
MATRIX FACTORIZATION WITH
STOCHASTIC GRADIENT DESCENT FOR

RECOMMENDER SYSTEMS

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By

Ömer Faruk Aktulum

February 2019



Matrix Factorization with Stochastic Gradient Descent for Recom-
mender Systems
By Ömer Faruk Aktulum
February 2019

We certify that we have read this thesis and that in our opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Cevdet Aykanat(Advisor)

Hamdi Dibeklioğlu

Tayfun Küçükyılmaz

Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
Director of the Graduate School

ii



ABSTRACT

MATRIX FACTORIZATION WITH STOCHASTIC
GRADIENT DESCENT FOR RECOMMENDER

SYSTEMS

Ömer Faruk Aktulum
M.S. in Computer Engineering

Advisor: Cevdet Aykanat
February 2019

Matrix factorization is an efficient technique used for disclosing latent features
of real-world data. It finds its application in areas such as text mining, image
analysis, social network and more recently and popularly in recommendation
systems. Alternating Least Squares (ALS), Stochastic Gradient Descent (SGD)
and Coordinate Descent (CD) are among the methods used commonly while
factorizing large matrices. SGD-based factorization has proven to be the most
successful among these methods after Netflix and KDDCup competitions where
the winners’ algorithms relied on methods based on SGD. Parallelization of SGD
then became a hot topic and studied extensively in the literature in recent years.

We focus on parallel SGD algorithms developed for shared memory and dis-
tributed memory systems. Shared memory parallelizations include works such as
HogWild, FPSGD and MLGF-MF, and distributed memory parallelizations in-
clude works such as DSGD, GASGD and NOMAD. We design a survey that con-
tains exhaustive analysis of these studies, and then particularly focus on DSGD by
implementing it through message-passing paradigm and testing its performance
in terms of convergence and speedup. In contrast to the existing works, many
real-wold datasets are used in the experiments that we produce using published
raw data. We show that DSGD is a robust algorithm for large-scale datasets and
achieves near-linear speedup with fast convergence rates.

Keywords: Recommender system, Matrix Factorization, Stochastic Gradient De-
scent, Parallel Computing, Shared Memory Algorithms, Distributed Memory Al-
gorithms.

iii



ÖZET

ÖNERİ SİSTEMLERİ İÇİN OLASILIKSAL EĞİM İNİŞ
İLE MATRİS ÇARPANLARINA AYIRMA

Ömer Faruk Aktulum
Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Cevdet Aykanat
Şubat 2019

Matris çarpanlarına ayırma gerçek dünya verilerinin gizli özelliklerini ortaya çıkar-
mak için kullanılan verimli bir tekniktir. Bu teknik, metin madenciliği, görüntü
analizi, sosyal ağlar ve son zamanlarda yaygın olarak öneri sistemleri gibi alan-
larda uygulanmaktadır. Birbirini izleyen en küçük karaler (ALS), olasılıksal eğim
iniş (SGD) ve koordinat iniş (CD) geniş matrisleri çarpanlarına ayırırken kul-
lanılan yöntemler arasındadır. Bu üç yöntem arasında, SGD’ye dayalı çarpan-
larına ayırma yöntemi, Netflix ve KDDCup yarışmalarından sonra en başarılı
yöntem olarak ispatlanmıştır. Sonrasında, SGD’nin paralelleştirilmesi yaygın-
laşmış ve literatürde geniş bir biçimde çalışılmıştır.

Biz paylaşımlı ve dağıtık bellek sistemleri için geliştirilmiş paralel SGD algorit-
malarına odaklanıyoruz. Paylaşımlı bellek paralelleştirmeleri HogWild, FPSGD
ve MLGF-MF gibi çalışmalar içerirken dağıtık bellek paralelleştirmeleri DSGD,
GASGD ve NOMAD gibi çalışmalar içermektedir. Biz bu çalışmaların detaylı
analizini içeren bir araştırma metni oluşturuyoruz, sonrasında ayrıntılı olarak
DSGD’ye odaklanıp bu algoritmayı mesaj aktarma yaklaşımı ile uyguluyoruz ve
performansını yakınsama ve hızlanma yönünden test ediyoruz. Mevcut çalış-
maların aksine deneylerde kendi ürettiğimiz çok sayıda gerçek dünya veri kümeleri
kullanıyoruz. DSGD’nin geniş ölçekli veri kümeleri için dirençli bir algoritma
olduğunu ve hızlı yakınsama değerleri ile birlikte doğrusala yakın hızlanmayı
başardığını gösteriyoruz.

Anahtar sözcükler : Öneri Sistemi, Matris Çarpanlarına Ayırma, Olasılıksal Eğim
İniş, Paralel Hesaplama, Paylaşımlı Bellek Algoritmaları, Dağıtık Bellek Algorit-
maları.

iv



Acknowledgement

First and foremost, I am grateful to the one person who has stood beside me all my
life, with full support under every circumstance; my dear father, Uğur Aktululm.
I have always asked myself how a person can have so much love and compassion
for another, the answer to which I found when I became a father myself to my
baby boy. I feel truly blessed to have been born to such an amazing father. My
mother, Halime Aktulum, holds an equally dear place in my heart. I would like
to thank her for her tireless effort in my upbringing and for her unending love and
support in all aspects of my life. Together, they have overcome many difficulties
to present a better life for me and I greatly appreciate them for everything.

I would also like to express thanks to my dear wife, Melike, for coming into my
life two years ago. My life has changed for the better after getting married to her.
I appreciate her support, understanding and patience during the development of
this thesis.

I would like to thank Assoc. Prof. Dr. Ünal Göktaş for his valuable contri-
butions to me not only in the field of computer science but also in many other
aspects of my life. He has made always helped me find the right path in life and
helped me learn from my mistakes, just like how a father helps his son.

I also appreciate Assoc. Prof. Dr. Fatih Emekci who was my supervisor
during my undergraduate studies. He is the best computer engineer I have ever
seen, with deep knowledge in both academics and industry. He taught me how to
approach and solve problems in the field of computer science in a self-motivated
manner and introduced me to professional software development.

I would like to thank Reha Oğuz Selvitopi for his collaboration during my
graduate studies. His guidance helped me find my way out of many dead ends.
I am also grateful to Mustafa Özdal for his valuable contributions in our joint
works.

I am grateful to Asst. Prof. Dr. Hamdi Dibeklioğlu and Asst. Prof. Dr.

v



vi

Tayfun Küçükyılmaz for reading, commenting and sharing their ideas on the
thesis.

I thank my thesis supervisor Prof. Dr. Cevdet Aykanat for giving me the
opportunity to take part in the graduate program at Bilkent University.

Finally, I would like to thank my friends, Prasanna Kansakar and Bikash
Poudel, from University of Nevada, Reno for supporting me in difficult situations
not only when I was in United States but, also after I came back to Turkey.



To my grumpy son, Uğur...



Contents

1 Introduction 1

2 Background 5

2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Existing Techniques for Loss Minimization . . . . . . . . . . . . . 8

2.2.1 Alternating Least Squares (ALS) . . . . . . . . . . . . . . 8

2.2.2 Coordinate Descent (CD) . . . . . . . . . . . . . . . . . . 9

2.2.3 Stochastic Gradient Descent (SGD) . . . . . . . . . . . . . 11

3 Literature Survey 13

3.1 Hogwild:A Lock-Free Approach to Parallelizing Stochastic Gradi-
ent Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 DSGD: Large-Scale Matrix Factorization with Distributed Stochas-
tic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 FPSGD: A Fast Parallel SGD for Matrix Factorization in Shared
Memory Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

viii



CONTENTS ix

3.4 GASGD: Stochastic Gradient Descent for Distributed Asyn-
chronous Matrix Completion via Graph Partitioning . . . . . . . . 20

3.5 NOMAD: Non-locking, stOchastic Multi-machine algorithm for
Asynchronous and Decentralized matrix completion . . . . . . . . 24

3.6 MLGF-MF: Fast and Robust Parallel SGD Matrix Factorization . 27

4 DSGD: Large-Scale Matrix Factorization with Distributed

Stochastic Gradient Descent 31

4.1 SSGD (Stratified SGD) . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 DSGD (Distributed SGD) . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Experimental Results 44

5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Amazon Dataset . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.2 Last.fm Dataset . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.3 Movielens Dataset . . . . . . . . . . . . . . . . . . . . . . 49

5.1.4 Netflix Dataset . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.5 Yahoo Music Dataset . . . . . . . . . . . . . . . . . . . . . 52

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 Load Imbalance . . . . . . . . . . . . . . . . . . . . . . . . 54



CONTENTS x

5.3.2 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusion 67



List of Figures

3.1 Hogwild algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 The issues in the Hogwild and DSGD algorithms. . . . . . . . . . 17

3.3 The FPSGD model. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 The NOMAD model. . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 The MLGF partitioning strategy (capacity=3). . . . . . . . . . . 28

4.1 The SSGD model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The input data distribution in the DSGD algorithm. . . . . . . . 39

4.3 A complete iteration in the DSGD algorithm. . . . . . . . . . . . 41

5.1 Load imbalance comparison for static and random partitioning 1. 58

5.2 Load imbalance comparison for static and random partitioning 2. 59

5.3 Speedup results 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Speedup results 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Per-matrix convergence results. . . . . . . . . . . . . . . . . . . . 64

xi



LIST OF FIGURES xii

5.6 Per-partition convergence results. . . . . . . . . . . . . . . . . . . 66



List of Tables

2.1 Loss functions used in matrix factorization. . . . . . . . . . . . . . 7

5.1 Properties of produced datasets. . . . . . . . . . . . . . . . . . . . 45

5.2 Amazon datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Movielens datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Yahoo Music datasets. . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Parameters of the SGD algorithm used in the experiments. . . . . 53

5.6 Load imbalance results for static and random partitioning. . . . . 55

xiii



Chapter 1

Introduction

Number of online businesses is increasing in these days by making an expansion
into different user services. Main goal of the businesses is to make their products
more popular by increasing not only the number of services and customers they
have but also attraction of the customers to existing services. Recommendation
systems recently become a part of this trend by being able to capture latent rela-
tionships between the customers (or users) and the services (or items). Strength
of the relationships is expressed through ratings given by the users to the items in
a specified range. Many online platforms including social media (e.g., Facebook,
Twitter, Instagram), commercial shopping websites (e.g., Amazon) and entertain-
ment products (e.g., Netflix, Yahoo Music) make use of recommendation systems
to increase user interest to their systems.

Content filtering and collaborative filtering are the most popular techniques
among the existing approaches to build recommendation systems. In content
filtering, each user or item is characterized by using its features such as age,
city, gender for a user; and kind, actors, time for a movie recommender system.
Content filtering makes a comparison between the features of the items and the
features in the user profile while recommending new items to the users. How-
ever, formation of the profiles is an independent problem and incurs additional

1



cost. On the other hand, instead of forming profiles, collaborative filtering pro-
poses a more effective solution by making use of actions followed by the users in
the past. Collaborative filtering exploits the relationship among the users while
recommending new items to the users. Among the existing usage areas of the
collaborative filtering technique, the most popular one is latent factor models
that summarizes the rating matrix with factor matrices. In this scenario, both
the users and the items are characterized by using a factor matrix for each of
them. The latent factor models find their most successful solutions in matrix
factorization. [10, 11]

In the real-world systems, there are two different sets including the users and
the items that can be moved to a matrix plane, called rating matrix, in such a way
that the rows and the columns represent the users and the items, respectively.
Meanwhile, an entry in a cell of the rating matrix represents a rating given by the
user to the respective item. However, the rating matrix is highly sparse since the
users rate only a small subset of the items, meaning that there are many missing
entries in the rating matrix. The problem is to predict nonexisting ratings in
the rating matrix using the latent factors and decide which items can possibly
be recommended to the users. The latent factor models can be developed and
applied using collaborative filtering approach to model the problem. At this
point, discovering the latent factors boils down to matrix factorization solution.

The most important goal in matrix factorization is to minimize loss occurred
during prediction of the missing entries. Stochastic Gradient Descent (SGD) [7,
2, 3] and Alternating Least Squares (ALS) [15, 16] are well-known algorithms
used in the matrix factorization solutions to minimize the loss. Even though
parallelization of the SGD algorithm is inherently difficult, it has become more
popular than the ALS algorithm in recent years. For example, selected top three
models in KDDCup 2011 are developed using the SGD algorithm [13]. Then,
the SGD algorithm has been parallelized for both shared memory [1, 2, 5] and
distributed memory environments [7, 8, 3, 4].

In this thesis, we focus on parallel SGD algorithms designed for both shared
memory and distributed memory architectures. We walk through by starting from

2



the earliest proposed algorithms and investigate improvements work by work by
exhaustively examining the developed models with their pros and cons. At the
end, we create a literature survey that includes detailed analysis of popular par-
allel SGD algorithms. DSGD [7] is the leading work among the existing popular
works [1, 7, 2, 3, 4, 5]. Although most of the algorithms developed in this area are
influenced by this outstanding study, there is no such an extensive study that ana-
lyzes the DSGD model as far as we researched. Hence, we specifically focus on the
DSGD algorithm among the existing works by implementing it using message-
passing paradigm and testing its performance in detail. Our contributions are
grouped under extensive analysis of the DSGD algorithm as follows.

• In contrast to the experiments performed in the existing works that include
only a few real-world datasets, we produce many real-world datasets using
published raw data as their features are given in Section 5.1. Then, we run
our DSGD implementation with these datasets using different number of
processors.

• In the DSGD study, there information regarding effect of applied random
permutation on input data by the DSGD algorithm initially. Hence, we
generate static and random partitioning files for each real-world dataset
and different number of processors and calculate the load imbalance for
both partitioning schemes by implementing a load imbalance calculator.
Finally, we discuss how the random permutation increases the load balance
among the processors and speed up the convergence in Section 5.3.1 and
Section 5.3.3, respectively.

• In addition, we conduct the experiments regarding our DSGD implementa-
tion with different number of processors in terms of the load imbalance, the
speedup and the convergence metrics and discuss them in detail in Chap-
ter 5. There is no such a work regarding performance measurement of the
DSGD algorithm in such an extensive manner.

The remainder of this thesis is organized as follows. Chapter 2 includes cru-
cial background statements regarding this work by defining the problem and the

3



matrix factorization techniques in detail. The popular parallel SGD algorithms
are examined in Chapter 3, and the selected model is described with its imple-
mentation details in Chapter 4. Then, we state properties of the datasets and
discuss the experimental results in Chapter 5. Finally, we conclude our work in
Chapter 6.

4



Chapter 2

Background

In this chapter, we first define the problem using a real-world scenario in Sec-
tion 2.1. Then, we mention the matrix factorization solution and reinforce the
comprehensibility of this concept by stating related mathematical background.
Finally, we introduce the loss optimization techniques applied in matrix factor-
ization and mention the parallelization strategies by stating their pros and cons
in Section 2.2.

2.1 Problem Definition

We start to explain the problem by making use of a real-world example [7].
Assume that we sell course books online in a commercial website, where we allow
the users to rate the books. In this example, we have four users and three books
as illustrated with a rating matrix below, where the entries represent the existing
ratings (e.g, user2 rates book2 as 5). The entries shown with (-) are unknown,
and we call them missing entries that lead to cold start problem. We want to
increase attraction of the users to the books by making use of the existing ratings.

5





Ratings book1 book2 book3

user1 − 1 −
user2 − 5 −
user3 4 − −
user4 − − 2


To decide which book can be recommended to which user, we want to have

information about the missing entries as certain as possible. The problem focused
on this concept is predicting the missing entries accurately to build high quality
recommendation systems. In the remainder of this section, we introduce the
mathematical background of the concept.

Given a rating matrix R with size m× n where m and n denote the num-
ber of the users and the items, respectively, and each nonzero entry ri,j in the
rating matrix R denotes the rating given by user i to item j. In the real-world
systems, the number of the users is much more than the number of the items.
Let Wm×k and Hk×n be user and item factor matrices, respectively, where k
is the factor size, and Wx and Hy

T denote the xth row vector of factor matrix
W and yth row vector of factor matrix H, respectively, both size k. The rating
matrix R is factorized by finding out the proper factor matrices W and H using
a loss minimization technique to achieve R ≈ W · H. This process is known as
matrix factorization (or low-rank approximation), and existing matrix factoriza-
tion techniques are discussed in [11]. After the low-rank approximation process
is completed, the missing ratings in the rating matrix R can be predicted using
vectors of obtained factor matrices. For example, the rating r2,3, given by user2
to book3, can be predicted by computing the dot product of the second row vec-
tor of the factor matrix W and the third row vector of the factor matrix H as
W2 ·H3

T . Accuracy of the approximation is expressed with a loss function L that
takes vectors of the factor matricesW and H as inputs and generates a loss based
on the difference between the predicted value and the real value as an output.
Hence, we need to minimize the loss to find out better predictions. [5, 7, 4]

Different loss functions are used in matrix factorization as the most popular

6



Loss Function Definition

LS1

∑
ri,j∈R and ri,j 6=0(ri,j −Wi ·Hj

T )2

LL2 LS1 +
∑

t∈(0,1,...,k)(λW . ‖Wi‖2 + λH . ‖Hj‖2)
LL2w LS1 +

∑
t∈(0,1,...,k)wt(λW . ‖Wi‖2 + λH . ‖Hj‖2)

Table 2.1: Loss functions used in matrix factorization.

three of them are given in Table 2.1 [8]. LS1 is the simplest loss function based
on squared loss, which is called root mean squared error (RMSE). On the other
hand, LL2 includes L2 regularization to avoid overfitting. The regularization part
is added to LS1 as shown in the table where λ is the regularization parameter.
The last one, LL2w, is the weighted form of L2 regularization mostly used in
parallel applications, where global loss is calculated as weighted sum of local
losses. The weight of each local loss is expressed with the number of total local
entries by setting the total weight on the rating matrix to 1. In this area, the
L2 regularized loss functions are widely used among these existing loss functions
in such a way that some of them use LL2, whereas others use LL2w according
to proposed models. The general formula for the loss functions including L2
regularization is given as follows,

L(W,H) =
∑

ri,j∈R and ri,j 6=0

∥∥ri,j −Wi ·Hj
T
∥∥2
2
+ λW . ‖Wi‖22 + λH . ‖Hj‖22 (2.1)

where i and j denote the row and the column indices of the ratings in the rating
matrix R, respectively, and λW and λH are the regularization parameters (≥ 0)
used in optimization to avoid overfitting that occurs due to non-convex nature of
the problem based on the term Wi · Hj

T . ‖.‖2 is the L2 norm, and ‖Wi‖22 and
‖Hj‖22 are equal toWi·Wi

T andHj ·Hj
T , respectively. Similarly,

∥∥ri,j −Wi ·Hj
T
∥∥2
2

is reduced to (ri,j −Wi ·Hj
T )

2, and Equation 2.1 is reorganized as follows,

L(W,H) =
∑

ri,j∈R and ri,j 6=0

(ri,j −Wi ·Hj
T )

2
+ λW .Wi ·W T

i + λH .Hj ·HT
j (2.2)

The existing optimization techniques to minimize the loss function in Equa-
tion 2.2 are covered in Section 2.2

7



2.2 Existing Techniques for Loss Minimization

In this section, the popular loss optimization techniques are described and com-
pared in terms of applied update rule, convergence and parallelization strategies.

2.2.1 Alternating Least Squares (ALS)

The loss minimization is a non-convex problem, however, it is converted to a
quadratic problem by fixing one factor side while working on the other factor
side [18, 11]. Alternating Least Squares (ALS) uses this technique to minimize
the loss function by solving the least squares problems during update procedures
which are applied on related vectors of the factor matrices. The overall procedure
of the ALS algorithm is given in Algorithm 1. Firstly, vectors of the factor matrix
W , (W1,W2, . . . ,Wm), are updated by fixing the matrices R andH. Then, vectors
of the factor matrix H, (H1, H2, . . . , Hn), are updated by fixing the matrices R
and W . During the update procedures, the least squares problems are solved
with the following update procedures [17],

Wi =
∑

ri,j∈Ri,∗ and ri,j 6=0

(ri,jHj)/(Hj ·HT
j + λI) (2.3a)

Hj =
∑

ri,j∈R∗,j and ri,j 6=0

(ri,jWi)/(Wi ·W T
i + λI) (2.3b)

where λ is the regularization parameter (≥ 0), Ri,∗ and R∗,j denote the ratings in
the ith row and jth column of the rating matrix R, respectively, and I the identity
matrix. The crucial part of the update rules is applying the update procedures
once for all the ratings in the same row or column, respectively. This makes the
convergence of the ALS-based algorithm faster since the number of the ratings
updated per iteration is increased. Moreover, the convergence of the ALS-based
algorithms are generally completed in the first twenty iterations [15], and ALS is
faster than SGD in terms of convergence.

In contrast to Stochastic Gradient Descent (SGD), ALS does not use the cal-
culated vector values in the next iteration. Therefore, the update procedures

8



applied in the ALS algorithm are independent of each other. The independent
updates make parallelization of the ALS algorithm easier, and allow workers1 to
work on the rating matrix R at the same time in such a way that the ratings in
the rating matrix R can be simultaneously processed by the workers in row wise
or column wise. This feature makes the ALS algorithm to be preferable to the
SGD algorithm. In addition, the ALS algorithm applies the update procedures
for all the ratings instead of a rating in the same row or column once. Hence,
this increases the efficiency of ALS in terms of computation and makes the ALS
algorithm to be preferable to the Coordinate Descent algorithm.

Algorithm 1 ALS Algorithm for Matrix Factorization
Input Rating matrix (R), user and item factor matrices (W andH) and λ

1: while not converged do
2: for each vector i in W do
3: Update Wi by applying (2.3a)
4: end for
5: for each vector j in H do
6: Update Hj by applying (2.3b)
7: end for
8: end while

2.2.2 Coordinate Descent (CD)

Coordinate Descent (CD) is the another loss minimization technique used in var-
ious areas of large-scale optimization problems including big data [19], tensor
factorization [20, 21, 22], support vector machines [23, 24] and matrix factoriza-
tion [18, 25, 26]. The idea of moving the problem to quadratic environment is
similar to the ALS algorithm. However, the CD algorithm applies a different
update rule by updating only an entry in vectors of the factor matrices instead
of an entire vector at a time by fixing the others. The update procedures of the

1Threads in shared memory systems or processors in distributed memory systems.

9



CD algorithm are given as follows.

wi,s =

∑
ri,j∈Ri,∗ and ri,j 6=0(ri,j + wi,shj,s)hj,s

λ
∑

ri,j∈Ri,∗ and ri,j 6=0 hj,s
2 (2.4a)

hj,s =

∑
ri,j∈R∗,j and ri,j 6=0(ri,j + wi,shj,s)wi,s

λ
∑

ri,j∈R∗,j and ri,j 6=0wi,s
2

(2.4b)

There are two common variants of the CD algorithm used in the matrix fac-
torization models developed for recommendation systems [18]. These variants
propose different update schemes as feature wise and user (or item) wise. The
algorithms apply user-wise updates are named Cyclic Coordinate Descent (CCD)
algorithms, in which the applied update sequence has a cyclic order such as
w1,1−>1,k, w2,1−>2,k, . . . , wm,1−>m,k, h1,1−>1,k, h2,1−>2,k, . . . , wn,1−>n,k, w1,1−>1,k

. . . , and so forth. The overall procedure of the CCD algorithm for matrix factor-
ization is stated in Algorithm 2. On the other hand, the CCD++ algorithm ap-
plies feature-wise update scheme such as w1,1−>1,k, h1,1−>1,k, w2,1−>2,k, h2,1−>2,k,
. . . , wm,1−>m,k, hn,1−>n,k, and so forth. The feature-wise update sequence im-
proves the convergence due to applying the update procedures between the user
and the item vectors more frequently. Similar techniques used in parallelization
of the ALS algorithm can be directly applied to parallelize the CD algorithm. [18]
and [25] are the most recent parallel CD algorithm developed for matrix factor-
ization.

Algorithm 2 CCD Algorithm for Matrix Factorization
Input Rating matrix (R) and user and item factor matrices (W and H)

1: while not converged do
2: for i = 1, 2, . . .m do
3: for s = 1, 2, . . . k do
4: Update wi,s by applying (2.4a)
5: end for
6: end for
7: for j = 1, 2, . . . n do
8: for s = 1, 2, . . . k do
9: Update hj,s by applying (2.4b)

10: end for
11: end for
12: end while

10



2.2.3 Stochastic Gradient Descent (SGD)

SGD is an iterative algorithm mostly used in matrix factorization [1, 2, 5, 7, 8, 4, 3]
and machine learning [27, 28, 29]. SGD applies gradient on Equation 2.2 regarding
vectors of the factor matrices to optimize the loss function. The derivatives of
the loss function based on W and H are calculated, and the update rules are
obtained as following,

Wi = Wi − α(ei,jHj − λWHj) (2.5a)

Hj = Hj − α(ei,jWi − λHWi) (2.5b)

where ei,j is the loss (or error) calculated for the rating ri,j in the current itera-
tion. α is the learning rate that can be selected different for each factor matrix,
and λ is the regularization parameter used to avoid overfitting. The most im-
portant handicap in parallelization of the SGD algorithm is dependency of the
update procedures which are inter-dependent as inferred from Equation 2.5a and
Equation 2.5b. In other words, vectors of the factor matrices are updated using
their current values calculated in the previous iteration. Hence, this makes paral-
lelization of the SGD algorithm more difficult. The error for a rating in matrix R
changes in each iteration due to applied updates in the related vectors of factor
matrices. The error is calculated using the updated vectors as follows.

ei,j = ri,j −Wi ·Hj
T (2.6)

where ri,j denotes real value of the rating, and the prediction value is obtained
by calculating the dot product of the related user and item vectors. Hence, the
error calculates the convergence for each rating by finding the difference between
its real and predicted values in each iteration.

The update procedures in the ALS algorithm are not depending on each other
as illustrated in Equation 2.3, where the current user or item vector values are not
considered while updating them. On the other hand, the update procedures of
vectors in SGD algorithm are inherently sequential as described above. Therefore,

11



Algorithm 3 SGD Algorithm for Matrix Factorization
Input Rating matrix (R), user and item factor matrices (W andH) and λ

1: while not convergenced do
2: for each rating, ri,j, in R do
3: Update Wi by applying (2.5a)
4: Update Hj by applying (2.5b)
5: end for
6: end while

developing the SGD-based parallel applications is more difficult than the ALS-
based algorithms. However, the SGD-based parallelization has been widely used
after the Netflix [12] and the KDD Cup [13] competitions, where the selected top
models are developed using the SGD algorithm for large-scale applications.

12



Chapter 3

Literature Survey

This chapter contains detailed survey of popular parallel SGD algorithms devel-
oped for shared memory and distributed memory systems. We review the studies
in chronological order to show improvements with proposed contributions.

3.1 Hogwild:A Lock-Free Approach to Paralleliz-

ing Stochastic Gradient Descent

Parallelization of the SGD algorithm has two important bottlenecks, which are
locking and synchronization, that completely affect performance of the developed
parallel algorithms. In shared memory, the locking issue arises when more than
one thread wait (or idle) for accessing and changing a variable concurrently. The
synchronization process is applied to use updated vectors of factor matrices during
update procedures to speed up convergence, and the synchronization problem
occurs when the processors or threads are not synchronized regularly. These two
main problems stem from the sequential update procedure of the latent factors
in the SGD algorithm as explained in Section 2.2.3. In parallel SGD algorithms
developed for shared memory architecture, the locking issue occurs while applying
the update procedures not only for the same rating but also for the ratings in the

13



same row or column of the rating matrix. In other words, simultaneous access
to the ratings in the same row or column during the update procedures leads to
the locking issue also in the related user or item vectors, and this case results in
memory overwrites.

Niu et al. [1] develop a parallel SGD algorithm, called Hogwild, for shared
memory systems by proposing a new update procedure plan to avoid the lock-
ing issue. Any locking mechanism is not used by Hogwild in such a way that
each thread accesses to ratings randomly without concern about the memory
overwrites regarding the update procedures. Although this can be thought as a
serious problem at first glance in terms of using the most recent updated vectors,
the authors prove that it does not cause computational error due to sparsity of
data access. In other words, only small part of the factor matrices are updated,
and the memory overwrites rarely happen. In addition, they theoretically show
that convergence to ideal rates is almost achieved by the Hogwild algorithm. Al-
though most of the existing works regarding parallelization of SGD in distributed
systems prove global convergence without any rate, the authors prove the con-
vergence of the Hogwild algorithm with rates according to selected step size. The
overall procedure of the Hogwild algorithm is shown in Algorithm 4.

x

x

x

x

x

x

x

x

thread 1
thread 2R

m

n

1

2

7

4

6

5

3

1

2
3

4

5

6

7

overwriting issue

Figure 3.1: Hogwild algorithm.

An example of the proposed update sequence by Hogwild algorithm is illus-
trated in Figure 3.1. In this scenario, there is a rating matrix R where m and

14



n denote the number of the users and the items, respectively, and x represents
the ratings. There are two threads as their mapping given on the top right side
of the figure, whose update sequences are represented with arrows, and the num-
bers on the arrows show update order of the ratings. During working progress
of the Hogwild algorithm for this example, there is only one memory overwrite
that occurs in the 6th update, where both of the threads want to apply update
procedure on the same rating at the same time as illustrated with a circle in the
figure. The probability of this event happening is negligible, and it does not affect
the convergence rate as the authors stated in the Hogwild study.

Algorithm 4 The overall procedure of Hogwild
Input Rating matrix (R), number of threads (T )

1: for each thread do // parallel task
2: while not converged do
3: Select a rating, ri,j, from matrix R randomly
4: Apply update procedures in Equation 2.5 for ri,j
5: end while
6: end for

Experimental results show that almost linear speedup for similar applications
based on the sparsity is achieved by Hogwild algorithm, and its lock-free approach
is faster than existing memory locking methods such as [9].

3.2 DSGD: Large-Scale Matrix Factorization with

Distributed Stochastic Gradient Descent

Gemulla et al. [7] develop an efficient parallel SGD algorithm, named Distributed
SGD (DSGD), for distributed memory systems. DSGD makes use of stratified
SGD (SSGD) model that divides the rating matrix into blocks. The authors
specialize the SSGDmodel by exploiting interchangeable blocks, which are defined
as any two or more blocks that do not share any rows or columns of the rating
matrix. Similarly, the user and item factor matrices are also partitioned into
blocks and distributed among the processors. Then, the processors work on the

15



interchangeable blocks simultaneously and apply bulk synchronization process
periodically to avoid steal data usage. During the bulk synchronization process,
the processors communicate the updated item factor blocks among each other
at the same time. Therefore, the processors apply the update procedures by
using the most recent updated vectors of the factor matrices. In addition, the
update sequence applied by the DSGD algorithm is the same with the serial SGD
algorithm that makes convergence of the DSGD algorithm faster. Further details
of the DSGD algorithm are described and our contributions in terms of analysis
and experiments are given in Chapter 4.

3.3 FPSGD: A Fast Parallel SGD for Matrix Fac-

torization in Shared Memory Systems

Zhuang et al. [2] develop Fast Parallel SGD (FPSGD) algorithm for shared mem-
ory systems by addressing two crucial problems in previously proposed shared
memory SGD algorithms [1, 7], which are load imbalance and nonuniform mem-
ory access. Main contributions of this study are optimizing the load balance
among the threads and decreasing high cache-miss rate during memory access.
Note that shared memory implementation of DSGD is considered when we call
the DSGD algorithm through this section.

The authors point out existing nonuniform memory access issue in Hogwild
and DSGD due to random access to ratings during update procedures. Applied
randomization technique by these algorithms leads to increase in the cache-miss
rate. Moreover, the random access to ratings results in nonuniform access to vec-
tors of factor matrices as inferred from Equation 2.5. This issue is illustrated for
the Hogwild algorithm in Figure 3.2a, where nonuniform memory access occurs
through the update sequences not only in the rating matrix but also in both fac-
tor matrices. The arrows on the rating matrix denote the update sequences of a
thread, whereas the numbers on the factor matrices show sequence of respective

16



accessed vectors. The memory access in the rating matrix and both factor matri-
ces are nonuniform that results in cache misses. DSGD also suffers from the same
issue due to selection of the ratings randomly during the update procedures.

x

x

x

x

x

x

x

2

3

4

1

5

6

1 2 345 6 7

1
2

3
4

5
6

7

thread 1

W R

H

(a) The cache-miss issue oc-
curred in the Hogwild algorithm.

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

x

W

H

R

p3

p1p0

Processors

p2

(b) The locking issue in shared
memory design of the DSGD al-
gorithm.

Figure 3.2: The issues in the Hogwild and DSGD algorithms.

The block partitioning technique of the DSGD algorithm is used in the FPSGD
algorithm with a proposed new update scheme for alleviating the high cache-miss
rates. The authors firstly consider an ordered method, in which the ratings in
the blocks are selected sequentially, and then both user and item factor matrices
do not suffer from the cache-miss issue. Although the ordered method provides
uniform access to the factor matrices, convergence rate shows an alteration de-
pending on the learning rate. Thus, there is a trade-off between uniform memory
access and convergence in such a way that selecting the ratings randomly during
the update procedures improves convergence, but increases the cache-miss rate,
vice versa. Finally, they propose partial random method, where the blocks in the
rating matrix are selected randomly, and the ratings in the blocks are picked se-
quentially. The partial random method achieves uniform memory access on the
rating matrix and both factor matrices and converges faster the than random
method even if the learning rate differs when root mean squared loss is applied.

The second contribution of this work is regarding the locking issue to keep

17



each thread working continuously as well as increasing the efficiency in terms
of convergence. The authors address the locking issue in DSGD based on the
difference among the number of the ratings in the blocks, meaning that if the
ratings are not uniformly distributed among the blocks, some threads having fewer
ratings in their blocks wait for the others. Figure 3.2b illustrates the locking issue
with an example of the DSGD model in shared memory system with four threads,
where the threads start to work on the diagonal blocks of the rating matrix in
the first subiteration such that t0, t1, t2 and t3 have 1, 3, 1 and 3 ratings in
their blocks, respectively. Although t0 and t3 complete their update procedures
probably three times faster than other threads, they have to wait for the others
to use the most recent updated factor vectors in the next iteration. If they do
not wait and continue to work with the ratings in the next block, two threads
start to access the same item vectors concurrently, and the locking issue occurs.
The DSGD model is mainly developed for distributed systems, and optimizing
the communication cost is more important than minimizing idling time among
the processors. Therefore, it is not a critical issue for the DSGD algorithm in
distributed memory systems.

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x

x

x

x

x

x

x

xx
xx

x

x

x
x x

x
x

t3t2t1t0

Threads

0

1

2

3

4

0 1 2 3 4R

x

x

x

x
x

x

x

x

(a) Subiteration 1

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x

x

x

x

x

x

x

xx
xx

x

x

x
x x

x
x

0

1

2

3

4

0 1 2 3 4R

t3t2t1t0

Threads

x

x

x

x

x

x

x
x

(b) Subiteration 2

Figure 3.3: The FPSGD model.

To avoid the locking issue, the authors firstly consider applying random permu-
tation on the rating matrix. However, they claim that the random permutation

18



may not the existing solve the problem since computation time might be differ-
ent even if the number of the ratings in the blocks are the same. Hence, they
propose a lock-free model by gridding the rating matrix into (t + 1) x (t + 1)

blocks instead of t x t where t is the number of threads. The developed model is
illustrated in Figure 3.3 with an example, where the rating matrix is partitioned
into 5x5 blocks where four threads work. Therefore, there is always at least one
interchangeable block that can be assigned to a thread that completes its task.
In the first subiteration as shown in Figure 3.3a, t2 (thread 2) probably completes
its update procedure earlier than others since it has only one rating in its block.
Then, t2 selects a new block among the free interchangeable blocks shown with
bold frames as R2,2, R3,2 and R3,3 and starts to work on the ratings in the new
block without waiting for the others. Assume that t2 selects R3,3 and works on the
ratings of that block as shown in Figure 3.3b. Then, t1 finishes its job this time
and works with one of the free interchangeable blocks shown with bold frames
again without waiting for the others. Assignment of the new blocks to free threads
are managed by a scheduler dynamically, called lock-free scheduler, that searches
free blocks regarding their update counts and then sets one having at least update
count to the respective thread. The advantage of dynamic scheduling is to keep
update counts applied for each block similar through working progress. However,
the update counts of the blocks differs from each other too much, when the data
is intensely imbalanced. Hence, they calculate the imbalance by defining a degree
of imbalance (DoI) to determine the size of difference in the update counts of the
blocks. By this way, they obtain efficiency of the lock-free approach in such a
way that smaller DoI means the update counts of the blocks are similar, whereas
larger values of DoI means update counts of the blocks are too different. Experi-
mental results show that DoI converges to zero after 50th iteration by using the
lock-free scheduler, and idling problem disappears after that point. The overall
procedure of the FPSGD algorithm in Algorithm 5.

By using single precision floating point instead of double precision and apply-
ing vectorization for inner products and additions, a speedup of 2.4 is achieved
over normal FPSGD implementation. The authors implement another version
of FPSGD, called FPSGD**, where the same block concept in DSGD model is

19



Algorithm 5 The overall procedure of FPSGD
Input Rating matrix (R), number of threads (t), number of updates (u)

1: while u is not reached do
2: Apply random permutation on R
3: Divide R into at least (t+ 1) x (t+ 1) blocks
4: Start lock-free scheduler and threads with initial parameters
5: Run SGD on the blocks with t threads
6: end while

applied by dividing the rating matrix into t x t blocks without using the lock-free
scheduler to compare the performance of FPSGD with DSGD obviously. FPSGD
with lock-free scheduler converges faster than FPSGD**, meaning that FPSGD
does not suffer from the locking issue. In addition, FPSGD converges faster than
Hogwild and DSGD in shared memory systems.

3.4 GASGD: Stochastic Gradient Descent for Dis-

tributed Asynchronous Matrix Completion

via Graph Partitioning

Petroni et al. [3] analyze the performance of previously proposed shared memory
SGD algorithms [1, 2] and claim that their performance becomes worse when
problem size increases due to growth in frequency of accessed shared data among
the threads. To avoid this bottleneck, the studies regarding parallelization of
the SGD algorithm currently find its applications in distributed memory systems
by solving the performance issue with large clusters. Although successful parallel
SGD algorithms are proposed in distributed memory environment such as DSGD,
they also have performance issues based on bulk synchronization process. The
authors develop a new asynchronous SGD (ASGD) model for distributed memory
systems, named GASGD, that proposes three contributions within the context of
load balance and resynchronization frequency among the processors.

20



In distributed memory systems, the ASGD algorithms have important dif-
ferences than synchronous SGD algorithms in terms of stored data and applied
synchronization approach. In distributed ASGD algorithms, a unique master
copy and working copies are created for each vector of factor matrices, and the
processor owns the master copy of a vector is called master. Each processor works
on its local copy by applying update procedures and communicates updated lo-
cal vectors of factor matrices with related master processors periodically. This
whole process is called asynchronous since workers simultaneously work on the
same vectors of factor matrices. In contrast to distributed ASGD algorithms, the
processors can not work on the same vectors of factor matrices at the same time
in distributed synchronous SGD algorithms such as DSGD, where the processors
work on the blocks on the rating matrix with using only two factor matrices,
meaning that there is no local copy of the factor matrices, and communicate
the updated factor blocks with each other during bulk synchronization process.
Then, each processor starts to work on the ratings in its next block using received
updated factor block, so this process is called synchronous. The time spent for
communication of the updated vectors leads to idling issue which makes this type
of algorithms inefficient. However, the most recent updated vectors of factor
matrices are always used during update procedures.

The developed asynchronous models based on the SGD algorithm such as [4, 3]
differ in terms of applied rules regarding the synchronization process. GASGD
divides an iteration into f equal parts, named synchronization frequency, and
applies bulk synchronization process at the end of each part after completing
three stages. Firstly, the workers apply the update procedures on the local vector
copies of the factor matrices in computation stage, and then the updated local
vectors are communicated with related master processors during synchronization
process. Finally, master processors calculate the new master copies as weighted
sum of updated local vectors and resend them back to the workers. This process is
repeated f times through an iteration, and the synchronization process is repeated
until there is no more improvement in convergence. The overall procedure of the
GASGD algorithm is given in Algorithm 6.

Resynchronization frequency plays an important role in terms of efficiency by

21



balancing communication cost and convergence rate since it is used not only to im-
prove the convergence rate but also to optimize the communication cost. Hence, f
is like a regularization parameter to adjust the trade-off between the convergence
rate and the communication cost. Therefore, finding out the best value of f is a
critical task for performance of the algorithm in terms of both convergence and
communication cost. For example, synchronization of the working copies can be
repeated continuously during an epoch to guarantee convergence, however, this
idea may result in the communication bottleneck due to increased number of
messages. On the other hand, the synchronization is applied after every iteration
to decrease the communication cost, however, this time it converges slowly since
the convergence is faster when the processors work on the most recent updated
vectors of the factor matrices. None of the previously proposed distributed SGD
algorithms for matrix factorization such as [7] considered to set and change the
resynchronization frequency. In contrast, GASGD introduces a tuning mecha-
nism for the resynchronization frequency by keeping overall stable quality of the
update procedures in the SGD algorithm.

Algorithm 6 The overall procedure of GASGD
Input Synchronization frequency (f)

1: for each epoch until convergence do // parallel task
2: Permutes own data and divides the epoch into equal f subepochs
3: for each subepoch do
4: Local working copy of factor vectors are updated (Computation stage)
5: Updated working copies are sent to masters (Communication stage)
6: Masters calculate & resend updated master copy (Synch. stage)
7: end for
8: end for

The another contribution of this study is relied on the input data distribution,
named bipartite aware greedy algorithm, by looking at greedy vertex-cut stream-
ing algorithm, where the rating matrix is represented with a graph in such a way
that vertices and edges represent users (or items) and ratings, respectively. In this
scenario, main tasks are based on the vertices due to importance of communicat-
ing item or user vectors of the factor matrices. Hence, the vertex-cut approach is
considered instead of the edge-cut approach to minimize the communication cost
by assigning each vertex to only one partition. After the vertex-cut partitioning

22



is applied, each edge in the graph is being responsible by only one node, whereas
the vertices are being responsible by more than one node. The number of different
nodes of a vertex is located means replication factor (RF) that can be associated
with communication volume that affects the running time of the developed algo-
rithm. Hence, the authors use the greedy vertex-cutting algorithm to minimize
the replication factor and provide the load balance by making edge counts of the
processors similar. They make use of the bipartite feature of the graph to mini-
mize the number of used same vector. The user and item partitioned approaches,
named greedy-user partitioned (GUP) and greedy-item partitioned (GIP), are ap-
plied by keeping the user and item vectors in a single node, respectively, whereas
other one is replicated. The GUP method works better in terms of replication
factor, since the number of the users is much more than the number of items in
the real-world systems. The authors optimize the replication factor by exploiting
main characteristics of the input data. Hence, obtained deep knowledge of the
rating matrix is used to decrease the communication cost with partitioning the
data by considering the communicated vectors of the factor matrices.

The quality of developed partitioning techniques is compared with existing par-
titioning models in terms of the replication factor and the load balance among
the processors. The GIP, GUP, grid (in DSGD), greedy and hashing partition-
ing methods are implemented and evaluated. Experimental results show that
the GUP and GIP methods produce better results in terms of the replication
factor and load balance metrics with datasets such as Movielens and Netflix, in
which there is much more difference between the number of the users and the
items. On the other hand, the greedy solution produces better results than GIP
with Yahoo dataset since there is no much difference between the number of the
users and the items. Although the grid partitioning technique works worse than
greedy partitioning in terms of the load imbalance, it gives better results than
the greedy partitioning with respect to the replication factor due to having com-
plete knowledge of the rating matrix during stratification. In contrast, GUP is
not affected by the growth in the number of the processors in terms of conver-
gence rate, and achieves faster convergence. In addition, the communication cost
is directly proportional to the resynchronization frequency in such a way that

23



the cost decreases when a method has smaller replication factor in low frequen-
cies, whereas it increases with larger replication factor. In Movielens and Netflix,
smaller resynchronization frequencies are enough for faster convergence, whereas
larger resynchronization frequency is necessary for Yahoo dataset.

3.5 NOMAD: Non-locking, stOchastic Multi-

machine algorithm for Asynchronous and De-

centralized matrix completion

Yun et al. [4] propose an efficient matrix factorization algorithm, named NOMAD,
for distributed memory systems. NOMAD is developed as an asynchronous al-
gorithm like GASGD, however, it is a fully asynchronous algorithm, where each
processor simultaneously applies update procedures on its local data in a lock-free
manner without using bulk synchronization process. NOMAD has a decentral-
ized feature that provides load balance among the processors in terms of both
computation and communication. In addition to all these capabilities, applied
update sequence in the NOMAD algorithm is the same with the sequence of the
serial SGD algorithm. Hence, workers always apply update procedures with using
the most recent updated vectors of the factor matrices, even though most of the
asynchronous algorithms such as [3] start to use steal data when the number of
the workers is increased.

The synchronous SGD algorithms in distributed systems such as DSGD apply
bulk synchronization process at the end of each subiteration, so they are not able
to keep both CPU and network busy at the same time, since the computation
and communication processes are sequential and applied by all the processors
together. Hence, they suffer from the idling issue, where the slowest worker is
waited by the others as explained in the previous section in detail. In contrast to
this type of algorithms, NOMAD does not use bulk synchronization process such
that the workers apply update procedures in their local data by communicating
the updated vectors with respective masters anytime. In addition, to avoid the

24



idling issue the authors propose a fine-grained partitioning to process smaller
number of ratings and communicate respective vectors in smaller time periods.
After each communication, ownership of the communicated vector changes. In
NOMAD, initial distribution of the input data including the rating matrix and
the factor matrices is the same with DSGD. It means that the rating matrix and
factor matrices are partitioned into p x p and p blocks, respectively, each worker
owns the same data initially as in DSGD, and the first task of the workers is
processing the ratings in diagonal blocks as illustrated in Figure 3.4a. Similarly,
only updated item vectors are communicated even though both user and item
vectors are updated. However, NOMAD differs from DSGD by partitioning each
block again into n smaller pieces by forcing workers to work on the ratings in a
piece of block. Thus, probability of finding a free piece in the blocks for a free
worker is increased after the fine-grained partitioning. An example of working
progress of the NOMAD algorithm is shown in Figure 3.4, where each piece of
blocks includes only an item vector. Each processor works on its piece of block and
communicates the updated vector of the factor matrix H with randomly selected
processor. In this example, p0 sends the updated item vector to p2 as illustrated
with arrows, and then p2 is the new owner of this item vector and applies the
update procedures on the respective ratings. Therefore, slower workers have less
loads, so there is no locking issue.

p3p2p1p0

W

H

R

Processors

x

x

xx

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

(a) Subiteration 1

p3p2p1p0

W

H

R

Processors

x

x

xx

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

(b) Subiteration 2

Figure 3.4: The NOMAD model.

25



In NOMAD, the workers keep and maintain their tasks in a queue as a tuple
including index of item vector and its data (item vector). The overall procedure
of the NOMAD algorithm is shown in Algorithm 7. Each worker selects and pops
an element from its queue and then applies update procedures in its local set of
respective item vector. After the current update procedure is completed, a new
worker for the updated vector is selected randomly, and the element is pushed
into the new worker’s queue.

Algorithm 7 The overall procedure of NOMAD
Input Rating matrix (R), user factor matrix (W ), item factor matrix (H),
array of queue (Q), number of processors (p) and rank of proc. (my_rank)

1: Initialize array of Q with size of p, and push all the item factor vectors ((j,Hj)
where j=1 to n) into each queue in Q

2: while not converged do // parallel task
3: if Q[my_rank] is not empty then
4: Select and pop an element, (j,Hj), from the Q[my_rank]
5: for each ri,j ∈ R∗,j do
6: Set number of applied updates on current nonzero ri,j
7: Update related factor vectors Wi and Hj respectively
8: end for
9: Push completed task, (j,Hj), into randomly selected processor’s queue

10: end if
11: end while

The workers might have different number of the ratings for the same item
vectors, and this case probably results in running time differences among the
workers. Therefore, selecting the next workers randomly might lead to the load
imbalance and locking issues. To avoid these possible issues, a greedy-based
scheduler is proposed, where decision for the next processor is made by selecting
a worker who has minimum number of elements in its own queue among the
available workers. Hence, slower workers have less loads. The developed scheduler
solves the issue regarding not only being different number of the ratings for the
same item vector, but also the difference among the workers in terms of hardware
equipment. As a result, dynamic load balancing is achieved by using the greedy-
based scheduler.

26



The piece of blocks are set to fixed number of vectors as a hundred to opti-
mize the trade-off based on the synchronization frequency as discussed in Section
3.4. Experimental results show that almost linear speedup is achieved by the
NOMAD algorithm on single machine and distributed multiple machines. More-
over, NOMAD outperforms DSGD and FPSGD** in terms of convergence in both
shared memory and distributed memory environment. However, NOMAD is not
compared with FPSGD in this study, and its performance is much better than
FPSGD** as stated in the FPSGD study.

3.6 MLGF-MF: Fast and Robust Parallel SGD

Matrix Factorization

Oh et al. [5] develop a parallel SGD algorithm for block-storage devices such as
SSD disks, named Multi-level Grid File for Matrix Factorization (MLGF-MF),
that introduces multi-level grid file partitioning technique to be robust for skewed
datasets. The main consideration of this study is to avoid high scheduling cost
arising from the load imbalance among workers. Hence, the authors make use
of matched blocks obtained from the multi-level grid file partitioning scheme.
MLGF-MF can be also adapted to shared memory environment.

Besides parallel SGD algorithms in both shared memory and distributed mem-
ory systems, the only existing algorithm developed for the block-storage devices is
GraphChi [6] that is selected as a baseline for this study by the authors. GraphChi
uses sequential order during update processes that leads to slow convergence, and
it suffers from waiting I/O operations to execute CPU resources since the oper-
ations in I/O is slower than memory. MLGF divides the input data into blocks
according to pre-specified capacity for each block as an input parameter before
the partitioning. In other words, if a block has more ratings than the assigned ca-
pacity, MLGF partitions this block dynamically to overcome the load imbalance
issue occurred especially in skewed matrices. In addition, MLGF-MF does not
suffer from the idling issue to use CPU resources since it provides CPU utilization

27



by making I/O operations asynchronously. Therefore, CPU and I/O operations
are overlapped which solves the idling issue.

x

x
x

x

B0

0

0

(a) Time 1

x
x

x
x

x

x
x

x

x

B1

0

1

B0

0

(b) Time 2

xx
x

x

x
x

x
x

x

x x

x

xx

x

x
x

x

B0 B2

B1

B3

0

10

11

00 01

(c) Time 3

xx
x

x

x
x

x
x

x

x x

x

xx

x

x
x

x

B0 B2

B1

B3

B4

B5

B6

B7

00 010 011

00

01

10

11

(d) Time 4

Figure 3.5: The MLGF partitioning strategy (capacity=3).

In the multi-level grid file partitioning, hash function is used to represent the
partitioned regions by naming them with a hash value hierarchically as shown
in Figure 3.5, where x denote the ratings. In this example, the block capacity
is determined as three, and initially (at time1) there is only one block, B0, that
includes three ratings. At that time a rating is inserted (new ratings shown with
x), and the capacity for B0 is exceeded. Hence, B0 is partitioned into two regions
as B0 and B1 at time2, and the new block is represented with hash values as
illustrated on the top and left side of the matrix. In this concept, an entry in a
directory which is a set of region according to hash values, might point out another
directory. As a result, the partitioning process continues recursively until all the
ratings are placed in the rating matrix, and the number of the ratings in each

28



region can not be more than the pre-specified capacity as illustrated in Figure
3.5.

The MLGF partitioning for the given example is completed as shown in Figure
3.5d, where interchangeable regions are not directly realized in contrast to the
DSGD model in such a way that a partitioned region can have shared rows or
columns with another region, even if they are not overlapped. Hence, the authors
propose partial match query processing to find noninterchangeable regions instead
of the interchangeable regions by starting from root directory of obtained result
from the MLGF partitioning. The process continues while a region has shared
rows or columns with the query region, whereas it is terminated when an entry
does not have any shared rows or columns with the query region. The overall
procedure of the MLGF-MF algorithm is given in Algorithm 8.

Algorithm 8 The overall procedure of MLGF-MF
Input Rating matrix (R), user factor matrix (W ), item factor matrix (H),
number of processors (p), and number of total updates (u)

1: Initialize factor matrices W and H, and total_update = 0
2: while u > total_update do // parallel task
3: Get an interchangeable block, Bselected by locking other blocks
4: for each ri,j ∈ Bselected do
5: Update user and item vectors Wi and Hj, respectively
6: total_update ++
7: end for
8: end while

The idling issue in GraphChi for the CPU operations is solved by keeping both
CPU and I/O operations busy in an asynchronous manner. While applying an
update procedure for a rating, future block (will be updated after the current
block) is found, and an I/O request is created asynchronously. After the update
operations in the current block are completed, the future block is added as a new
job. Therefore, the CPU and I/O operations are overlapped.

MLGF-MF is compared not only with GraphChi but also with shared mem-
ory algorithms such as FPSGD and NOMAD. Experimental results show that
MLGF-MF outperforms NOMAD in terms of convergence with Netflix and Yahoo
datasets. Although MLGF-MF produces almost the same results with FPSGD,

29



it outperforms FPSGD with skewed datasets generated by the authors. On the
other hand, MLGF-MF produces much better results than GraphChi since there
is no locking issue in MLGF-MF. In addition, they used different disks while
conducting the experiments to make comparison, and obtain that page size does
not affect the convergence rate.

30



Chapter 4

DSGD: Large-Scale Matrix

Factorization with Distributed

Stochastic Gradient Descent

Recommender system is an application used commonly by online businesses to
increase popularity of the items. The provided services regarding the items are
recently being expanded into many different areas including movie-rental services,
social media and shopping. By making use of recommender systems, the busi-
nesses get knowledge of potential user interests to existing items, whereas the
users easily find the items that probably appeal to their desires. Throughout this
process, the latent relationships between the users and the items are discovered
by considering the user preferences and features of the items. In the real-world
systems, there are many missing ratings since only a small group of the users
rate the items. The main goal of recommender systems is to predict the missing
preferences of the users by making use of the existing ratings given by the users
to the items in the past. During this process, there are two popular approaches
used to build more accurate recommender systems as described below.

Content filtering and collaborating filtering are the techniques that take a set

31



of users, a set of items and existing ratings as input and predict the missing rat-
ings as output to make decision which items can be recommended to which users.
Content filtering forms a profile for each user by using features of the items rated
by the user in the past. Then, existing features in the user profile are compared
with features of an item to recommend the item to the user. Within this time
period, the ratings given by other users to the item are not considered by the con-
tent filtering technique. Therefore, content filtering is capable of recommending
new items which are not rated by any user yet. Conversely, collaborative filtering
considers the relationship among the users and recommends the items without
forming any profile. The past actions of a user are analyzed to find similar users
in terms of the preferences, and then the items interested by similar users are
recommended to the user. Therefore, the collaborative filtering technique makes
use of the similarities among the users without considering the content of the
items. However, this technique is stuck in case of a new user or item is added
to the system, where it can not find similar users to the new user since there is
no rating given by the new user to an item yet. Similarly, the new item also can
not be recommended to a user since it is not rated by any user yet. This issue
is called cold start problem and occurs in the collaborative filtering algorithms.
On the other hand, the content filtering algorithms do not suffer from the cold
start issue since a profile is created for each user and item by using their features
without considering the relationships among each other. However, the collabo-
rative filtering algorithms produce more precise results than the content filtering
algorithms, meaning that the predictions of the collaborative filtering algorithms
regarding the missing entries are more accurate. [10, 11]

The most well-known application area of collaborative filtering is the latent
factor models which are developed to predict the missing ratings by applying
matrix factorization [11]. The existing ratings are moved to a matrix plane where
the set of the users and the set of the items are represented with the rows and the
columns, respectively. Then, a factor matrix is created for each set as user factor
matrix and item factor matrix. The rating matrix is summarized with the factor
matrices by using a matrix factorization model. Both factor matrices are updated
using the existing ratings in the rating matrix during the factorization process,

32



and finally the missing entries are predicted by using vectors of the updated factor
matrices. The prediction quality is measured using the loss function in Equation
2.2 and increased when this function is minimized.

Stochastic gradient descent (SGD) algorithm is an iterative algorithm that
has recently become the most popular technique applied for recommender sys-
tems among the loss optimization techniques covered in Chapter 2. Then, paral-
lelization of SGD has been studied to factorize large-scale matrices while building
recommender systems for real-world systems. There are two important situations
should be considered while developing a parallel SGD algorithm to make it more
efficient in terms of prediction accuracy and running time as following.

• The SGD algorithm contains dependent update procedures that make the
parallelization difficult. The values of the updated vectors in the current
iteration are used in the next iteration. Therefore, using the most recent
updated vectors during the update procedures becomes harder which may
result in slower convergence due to steal data usage. Hence, the developed
parallel model should not allow the steal data usage by forcing workers1

to apply update procedures with using the most recent vector values all
the time. In other words, quality of the update procedures in the SGD
algorithm should be maintained by applying the same update order with
the sequential SGD algorithm.

• Load imbalance is a critical problem that leads performance issues in par-
allel applications. The usage of the most recent updated vectors are pro-
vided using a synchronization process in synchronous algorithms, where
the workers communicate the updated vectors among each other simultane-
ously. During this process, the workers having fewer ratings might wait for
the others since they finish their tasks earlier and have to wait for the oth-
ers in order to continue to work by completing the communication process.
Hence, this problem increases the running time of the developed parallel
algorithm. To avoid such a problem, each worker should have similar num-
ber of ratings to be processed, meaning that the load balance among the

1Threads in shared memory systems or processors in distributed memory systems

33



workers should be considered while developing the parallel SGD algorithm.

In the light of the situations described above, Gemulla et al. [7] developed
a parallel SGD algorithm, named Distributed SGD (DSGD), to factorize large-
scale matrices while building efficient applications based on recommender sys-
tems. DSGD is the first fully distributed SGD algorithm and influences the
studies in this area. The authors introduce stratified stochastic gradient descent
(SSGD) model in which the rating matrix is partitioned into blocks. Each pro-
cessor works independently on the ratings of a block at a time, and the total loss
is calculated as weighted sum of the local losses in the blocks as given in Table
2.1. In DSGD, processors work on the most recent updated vectors of the factor
matrices using bulk synchronization process in which the updated item vectors
are communicated among the processors periodically. This makes DSGD a syn-
chronous algorithm. The factorization of large matrices with fast convergence
rates is achieved by DSGD in distributed memory environment.

The popular works [1, 7, 2, 3, 4, 5] regarding parallelization of the SGD algo-
rithm are covered in Chapter 3. Most of them base their methods on DSGD and
propose their algorithms by originating from this model. Thus, the algorithms
developed in this area such as [2, 4] are inspired by this outstanding study to
avoid the steal data usage during the update procedures. In addition, the DSGD
model includes a flexible design which can be adapted to shared memory environ-
ment by replacing processors with threads. Although DSGD is the leading work
due to having these crucial features, there is no such a study regarding detailed
analysis of the DSGD algorithm as far as we researched. Hence, we particularly
focus on the DSGD algorithm by implementing and testing it from different per-
spectives in detail. Our contributions regarding extensive analysis of the DSGD
algorithm are stated as follows.

• From the real-world datasets perspective, the DSGD study includes exper-
imental results regarding only Netflix dataset. When we consider the other
models described in Chapter 3, the experiments are performed by using
a few more real-world datasets in addition to Netflix dataset. Therefore,

34



there is only a few real-world datasets used while testing and analyzing
the DSGD algorithm in the literature. In contrast, we produced many
real-world datasets by processing published raw data and conducted the
experiments regarding our DSGD implementation with these datasets us-
ing different number of processors.

• The DSGD algorithm shuffles the input rating matrix randomly, however,
there is no information regarding how random permutation improves the
load balance among the processors and makes the convergence faster in the
DSGD study. To fill this gap, we generated static2 and random3 partitioning
files for different dataset and each number of processors used in the exper-
iments. Then, we implemented a load imbalance calculator and obtained
the load imbalance among processors for both partitioning schemes. More-
over, we conducted the experiments by using both partitioning schemes and
obtained the convergence rates for each partitioning scheme. Then, we dis-
cussed the effect of applied random permutation on the rating matrix with
results of the load imbalance and the convergence rates in Chapter 5.

• In contrast to the studies covered in Chapter 3, we conducted the exper-
iments in terms of the load imbalance, speedup and convergence metrics
with using different number of processors. There is no such a work which
measures performance of the DSGD algorithm in an extensive manner as
far as we researched.

The remainder of this chapter is organized as follows. We describe the SSGD
model that underlies of DSGDmodel in Section 4.1. Then, we provide structure of
the DSGD model by examining its concept and algorithm in Section 4.2. Finally,
we mention the implementation details in Section 4.3.

2The rating matrix is divided into blocks without any operation.
3The random permutation is applied on the rating matrix by row wise and column wise

before dividing the rating matrix into blocks.

35



4.1 SSGD (Stratified SGD)

SSGD is an SGD variant algorithm specialized by the authors [7] which is later
used to develop the DSGD model. DSGD gains feature of being fully distributed
SGD algorithm by specializing the SSGD model. Figure 4.1a illustrates an ex-
ample of the SSGD model where the rating matrix R is divided into blocks which
are not overlapped, meaning that a rating ri,j in the rating matrix R can not be
located in more than one block. The contribution of the authors while specializ-
ing the SSGD model is exploiting interchangeable blocks. The terms used in the
specialized SSGD model are worth to define here to make the remaining parts
more understandable. Interchangeable blocks are any of two or more blocks that
do not have shared rows and columns of the rating matrix. Stratum is a set of
the interchangeable blocks with size p4. Strata is the set of all possible stratum
combinations for the rating matrix. A subiteration is completed when a stratum
is processed, whereas an iteration is completed when a set of stratums with size p
are processed. In other words, processing different p stratums means a complete
iteration.

The specialized SSGD model is given for the rating matrix R in Figure 4.1b.
There are four processors working on the rating matrix R which is divided into six-
teen blocks. Similarly, the user and item factor matrices W and H, respectively,
are divided into four blocks. The colors represent the processors. A stratum for
the rating matrix R is illustrated where the processors work simultaneously on the
interchangeable blocks. The current subiteration is completed when all the pro-
cessors complete their update procedures for all the ratings in the current blocks.
Similarly, an iteration is completed for matrix R in DSGD algorithm when four
different stratums are processed as illustrated in Figure 4.3. The details regarding
the DSGD algorithm including input data distribution among the processors and
communication of the updated vectors will be stated in Section 4.2

In sequential SGD algorithm, global loss is calculated by consecutively apply-
ing update procedures for all the ratings in the rating matrix once, whereas in

4The number of processors working on the rating matrix.

36



0 1 2 3

0

1

2

3

R
x

x

x

x

x
x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

(a) The stratification technique.

0 1 2 3

0

1

2

3

H

W R
x

x

x

x

x
x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

(b) The interchangeable blocks.

Figure 4.1: The SSGD model.

parallel SGD algorithms it is calculated as sum of local losses which are called
stratum losses. In the SSGD model, processors calculate their local loss by ap-
plying the update procedures on the ratings of their block in the current stratum
independently. Then, the global loss is calculated as weighted sum of stratum
losses. The weight of a stratum is generally considered as a constant that is
proportional to the time spent for processing the stratum. In other words, the
number of the ratings in a stratum represents its weight in such a way that total
weight in the rating matrix is set to 1. The convergence of the SSGD model is
determined under a set of conditions including learning rate (or step size), loss,
stratification and stratum sequence. The learning rate (ε) is an input parameter
of the SGD algorithm used to specify momentum of updating system parameters.
Having a lower learning rate results in slower movements, and leads to slow con-
vergence under other sufficient conditions or being stuck in local minima, however,
it achieves finding the local minima. On the other hand, the momentum of the
system is increased with using higher learning rates, but it might diverged instead
of convergence. The authors state that the learning rate can be selected using
the iteration number as ε = 1/I, where I denotes the iteration number. They
prove convergence of the specialized SSGD model under stratification technique.
In addition, we also show the convergence of the SSGD model with experimen-
tal results as discussed in Chapter 5. We obtained that the number of blocks

37



generated in the stratification period does not affect the convergence, meaning
that the DSGD model converges to the same rates even if different number of
processors work on the same rating matrix. On the other hand, there is no exact
information regarding the sequence of stratums, however, the idea is to find out
which sequence provides fast convergence by trying different sequences.

4.2 DSGD (Distributed SGD)

DSGD makes use of the SSGD algorithm to handle inherent sequential update
procedures of the SGD algorithm. The introduced SSGD model is specialized by
integrating a new concept for selection of blocks interchangeably which is later
used in development of the DSGD algorithm. The developed model allows pro-
cessors to always work on the most recent updated vectors of the factor matrices.
The bulk synchronization process is applied to make communication of the up-
dated blocks of item factor matrix among processors at the same time. During the
bulk synchronization process, all the processors communicate the updated factor
blocks together without making computation, which makes DSGD a synchronous
algorithm.

The rating matrix R is divided by row block wise to minimize the communi-
cation cost regarding size of the updated vectors during the bulk synchronization
process since the number of the users is much more than the number of the items
in the real-word systems. All the input data including the rating matrix R, the
user factor matrix W and the item factor matrix H is partitioned into blocks
using a data independent model based on the introduced SSGD algorithm. The
input data distribution for the rating matrix R is illustrated in Figure 4.2. At the
end of the input data partitioning, the rating matrix R with size m× n includes
p x p blocks, and each block has m/p rows and n/p columns. On the other hand,
the factor matrix W includes the number of m/p blocks, each of them has m/p
rows and k columns, whereas the factor matrix H includes n/p blocks, each of
them has n/p rows and k columns as illustrated in the figure. The colors on the
blocks represent their owners after the input data distribution, and the mapping

38



for the colors and the processors are given on the top left side of the figure.

x

x

x

x

x
x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

p3p2p1p0

W

H

R

Processors
k

k n columns

m
 ro

w
sx

Figure 4.2: The input data distribution in the DSGD algorithm.

In the DSGD algorithm, processors work on the rating matrix by updating
vectors of the different factor blocks by applying update procedure on the ratings
of the interchangeable blocks as defined follows. For the rating matrix Rmxn, Bx

and By are called interchangeable blocks if and only if the following statements are
provided, a 6= c and b 6= d, ra,b ∈ Bx and rc,d ∈ By (0 ≤ a, c < m, 0 ≤ b, d < n),
where m and n denote the number of the rows and the columns in the rating
matrix R, respectively. A subiteration is completed when a stratum is processed,
whereas a full iteration is completed when a set of stratum with size p is processed.
After each subiteration, updated blocks of the factor matrix H are communicated
among the processors using the bulk synchronization process. On the other hand,
there is no need for communication of the updated blocks of the factor matrix W
since they belong to a row stripe which is being processed by single processor.

The overall procedure of the DSGD algorithm is given in Algorithm 9. Initially,
the rows and the columns of the rating matrix R are randomly shuffled to increase
the load balance among the processors. The detailed information regarding how
the random permutation increases the load balance and speed up the convergence
are given in Section 5.3.1 and Section 5.3.3, respectively. Then, the input data
is partitioned and distributed among the processors according to stratification

39



Algorithm 9 The overall procedure of DSGD
Input Rating matrix (R), user factor matrix (W ), item factor matrix (H),
number of processors (p) and iteration count (iter)

1: Partition matrix R, H and W into p x p, p and p blocks, respectively
2: Each processor has an array, B, to keep its own blocks in matrix R
3: for i = 1, 2, . . . , iter do // parallel task
4: for j = 1, 2,, . . . , p do
5: for each rating, rx,y, in B[j] do
6: Apply update procedure on rx,y
7: end for
8: end for
9: end for

technique and the number of the processors used in SSGD model. Next, the
processors start to work simultaneously on a stratum of the rating matrix R, and
then this process is repeated the number of the processors times for a complete
iteration. Finally, the execution is terminated when predetermined number of
iterations is achieved or there is no more improvement in the convergence.

An example regarding working progress of the DSGD algorithm through an
iteration is illustrated in Figure 4.3. Each subfigure represent a subiteration, in
which each processor works on a block of a stratum. In the first subiteration,
the processors start to work with the interchangeable blocks on diagonal of the
rating matrix R as illustrated in Figure 4.3a, where p0, p1, p2 and p3 apply
update procedures on the ratings of block R0,0, R1,1, R2,2 and R3,3, respectively.
Then, blocks of the factor matrix H are communicated among the processors by
applying a bulk synchronization process. Then, each processor starts to work with
the ratings in the next block of the same row stripe using the received updated
block of the factor matrix H in the second subiteration. This process is repeated
p times for a complete iteration as the remaining subiterations are illustrated
in Figure 4.3c and Figure 4.3d. At the end of each iteration, the convergence
and the iteration number is checked, and then the execution is terminated if
predetermined iteration number is reached or there is no more improvement in
the convergence rate. Otherwise, the same steps through an iteration are entirely
repeated.

40



0 1 2 3

0

1

2

3

H

W R
x

x

x

x

x
x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

(a) Subiteration 1

0 1 2 3

0

1

2

3

H

W R
x

x

x

x

x
x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

(b) Subiteration 2

0 1 2 3

0

1

2

3

H

W R
x

x

x

x

x
x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

(c) Subiteration 3

x

x

x

x

x
x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

0 1 2 3

0

1

2

3

H

W R

(d) Subiteration 4

Figure 4.3: A complete iteration in the DSGD algorithm.

4.3 Implementation

We implemented the DSGD model in C programming language using built-in
message passing interface (MPI) library. We used OpenMPI as MPI version for
both compilation and execution processes due to its more production oriented
functionality among the existing MPI versions. All source files are compiled by
enabling gcc -O3 optimization flag. Before mention implementation details, the
input parameters used in our implementation are worth to define here as follows.

• Matrix file includes a rating matrix in matrix-market format.

41



• Partition file contains the distribution of the rows and the columns in
the rating matrix among processors.

• Iteration count is the number of total iterations that specifies how many
times the ratings in the rating matrix are updated.

• Factor size is the dimension of the factor matrices W and H.

We created the rating matrices in the matrix-market format by processing the
published raw data of which features are described in Section 5.1. Then, we
generated random partitioning files for each dataset and different number of the
processors by applying the random permutation on the rows and the columns
of the rating matrices, whereas no operation is applied while generating static
partitioning files. Then, we implemented a load imbalance calculator to obtain the
effect of the partitioning strategies on the load balance by considering the ratings
are processed through an iteration by each processor. The formula regarding the
load imbalance calculation is given in Equation 4.1. The iteration count and the
factor size parameters are set to 100 and 8, respectively.

Imbalance =
p×max(

∑p
i=0Bi)∑p

i=0Bi

(4.1)

where p is the number of processors, Bi denotes the number of ratings owned by
pi through a complete iteration in the DSGD algorithm.

As mentioned previously, the number of the users is much more than the num-
ber of the items in most of the real-world systems. The produced real-world
datasets are stated in Table 5.1, and features of the datasets prove this idea ex-
cept Yahoo Music Track-2 dataset. Hence, we partitioned the rating matrix by
row block wise among the processors initially to minimize the communication
cost regarding communication of the updated factor blocks during the bulk syn-
chronization process. Therefore, only item factor blocks are communicated at
the end of each subiteration since the user factor blocks are processed by single
processor.

Most of the rating matrices are very sparse since only a small group of the
users rate for the items. Therefore, keeping the matrices in memory efficiently

42



is very important to optimize the memory usage. We used a data structure,
which is compressed sparse row format (CSR), to store the input rating matrix
in memory. On the other hand, there is no need for using a data structure to
keep the factor matrices in memory since they are dense matrices. The CSR
format includes three one-dimensional arrays to keep sparse matrices, and not
only occupies memory spaces for necessary data, but also avoids cache misses. In
other words, only the existing ratings are stored in memory by using the CSR
format and the local indices are used to provide uniform memory access. We kept
each block within a CSR, and then each processor works on the ratings of p CSR
blocks through an iteration in our DSGD implementation.

For communication of item factor blocks during the bulk synchronization pro-
cess at the end of each subiteration, we used MPI Sendrecv function that includes
an implicit barrier, meaning that a processor completes its communication task
can start to work with the ratings in the next block. In addition, bold driver
heuristic is used to make the convergence faster as the authors stated in the
DSGD study. The bold driver heuristic dynamically updates the step size af-
ter each iteration by comparing the calculated most recent loss value with the
previous loss value as shown below.

f(step size) =

step size× 0.5, if losscur>lossprev

step size× 1.05, if losscur<lossprev

The step size is increased by five percentage when the loss decreases, whereas
it is decreased by fifty percentage when the loss is increased. According to our
experimental results, the bold driver heuristic does not play an important role in
the convergence of the DSGD algorithm since the loss starts to always decrease
after the first a few iterations. Moreover, we obtained worse convergence rates
by using smaller number of processors with denser datasets when the bold driver
heuristic is applied.

43



Chapter 5

Experimental Results

In this chapter, we conduct experiments using different number of processors
(K) as 2, 4, 8, 16, 32 and 64 with real-world datasets, properties of which are
presented in Table 5.1. Then, the results are discussed in terms of the speedup
and the convergence metrics. Moreover, we obtain the load imbalance statistics
for each dataset based on the partitioning scheme and compare the load imbalance
for static and random partitioning strategies.

The remainder of this chapter is organized as follows. Firstly, we describe the
properties of the produced datasets. Then, we mention experimental setup by
describing features of the system in which we conduct the experiments. Finally,
we discuss the experimental results in terms of load imbalance, speedup and
convergence.

5.1 Datasets

From the real-world datasets perspective, only Netflix is used in the experiments
of DSGD study, whereas a few more datasets are used besides Netflix in the other
studies covered through Chapter 3. Therefore, there is a few real-world datasets
used in the experiments of the studies related to DSGD. In contrast, we produced

44



many real-world datasets by processing the published raw data and conducted
the experiments regarding our DSGD implementation with these datasets. In
this section, we examine the Amazon, Last.fm, Movielens, Netflix and Yahoo

Music datasets with their subsets and describe their features. The properties of
the produced datasets are described in the remaining of this section. For the
experiments, we select some of them as given in Table 5.1.

Dataset # users # items # ratings

Amazon Item 21,176,522 9,874,211 82,677,131
Amazon Books 8,026,324 2,330,066 22,507,155
Amazon Clothing 3,117,268 1,136,004 5,748,920
Amazon Electronics 4,201,696 476,002 7,824,482
Amazon Movies and TV 2,088,620 200 941 4,607,047
Last.fm 359,349 268,758 17,559,530
Movielens-20m 138,493 26,744 20,000,263
Movielens-latest 270,896 45,115 26,024,289
Netflix 480,189 17,770 100,480,507
Yahoo Music Track-1 1,000,990 624,961 252,800,275
Yahoo Music Track-2 249,012 296,111 61,944,406

Table 5.1: Properties of produced datasets.

5.1.1 Amazon Dataset

We produced rating matrices regarding the Amazon dataset by processing the
published raw data [31] that contains product reviews in the Amazon website
between 1996 and 2014. The raw data includes over 142 million reviews, however,
some of them are duplicate since similar features of the products are merged by
the Amazon website. Hence, we used the another version of the raw data, in
which the duplicate reviews are removed, that contains over 82 million unique
reviews by almost 21 million users to over 9 million items. In addition to the
reviews, the raw data contains ratings, item-to-item relationships, timestamps,

45



helpfulness votes, product image, price, category and sales-rank information. The
item-to-item relationships are established to reveal the relation among different
items which are reviewed by the same users.

Each review is stored in a javascript object notation (JSON) file as follow-
ing [31],

{

"reviewerID": "A2SUAM1J3GNN3B",

"asin": "0000013714" ,

"reviewerName": "J. McDonald",

"helpful": [2, 3],

"reviewText": "I bought this for my husband who plays

the piano. He is having a wonderful time playing

these old hymns. The music is at times hard to

read because we think the book was published for

singing from more than playing from. Great

purchase though!",

"overall": 5.0,

"summary": "Heavenly Highway Hymns",

"unixReviewTime": 1252800000 ,

"reviewTime": "09 13, 2009"

}

where "reviewerID" is id of the reviewer, "asin" is id of the product, "review-
erName" is name of the reviewer, "helpful" is helpfulness rating of the review,
"reviewerText" is text of the review, "overall" is rating of the product, "sum-
mary" is summary of the product, "unixReviewTime" is time of the review in
unix format and "reviewTime" is also time of the review but it is in raw for-
mat. We downloaded ratings version of the complete review data, called item

dedup, that contains "reviewerID", "asin", "overall" and "unixReviewTime"

information of each existing review in column-separated values (CSV) format.
In addition to item dedup, we also downloaded 24 small real subsets commonly
used for experimentation. These small subsets are created by categorizing the

46



products in Amazon website. The details of all the Amazon datasets including the
number of the users, the items and the ratings are given in a descending order of
the number of ratings in Table 5.2.

Dataset # users # items # ratings

Item dedup 21,176,522 9,874,211 82,677,131
Books 8,026,324 2,330,066 22,507,155
Electronics 4,201,696 476,002 7,824,482
Clothing 3,117,268 1,136,004 5,748,920
Movies and TV 2,088,620 200,941 4,607,047
Home and Kitchen 2,511,610 410,243 4,253,926
CDs and Vinyl 1,578,597 486,360 3,749,004
Cell Phones and Accessories 2,261,045 319,678 3,447,249
Sports and Outdoors 1,990,521 478,898 3,268,695
Kindle Store 1,406,890 430,530 3,205,467
Health and Personal Care 1,851,132 252,331 2,982,326
Apps for Android 1,323,884 61,275 2,638,172
Toys and Games 1,342,911 327,698 2,252,771
Beauty 1,210,271 249,274 2,023,070
Tools and Home Improvement 1,212,468 260,659 1,926,047
Automotive 851,418 320,112 1,373,768
Video Games 826,767 50,210 1,324,753
Grocery and Gourmet Food 768,438 166,049 1,297,156
Office Products 909,314 130,006 1,243,186
Pet Supplies 740,985 103,288 1,235,316
Patio Lawn and Garden 714,791 105,984 993,490
Baby 531,890 64,426 915,446
Digital Music 478,235 266,414 836,006
Amazon Instant Video 426,922 23,965 583,933
Musical Instruments 339,231 83,046 500,176

Table 5.2: Amazon datasets.

47



We created matrix files in matrix market format by processing the downloaded
raw data regarding the complete review data and the smaller subsets. Then, we
selected item dedup and the largest four datasets from the smaller subsets in
terms of the number of the ratings to use in the experiments as Books, Elec-
tronics, Clothing and Movies and TV.

5.1.2 Last.fm Dataset

We produced rating matrices regarding the Last.fm dataset by processing the
published raw data [34] that is generated using the web-service application of
Last.fm website in 2010. The Last.fm dataset includes two different versions
such that smaller one contains a thousand users. We consider the larger Last.fm
dataset that contains the ratings given by almost 360 thousands users to 270
thousands songs. The raw data are stored in two different files in tab-separated
values (TSV) format. The files and their scheme are described as follows.

• The usersha1-artmbid-artname-plays.tsv file contains "user-mboxsha1",
"musicbrainz artist id", "artist name" and "plays" attributes of
the artists. "musicbrainz artist id" is id of the user in musicbrainz
encyclopedia, and "plays" shows that songs of an artist is how many
times played by a user. A sample line from the raw data file is
given as follows [34], "00000c289a1829a808ac09c00daf10bc3c4e223b

f779ed95-66c8-4493-9f46-3967eba785a8 letzte instanz 387", where
a user whose id is "00000c289a1829a808ac09c00daf10bc3c4e223b" plays
the songs of Letzte Instanz 387 times.

• The usersha1-profile.tsv file contains "user-mobxsha1", "gen-

der", "age", "country" and "signup" information of the users.
"signup" represents the registration date of a user to the Last.fm
website. A sample line from the raw data file is given as fol-
lows [34], "000163263d2a41a3966a3746855b8b75b7d7aa83 m 27 Sweden

Jan 5, 2007", where a boy who is 27 years-old and from Sweden regis-
tered to Last.fm website in January 5, 2007.

48



We downloaded sanitized version of the larger Last.fm dataset in which the
listen counts of the songs are quantized to 10, meaning that the ratings are
normalized to values from 0 to 10. Then, we created a matrix file in matrix market
format by processing the downloaded raw data including the files described above
and used it in the experiments.

5.1.3 Movielens Dataset

We produced rating matrices regarding the Movielens dataset by processing the
published raw data [35] that is generated from the Movielens website and lastly
updated in 2018 by GroupLens Research. Movielens is a movie recommendation
system, and the produced dataset includes different subsets as given in Table 5.3.
The features of the subsets are described below.

Movielens-20m [36] is one of the largest Movielens dataset that contains over
20 million ratings given by 138,493 users to 26,744 movies between 1995 and
2015. The users have at least twenty ratings are selected randomly and used in
this dataset. Privacy preservation is applied while collecting the ratings in such
a way that only an ID is generated for each user and any personal information
regarding the user is not stated in the dataset. The raw data is stored in six files
in CSV format and grouped regarding their content as following.

• The ratings.csv file stores ratings data file structure that contains the
ratings given by the users to the movies. Each line of the file includes
userId, movieId, rating and timestamp attributes as sorted by userId

and movieId, respectively. A rating given by a user to a movie is in the
range from 0.5 to 5 with intervals of 0.5.

• The tags.csv file stores tags data file structure that contains the tags
assigned to the movies by the users. Each line of the file includes userId,
movieId, tag and timestamp features as sorted by userId and movieId,
respectively. The tag is a single word created by the users to describe the
movie.

49



• The movies.csv file stores movies data file structure that contains the
movies with their movieId, title and genres attributes. The title at-
tribute and release year of a movie are retrieved from themoviedb website.
The genres for a movie is selected from the predetermined set of genres
that includes 18 genres such comedy, fantasy, romance etc.

• The links.csv file stores links data file structure that contains movieId,
imdbId and tmdbId information. These attributes are used as unique iden-
tifiers of a movie for its links in movielens, imdb and themoviedb websites.

• Tag genome contains the scores given to the movies for all the tags, mean-
ing that each movie has a score for each tag. The tag genome data is
generated to classify the movies by using the user reviews in a learning
mechanism. Therefore, a movie’s relevance to a tag can be known with this
data structure. The genome data contains 12 million relevance scores for
1,100 different tags, and it is presented within two files as follows.

– The genome-scores.csv file contains movieId, tagId and relevance

features, where relevance is a floating number between 0 and 1.

– The genome-tags.csv file includes the mapping between tag and
tagId. The name of the tags used in genome-scores.csv file can
be known by using this mapping regarding tagId attribute.

Movielens-latest [36] is the largest Movielens dataset that contains almost
26 million ratings given by 270,896 users to 45,115 movies between 1995 and
2018. The users having at least one rating are selected randomly and used in this
dataset, and privacy preservation for the users is again applied in this dataset.
All the data structures and their scheme are the same with the Movielens-20m

dataset. The difference is regarding of the usage such that movielens-latest

dataset is used as a development dataset and might be changed continuously.
However, movielens-20m is more stable. In addition, the genome data of the
Movielens-latest dataset contains 14 million relevance scores for 1,100 different
tags. The smaller subsets of the Movielens dataset include the Movielens-100k,
Movielens-1m and Movielens-10m datasets, and their schemes are also similar
to Movielens-20m and Movielens-latest datasets.

50



Dataset # users # items # ratings

Movielens-100k 943 1,682 100,000
Movielens-1m 6,040 3,706 1,000,209
Movielens-10m 69,878 10,677 10,000,54
Movielens-20m 138,493 26,744 20,000,263
Movielens-latest 270,896 45,115 26,024,289

Table 5.3: Movielens datasets.

We downloaded the raw data regarding all the subsets of the Movielens dataset
and created matrix files in matrix market format for all of them by processing
the raw data files described above. Then, we selected and used the largest two
subsets in the experiments, which are movielens-20m and movielens-latest.

5.1.4 Netflix Dataset

We produced a rating matrix regarding the Netflix dataset by processing the
published raw data [32] that is collected from the Netflix website between 1998
and 2005 and presented for the Netflix Prize competition [12] in 2009. The dataset
contains over 100 million ratings given by 480,189 users to 17,770 movies in the
range from 1 to 5. The files including raw data are described as follows.

• A text file is generated for each movie of which the first line includes
movieId, whereas each remaining line includes customerId, rating and
date attributes. customerId is set with the values from 1 to 2,649,429
even though there are 480,189 users. The reason is that only a group of the
customers rate for the movies.

• All the information regarding a movie is stored in the movie-titles.txt

file with its movieId, yearOfRelease and title attributes. movieId is
generated randomly, and yearOfRelease includes a value between 1890
and 2005.

51



• The qualifying dataset is stored in the qualifying.txt file and used to
test developed model for the contest. This file includes the customers and
their interest to the movies.

We downloaded the raw data and created a matrix file in matrix market format
by processing the related raw data files described above. Then, we used them in
the experiments.

5.1.5 Yahoo Music Dataset

We produced rating matrices regarding the Yahoo Music dataset by processing
the published training raw data [33] that is generated from the Yahoo Music
website. The items and the users having at least 20 rates and 10 rates, respec-
tively, are selected for this dataset, and privacy preservation is considered during
generation of the dataset by relabeling the items and the users. In this dataset,
an item can be a track, album, artist or genre and rated in range from 0 to 100.
There are totally four different subsets of the Yahoo Music dataset as given in
Table 5.4. The files containing the raw data regarding the users and different
item types are described below.

• The trainIdx.txt file contains all the ratings given by each user to the
items. The users are separated with a line that only includes userId and
numberOfRatings features. Each line in a user part includes itemId, score
and time attributes of the rating given by that user.

• The trackData.txt file contains the information regarding the tracks with
using trackId, albumId, artitstId and optionally genreId(s) attributes.

• The albumData.txt file contains the information regarding the albums with
using albumId, artitstId and optionally genreId(s) attributes.

• The artistData.txt file contains the artists with using artistId at-
tribute.

52



• The genreData.txt file contains the genres with using genreId attribute.

Dataset # users # items # ratings

Small 249,012 296,111 61,944,406
Medium 500,269 445,440 123,318,314
Large 1,000,990 624,961 252,800,275
All 5,014,136 1,158,226 1,279,358,021

Table 5.4: Yahoo Music datasets.

We downloaded the raw data regarding the large and small subsets among the
existing four subsets of the Yahoo Music dataset and called them Yahoo Music

Track-1 and Yahoo Music Track-2, respectively. Then, we created matrix files
in matrix market format by processing the related raw data files described above,
and used them in the experiments.

5.2 Experimental Setup

In our experiments, we used a machine equipped with Intel Xeon CPU E7-8860
running at 2.20GHz. It has 256 GB of RAM and 72 CPUs. There are four sockets,
each of them contains 18 cores. In addition, L1d, L1i, L2 and L3 are the caches
on the machine with size of 32 KB, 32 KB, 256 KB and 46 MB, respectively.

Dataset Learning Rate(α) Regularization Constant(λ)

Amazon 0.002 0.05
Last.fm 0.001 0.01
Movielens 0.0001 1
Netflix 0.002 0.05
Yahoo Music 0.0001 1

Table 5.5: Parameters of the SGD algorithm used in the experiments.

53



The selected learning rate (α) and the regularization constant (λ) parameters
used in the update procedures of SGD algorithm are stated in Table 5.5. These
parameters should be determined carefully for each dataset to speedup the con-
vergence. The datasets are grouped under the name of the main dataset, and
the same parameters are used for its all subsets. We examined the values of the
parameters used in the existing works covered in Chapter 3 and used the same
parameters for some of the datasets. The parameters used for Movielens, Net-
flix and Yahoo Music datasets are got from [3] and [2]. On the other hand,
we try different parameter values for Amazon and Last.fm datasets and obtain
them ourselves. In addition, factor size k is set to 8 in all the experiments, and
the entries in the factor matrices are randomly initialized with single precision
floating point numbers in the range of [-1.0, 1.0].

5.3 Results and Discussion

5.3.1 Load Imbalance

As mentioned previously in Chapter 4.3, we applied random permutation on the
rating matrix to provide load balance among the processors before running the
DSGD algorithm as the authors stated. We implement a load imbalance calcula-
tor and calculate the load imbalance in the produced datasets by using different
number of processors. During the load imbalance calculation, we take the data
independent block distribution into consideration, in which the rating matrix is
partitioned by row block wise among the processors and never communicated
during the working process. In other words, the number of the ratings in a com-
plete iteration, which consists of p subiterations, for the processors is considered
while calculating the load imbalance as the formula given in Equation 4.1. In
addition, we also generate static and random partitioning files and obtain the
improvement with the random permutation in terms of the load balance as given
in Table 5.6, where p denotes the number of processors and two rows in the
part of each dataset contain the load imbalance values as percentage for static

54



partitioning and random partitioning, respectively. For example, the load imbal-
ance in Amazon Books dataset for 32 processor is obtained as 437.6% with static
partitioning, whereas it is only 6.6% with random partitioning. Moreover, the
improvement by the random partitioning is stated on the left column, where the
first row of each dataset contains the average improvement for applied different
number of processors as 2, 4, 8, 16, 32 and 64. The second row of each dataset
contains the improvement when the number of processors is 64.

Dataset Improvement p=2 p=4 p=8 p=16 p=32

Amazon Item Average : 339.7x
p = 64 : 114.6x

48.56
0.150

98.40
0.429

166.2
0.338

254.6
0.353

383.4
2.391

Amazon Books Average : 90.69x
p = 64 : 50.15x

47.53
0.586

106.8
0.706

191.3
2.196

308.5
2.842

437.6
6.635

Amazon Clothing Average : 129.0x
p = 64 : 67.98x

23.88
0.110

43.61
0.331

58.72
0.385

75.69
0.587

87.60
1.118

Amazon Movies Average : 124.8x
p = 64 : 72.20x

40.30
0.212

99.33
0.489

186.5
1.817

318.5
5.100

506.5
4.250

Lastfm Average : 0.142x
p = 64 : 0.172x

0.029
0.141

0.038
0.450

0.084
0.868

0.154
1.094

0.273
1.839

Movielens-20m Average : 0.843x
p = 64 : 0.871x

0.113
0.682

0.903
0.611

2.210
1.490

2.518
4.811

3.814
7.089

Movielens-latest Average : 1.356x
p = 64 : 2.095x

0.174
0.061

0.808
1.501

1.548
2.254

3.498
3.557

6.886
7.079

Netflix Average : 1.197x
p = 64 : 1.100x

0.258
0.257

0.854
0.589

1.324
0.680

1.462
1.820

1.992
2.263

Yahoo Music-1 Average : 0.803x
p = 64 : 0.868x

0.157
0.345

0.570
0.945

1.430
1.354

2.301
2.533

4.108
4.405

Yahoo Music-2 Average : 0.925x
p = 64 : 0.936x

0.775
0.467

1.637
2.747

2.363
4.246

4.828
5.040

6.822
8.038

Table 5.6: Load imbalance results for static and random partitioning.

The figures regarding the load imbalance results are illustrated in Figure 5.1
and Figure 5.2. The results show that random permutation works well for much
sparser datasets even though it is not too much effective for denser datasets in-
cluding last.fm, Netflix, Yahoo Music Track-1 and Yahoo Music Track-2.
As shown in Figure 5.1, the load imbalance in Amazon datasets with static par-
titioning is very high, and random permutation improves the load balance by
67x-339x. On the other hand, there is no such a huge improvement for denser

55



datasets such as Lastfm, Neflix and Yahoo Music, where the results are almost
the same for both partitioning schemes. The static partitioning already achieves
good load balance for the denser datasets where the maximum load imbalance is
around 2% and 5% in Last.fm and Netflix datasets, respectively, whereas it is
around 10% in Yahoo Music datasets. Although the static partitioning produces
a little bit better results than the random partitioning around ∼15%, these differ-
ences are not important since the load imbalance for the denser datasets is very
low for both partitioning schemes such that it is between 1.9% and 8% even if 32
processors are used as illustrated in Figure 5.2. Therefore, we can not mention an
improvement in such a case since the imbalance is already low and the difference
between static and random partitioning in terms of load imbalance is also very
low. Hence, we expect that the speedup does not show too much difference in
both partitioning schemes for these datasets. On the other hand, the obtained
load imbalance for Movielens datasets are very similar to obtained results in larger
datasets, however, there is a tricky point that we have to consider. When SSGD
model is directly used during the load imbalance calculation without consider-
ing row block wise partitioning through a complete iteration, static partitioning
differs by producing higher imbalance with Movielens datasets. However, we ob-
tained that static and random partitioning results are very similar when only
row block wise partitioning is considered as applied for the other datasets during
the load imbalance calculation. It means that the load imbalance on Movielens
datasets in terms of row block wise partitioning is very low, whereas it is very
high in SSGD-based (block by block) wise partitioning.

The load imbalance results are calculated as percentage and illustrated in Fig-
ure 5.1 and Figure 5.2. The results show that random permutation works well for
much sparser datasets even though it is not too much effective for denser datasets
including Last.fm, Netflix, Yahoo Music Track-1 and Yahoo Music Track-2. As
shown in Figure 5.1, the load imbalance in Amazon datasets with static partition-
ing is very high, and random permutation improves the load balance by 67x-339x.
On the other hand, static partitioning produces a little bit (∼15%) better results
than random partitioning in terms of load balance as illustrated in Figure 5.2.
However, static partitioning in Netflix, Yahoo Music Track-1 and Yahoo Music

56



Track-2 datasets already achieves good load balance where the maximum load
imbalance is around 2% and 5% in Last.fm and Netflix datasets, respectively,
whereas it is around 10% in Yahoo Music datasets. Therefore, we can not men-
tion an improvement in such a case since the imbalance is already low and the
difference between static and random partitioning in terms of load imbalance is
also very low. Hence, we expect that the speedup does not show too much dif-
ference in both partitioning schemes for these datasets. On the other hand, the
obtained load imbalance for Movielens datasets are very similar to obtained re-
sults in larger datasets, however, there is a tricky point that we have to consider.
When SSGD model is directly used during the load imbalance calculation without
considering row block wise partitioning through a complete iteration, static parti-
tioning differs by producing higher imbalance with Movielens datasets. However,
we obtained that static and random partitioning results are very similar when
only row block wise partitioning is considered as applied for the other datasets
during the load imbalance calculation. It means that the load imbalance on
Movielens datasets in terms of row block wise partitioning is very low, whereas
it is very high in SSGD-based (block by block) wise partitioning.

Thus, we completely ensured that the ratings are spread nonuniformly through
column block wise in Movielens datasets, meaning that some of the blocks have
much more entries than others in the same row block. Therefore, we expect that
static partitioning works slower than random partitioning with Movielens datasets
since some of the processors idle during bulk synchronization progress due to
imbalance among the blocks located in the same row block stripe as explained
above.

57



21 22 23 24 25 26

Number of processors

0

100

200

300

400

500

600

Lo
a
d
 i
m

b
a
la

n
ce

 %

48.6

98.4

166.3

254.6

383.5

520.1

0.2 0.4 0.3 0.4 2.4 4.5

Amazon Item

Partition type
static

random

(a) Amazon Item.

21 22 23 24 25 26

Number of processors

0

100

200

300

400

500

600

Lo
a
d
 i
m

b
a
la

n
ce

 %

47.5

106.9

191.4

308.6

437.7

584.7

0.6 0.7 2.2 2.8 6.6 11.7

Amazon Books

Partition type
static

random

(b) Amazon Books.

21 22 23 24 25 26

Number of processors

0

20

40

60

80

100

Lo
a
d
 i
m

b
a
la

n
ce

 %

23.9

43.6

58.7

75.7

87.6
91.7

0.1 0.3 0.4 0.6 1.1 1.3

Amazon Clothing

Partition type
static

random

(c) Amazon Clothing.

21 22 23 24 25 26

Number of processors

0

100

200

300

400

500

600

700

800
Lo

a
d
 i
m

b
a
la

n
ce

 %

40.3

99.3

186.6

318.5

506.6

751.0

0.2 0.5 1.8 5.1 4.3 10.4

Amazon Movies and TV

Partition type
static

random

(d) Amazon Movies and TV.

21 22 23 24 25 26

Number of processors

0.0

0.5

1.0

1.5

2.0

2.5

Lo
a
d
 i
m

b
a
la

n
ce

 %

0.0 0.0 0.1
0.2

0.3
0.4

0.1

0.5

0.9

1.1

1.8

2.3

Lastfm

Partition type
static

random

(e) Last.fm.

21 22 23 24 25 26

Number of processors

0

1

2

3

4

5

Lo
a
d
 i
m

b
a
la

n
ce

 %

0.3

0.9

1.3
1.5

2.0

4.6

0.3

0.6 0.7

1.8

2.3

4.2

Netflix

Partition type
static

random

(f) Netflix.

Figure 5.1: Load imbalance comparison for static and random partitioning 1.
58



21 22 23 24 25 26

Number of processors

0

1

2

3

4

5

6

7

8
Lo

a
d
 i
m

b
a
la

n
ce

 %

0.1

0.9

2.2
2.5

3.8

6.8

0.7 0.6

1.5

4.8

7.1

7.8Movielens-20m

Partition type
static

random

(a) Movielens-20m.

21 22 23 24 25 26

Number of processors

0

2

4

6

8

10

12

14

16

Lo
a
d
 i
m

b
a
la

n
ce

 %

0.2
0.8

1.5

3.5

6.9

14.6

0.1

1.5
2.3

3.6

7.1 7.0

Movielens-latest

Partition type
static

random

(b) Movielens-latest.

21 22 23 24 25 26

Number of processors

0

2

4

6

8

10

12

Lo
a
d
 i
m

b
a
la

n
ce

 %

0.2
0.6

1.4

2.3

4.1

9.0

0.3
0.9

1.4

2.5

4.4

10.4

Yahoo Music Track-1

Partition type
static

random

(c) Yahoo Music Track-1.

21 22 23 24 25 26

Number of processors

0

2

4

6

8

10

12

14

Lo
a
d
 i
m

b
a
la

n
ce

 %

0.8

1.6
2.4

4.8

6.8

12.3

0.5

2.7

4.2
5.0

8.0

13.2
Yahoo Music Track-2

Partition type
static

random

(d) Yahoo Music Track-2.

Figure 5.2: Load imbalance comparison for static and random partitioning 2.

5.3.2 Speedup

We used built-in MPI Wtime function to measure the running time of our DSGD
implementation. The initial operations before running the DSGD algorithm in-
cluding reading and distributing input data are not included in timing. We se-
lected the maximum one among the elapsed times measured by all the processors

59



and calculated the speedup by comparing the elapsed times in parallel and sequen-
tial executions for each dataset. Meanwhile, our sequential SGD implementation
is also executed on the same machine with the same input parameters and random
seed.

Almost linear speedup is achieved for denser datasets by the DSGD algorithm
as illustrated in Figure 5.4. The respective speedup curves are almost the same
for both partitioning schemes since the calculated load imbalance values for these
datasets are very similar to each other as discussed in Section 5.3.1. In addition,
the random partitioning scales a little bit better than the static partitioning as
we expected. The speedup results for the Movielens datasets prove us right
about characteristics of the dataset which is described while discussing the load
imbalance results. Even if the load imbalance results for both partitioning types
are similar in these datasets, the speedup curves show too much difference, where
the random partitioning works much better than the static partitioning as we
expected. Meanwhile, we obtained better speedup results by using the random
partitioning also in smaller Amazon datasets, which are Amazon Books, Amazon
Clothing, Amazon Electronics and Amazon Movies as shown in Figure 5.3. In
these datasets, the speedup begins well as expected when the random partitioning
is applied, however, it does not interestingly scale after 8 processors. We ana-
lyzed the elapsed times separately for computation and communication processes
and found out that communication bottleneck occurs after 8 processors for these
datasets, in which the time spent during the communication process is five times
the time spent during the computation process. The same scenario occurs in
item dedup dataset where the speedup does not scale after 8 processor, although
it scales well at the beginning as we calculated as 3.8 when 2 processors are used.
This abnormal situation arises from the cache, especially L3 cache, since the size
of communicated data fits into L3 cache on the machine used in the experiments.

60



20 21 22 23 24 25 26

Number of processors

20

21

22

23

24

25

26

S
p
e
e
d
u
p

Amazon Item

Partition type
static,k=8

random,k=8

(a) Amazon Item.

20 21 22 23 24 25 26

Number of processors

20

21

22

23

24

25

26

S
p
e
e
d
u
p

Amazon Books

Partition type
static,k=8

random,k=8

(b) Amazon Books.

20 21 22 23 24 25 26

Number of processors

20

21

22

23

24

25

26

S
p
e
e
d
u
p

Amazon Clothing

Partition type
static,k=8

random,k=8

(c) Amazon Clothing.

20 21 22 23 24 25 26

Number of processors

20

21

22

23

24

25

26

S
p
e
e
d
u
p

Amazon Electronics

Partition type
static,k=8

random,k=8

(d) Amazon Electronics.

20 21 22 23 24 25 26

Number of processors

20

21

22

23

24

25

26

S
p
e
e
d
u
p

Amazon Movies and TV

Partition type
static,k=8

random,k=8

(e) Amazon Movies.

20 21 22 23 24 25 26

Number of processors

20

21

22

23

24

25

26

S
p
e
e
d
u
p

Lastfm

Partition type
static,k=8

random,k=8

(f) Last.fm.

Figure 5.3: Speedup results 1.
61



20 21 22 23 24 25 26

Number of processors

20

21

22

23

24

25

26

S
p
e
e
d
u
p

Movielens-20m

Partition type
static,k=8

random,k=8

(a) Movielens-20m

20 21 22 23 24 25 26

Number of processors

20

21

22

23

24

25

26

S
p
e
e
d
u
p

Movielens-latest

Partition type
static,k=8

random,k=8

(b) Movielens-latest.

20 21 22 23 24 25 26

Number of processors

20

21

22

23

24

25

26

S
p
e
e
d
u
p

Netflix

Partition type
static,k=8

random,k=8

(c) Netflix.

20 21 22 23 24 25 26

Number of processors

20

21

22

23

24

25

26

S
p
e
e
d
u
p

Yahoo Music Track-1

Partition type
static,k=8

random,k=8

(d) Yahoo Music Track-1.

20 21 22 23 24 25 26

Number of processors

20

21

22

23

24

25

26

S
p
e
e
d
u
p

Yahoo Music Track-2

Partition type
static,k=8

random,k=8

(e) Yahoo Music Track-2.

Figure 5.4: Speedup results 2.
62



5.3.3 Convergence

The weighted loss function based on L2 regularization is used while calculating
total loss in the DSGD model, where the stratum losses are reduced by master
processor at the end of each subiteration. We observed that convergence for both
partitioning schemes with all the datasets is achieved by our DSGD implementa-
tion. We divided convergence results into two groups, which are per-matrix and
per-partition, to test the proposed statements in the DSGD study. Per-matrix
results contain comparison of the convergence curves when different number of
processors and different partitioning schemes are applied on the same dataset.
On the other hand, per-partition results include comparison of the convergence
curves when different partitioning schemes are applied on the same dataset with
the same number of processor. To sum up, the per-matrix results show correctness
of the stated theory regarding convergence of the SSGD model, whereas the per-
partition results illustrate that random partitioning achieves faster convergence
than static partitioning as stated in the paper.

Figure 5.5 contains the per-matrix convergence results, where we picked only
six figures randomly to not occupy more place here. Otherwise, we need to show
more than a hundred figures in total like for each dataset, partitioning type and
number of processor. We selected different datasets and partitioning types to
test the proposed theory. We obtained that the convergence is achieved by the
specialized SSGD model, and it is not affected by different number of processors,
meaning that the number of blocks used during the stratification process does
not cause any computational error. We obtained the same convergence rate on
the same data without considering the applied partitioning type and the number
of processors as illustrated in the subfigures. The only difference is based on the
partitioning schemes in such a way that the convergence is a little bit faster with
more number of processors. However, the reached convergence rates are the same.

63



0 20 40 60 80 100
Iteration count

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
E
rr

o
r 

v
a
lu

e
Amazon Movies and TV

static
2 processor

4 processor

8 processor

16 processor

32 processor

64 processor

(a) Amazon Movies, Static.

0 20 40 60 80 100
Iteration count

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

E
rr

o
r 

v
a
lu

e

Amazon Electronics

random
2 processor

4 processor

8 processor

16 processor

32 processor

64 processor

(b) Amazon Electronics, Random.

0 20 40 60 80 100
Iteration count

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
rr

o
r 

v
a
lu

e

Movielens-latest

random
2 processor

4 processor

8 processor

16 processor

32 processor

64 processor

(c) Movielens-latest, Random.

0 20 40 60 80 100
Iteration count

23

24

25

26

27

28

29
E
rr

o
r 

v
a
lu

e

Yahoo Music Track-1

random
2 processor

4 processor

8 processor

16 processor

32 processor

64 processor

(d) Yahoo Music Track-1, Random.

0 20 40 60 80 100
Iteration count

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

E
rr

o
r 

v
a
lu

e

Lastfm

static
2 processor

4 processor

8 processor

16 processor

32 processor

64 processor

(e) Last.fm, Static.

0 20 40 60 80 100
Iteration count

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

E
rr

o
r 

v
a
lu

e

Netflix

random
2 processor

4 processor

8 processor

16 processor

32 processor

64 processor

(f) Netflix, Random.

Figure 5.5: Per-matrix convergence results.

64



The per-partition convergence results are illustrated in Figure 5.6. The random
partitioning achieves much faster convergence without considering the applied
number of processors when compared with static partitioning and sequential exe-
cution. The SGD-based algorithms inherently work better with randomized data
as exhaustively explained in Chapter 3. The convergence rates obtained with the
static partitioning and the sequential execution are almost the same since they
pick the ratings in the same sequence which shows that the SSGD model achieves
the same update sequence as serial SGD algorithm. The convergence results are
different for Netflix dataset when the static and random partitioning schemes
applied with different number of the processors. The static partitioning leads to
a little bit better convergence as illustrated in Figure 5.6e and Figure 5.6f. The
obtained convergence rate is 0.8 with the random partitioning, whereas it is 0.65
with the static partitioning. Although these convergence rates are very close to
each other, it probably converges to local minima due to the changed update
orders.

65



0 20 40 60 80 100
Iteration count

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
E
rr

o
r 

v
a
lu

e
Amazon Item, K=64

Partition type
sequential

static

random

(a) Amazon Item, K=64.

0 20 40 60 80 100
Iteration count

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

E
rr

o
r 

v
a
lu

e

Amazon Books, K=32

Partition type
sequential

static

random

(b) Amazon Books, K=32.

0 20 40 60 80 100
Iteration count

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

E
rr

o
r 

v
a
lu

e

Amazon Clothing, K=8

Partition type
sequential

static

random

(c) Amazon Clothing, K=8.

0 20 40 60 80 100
Iteration count

1.0

1.5

2.0

2.5

3.0

3.5

4.0
E
rr

o
r 

v
a
lu

e

Movielens-20m, K=32

Partition type
sequential

static

random

(d) Movielens-20m, K=32.

0 20 40 60 80 100
Iteration count

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
rr

o
r 

v
a
lu

e

Netflix, K=4

Partition type
sequential

static

random

(e) Netflix, K=4.

0 20 40 60 80 100
Iteration count

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
rr

o
r 

v
a
lu

e

Netflix, K=64

Partition type
sequential

static

random

(f) Netflix, K=64.

Figure 5.6: Per-partition convergence results.

66



Chapter 6

Conclusion

In this thesis, we focused on the parallel stochastic gradient descent (SGD) models
used popularly while building recommendation systems in recent years. Recom-
mender systems are used to predict the missing preferences of the users to decide
which items can be recommended to which users. There are two strategies used
while building recommender systems as content filtering and collaborative filter-
ing. Although content filtering is more robust to cold start problem, collaborative
filtering achieves better predictions. Collaborative filtering find its applications
in mostly latent factor models which boils down to matrix factorization, where
factor matrices are used for the users and the items. The goal is to update vectors
of the factor matrices by avoiding sequential nature of update procedures in the
SGD algorithm while discovering the latent user and item factors. In this direc-
tion, we examined popular parallel SGD algorithms by describing the developed
models and created a detailed survey consisting of these algorithms developed for
shared memory and distributed memory systems. Among the existing models,
distributed SGD (DSGD) [7] is the leading work since most of the existing works
covered in Chapter 3 developed for both memory environments are influenced
by this prominent study. Although DSGD is such an outstanding study in this
research area, there is no work regarding detailed performance analysis of the
DSGD algorithm as far as we researched. Hence, we implement the DSGD model
using message-passing paradigm and test its performance in terms of the load

67



imbalance, speedup and convergence metrics. In addition, we produced many
real-world datasets and conduct the experiments with these datasets in contrast
to the studies described in the survey where there is only a few datasets used in
the experiments. We also filled the gap in the DSGD study regarding the effect
of the random permutation of the rating matrix on the load imbalance and the
convergence. We implemented a load imbalance calculator and show how the
random permutation increases the load balance and speed up the convergence by
conducting the experiments for static and random partitioning techniques with
different number of processors.

Experimental results show that the random permutation improves the load
balance among the processors and speeds up the convergence of the DSGD al-
gorithm. The specialized SSGD model converges with all the datasets of which
properties are given in Table 5.1. Correctness of the described theory regarding
the convergence of the specialized SSGD model in the DSGD study is also shown
with the experimental results such that the developed model converges to the
same rates even if different number of processors are applied in the rating matrix.
In addition, the most recent updated vectors of the factor matrices are used by
the processors which makes the convergence faster. Although the speedup curves
for sparser datasets such as Amazon subsets do not scale when the number of
the processors are increased due to occurred communication bottleneck, almost
linear speedup is achieved with the denser datasets such as Movielens, Netflix
and Yahoo Music. All these results show that the DSGD model is suitable to
parallelize the SGD algorithm by avoiding its sequential update procedure. As a
result, DSGD is a robust algorithm and does not suffer from the growing size of
datasets.

68



Bibliography

[1] F. Niu, B. Recht, C. Re, and S. J. Wright, “Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent,” in NIPS, 2011.

[2] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collab-
orative filtering for the netflix prize. In Algorithmic Aspects in Information
and Management, pages 337–348. Springer, 2008.

[3] F. Petroni and L. Querzoni. Gasgd: stochastic gradient descent for distributed
asynchronous matrix completion via graph partitioning. ACM Conference on
Recommender systems, 2014.

[4] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I. Dhillon. Nomad:
Non-locking, stochastic multi-machine algorithm for asynchronous and de-
centralized matrix completion. arXiv preprint arXiv:1312.0193, 2013.

[5] J. Oh, W.-S. Han, H. Yu, and X. Jiang. Fast and robust parallel sgd matrix
factorization. In KDD, 2015.

[6] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph com-
putation on just a pc. In Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12), pages 31–46.
USENIX, 2012.

[7] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix
factorization with distributed stochas- tic gradient descent. In Proceedings of
the conference on Knowledge Discovery and Data Mining, pages 69–77, 2011.

69



[8] C. Teflioudi, F. Makari, and R. Gemulla. Distributed matrix completion. In
Proceedings of the International Con- ference on Data Mining, pages 655–664,
2012.

[9] J. Langford, A. J. Smola, and M. Zinkevich. Slow learners are fast. In Advances
in Neural Information Processing Systems, 2009.

[10] Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender sys-
tems: State of the art and trends. In: F. Ricci, L. Rokach, B. Shapira, P.B.
Kantor (eds.) Recommender Systems Handbook, pp. 73–105. Springer Verlag
(2011)

[11] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for rec-
ommender systems. IEEE Computer, 42(8):30–37, 2009.

[12] J. Bennett and S. Lanning. The netflix prize. In Proceedings of KDD cup
and workshop, 2007.

[13] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The yahoo! music
dataset and kdd-cup’11. Journal of Machine Learning Research-Proceedings
Track, 18:8–18, 2012.

[14] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collab-
orative filtering for the Netflix prize. In Proceedings of the Fourth International
Conference on Algorithmic Aspects in Information and Management, pages
337–348, 2008.

[15] W. Tan, L. Cao, and L. Fong. Faster and cheaper: Parallelizing large-scale
matrix factorization on gpus. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing, pages
219–230. ACM, 2016.

[16] I. Pilaszy, D. Zibriczky, and D. Tikk. Fast ALS-based matrix factorization
for explicit and implicit feedback datasets. In Proceedings of the Fourth ACM
Conference on Recommender Systems, pages 71–78, 2010.

[17] http://stanford.edu/~rezab/classes/cme323/S15/notes/lec14.pdf

70



[18] H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon. Scalable coordinate descent ap-
proaches to parallel matrix factorization for recommender systems. In ICDM,
2012.

[19] P. Richtarik and M. Takac. Parallel coordinate descent methods for big data
optimization, 2012.

[20] Y. Xu and W. Yin, A block coordinate descent method for multi-convex
optimization with applications to nonnegative tensor factorization and com-
pletion, 2012.

[21] A. Cichocki and A.-H. Phan, “Fast local algorithms for large scale nonnega-
tive matrix and tensor factorizations,” IEICE Transactions on Fundamentals
of Electronics Communications and Computer Sciences, vol. E92-A, no. 3, pp.
708–721, 2009.

[22] Kim, J., He, Y., Park, H.: Algorithms for nonnegative matrix and tensor
factorizations: A unified view based on block coordinate descent framework.
Journal of Global Optimization (2013). doi:10.1007/s10898- 013-0035-4

[23] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A
dual coordinate descent method for large-scale linear SVM. In ICML, 2008

[24] Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. Coordinate descent
method for large-scale L2- loss linear SVM. Journal of Machine Learning
Research, 9:1369–1398, 2008

[25] C.-J. Hsieh and I. S. Dhillon, “Fast coordinate descent methods with variable
selection for non-negative matrix factorization,” in ACM KDD, 2011.

[26] S. Sheen, A Coordinate Descent Method for Robust Matrix Factorization
and Applications,

[27] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in
Proceedings of the 19th International Conference on Computational Statistics,
2010.

71



[28] Sixin Zhang, Anna Choromanska, and Yann LeCun. Deep learning with
Elastic Averaging SGD. Neural Information Processing Systems Conference
(NIPS 2015), pages 1–24, 2015.

[29] Schaul, Tom, Zhang, Sixin, and LeCun, Yann. No more pesky learning rates,
2012.

[30] Smith, S., Park, J., Karypis, G.: An exploration of optimization algo-
rithms for high performance tensor completion. In: Proceedings of the 2016
ACM/IEEE conference on Supercomputing (2016)

[31] Amazon datasets, http://jmcauley.ucsd.edu/data/amazon/links.html

[32] Netflix dataset, http://academictorrents.com/

[33] Yahoo datasets, https://webscope.sandbox.yahoo.com/myrequests.php

[34] Lastfm dataset,
http://www.dtic.upf.edu/ ocelma/MusicRecommendationDataset/in-
dex.html

[35] Movielens datasets, https://grouplens.org/datasets/movielens/

[36] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets:
History and Context. ACM Transactions on Interactive Intelligent Systems
(TiiS) 5, 4, Article 19 (December 2015).

72


	Dedication
	Introduction
	Background
	Problem Definition
	Existing Techniques for Loss Minimization
	Alternating Least Squares (ALS)
	Coordinate Descent (CD)
	Stochastic Gradient Descent (SGD)


	Literature Survey
	Hogwild:A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
	DSGD: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent
	FPSGD: A Fast Parallel SGD for Matrix Factorization in Shared Memory Systems
	GASGD: Stochastic Gradient Descent for Distributed Asynchronous Matrix Completion via Graph Partitioning
	NOMAD: Non-locking, stOchastic Multi-machine algorithm for Asynchronous and Decentralized matrix completion
	MLGF-MF: Fast and Robust Parallel SGD Matrix Factorization

	DSGD: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent
	SSGD (Stratified SGD)
	DSGD (Distributed SGD)
	Implementation 

	Experimental Results
	Datasets
	Amazon Dataset
	Last.fm Dataset
	Movielens Dataset
	Netflix Dataset
	Yahoo Music Dataset

	Experimental Setup
	Results and Discussion
	Load Imbalance
	Speedup
	Convergence


	Conclusion

