
DYNAMIC VOLTAGE/FREQUENCY
SCALING IN GPUs THROUGH GENETIC

ALGORITHM

a thesis submitted to
the graduate school of engineering and science

of bilkent university
in partial fulfillment of the requirements for

the degree of
master of science

in
computer engineering

By
Pouria Hasani

September 2022

Dynamic Voltage/Frequency Scaling in GPUs Through Genetic

Algorithm

By Pouria Hasani

September 2022

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree ofMaster of Science.

Süleyman Tosun

Approved for the Graduate School of Engineering and Science:

Orhan Arıkan
Director of the Graduate School

ii

Özca~ Advisor)

~ ur Gücliikbay

ABSTRACT

DYNAMIC VOLTAGE/FREQUENCY SCALING IN
GPUs THROUGH GENETIC ALGORITHM

Pouria Hasani
M.S. in Computer Engineering

Advisor: Özcan Öztürk
September 2022

Dynamic Voltage/Frequency Scaling (DVFS) is the primary approach to opti-
mizing Central Processing Units (CPUs) power consumption. A handful of ap-
proaches are conducted using this technique in General Purpose Graphics Pro-
cessing Units (GPGPUs). However, due to the massively parallel execution of
threads on GPUs and load imbalance on Streaming Multiprocessors (SMs), find-
ing the best global frequency for GPU cores is not a simple task. Moreover,
the proposed approaches in the literature mostly rely on an offline model, where
the optimal voltage and frequency for an application is found to be used in the
next execution. In this work, we use a combination of an analytical model and a
genetic algorithm to adjust per SM frequency dynamically, aiming at decreasing
GPU’s power consumption with the least amount of performance loss without a
need for offline execution. We tested our approach using 16 GPU kernels from
different domains with ranging features. Our results show that we can save 9.6%
of GPU’s total energy on average with less than 0.95% performance loss. We also
discuss further improvements and possible extensions to the proposed approach.

Keywords: Dynamic Voltage/Frequency Scaling (DVFS), General Purpose
Graphics Processing Units (GPGPUs), Streaming Multiprocessors (SMs), En-
ergy.

iii

ÖZET

GENETİK ALGORİTMA İLE GRAFİK İŞLEMCİ
ÜNİTELERİNDE DİNAMİK VOLTAJ/FREKANS

ÖLÇEKLEME

Pouria Hasani
Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Özcan Öztürk
Eylül 2022

Dinamik Voltaj/Frekans Ölçekleme (DVFS), Merkezi İşlemci Ünitelerinin
(CPU) güç tüketimini verimli hale getirmek için kullanılan en temel yaklaşımdır.
DVFS tekniğini Grafik İşlemci Ünitelerinde Genel Amaçlı Hesaplama (GPGPU)
işlemlerinde kullanmak için birtakım araştırmalar yapılmıştır. Ancak, iş
parçacıklarının Grafik İşlemci Ünitelerinde (GPU) büyük ölçüde paralel
yürütülmesi ve Paylaşımlı Çoklu İşlemciler (SM) arasındaki yük dengesizliği ne-
deniyle, GPU çekirdekleri için en uygun küresel frekansı bulmak kolay bir iş
değildir. Ayrıca, literatürde yer alan öneriler çoğunlukla, bir uygulamadaki opti-
mal voltaj ve frekansın bir sonraki işletimde kullanılması için kurulan çevrimdışı
bir modele dayanmaktadır. Bu çalışmada, bir analitik model ve genetik algo-
ritma bileşimi kullanılarak, SM frekansının dinamik olarak ayarlanması, böylece
çevrimdışı yürütmeye gerek kalmadan GPU’nun güç tüketiminin en az perfor-
mans kaybıyla azaltılması hedeflenmektedir. Yaklaşımımızı çeşitli özelliklere
sahip farklı alanlardan 16 GPU çekirdeği kullanarak test ettik. Elde ettiğimiz
sonuçlar %0.95’ten daha az performans kaybıyla GPU’nun toplam enerjisinden
ortalama %9,6 tasarruf sağlayabileceğimizi gösteriyor. Ayrıca önerilen yaklaşımın
nasıl daha da geliştirilebileceği ve olası yeni yaklaşımlar tartışılmıştır.

Anahtar sözcükler : Dinamik Voltaj/Frekans Ölçekleme (DVFS), Grafik İşleme
Birimlerinde Genel Amaçlı Hesaplama (GPGPUs), Paylaşımlı Çoklu İşlemciler
(SMs), Enerji.

iv

Acknowledgement

I want to show gratitude to my advisor Prof. Özcan Öztürk who patiently sup-
ported me even though I pushed the limitation of his tolerance to the fullest. I
am grateful for his patience and guidance. I would never be able to finish my
studies if it was not for his exceptional tolerance and support. I also want to
thank the jury members, Prof. Uğur Güdükbay and Prof. Süleyman Tosun, for
reviewing the thesis and providing valuable feedback.

I want to give a special thanks to my parents and my sister Parisa who truly
filled my life with love. I also would like to thank my lovely wife Gamze, who was
beside me during all the happy and sad moments and made my life beautiful.

Lastly, I want to devote my thesis to my brother Peyman who always had my
back.

v

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Contribution . 7

1.3 Organization . 8

2 Related Work 9

2.1 Statistical Methods . 10

2.2 Analytical Methods . 12

3 Architecture and Background 14

3.1 GPU Architecture . 14

3.2 Performance Model . 17

3.3 Power Model . 21

3.4 Power per Instruction Metric . 22

vi

CONTENTS vii

4 Analytical Model 23

5 Genetic Algorithm Model 25

5.1 Population Initialization . 26

5.2 Fitness Function . 27

5.3 Crossover . 28

5.4 Mutation . 29

5.5 Hyper-parameters . 30

5.6 Hybrid Model . 31

6 Experimental Evaluation 32

6.1 Setup . 32

6.2 Performance Prediction Error . 34

6.3 Experimental Results . 36

6.4 Sensitivity Analysis . 41

6.5 Comparison with Literature . 44

6.6 Discussion . 45

7 Conclusion 47

Bibliography 49

List of Figures

1.1 Snapshot of the number of stall cycles of the first 8 SMs of GTX
480 with 15 SMs while running CFD for the first 100 intervals. . . 5

1.2 Busy interval distribution of the first 8 SMs for the first 1000 in-
tervals while running CFD from Rodinia benchmark. 6

3.1 High level view of a general GPU architecture. 15

3.2 Our approach to derive the details of a specific interval. 18

3.3 Interval-based frequency adjustment used in our approach. 19

5.1 High-level view of the genetic algorithm model. 25

5.2 A chromosome used in our genetic algorithm. 26

5.3 Crossover operations used in the genetic algorithm. 28

5.4 Mutation operations used in the genetic algorithm. (a) Bit Flip
mutation, and (b) Swap mutation. 29

5.5 Hybrid model to find the best frequency set. 31

6.1 Mean absolute percentage error prediction of 34

viii

LIST OF FIGURES ix

6.2 Mean absolute percentage error prediction of 35

6.3 Percentage energy savings using the combination of analytical
model and genetic algorithm for the tested benchmarks. 36

6.4 Execution time increase in percentage using the combination of
analytical model and genetic algorithm for the tested benchmarks. 37

6.5 The ratio of stall cycles to total busy cycles and the ratio of idle
cycles to the total cycles for the tested benchmarks (in percentage). 38

6.6 Heatmap of the kernels’ intervals classification based on the ratio
of stall cycles to busy cycles in each interval. 40

6.7 Average energy savings in percentage for the analytical, genetic
algorithm, and hybrid models for BFS, NN, SR, and HW. 41

6.8 Average performance overhead in percentage for the analytical,
genetic algorithm, and hybrid models for BFS, NN, SR, and HW. 42

6.9 Sensitivity of the energy savings and the performance overheads
to the interval time (in µs) for BFS. 43

6.10 Comparison of our model with respect to CRISP and its respective
models. 44

List of Tables

1.1 Comparison of two GPU kernels’ average stall time and perfor-
mance loss while applying DVFS 4

5.1 Fine-tuned hyper-parameters of the genetic algorithm. 30

6.1 Characteristics of the tested benchmarks. 33

x

Chapter 1

Introduction

General Purpose Graphics Processing Units (GPGPUs) are the leading hardware
platforms for the execution of state-of-the-art parallel applications [1][2]. Appli-
cations such as machine learning models, graph processing, matrix operations,
and molecular dynamics simulations [3] perform single instruction on multiple
independent data. This means we can potentially achieve lots of speedup in the
correct setting. Since GPGPUs have hundreds of cores, and each of these cores
can execute one or more instructions in every clock cycle, they provide the perfect
functionality for the above-mentioned massively parallel applications.

While GPGPUs can speed up the execution time significantly, they introduce
a considerable cost due to their high power consumption [4][5]. Moreover, higher
power consumption increases the device’s temperature, and cooling down the
device with a higher temperature requires more effort in the cooling system. One
of the primary techniques for reducing power consumption is Dynamic Voltage
and Frequency Scaling (DVFS). DVFS refers to the ability of the hardware to
dynamically change different components’ voltage and frequency. Setting the
voltage and frequency to lower levels can decrease power usage substantially with
the cost of performance loss. Minimizing the performance loss and maximizing
the power saving using DVFS require detailed knowledge of the application’s
run-time characteristics [6]. Most of the state-of-the-art works in using DVFS

1

rely on designing power and performance models that can predict applications’
execution time and hardware’s power consumption to find the optimal voltage
and frequency configurations.

DVFS has been fully utilized in CPUs [7][8][9][10]. However, GPGPUs, which
provide extensive support for DVFS, cannot take advantage of this technique due
to their massively parallel execution nature and unpredictable run-time behavior
[11]. The complex interaction between different components like the memory sys-
tem and Streaming Multiprocessors (SMs) causes difficulty in designing accurate
power and performance models to apply DVFS optimizations on GPUs. Previous
studies have proposed to collect applications’ statistics after a certain number of
cycles, called an interval. The collected statistics in each interval are then used
to predict the GPU’s performance in the upcoming intervals with the assump-
tion that the upcoming intervals are computationally similar to the current ones.
Since this is a safe premise [12], in our work, we use the same methodology. We
have designed a simple performance model to predict the number of executed in-
structions. For this, we collect the applications’ statistics at the end of a certain
number of cycles and predict the number of executed instructions in the following
intervals.

The other factor that prevents the better usage of DVFS in GPUs is the SMs
load imbalance at run-time [13][14]. During the execution of an application, some
SMs execute instructions without many memory accesses (compute phase), while
others are waiting for memory responses (memory phase). The performance of the
SMs that are in a compute phase has a linear relation with the core’s frequency.
On the contrary, the performance of the SMs in the memory phase is less sensitive
to this frequency. Decreasing the core’s global frequency will save power, but the
SMs without memory requests will have significant performance loss. In this
thesis, we consider per-SM DVFS adjustment to account for the different run-
time execution characteristics of different SMs.

Additionally, the memory access of one SM can change the performance of
other SMs, as it introduces contention in the interconnection network and memory
components. This makes power optimization more complicated. In this regard,

2

the effect of different SMs’ run-time behavior on one another is also needed to
be considered while using DVFS. We also propose to use an optimization metric
that can tackle this effect. Overall, in our work, we run the application for a
constant number of cycles (interval) and collect the statistics for our performance
model. In parallel, we also use this data in a power model that can predict the
GPU’s power usage. Then we utilize the power and performance model in a
genetic algorithm-based optimization framework. The genetic algorithm-based
model predicts the optimal frequencies for SMs. The prediction and optimization
operations are done in parallel with the next interval. That is, during (i + 1)th

interval, we use the data collected in the ith interval and find the best frequency
set for (i + 2)th interval. These operations continue to be performed for all of the
intervals until the GPU program terminates.

1.1 Motivation

The GPU’s power utilization accounts for a significant percentage of the system’s
total power cost. On different computer systems, from supercomputers to mobile
devices, decreasing even a small percentage of GPU’s power usage can lead to a
considerable reduction in the total energy cost [15]. The GPU’s power consump-
tion can be divided into two parts [15][16][17][18]: 1. Dynamic power, 2. Static
power. The dynamic power changes proportionally with V oltage2 ∗ frequency

[16], whereas static power is correlated with V oltage2 [19]. On most of the de-
vices, the voltage is set automatically when adjusting the frequency, and lower
frequencies translate into lower voltages as well. Hence, frequency reduction can
potentially decrease both static and dynamic power.

However, if the application’s behavior during the execution is not considered,
changing the core’s frequency can drastically affect the GPU’s performance. We
run two GPU kernels from the Rodinia benchmark suite [20] to show the impor-
tance of considering applications’ characteristics while applying DVFS. As shown
in Table 1.1, both kernels are first executed with the default frequency of 700MHz,
and the average stall cycles and execution times are listed. We also execute both

3

benchmarks with an average SM frequency of 500MHz, where the frequency is
chosen dynamically and varies during the execution time. As seen from this table,
the average stall cycle for BFS is 32% of the total busy cycles, whereas it is 8.94%
for Backprop. However, the performance loss for Backprop is significantly higher
than that for BFS due to lower stall cycles. Our performance model considers
the stall cycles in the current interval and uses this data to predict the number
of executed instructions for the upcoming intervals.

Table 1.1: Comparison of two GPU kernels’ average stall time and performance
loss while applying DVFS. Benchmarks are executed with an average SM fre-
quency of 500MHz and compared against the default frequency of 700MHz. The
frequencies are chosen dynamically and varies during the execution time.

Kernel name Average stall cycles (%) Performance loss (%)
BFS 32.30 4.12
Backprop 8.94 28.34

Using DVFS in GPUs requires a more fine-grained design to harvest the tech-
nique’s benefits when compared with CPUs. Most of the problems in elevating
DVFS in GPUs are due to the Single Instruction Multiple Threads (SIMT) na-
ture. While thousands of threads run on different SMs, their execution features
vary drastically. Figure 1.1 shows an example of the variation in the stalls among
different SMs. More specifically, the figure depicts the number of stall cycles of
the first 8 SMs of GTX 480 GPU hardware with 15 SMs. The results are collected
for 100 intervals while running CFD from the Rodinia benchmark suite [20]. As
can be seen from this figure, SM0 and SM7 experience a high number of stall
cycles in the first ten intervals, while SM5 and SM6 are in their compute phase.
Between intervals 40 to 50, SM0 and SM4 take a small share of total stall cycles
across all 8 SMs. The rest of the intervals also show the imbalance in the number
of stall cycles. Based on this observation, we believe it is critical to implement
DVFS in individual SMs, instead of applying it globally.

4

Figure 1.1: Snapshot of the number of stall cycles of the first 8 SMs of GTX 480
with 15 SMs while running CFD for the first 100 intervals.

Besides the imbalanced distribution of the stall cycles between different SMs,
it is very common that some SMs stay idle while others execute instructions. This
is not due to the memory access, but rather it is caused by the fact that some SMs
run out of instructions to execute. This can happen when all threads assigned to
some SMs are completed while other SMs still have running threads. Or, it can
be due to the synchronization in cooperative groups in which a certain number of
blocks are grouped, and the program may require synchronization between these
thread blocks. Therefore, SMs that reach the synchronization point earlier than
others in one cooperative group will stay idle until all the SMs reach that point.
Figure 1.2 shows a snapshot of the execution cycles of the first 8 SMs of GTX 480
GPU hardware while running CFD from the Rodinia benchmark suite. In this
figure, Y-axis indicates the idleness of the respective SM. As shown in Figure 1.2,

5

different SMs can have idle cycles at different intervals. Idle cycles provide a great
opportunity to save power by decreasing the core’s frequency. Since there are no
instructions in the pipeline, performance degradation is expected to be minimal.

By interpreting Figures 1.1 and 1.2, we can conclude that each SM’s run-time
behavior can change as it proceeds to execute instructions. At any cycle, one
SM can be in a compute phase, a memory phase, or stay idle. This indicates
the necessity of having an online DVFS framework that can adjust the voltage
and frequency for each SM for current run-time features. In our framework, we
use per-SM data collection and frequency adjustment to address the unbalanced
execution of the application on different SMs.

Figure 1.2: Busy interval distribution of the first 8 SMs for the first 1000 intervals
while running CFD from Rodinia benchmark.

6

1.2 Contribution

In this study, we present an online DVFS optimization framework. Firstly, we
introduce a simple performance model to predict the number of executed in-
structions to be used for the upcoming sampling intervals. We also use a power
model adopted from the literature to predict dynamic and static power alongside
the performance model. Using these two models, we design a genetic algorithm-
based optimization framework to adjust the voltage and frequency of each SM
separately. Our genetic algorithm aims at reducing the power per instruction
by utilizing power and performance models. While we believe per-SM frequency
adjustment is internally possible and accountable, we do not have a way of im-
plementing it in the current GPU hardware and tool-set. Hence, we use a state-
of-the-art GPU simulator [21] by modifying it to account for per-SM statistics
collection and power calculation. This GPU simulator, called GPGPUSIM, is a
functional and timing simulator for GPUs, and it is widely used in the literature.
Our genetic algorithm implementation is also integrated into the tool.

The main contributions of the proposed approach can be summarized as fol-
lows:

• We use a simple performance model to predict the number of executed
instructions for the following intervals along with the stall cycles.

• We provide an analytical optimization model to adjust per-core voltage and
frequency aiming at minimizing power per instruction.

• We implement a genetic algorithm model to minimize total power across all
SMs by adjusting voltage/frequency individually through DVFS.

• We extend a state-of-the-art GPU simulator to account for per-SM data
collection and to provide DVFS optimization support.

• We test our approach on GPU kernels and compare the results with the
literature.

7

1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 gives the related work,
whereas Chapter 3 discusses the GPU architecture, power and performance mod-
els used, and our optimization metric. Chapter 4 elaborates on the analytical
optimization model, and in Chapter 5, we explain the details of our genetic al-
gorithm based model. Chapter 6 gives the experimental setup and the results.
Finally, in Chapter 7, we conclude the thesis.

8

Chapter 2

Related Work

In this chapter, we explain the state-of-the-art approaches to DVFS optimiza-
tions on GPUs. We can broadly classify GPU energy optimization and perfor-
mance modeling studies into statistical and analytical approaches. In statistical
methods, the GPU device is considered as a black box, and the applications’
statistics are collected during their execution [22][17][23][24][16]. These statis-
tics are then fed to trained machine learning models to predict the power and
performance [25][26][27][28][29]. Statistical methods require collecting many per-
formance counters at run-time, which introduces extra overhead to DVFS op-
timizations [30][31][32]. In our method, we use only two performance counters
with negligible overhead compared to the statistical approach in which many
hardware counters are used. Moreover, different architectures provide different
hardware and performance counters, which makes it even harder to apply the
same model across different GPU architectures. The analytical methods include
breaking down the execution pipeline into pieces and modeling the main bottle-
necks contributing to the execution time and power consumption [33][22][34].

9

2.1 Statistical Methods

Abe et al. applied linear models assuming that the power and performance have
a linear relationship with a certain set of hardware counters [24]. They evaluated
their model across three different GPU architectures, where they had 33.5% to
67.9% performance prediction error on average.

Wu et al. [17] and Ardalani et al. [23] used machine learning models to
predict GPU’s power and performance. Wu et al. trained a machine learning
model using different kernels’ performance counters collected with different GPU
settings during their executions. Then for new applications, one run with the
default setting is done to collect the hardware counters. These hardware counters
are fed to the machine learning model to predict the power and performance on
different GPU settings. The proposed method [17] requires an offline execution
of the kernel, which usually is impractical because most of the time, especially
in machine learning applications, the first run takes hours or even days to finish.
Therefore, this can also be considered an offline model. In such offline methods,
the kernels are executed once, and the necessary data is collected to feed the
power and performance models. Later, the GPU is configured with the optimal
voltage and frequency for the subsequent executions of the kernels.

In [16][18][26][27][28], similar offline methods have been proposed. Wang et al.
designed a performance model using hardware and kernel performance counters
collected during the execution of the kernels with default settings [26]. Then,
they predicted the execution time with different core and memory frequencies on
different architectures. Guerreiro et al. modeled per component power consump-
tion using a target microbenchmark [27]. Later, they extended their work to add
more components and use more microbenchmarks to improve the model’s accu-
racy [26]. Their work can also predict GPU power consumption on default fre-
quency configuration without needing the power measurement equipment. Both
of these approaches require an offline application execution before making any
predictions.

10

The other issue with the offline methods is their inaccuracy in power and per-
formance prediction when concurrent kernels are running on the GPU. In most
realistic execution scenarios, especially in cluster computers, multiple applica-
tions can run on single GPU hardware simultaneously. There can potentially
be conflicts or contention on the GPU hardware resources between concurrent
kernels. Hence, the performance counters in the offline execution may not match
the performance counters in concurrent execution of the same kernels. This can
lead to a miss prediction of the execution time and power. Furthermore, the ap-
proaches mentioned above lack an accurate prediction for the complete duration
of the application. As the application behavior can significantly change through-
out the execution, a fine-grained prediction mechanism can take better advantage
of DVFS when compared with a one-time offline DVFS adjustment.

Besides the offline approaches, several works use assembly code analyses to pre-
dict the applications’ power and execution time with different voltage/frequency
levels [35][36][37]. These models predict the performance and power consumption
before running the application on the hardware. However, an application’s power
consumption and execution time may vary in different execution settings due to
the concurrent execution of multiple applications on the hardware. Therefore,
they cannot capture the run-time variation of applications’ execution character-
istics. In [37], a performance model has been designed that predicts the execution
time and power consumption using an RNN model with the GPU assembly in-
structions (PTX). They used this model for energy saving, tested it on different
architectures, and achieved 13.12% energy saving on average.

In our work, the performance and optimization models only use two perfor-
mance counters that can be easily provided by the state-of-the-art GPU hard-
ware, as opposed to the statistical methods in the literature that need many per-
formance counters. Collecting many parameters through different performance
counters incurs extra overhead both in hardware and execution time. Addition-
ally, our proposed method applies DVFS configurations during the applications’
run-time without needing an offline execution. Therefore, we can adapt to the
live characteristics of an application with minimal overheads.

11

2.2 Analytical Methods

In [38], a power and performance model is proposed using hardware counters.
More specifically, they break down the execution and memory pipelines to capture
the execution characteristics better. Even though they achieve a 93.3% accuracy,
the proposed model is hardware specific and requires extensive modification to
use in a different architecture.

An online power and performance prediction model and DVFS optimization
tool have been proposed in [39]. Their work includes a hybrid model that uses
the data collected during the application execution. Firstly, they collect GPU’s
power, performance, and utilization rate. Based on these data, they detect it-
erative intervals of the application’s run-time using FFT. The iterative intervals
refer to the periodic sections of the execution time in which the GPU’s power,
performance, and utilization rate have similar data sequences. This iterative be-
havior is seen in applications with loops in their code. Later at the beginning of
these intervals, they predict GPU’s power and performance for different core and
memory frequency settings. Then, they configure GPU’s core and memory with
the optimal frequencies. Although this method is suitable for applications with
iterative behavior, it might not be helpful in cluster computing. Since multiple
clients can share one GPU, and even though these clients may have an application
with iterative nature, the GPU’s run-time power, performance, and utilization
rate statistics for these concurrent applications can interfere with one another,
and FFT cannot find an iterative section with this mixed statistics. Hence, this
method will not be able to adjust the best frequency.

Moreover, detecting iterative sections of applications at run-time requires sav-
ing interval statistics in array-based structures, which can occupy extra space in
the memory. In our proposed approach, we record the statistics for each interval,
and we replace these data with new statistics for later intervals. Therefore, in
our method, the storage overhead is negligible.

Most of the efforts on optimizing GPU’s power consumption using DVFS do

12

not consider per-SM frequency adjustment. In GPUWATTCH [40], even though
they have applied per-SM frequency adjustment using stall time to decide on the
frequency levels, it is unclear how they have chosen the frequency using stall time.
In CRISP [12], the core’s frequency is adjusted globally for all the SMs. They
proposed a complete performance model considering memory-level parallelism.
Although they have implemented a complex performance model, they adjust the
frequency over the whole GPU, ignoring the load imbalance on different SMs.
Moreover, their model needs extra adjustments in the scoreboard to have a more
accurate performance model. In our approach, we record the stall cycles and the
number of executed instructions that can be extracted from available hardware
counters.

In this work, we take an analytical approach by detecting the main bottleneck
contributing to the delay in execution of the applications using two performance
counters. Using a few performance counters increases the scalability of the pro-
posed method to be used on different architectures. Additionally, the DVFS
optimizations are applied for each SM individually to account for load imbalance
despite the proposed methods in the literature [38][39][12].

13

Chapter 3

Architecture and Background

3.1 GPU Architecture

GPUs were first designed for the execution of computer graphics computations.
In such programs, thousands of instructions can be executed simultaneously on
different data. Since GPU architectures can provide thousands of cores to exe-
cute these instructions, they were the optimal hardware platform for computer
graphics computations. Later, other applications with similar features started
to utilize the GPUs, hence the name GPGPUs. Figure 3.1 gives a high-level
view of a general GPU architecture. As shown in this figure, memory blocks
and SMs are the two main components of a GPU architecture. Although named
differently in different architectures, SM is the major building block of the GPU.
It is a collection of many cores that can run GPU’s specific assembly code in
a synchronized fashion. The number of cores in an SM varies between different
architectures. For Nvidia’s Fermi generation, this number is usually 32. Further-
more, SMs are grouped to form a cluster. The number of clusters and SMs in
one cluster also differ among different architectures. In general, each cluster has
one response FIFO which is used as a buffer saving the data collected from the
interconnection network as a response to the memory requests of the SMs. The
SMs in one cluster receive their data in a FIFO order from the response FIFO

14

Figure 3.1: High level view of a general GPU architecture.

buffer. The memory system in GPU consists of different cache levels and per-SM
shared memory alongside a global memory. After the first level cache miss, the
memory requests go through the interconnection network, where the L2 cache is
searched for the data. If the data is unavailable in the L2 cache, the instruction
needs to wait until the data returns from the memory. The injection buffer in
Figure 3.1 accepts memory accesses from the SMs and sends the requests to the
interconnection network.

While running a GPU program, ideally, all the cores in the SM execute in-
structions at the same time. A GPU program consists of many threads. Each of
these threads has its own memory space. These threads run the same instructions
on different data and are grouped to form a warp. All threads in one warp have
the same instructions running on different data. At each core clock cycle, a warp
runs one or more instructions on each core of the corresponding SM. However, the
GPU’s pipeline may not be fully utilized. This can happen for different reasons,
including the lack of application parallelism. When the program is sequential,
concurrent threads cannot be executed, and some SMs may stay idle. Control
divergence is another reason that prevents better utilization of the GPU. Control

15

divergence happens when different threads follow different control flows due to
branch instructions executed. Since the cores on one SM strictly require execut-
ing the same instruction, threads with different instructions cannot fill all the
core slots on the SM. The other reason for the lack of achieving GPU theoretical
peak performance is the memory requests that stall the pipeline. When a warp
encounters a cache miss, it stays inactive until the data returns from memory. At
the same time, other active warps take turns executing their instructions on the
SM. When multiple warps need to get data from the global memory, the warp
scheduler runs out of active warps, and the pipeline has to stop until at least one
warp becomes active again. During these cycles, the SM stays idle, providing an
excellent opportunity for reducing voltage/frequency to decrease power consump-
tion without any performance loss. Therefore, predicting such execution behavior
is critical in GPU’s online power optimizations through DVFS.

In our framework, for online DVFS optimization, we use simple power and
performance models from the literature. From a high-level perspective, firstly, we
run the application for a constant number of cycles, called an interval. On modern
GPU hardware, 1µs is the smallest DVFS adjustment window with negligible
overhead on GPU’s performance [41]. Therefore, we set the interval time to
700 cycles with the default GPU’s core frequency of 700MHz. This way, the
interval time will be constant throughout the execution of the applications. In
each interval, we record the dynamic and static power, stall time, and the total
number of executed instructions for each SM separately. The collected data are
then given to our genetic algorithm and analytical model. The genetic algorithm
and analytical model use the power and performance models to calculate the
optimal frequency set. The performance and power models are described in detail
in Section 3.2 and Section 3.3, respectively.

The data collection and frequency adjustment is performed per SM. While it is
technically possible to adjust SM frequencies individually, current GPU hardware
and the respective tool sets do not provide a mechanism to implement this. Hence,
we use a state-of-the-art GPU simulator, GPGPUSIM [21]. More specifically, we
modify it to account for per-SM statistics collection and power calculation. This
GPU simulator is a functional and timing simulator for GPUs and is widely used

16

in the literature. We extend the base simulator of GPGPUSIM to support per-
SM data collection, power calculation, and dynamic frequency adjustment. We
also integrate our analytical model and genetic algorithm into the tool.

GPUWATTCH [40] is an integrated tool with GPGPUSIM that calculates the
power consumption of the simulated GPU. This tool uses run-time data of the
application and hardware specifications to derive an accurate power model for the
GPU. The default setting of GPUWATTCH combines all SMs data to calculate
the overall power consumption. We extended the tool to calculate per SM power
consumption.

Figure 3.2 depicts the overall mechanism to derive the cores’ static and dy-
namic power, non-core related power, stall time, and the number of committed
instructions using GPUWATTCH. Later, we use these data in our power, perfor-
mance, and optimization models. In each interval, core-related data are recorded
separately for each SM, and the non-core-related data are combined for the whole
GPU. At the end of each interval, the collected data are given to GPUWATTCH.
Modified GPUWATTCH calculates per-SM static and dynamic power and overall
non-core related static and dynamic power.

The following sections describe our power and performance models used in the
analytical model and the genetic algorithm.

3.2 Performance Model

For each interval, we assume that the execution time consists of two separate
phases: computation phase and stall phase [42]. In the computation phase, the
total execution time is just due to execution latency in the pipeline. If there is
no stall, meaning if all the cache accesses were hit, computation time would be
equal to the total execution time of the current interval. The stall phase is when
the instructions have encountered a cache miss, waiting for their data to return
from the main memory, thereby stalling the pipeline completely. The execution

17

Figure 3.2: Our approach to derive the details of a specific interval. PSi: Static
Power for SMi, PDi: Dynamic Power for SMi, TSi: Stall Time for SMi, Ii:
Total number of committed instructions for SMi.

18

time overlapped with memory accesses is considered as pure computation time.
Equation 3.1 decomposes the interval time into stall time and computation time.

T = TS + K × I (3.1)

• T : Interval time,

• TS: Stall time,

• I: Total number of instructions executed in the interval,

• K: Average execution time of one instruction excluding the waiting time
for memory response due to cache misses. It can be calculated as follows:

K = (T − TS)/I. (3.2)

We record TS and I for each interval and calculate K for each SM. We use
these data to predict the number of instructions executed in the following intervals
with a new frequency. Let us assume the current execution is at ith interval, and
we want to predict the number of executed instructions at (i + 2)th interval.
Equation 3.3 models the execution time of the ith recorded interval. Whereas,
Equation 3.4 shows the predicted values for the (i + 2)th interval. Note that, as
shown in Figure 3.3, we collect the actual execution statistics in interval i, which

Figure 3.3: Interval-based frequency adjustment used in our approach.

19

are used in our model during the interval (i + 1). Decisions made during interval
(i + 1) are applied during interval (i + 2). We choose such an approach to avoid
performance overhead.

Ti = TSi + Ki × Ii (3.3)

Ti+2 = TSi+2 + Ki+2 × Ii+2 (3.4)

Since we have set the sampling period to 700 cycles with the default core’s
frequency of 700MHz, the interval time is constant throughout the execution
of the application; therefore: Ti+2 = Ti. Assuming that application behaves
similarly, meaning that the same instructions with the same memory accesses
and execution times will be executed in the (i + 2)th interval. Based on this
assumption, we can say that by changing the SM’s frequency, K will change
proportionally with fi

fi+2
. fi is the current frequency, and fi+2 is the new frequency

we are trying to optimize. In this representation, we use the α term to represent
the ratio of the two frequencies. More specifically,

• α = fi+2
fi

,

• Ki+2 = Ki

α
.

Since the memory frequency is the same, the memory latency will not change.
So, TS in (i + 2)th interval will just depend on the number of instructions to be
executed in the (i + 2)th interval: TSi+2 = Ii+2

Ii
× TSi. For the new interval, the

number of executed instructions can be expressed using Equations 3.3 and 3.4 as
follows:

TSi + Ki × Ii = TSi × Ii+2

Ii

+ Ki

α
× Ii+2 (3.5)

The predicted number of instructions in the new interval is:

Ii+2 = α × Ii × (TSi + Ki × Ii)
TSi × α + Ki × Ii

(3.6)

20

For the simplicity of our performance and optimization models and to decrease
the cost of optimization operations, we do not consider the computation time
overlapped with the memory accesses in our performance model.

3.3 Power Model

Using the modeled simulator, we calculate the power consumption in each inter-
val, for both dynamic and static power. The dynamic power changes proportion-
ally with f ∗ V 2, while static power changes with V 2 [19].

PowerGP U = PowerDynamic + PowerStatic (3.7)

Including the voltage effects on the power in the optimization models increases
the complexity of the operations. This will add extra overhead while performing
the optimization decisions. Hence, for simplicity, in optimizing the new frequency,
we do not consider the effect of the voltage on static and dynamic power. Instead,
we use it in calculating the previous interval’s power.

• PDynamici+2 = α × PDynamici

• PStatici+2 = PStatici

Based on above expressions, power consumption for the GPU can be predicted
as:

PowerGP Ui+2 = PowerStatici
+ PowerDynamici

× α (3.8)

21

3.4 Power per Instruction Metric

We use power per instruction (P
I
) as our metric, M , to minimize as shown in

Expression 3.9. This metric accounts for the performance loss during DVFS
optimizations. We use this metric instead of EDP and ED2P ; in our model, the
memory access overlapped with the computation is considered as computation
time. Therefore, the optimization model will be more restricted to decrease the
frequency for power saving. Moreover, since the saved power using DVFS is
significantly high, it justifies the minimal performance loss. Hence, using only
energy as optimization metric ignores the performance loss in favor of power
saving.

M = P

I
= PowerStatic + PowerDynamic

I
(3.9)

22

Chapter 4

Analytical Model

We implement two optimization techniques using the power and performance
models mentioned earlier. Firstly, we try to minimize power per instruction for
each SM using an analytical approach. In parallel, we use a genetic algorithm
model to reduce the overall power per instruction. Then, we choose the new
frequency set according to whichever provides the lowest overall power per in-
struction. We use the genetic algorithm to account for the SMs conflict over
the memory components and interconnection network using the fitness function.
Since the genetic algorithm is a search based-method, it may be stuck in a local
minimum. Therefore, we use the analytical model to ensure that the new fre-
quency set at least considers the power per instruction for each SM. Our experi-
ments show that the optimization models used in our framework add an energy
cost of less than 1%. This energy overhead is negligible compared to the GPUs’
total energy consumption and savings provided by our approach.

23

Using the Equations 3.6, 3.8, and 3.9, we obtain the power per instruction
value M for the next interval as follows:

Mi+2 = Pi+2

Ii+2
= PowerStatici

+ PowerDynamici
× α

α×Ii×(T Si+Ki×Ii)
T Si×α+Ki∗Ii

(4.1)

Minimizing power per instruction for each SM:

∂Mi+2

∂α
= 0 → α =

√
PStatici

× Ki × Ii

PDynamici
× TSi

(4.2)

α is ratio of the chosen best frequency to current frequency for the SM in hand.

fSMk
i+2 = αSMk× fSMk

i (4.3)

For many intervals, fSMk
i+2 is predicted to be greater than the default frequency

or less than the lowest possible frequency. Since these frequency levels are not
available on the hardware, for these cases, we set the SM’s frequency to the
highest and lowest levels, respectively. For the other values of α, we set the new
frequency to the closest available frequency.

24

Chapter 5

Genetic Algorithm Model

Alongside the analytical model, we have used a genetic algorithm to account
for the effect of multiple SMs’ requests for the memory and contention over the
interconnection network. This is achieved by implementing a fitness function that
calculates the total power per instruction over all the SMs. The high-level view
of the proposed genetic algorithm model is shown in Figure 5.1.

In the first step shown in Figure 5.1, the initial population is created, and the
chromosomes’ respective fitness values are calculated. Then, the mutation and
crossover are applied, and the next generation is created using the new children

Figure 5.1: High-level view of the genetic algorithm model.

25

and a fraction of the fittest parents. We repeat the same process except for
population initialization until the number of iterations is reached. In the end,
the fittest chromosome is returned as the optimal frequency set. While it is
possible to increase the number of iterations, in our experiments, we found it
reasonable to select this value as 10. This is mainly due to the fact that we do
not see a significant improvement after ten iterations in our tests, and increasing
this number can potentially increase the execution time and energy consumption.
The details of each step in our genetic algorithm based implementation are given
below.

5.1 Population Initialization

The initial population is generated using the static and dynamic power, stall time,
and the number of committed instructions per SM. The chromosomes used in our
genetic algorithm are represented with the frequency set selected per SM. Each
gene represents a potential new frequency for a specific SM. Figure 5.2 shows a
chromosome used in our implementation.

The first chromosome is the frequency set of the previous interval. Other
chromosomes’ genes are initialized using a random function that chooses the fre-
quency from the available frequencies in the hardware. We calculate the fitness
function for each chromosome, which is expressed by the overall power per in-
struction. Without any changes, we directly transfer the top 20% of the fittest
chromosomes to the next generation.

Figure 5.2: A chromosome used in our genetic algorithm.

26

5.2 Fitness Function

Equation 5.1 shows the total number of executed instructions over all SMs for
the next interval:

IT OT AL
i+2 = ΣN−1

k=0 ISMk
i+2 (5.1)

Note that, in the above equation, N is the number of available SMs. Using
Equation 3.6 and 5.1, the predicted committed instructions given in Equation 5.1
now becomes:

IT OT AL
i+2 = ΣN−1

k=0
αSMk × ISMk

i × (TSSMk
i + KSMk

i × ISMk
i)

TSSMk
i × αSMk + KSMk

i × ISMk
i

(5.2)

Furthermore, using Equation 3.8 the total power for the next interval is cal-
culated as follows:

PowerT OT AL
i+2 = ΣN−1

k=0 (PowerSMk
Statici

+ αSMk × PowerSMk
Dynamici

) (5.3)

Combining Equations 5.2 and 5.3, we can calculate the overall power per instruc-
tion for all the SMs, which is used as our fitness function:

MT OT AL
i+2 =

ΣN−1
k=0 (PowerSMk

Statici
+ αSMk × PowerSMk

Dynamici
)

ΣN−1
k=0

αSMk ×I
SMk
i ×(T S

SMk
i +K

SMk
i ×I

SMk
i)

T S
SMk
i ×αSMk +K

SMk
i ×I

SMk
i

(5.4)

27

Figure 5.3: Crossover operations used in the genetic algorithm.

5.3 Crossover

For applying crossover, we pick two parents from the initial population using
weighted probabilities. The chromosomes with lower fitness values have a higher
chance of being selected. We use single-point crossover in our model, which refers
to choosing a random gene in both parents and swapping the genes between
them to generate new chromosomes. We repeat the crossover to generate 40% of
the new generation’s chromosomes. Figure 5.3 is an illustration of the crossover
technique. The purpose of crossover is to use the combination of the fittest
parents to explore their neighboring space, hoping that the new chromosome has
a lower fitness value.

28

Figure 5.4: Mutation operations used in the genetic algorithm. (a) Bit Flip
mutation, and (b) Swap mutation.

5.4 Mutation

After generating the new chromosomes using crossover, we apply the mutation
technique. Firstly, two parents are chosen based on weighted probabilities. Recall
that this way, chromosomes with lower fitness values have a higher chance of
generating new chromosomes. Then we apply Bit-Flip and Swap mutations on
these chromosomes. In Bit-Flip mutation, one gene is randomly selected, and the
value for that gene is updated using a random function. The new value is chosen
from the frequencies that the hardware supports. In Swap mutation, we randomly
select two genes and swap their values. We apply these two mutation techniques
to the chosen parents to generate 40% of the new populations’ chromosomes.
Figure 5.4 shows Bit-Flip and Swap mutation operations. The mutation technique
is usually done to escape the local minimum using the fittest chromosomes and
randomly changing some of their genes.

29

5.5 Hyper-parameters

The hyper-parameters used in our genetic algorithm model are shown in Table 5.1.
We have fine-tuned these values through experimental evaluations. The mutation
rate is selected as 0.4. We observed that the genetic algorithm converges to a
local minimum for lower mutation rate values without proper exploration of the
search space. Moreover, higher mutation rate values decrease the probability of
convergence. The crossover rate is also set to 0.4 to converge the search to an op-
timal solution. The remaining 20% of the new population’s chromosomes are the
20% of elite chromosomes of the previous population. The number of iterations
is set to 10, and we generate ten chromosomes in each iteration. As explained
before, increasing the number of iterations is possible, but we fine-tuned these
values based on the experiments. Our experiments show that further increas-
ing the number of iterations does not significantly improve. Furthermore, this
increase can potentially cause additional execution time and energy overheads.

Table 5.1: Fine-tuned hyper-parameters of the genetic algorithm.

Hyper-parameter Value and Description
Population size 10
Number of iterations 10
Crossover method Single-point crossover
Crossover rate 40%
Mutation method Bit-Flip and Swap
Mutation rate 40%
Elite count rate 20%

30

5.6 Hybrid Model

The new frequency sets given by the analytical model and genetic algorithm are
evaluated to check which one has less value for overall power per instruction.
Accordingly, interval (i + 2)th will run with the selected frequency set. Figure 5.5
shows the hybrid model used to find the best frequency set for GPUs’ SMs for
each interval.

Figure 5.5: Hybrid model to find the best frequency set.

While executing instructions on the GPU, some of the SMs may require higher
number of memory accesses, creating congestion in the interconnection network.
Therefore, the memory accesses for other SMs will also have longer latency. Using
the total power per instruction in the genetic algorithm’s fitness function ensures
that the new frequency set considers this effect. However, since the genetic al-
gorithm is a search-based optimization technique, it can be stuck in the local
minimum and propose a non-optimal frequency set. Using an analytical model
alongside the genetic model guarantees that the power per instruction of each
SM is minimized.

31

Chapter 6

Experimental Evaluation

6.1 Setup

As explained before, we use GPGPUSIM as our test platform since it is impos-
sible to adjust frequencies for SMs individually in the hardware. Although our
approach can work with any GPU architecture, we tested with NVIDIA’s GTX
480 GPU in order to be able to compare our results with previous efforts. NVIDIA
GeForce GTX 480 has 15 SMs, and seven different frequency levels, ranging from
100MHz to 700MHz. The default frequency is set to the highest value. The volt-
age of the hardware is set to 1V by default. The lowest voltage is 0.55V which
corresponds to the lowest frequency value. It is well-known that voltage changes
linearly with frequency [15][43]. Therefore, we consider a linear relation between
the SM’s frequency and the voltage.

For the evaluation of our model, we use the Rodinia benchmark [20]. Rodinia
is one of the most commonly used benchmarks in GPU performance evaluation.
It includes several kernels, where each benchmark stresses a different part of GPU
architecture. We use 16 kernels from the Rodinia benchmark suite to test our
approach. The kernels are selected to have a good representation of possible GPU
applications with different execution properties.

32

Kernel Summary No. executed instructions No. intervals
BFS Breadth-First Search 2.30*1e6 1081
CFD Computational Fluid Dynamics 5.37*1e7 171295
Kmeans k-means Clustering 1.49*1e6 2467
LCY Leukocyte Tracking 6.18*1e8 151308
LUD LU Decomposition 5.24*1e8 64316
NN Neural Network 7.60*1e8 138934
SR Speckle Reducing Anisotropic Diffusion 2.14*1e8 35472
SC Stream Cluster 3.49*1e8 145558
HW Heartwall 6.16*1e8 72098
HS Hotspot 9.77*1e8 77781
MUM MUMmerGPU 1.68*1e7 1872
B+tree b+tree 1.29*1e7 2142
Backprop Backpropagation 2.94*1e6 294
Gaussian Gaussian Elimination 2.73*1e7 9118
LavaMD LavaMD 5.09*1e8 103710
Path Pathfinder 3.48*1e8 145558

Table 6.1: Characteristics of the tested benchmarks. The first column gives the
name, the second column gives a brief summary of the benchmark, the third
column shows the total number of executed instructions, and the last column is
the total number of sampling intervals.

Table 6.1 lists the characteristics of the tested benchmarks. More specifically,
the first column gives the name; the second column summarizes the benchmark.
The third column shows the total number of executed instructions, and the last
column shows the total number of sampling intervals.

33

Figure 6.1: Mean absolute percentage error prediction of stall time for 15 Ro-
dinia kernels across all GPU SMs. There are three tested frequencies (600MHz,
400MHz, 100MHz) for each of which the kernels are executed for 20µs. The
results are compared to the baseline with 700MHz for the core’s frequency.

6.2 Performance Prediction Error

We run our kernels for 20µs with four different core frequency settings. The
data of the default frequency is used to predict the stall time and the number
of executed instructions in other frequency levels. Figure 6.1 shows the mean
absolute percentage error of the predicted stall time, whereas Figure 6.2 shows
the mean absolute percentage error of the number of executed instructions using
the recorded values across 15 SMs for all 15 kernels. Among the 16 kernels, LUD
has one SM working during the 20µs period, which is why it is not included
in the error results. The prediction error of the stall time and the number of
executed instructions vary with the target frequency. For 600MHz as the core
frequency, the average prediction error is 6.34% for stall time and 6.25% for the
number of executed instructions. With lower frequencies, the prediction error is
increasing, which is understandable as the number of executed instructions in the
defined execution period is decreasing, and the similarity between instructions is
declining. Among all the kernels, LCY shows a very high prediction error for the

34

Figure 6.2: Mean absolute percentage error prediction of executed instructions
for 15 Rodinia kernels across all GPU SMs. There are three tested frequencies
(600MHz, 400MHz, 100MHz) for each of which the kernels are executed for 20µs.
The results are compared to the baseline with 700MHz for the core’s frequency.

stall time. We believe this is due to the inaccuracy of our model in capturing
the computation overlapped with memory latency. The same applies to the high
prediction error of the number of executed instructions for CFD, NN, HW, and
Gaussian.

On average, our model has 18.58% and 16.48% mean absolute percentage error
across all kernels on stall time and the number of executed instructions, respec-
tively. Note that, our baseline frequency setting is 700MHz and we test with three
different frequency settings over the default core frequency. More specifically, the
frequencies are set to 1/7 (100MHz), 4/7 (400MHz), and 6/7 (600MHz) of the
default frequency.

35

Figure 6.3: Percentage energy savings using the combination of analytical model
and genetic algorithm for the tested benchmarks.

6.3 Experimental Results

Figure 6.3 shows the total energy savings with our approach. The average energy
savings obtained using our approach is around 10%, which is successful when
the conservative nature of the technique is considered. More specifically, as can
be seen, Kmeans and CFD provide a very high percentage of energy savings.
This is not due to the high stall time, but it is caused by the fact that Kmeans
and CFD suffer from high load imbalance among SMs. While some SMs are
still executing instructions, other SMs are done with their computations. In
these cases, our approach sets the idle SMs’ frequency to the lowest frequency
level until they resume their execution. Some benchmarks, such as HS, B+Tree,
Backprob, LavaMD, and Path, do not take advantage of the proposed scheme
since the ratio of stall cycles to busy cycles is very small and, thereby, does not
provide opportunities for energy savings.

36

Figure 6.4: Execution time increase in percentage using the combination of ana-
lytical model and genetic algorithm for the tested benchmarks.

Figure 6.4 shows the performance loss using our online DVFS adjustment tool.
The results are reported as the percentage increase in execution time based on
the default frequency settings. As can be seen from this figure, the average per-
formance overhead is less than 1%, which is acceptable when potential energy
savings are considered. Based on the results given in Figure 6.4, the performance
loss for BFS and CFD is relatively high compared to other kernels. For BFS and
CFD, we observe that the performance overhead using the statistics collected at
(i)th interval for frequency adjustment at (i + 2)th interval, is higher than the
performance loss when we use statistics of interval (i)th for frequency adjustment
of interval (i + 1)th. Therefore, the high percentage of performance loss in these
two kernels is due to the lack of similarity between non-consequent intervals.
Moreover, the kernels with a high percentage of stall cycles provide better oppor-
tunities for decreasing the SMs’ frequency for saving energy, thus slowing down
the execution pipeline and having relatively higher performance overhead. In gen-
eral, the difference between the performance loss of different kernels is possibly
caused by either the lack of similarity between non-consequent intervals (i.e., (i)th

and (i + 2)th intervals) or it is because our optimization framework finds better

37

Figure 6.5: The ratio of stall cycles to total busy cycles and the ratio of idle cycles
to the total cycles for the tested benchmarks (in percentage).

opportunities for decreasing the SMs’ frequency for saving energy in kernels with
a high percentage of stall cycles, than the kernels that run with maximum SMs’
frequency.

The kernels with a high percentage of idle time benefit significantly from DVFS.
Figure 6.5 shows the ratio of the total idle cycles of all the SMs to the total number
of cycles. It also depicts the number of stall cycles to the total cycles in which SMs
have instructions to execute. The ratio of idle cycles to the total number of cycles
is very high for CFD and Kmeans. As explained earlier, the SMs’ frequency and
voltage are set to the lowest value in these cycles. Since there is no instruction
to be executed in these cycles, decreasing the SMs’ frequency does not affect the
total execution time. Also, the ratio of the stall cycles to the total number of
busy cycles is very low. Therefore, during busy cycles, the SMs’ frequency is set
to the highest level, thereby reducing the energy benefit of DVFS. So, for CFD
and Kmeans, the saved energy is just due to setting the frequency and voltage to
the lowest in idle cycles.

38

For BFS, NN, SR, and HW kernels, the ratio of the total number of stall cycles
to the total number of busy cycles is high, and most of the saved energy is due to
changing frequency while having a high percentage of stall cycles. In these cases,
our online DVFS framework sets the frequency of the SMs to lower levels, which
slows down the execution pipeline. However, since most of the time, the execution
pipelines of different SMs are stalled, the performance loss is negligible when
compared to the saved energy. The rest of the kernels experience less amount of
stall cycles. In Figure 6.5, Backprop and B+tree show a very small percentage
of stall cycles to the busy cycles. These kernels are always in a compute phase,
and the execution pipelines of different SMs do not stall. Therefore, there is no
opportunity to save energy using DVFS without a significant performance loss.
LavaMD, Path, and HS show a very high percentage of stall cycles to overall busy
cycles. However, the saved energy is not significant. We observe that the stall
cycles must be at least 60% of the total busy cycles for the least performance
loss in each interval. Although LavaMD, Path, and HS have a high value for
memory operations on average, in each interval, the stall cycles do not exceed
60% of total busy cycles. In these cases decreasing the SMs’ frequency causes a
lot of performance loss. Since our model’s optimization goal is to minimize power
per instruction, it chooses not to reduce the frequency in such cases.

In Figure 6.6, we give the heatmap of the kernels’ intervals. More specifically,
we classify the sampling intervals into ten classes. In each interval, we calculate
the ratio of stall cycles to the total busy cycles. If this ratio is less than 10%,
that interval belongs to class one. If it is between 10% and 20%, that interval
belongs to class two, and so on. Then, we sum the number of intervals that fall
into each class and find the ratio of the intervals of each class to the total number
of intervals. The kernels that experience a higher percentage of intervals that fall
to the classes with stall ratio to total busy cycles of more than 60% benefit from
DVFS with the least amount of performance loss.

39

Although the total stall cycles to total busy cycles are high for LavaMD, Path,
and HS, they do not have a high percentage of intervals with stall cycles to busy
cycles with a ratio greater than 60%. That is why our optimization model does
not decrease the frequency to save power.

Figure 6.6: Heatmap of the kernels’ intervals classification based on the ratio of
stall cycles to busy cycles in each interval.

40

Figure 6.7: Average energy savings in percentage for the analytical, genetic algo-
rithm, and hybrid models for BFS, NN, SR, and HW.

6.4 Sensitivity Analysis

We first compare the analytical model with the genetic algorithm model as part
of the sensitivity analysis. Specifically, we test both models with selected bench-
marks, namely, BFS, NN, SR, and HW. Energy and performance results are
shown in Figure 6.7 and Figure 6.8, respectively. As shown in Figure 6.7, for all
the kernels tested, using only the analytical model provides better energy results
when compared to the genetic algorithm and the hybrid model. However, as de-
picted in Figure 6.8, the performance loss is also higher for the analytical model.
More specifically, the performance loss for BFS is significantly high using only
the analytical model. This is due to ignoring the effect of different SMs’ memory
access on the interconnection network and memory system. For the rest of the
kernels, the performance loss for the analytical model is relatively low, and it is
reasonable just to use the analytical model.

41

Figure 6.8: Average performance overhead in percentage for the analytical, ge-
netic algorithm, and hybrid models for BFS, NN, SR, and HW.

On the other hand, as can be seen in Figure 6.8, the genetic algorithm causes
less performance overhead. But, this comes with a price, where the energy savings
provided by the genetic algorithm model is also lower when compared with the
hybrid and the analytical models. For example, using only the genetic algorithm
in NN has an energy saving of 9.83%, whereas it is 12.85% with the analytical
model. We observe that the genetic algorithm takes a more conservative path
while decreasing the SMs frequency in order to minimize the performance loss.
This can possibly be due to considering different SMs’ effects on each other’s
latency in the fitness function or caused by being stuck in the local minimum
in the genetic algorithm. Overall, we believe that the hybrid model provides a
reasonable combination of the genetic algorithm and the analytical model. This
way, we can both decrease the performance overhead experienced in the analytical
model and achieve better energy results when compared to the genetic algorithm
model.

42

Figure 6.9: Sensitivity of the energy savings and the performance overheads to
the interval time (in µs) for BFS.

We test BFS with six different interval times (in µs) to evaluate the effect of
interval time on energy savings and performance overheads. Figure 6.9 shows
the energy savings and the performance loss for the aforementioned sensitivity
analysis. As seen in this figure, increasing the interval time decreases the potential
for energy savings. This is mainly due to the fact that, with larger interval
times, the similarity of the instructions between subsequent intervals diminishes.
Therefore, our power and performance models’ accuracy decreases, choosing non-
optimal frequency sets in the optimization models.

In the literature [41], performing DVFS with a 1 µs interval time causes a 4ns
performance overhead. We believe this 0.4% overhead is negligible. However,
further reducing the interval time will potentially hurt the overall performance
as DVFS overhead exceeds 1%. Therefore we used 1 µs as the minimum interval
time in our experiments. As seen in Figure 6.9, the smallest value for the interval
time (i.e., 1 µs) gives better results for both performance and energy. Since
this period is equivalent to 700 cycles, it is well enough for the optimization
operations required by our approach, thereby allowing a clear overlap with the
actual execution in the current interval.

43

Figure 6.10: Comparison of our model with respect to CRISP and its respective
models.

6.5 Comparison with Literature

We compare our results with CRISP [12], which has shown impressive accuracy
in modeling GPUs’ performance using an analytical model. In their model, they
utilize the computation that overlaps with memory latency. They extended their
approach using a more straightforward model named CRISP L, which requires
fewer changes in the hardware architecture. Figure 6.10 compares our approach
and CRISP for average energy savings and performance overheads. Note that
there is no information available in the CRISP paper about the energy savings
of CRISP L’s model. All other models except ours use a single frequency level
for all the SMs. On the other hand, our approach considers the load imbalance
and different phase behavior in SMs execution time and adjusts the frequency
for each SM individually. Overall, our model saves 9.59% energy on average with
less than 1% performance loss, while CRISP’s complicated model saves 12.9%
energy with 3.4% performance loss on the selected kernels tested. We believe

44

that our approach provides a reasonable solution since it significantly reduces
the performance overheads compared to other methods. Among the approaches
tested, the least performance overhead is achieved by CRISP with a 3.4% value
as opposed to our 1% performance overhead. Additionally, our energy savings
are slightly less than the best approach (9.59% vs. 12.9%).

6.6 Discussion

This section discusses two possible extensions and improvements to our DVFS
optimization framework. In our approach, we use a fixed time interval based
approach in which the application’s statistics are recorded during the execution.
At the end of each interval, we predict the number of executed instructions and
stall time for the next interval using these statistics, assuming that the subsequent
intervals are computationally similar. Although this is a safe assumption, we
propose applying DVFS optimizations with a deeper look using program analysis
at the assembly code level for higher power and performance prediction accuracy.

We perform the predictions at the beginning of iterative sections of the as-
sembly code to utilize the program characteristics better. More specifically, we
use the loops inside the code, where the same instructions are executed multiple
times. These code regions with the exact instructions are marked as iterative
sections and detected as the first step in the proposed scheme. We can use a loop
detection technique [44] to detect the iterative sections at run-time, where the
executed instructions are evaluated to check if there is a branch instruction whose
target program counter (PC) is less than the branch’s PC. In such a case, poten-
tially, the execution of a loop has finished, and a new iteration of the loop has
started. Since the same instructions are highly likely to be executed in each iter-
ation, the iterations’ statistics are expected to be similar. Therefore, the power
and performance model’s accuracy will be potentially higher. We consider this
approach a potential improvement to our online optimization model and plan to
extend the framework to support such a feature.

45

The second improvement that can be applied to our optimization framework
is task-based mapping of the threads to different SMs. As discussed in Chapter
1, different SMs can experience different run-time behavior due to load imbalance
and diverse phase behaviors. Dynamic warp formation (DWF) is a technique to
rearrange and reschedule threads assigned to a single SM in order to improve
thread-level parallelism (TLP) inside the warps. This method reduces the per-
formance loss caused by branch divergence as opposed to static warp formation
in which, after a divergence point, the threads are serialized until they reach
the convergence point. We propose to apply the same idea at the GPU level
by dynamically scheduling the thread across different SMs based on their phase
behavior and load characteristics. Therefore, the independent threads in one
SM waiting for other threads to release the pipeline resources can be assigned to
other idle SMs. We consider applying this method beside our DVFS optimization
model to increase performance alongside energy savings.

46

Chapter 7

Conclusion

This work presents an online DVFS optimization framework that adjusts each
SMs’ frequency individually. The goal of per SM frequency adjustment is to
remove the effect of load imbalance among different SMs on the DVFS energy
saving. For this, we use an interval-based approach in which the application’s
statistics are collected for each SM separately after a certain number of cycles.
The collected data is used to find the optimal frequency set for the next interval.
We use a simple performance model to predict the number of executed instruc-
tions and stall cycles using the intervals’ statistics. Besides, we use a power model
adopted from the literature to predict the following intervals’ power consumption.
Using these models, we design an optimization model that can dynamically adjust
SMs’ frequency to reduce the power per instruction.

Our optimization model uses an analytical model and a genetic algorithm-
based model in tandem. The analytical model tries to minimize the power per
instructions for each SM. The genetic algorithm-based model accounts for the
SMs’ competition over the interconnection network and memory system by adopt-
ing total power per instruction as the fitness function. Since the genetic algorithm
is a search-based model, it may be stuck in the local minimum. Using the hy-
brid model ensures that the proposed frequency set can minimize the power per
instruction for each SM individually.

47

In our implementation, the prediction and optimization operations are per-
formed in parallel with the execution of the next interval. We use this method to
reduce the potential performance overhead of the proposed method. The selected
frequency set is applied for the execution of the next interval. We believe that
the extra power required by our optimization framework is negligible compared
to GPU’s power consumption. We tested our approach with a state-of-the-art
GPU architecture and GPU benchmarks. Our results show that we can achieve
9.59% energy saving with a 0.95% performance loss on average.

48

Bibliography

[1] E. BUBER and B. DIRI, “Performance analysis and cpu vs gpu compar-
ison for deep learning,” in 2018 6th International Conference on Control
Engineering Information Technology (CEIT), pp. 1–6, 2018.

[2] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous computing
techniques,” ACM Comput. Surv., vol. 47, jul 2015.

[3] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and
E. Lindahl, “Gromacs: High performance molecular simulations through
multi-level parallelism from laptops to supercomputers,” SoftwareX, vol. 1-
2, pp. 19–25, 2015.

[4] Y. Abe, H. Sasaki, M. Peres, K. Inoue, K. Murakami, and S. Kato, “Power
and performance analysis of gpu-accelerated systems,” in Proceedings of the
2012 USENIX Conference on Power-Aware Computing and Systems, Hot-
Power’12, (USA), p. 10, USENIX Association, 2012.

[5] Y. Abe, H. Sasaki, M. Peres, K. Inoue, K. Murakami, and S. Kato, “Power
and performance analysis of gpu-accelerated systems,” in Proceedings of the
2012 USENIX Conference on Power-Aware Computing and Systems, Hot-
Power’12, (USA), p. 10, USENIX Association, 2012.

[6] F. Mendes, P. Tomás, and N. Roma, “Exploiting non-conventional dvfs on
gpus: Application to deep learning,” in 2020 IEEE 32nd International Sym-
posium on Computer Architecture and High Performance Computing (SBAC-
PAD), pp. 1–9, IEEE, 2020.

49

[7] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and fre-
quency scaling for precise energy and performance tradeoff based on the
ratio of off-chip access to on-chip computation times,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 1,
pp. 18–28, 2005.

[8] S. Hajiamini, B. Shirazi, A. Crandall, and H. Ghasemzadeh, “A dynamic pro-
gramming framework for dvfs-based energy-efficiency in multicore systems,”
IEEE Transactions on Sustainable Computing, vol. 5, no. 1, pp. 1–12, 2019.

[9] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini,
“Coscale: Coordinating cpu and memory system dvfs in server systems,” in
2012 45th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pp. 143–154, 2012.

[10] B. Acun, K. Chandrasekar, and L. V. Kale, “Fine-grained energy efficiency
using per-core dvfs with an adaptive runtime system,” in 2019 Tenth In-
ternational Green and Sustainable Computing Conference (IGSC), pp. 1–8,
2019.

[11] A. Mishra and N. Khare, “Analysis of dvfs techniques for improving the gpu
energy efficiency,” Open Journal of Energy Efficiency, vol. 04, pp. 77–86, 01
2015.

[12] R. Nath and D. Tullsen, “The crisp performance model for dynamic voltage
and frequency scaling in a gpgpu,” in 2015 48th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pp. 281–293, 2015.

[13] L. Chen, O. Villa, S. Krishnamoorthy, and G. Gao, “Dynamic load balancing
on single- and multi-gpu systems,” pp. 1–12, 01 2010.

[14] B. Gallet and M. Gowanlock, “Load imbalance mitigation optimizations for
gpu-accelerated similarity joins,” pp. 396–405, 05 2019.

[15] X. Mei, Q. Wang, and X. Chu, “A survey and measurement study of gpu
dvfs on energy conservation,” Digital Communications and Networks, vol. 3,
no. 2, pp. 89–100, 2017.

50

[16] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás, “Dvfs-aware application clas-
sification to improve gpgpus energy efficiency,” Parallel Computing, vol. 83,
pp. 93–117, 2019.

[17] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou, “Gpgpu
performance and power estimation using machine learning,” in 2015 IEEE
21st International Symposium on High Performance Computer Architecture
(HPCA), pp. 564–576, 2015.

[18] J. Guerreiro, A. Ilic, N. Roma, and P. Tomas, “Gpgpu power modeling for
multi-domain voltage-frequency scaling,” in 2018 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pp. 789–800,
2018.

[19] J. Nunez-Yanez, K. Nikov, K. Eder, and M. Hosseinabady, “Run-time power
modelling in embedded gpus with dynamic voltage and frequency scaling,”
in Proceedings of the 11th Workshop on Parallel Programming and Run-
Time Management Techniques for Many-Core Architectures / 9th Workshop
on Design Tools and Architectures for Multicore Embedded Computing Plat-
forms, PARMA-DITAM’2020, (New York, NY, USA), Association for Com-
puting Machinery, 2020.

[20] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in 2009 IEEE International Symposium on Workload Characterization
(IISWC), pp. 44–54, 2009.

[21] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in 2009 IEEE
International Symposium on Performance Analysis of Systems and Software,
pp. 163–174, 2009.

[22] C. Isci and M. Martonosi, “Runtime power monitoring in high-end pro-
cessors: methodology and empirical data,” in Proceedings. 36th Annual
IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-
36., pp. 93–104, 2003.

51

[23] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu, “Cross-
architecture performance prediction (xapp) using cpu code to predict gpu
performance,” 12 2015.

[24] Y. Abe, H. Sasaki, S. Kato, K. Inoue, M. Edahiro, and M. Peres, “Power and
performance characterization and modeling of gpu-accelerated systems,” in
2014 IEEE 28th International Parallel and Distributed Processing Sympo-
sium, pp. 113–122, 2014.

[25] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka, “Sta-
tistical power modeling of gpu kernels using performance counters,” in In-
ternational Conference on Green Computing, pp. 115–122, 2010.

[26] Q. Wang and X. Chu, “Gpgpu performance estimation with core and memory
frequency scaling,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 12, pp. 2865–2881, 2020.

[27] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás, “Modeling and decoupling
the gpu power consumption for cross-domain dvfs,” IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 11, pp. 2494–2506, 2019.

[28] L. Wang, M. Jahre, A. Adileho, and L. Eeckhout, “Mdm: The gpu memory
divergence model,” in 2020 53rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pp. 1009–1021, 2020.

[29] J. Chen, B. Li, Y. Zhang, L. Peng, and J.-k. Peir, “Statistical gpu power
analysis using tree-based methods,” in 2011 International Green Computing
Conference and Workshops, pp. 1–6, IEEE, 2011.

[30] A. Sethia and S. Mahlke, “Equalizer: Dynamic tuning of gpu resources for
efficient execution,” in 2014 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pp. 647–658, 2014.

[31] m. Xiaohan and M. Dong, “Statistical power consumption analysis and mod-
eling for gpu-based computing,” 05 2012.

52

[32] Y. Zhang, Y. Hu, B. Li, and L. Peng, “Performance and power analysis of ati
gpu: A statistical approach,” in 2011 IEEE Sixth International Conference
on Networking, Architecture, and Storage, pp. 149–158, 2011.

[33] R. Sen and D. A. Wood, “Gpgpu footprint models to estimate per-core
power,” IEEE Computer Architecture Letters, vol. 15, no. 2, pp. 97–100,
2016.

[34] S. Hong, Modeling performance and power for energy-efficient GPGPU com-
puting. PhD thesis, Georgia Institute of Technology, 2012.

[35] S. Hong and H. Kim, “An integrated gpu power and performance model,”
vol. 38, pp. 280–289, 06 2010.

[36] X. Chen, Y. Wang, Y. Liang, Y. Xie, and H. Yang, “Run-time technique
for simultaneous aging and power optimization in gpgpus,” in 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, 2014.

[37] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás, “Gpu static modeling using
ptx and deep structured learning,” IEEE Access, vol. 7, pp. 159150–159161,
2019.

[38] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified and accu-
rate model of power-performance efficiency on emergent gpu architectures,”
in 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing, pp. 673–686, 2013.

[39] P. Zou, A. Li, K. Barker, and R. Ge, “Indicator-directed dynamic power
management for iterative workloads on gpu-accelerated systems,” in 2020
20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), pp. 559–568, 2020.

[40] J. Leng, T. H. Hetherington, A. Eltantawy, S. Z. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “Gpuwattch: enabling energy optimizations in
gpgpus,” Proceedings of the 40th Annual International Symposium on Com-
puter Architecture, 2013.

53

[41] S. Bharadwaj, S. Das, K. Mazumdar, B. Beckmann, and S. Kosonocky, “Pre-
dict; do not react for enabling efficient fine grain dvfs in gpus,” 2022.

[42] G. Keramidas, V. Spiliopoulos, and S. Kaxiras, “Interval-based models for
run-time dvfs orchestration in superscalar processors,” in Proceedings of the
7th ACM International Conference on Computing Frontiers, CF ’10, (New
York, NY, USA), p. 287–296, Association for Computing Machinery, 2010.

[43] J. Guerreiro, A. Ilic, N. Roma, and P. Tomas, “Gpgpu power modeling for
multi-domain voltage-frequency scaling,” in 2018 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pp. 789–800,
2018.

[44] J. Tubella and A. Gonzalez, “Control speculation in multithreaded proces-
sors through dynamic loop detection,” in Proceedings 1998 Fourth Interna-
tional Symposium on High-Performance Computer Architecture, pp. 14–23,
1998.

54

