); 

xlim([0 1200]) 

ylim([0 1200]) 

 

subplot(1,3,3) 

scatter(ddintgcrma(gcrmaintfcn), ddintmas5(mas5intfcn), '.b'); 

hold on; 

scatter(ddintgcrma(gcrmaintfcp), ddintmas5(mas5intfcp), '.r'); 

title('Degree Distribution - intersection - gcRMA vs MAS5'); 

xlim([0 1200]) 

ylim([0 1200]) 

 

 

Plotting both random and intersection data: 

 
%fc vs. cc 

figure; 

subplot(1,3,1) 

hold on; 

title('RMA - FC vs CC - (y:random, b:actual)'); 

plot(rmarandfc, ccrmarand, '.y', 'MarkerSize', 5); 

plot(rmaintfc, ccintrma, '.k', 'MarkerSize', 5); 

xlim([-5 10]) 

ylim([0.2 1]) 

 

%fc vs. cc 

subplot(1,3,2) 

hold on; 

title('gcRMA - FC vs CC - (y:random, b:actual)'); 

plot(gcrmarandfc, ccgcrmarand, '.y', 'MarkerSize', 5); 

plot(gcrmaintfc, ccintgcrma, '.k', 'MarkerSize', 5); 

xlim([-5 10]) 

ylim([0.2 1]) 

 

%fc vs. cc 

subplot(1,3,3) 

hold on; 

title('MAS5 - FC vs CC - (y:random, b:actual)'); 

plot(mas5randfc, ccmas5rand, '.y', 'MarkerSize', 5); 

plot(mas5intfc, ccintmas5, '.k', 'MarkerSize', 5); 

xlim([-5 10]) 

ylim([0.2 1]) 
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%fc vs. bc 

figure; 

subplot(1,3,1) 

hold on; 

title('RMA - FC vs BC - (y:random, b:actual)'); 

plot(rmarandfc, bcrmarand, '.y', 'MarkerSize', 5); 

plot(rmaintfc, bcintrma, '.k', 'MarkerSize', 5); 

xlim([-10 10]) 

ylim([0 25000]) 

 

%fc vs. bc 

subplot(1,3,2) 

hold on; 

title('gcRMA - FC vs BC - (y:random, b:actual)'); 

plot(gcrmarandfc, bcgcrmarand, '.y', 'MarkerSize', 5); 

plot(gcrmaintfc, bcintgcrma, '.k', 'MarkerSize', 5); 

xlim([-10 10]) 

ylim([0 25000]) 

 

%fc vs. bc 

subplot(1,3,3) 

hold on; 

title('MAS5 - FC vs BC - (y:random, b:actual)'); 

plot(mas5randfc, bcmas5rand, '.y', 'MarkerSize', 5); 

plot(mas5intfc, bcintmas5, '.k', 'MarkerSize', 5); 

xlim([-10 10]) 

ylim([0 25000]) 

 

 

 

%fc vs. dd 

figure; 

subplot(1,3,1) 

hold on; 

title('RMA - FC vs DD - (y:random, b:actual)'); 

plot(rmarandfc, ddrmarand, '.y', 'MarkerSize', 5); 

plot(rmaintfc, ddintrma, '.k', 'MarkerSize', 5); 

xlim([-5 10]) 

 

%fc vs. dd 

subplot(1,3,2) 

hold on; 

title('gcRMA - FC vs DD - (y:random, b:actual)'); 

plot(gcrmarandfc, ddgcrmarand, '.y', 'MarkerSize', 5); 

plot(gcrmaintfc, ddintgcrma, '.k', 'MarkerSize', 5); 

xlim([-5 10]) 

 

%fc vs. dd 

subplot(1,3,3) 

hold on; 

title('MAS5 - FC vs DD - (y:random, b:actual)'); 

plot(mas5randfc, ddmas5rand, '.y', 'MarkerSize', 5); 

plot(mas5intfc, ddintmas5, '.k', 'MarkerSize', 5); 

xlim([-5 10]) 
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APPENDIX I 

 

Dataset quality control measures were provided: RNA degradation plots, quality 

control measurements such as percent presence, background, scaling factor, and 

housekeeping gene 5’/3’ ratios were given in the figures and tables shown below 

(simpleaffy; www.bioconductor.org; analyses were performed using BRB-ArrayTools 

developed by Dr. Richard Simon and BRB-ArrayTools Development Team.) A 

scatter plot between mean normoxia and hypoxia probeset intensities also was 

provided (BRB-ArrayTools). Two arrays exhibiting deviation from the rest of the 

arrays (affyPLM; bioconductor.org) were identified using NUSE parameters, and a 

scatter plot without these two arrays, GSM112800 and GSM112806, also was shown.  

 

 

 

 

RNA degradation plots for normoxia  RNA degradation plots for hypoxia 
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Scatter plot of normoxia versus hypoxia Scatter plot of normoxia versus hypoxia  

excluding GSM112800 and GSM112806 

 

 

 

 

 

 

Table of Array Quality Measures from simpleAffy 

PercentPresent ScaleFactor b.Actin3.5 GapDH3.5 b.Actin3.M GapDG3.M AvgBackground 

GSM112796.cel.present 67.420119 0.828488 0.272982 0.230186 0.968312 0.680024 32.881969 

GSM112799.cel.present 66.651726 1.012586 -0.505754 0.384337 1.034074 0.752911 35.630309 

GSM112801.cel.present 67.65704 0.981132 -0.30707 0.408688 0.923712 0.589918 30.327384 

GSM112804.cel.present 68.399821 0.809444 0.02498 0.422888 1.049277 0.768355 35.859939 

GSM112805.cel.present 72.088109 0.771758 -0.451513 0.383217 1.022426 0.642657 29.005681 
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PercentPresent ScaleFactor b.Actin3.5 GapDH3.5 b.Actin3.M GapDG3.M AvgBackground 

GSM112798.cel.present 67.067939 0.732321 -0.460963 0.187509 1.142593 0.696249 32.186194 

GSM112800.cel.present 65.588781 0.818906 1.089244 0.316111 1.56647 0.868602 32.639049 

GSM112802.cel.present 65.710444 0.883537 0.122377 0.156951 0.957879 0.774765 33.62756 

GSM112803.cel.present 64.545047 0.996928 0.096361 0.313394 1.158403 0.768255 34.338878 

GSM112806.cel.present 69.501185 0.864254 0.637525 0.610015 1.739151 0.961237 34.188487 

 

Table of NUSE statististics from the AffyPLM package 

 

 

> NUSE(Pset, type = "stats")

GSM112796.CEL GSM112798.CEL GSM112799.CEL GSM112800.CEL GSM112801.CEL

median    0.99777075    0.99314020    0.99615531    1.02209952    0.99993841

IQR       0.02303366    0.02139885    0.02148714    0.04458799    0.02612786

GSM112802.CEL GSM112803.CEL GSM112804.CEL GSM112805.CEL GSM112806.CEL

median    0.99670464    0.99809864    0.99303578    1.00361457    1.01986876

IQR       0.02123813    0.02233189    0.02123398    0.02818807    0.03965814
 

 

 


