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ABSTRACT

HIGH-GAIN SAMPLED-DATA CONTROL

OF INTERCONNECTED SYSTEMS

Haluk Altunel

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. M. Erol Sezer

January 2002

Stabilization of interconnected systems using adaptive, decentralized, high-gain,

sampled-data controllers is considered. Main applications of high-gain method-

ology to various systems under modeling uncertainties are reviewed. Then,

sampled-data, high-gain and decentralized control techniques are combined to

�nd a solution to stabilization of interconnected systems, while satisfying the

overall synchronization of the whole system. It is shown that overall system can

be stabilized in continuous and discrete time domains by applying an adaptation

mechanism for perturbations with unknown bounds.

Keywords: interconnected system, subsystem, high-gain control, decentralized

control, sampled-data control, perturbation, adaptation, state feedback, output

feedback
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�OZET

B_ILES�_IK S_ISTEMLER_IN Y�UKSEK KAZANC�LI

�ORNEKLENM_IS� KONTROLU

Haluk Altunel

Elektrik ve Elektronik M�uhendisli�gi B�ol�um�u Y�uksek Lisans

Tez Y�oneticisi: Prof. Dr. M. Erol Sezer

Ocak 2001

Bile�sik sistemlerin uyumlu, ayr��s�k, y�uksek kazan�cl�, �orneklenmi�s veri

geribeslemesi ile kararl�la�st�r�lmas� incelenmi�stir. Y�uksek kazan�c y�onteminin

modelleme belirsizli�gi olan �ce�sitli sistemlerdeki ana uygulamalar� g�ozden

ge�cirilmi�stir. Daha sonra �orneklenmi�s veri, y�usek kazan�c ve ayr��s�k geribesleme

teknikleri bile�sik sistemlerin karala�st�r�lma�s� i�cin birlikte kullan�lm��st�r, ayn�

zamanda toplam sistemin e�sg�ud�um�u sa�glanm��st�r. Toplam sistemin s�n�rlar�

bilinmeyen belirsizliklere kar�s� s�urekli ve �orneklenmi�s zaman boyutlar�nda

kararl�la�st�r�labildi�gi uyum mekanimas�n�n uygulanmas� ile g�osterilmi�stir.

Anahtar kelimeler: bile�sik sistem, alt sistem, y�uksek kazan�cl� kontrol, ayr��s�k

kontrol, �orneklenmi�s veri kontrolu, belirsizlik, uyumluluk, durum geribeslemesi,

�c�kt� geribeslemesi
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Chapter 1

INTRODUCTION

High-gain control is a powerful tool to stabilize complex systems under additive

perturbations and/or with modeling uncertainties that can be represented as

additive perturbations. The basic idea behind high-gain control is to achieve a

suÆciently high degree of stability of a nominal system to overcome any desta-

bilizing e�ect of perturbations.

High-gain control has its roots in root-locus method and the small gain the-

orem [19]. As an illustration of the application of high-gain control, consider a

single-input/single-output (SISO) system described as

_x = Ax+ bu+ bgTx

y = cTx

where the term bgTx represents linear additive perturbations that satisfy the so

called matching conditions [6]. Let

h(s) = cT (sI � A)�1b =
q(s)

d(s)

and

g(s) = gT (sI � A)�1b =
p(s)

d(s)
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The transfer function of the perturbed system is calculated as

hp(s) = cT (sI � A� bgT )�1b

= cT (sI � A)�1[I � bgT (sI � A)�1]�1b

= cT (sI � A)�1b[1� gT (sI � A)�1b]�1

=
h(s)

1� g(s)

=
q(s)

d(s)� p(s)

Comparing h(s) and hp(s), we observe that matching perturbations a�ect only

the poles of the system but not the zeros. It is precisely this nature of the

perturbations that allow for achieving stability by means of high-gain feedback

control. For illustration purposes, let us assume that

h(s) =
q(s)

d(s)
=

sn�1 + � � �+ qn�1

sn + d1sn�1 + � � �+ dn
;

that is, h(s) has relative degree one, and that q(s) is a stable polynomial. Then,

under constant output feedback

u = �kx

the closed-loop transfer function of the perturbed system becomes

ĥp(s) =
hp(s)

1 + khp(s)
=

q(s)

d(s)� p(s) + kq(s)

so that closed-loop characteristic polynomial is

d̂p(s) = d(s)� p(s) + kq(s)

Since

deg(d� p) = deg(q) + 1

it follows that as k !1, n � 1 zeros of d̂p(s) approach the stable zeros of q(s)

and the nth one tends to �1. In other words, there exists a critical gain kc such

that d̂p(s) is stable for all k > kc. The value of kc depends on the location of zeros

of q(s) as well those of d(s)� p(s), which in turn, depend on the perturbations.
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An alternative interpretation of the above result can be provided in the light

of the small-gain theorem. Expressing ĥp(s) as

ĥp(s) =

q(s)

d(s)+kq(s)

1�
q(s)

d(s)+kq(s)

p(s)

q(s)

=
ĥ(s)

1� ĥ(s)r(s)

we observe that the closed-loop perturbed system can be viewed as a feedback

connection of two systems with transfer functions

ĥ(s) =
q(s)

d(s) + kq(s)
=

h(s)

1 + kh(s)

and

r(s) =
p(s)

q(s)

respectively. Since q(s) is stable by assumption, r(s) represents a stable system.

On the other hand, by choosing k suÆciently large, not only ĥ(s) can be made

stable, but also k ĥ(s) k
1

can be made arbitrarily small. Then, the small-gain

theorem guarantees stability of the closed-loop perturbed system for suÆciently

large k.

Both the root-locus and the small-gain interpretations of high-gain feedback

remain valid even when the relative degree of h(s) is larger than one, which

necessitates the use of dynamic output feedback. A further point worth to be

mentioned is that since the roles of the input and output are symmetric as

far as output feedback is concerned, the argument above can be repeated for

perturbations of the form hcTx, that is, perturbations satisfying the matching

conditions on the output side. Both types of perturbations fall in a class termed

"structured perturbations" [18].

The idea introduced above is applicable to single-input/single-output (SISO)

systems whose zeros are stable and whose relative degree, high frequency gain and

perturbation bounds are known. For multi-input/multi-output (MIMO) systems

same requirements are valid. In [3], the idea was improved one step further, and

systems with relative degree one were stabilized without knowing the bounds of

3



perturbation by adaptively adjusting the controller gain. In [10], systems with

higher relative degree were considered, where the gain parameter was increased

adaptively at discrete instants.

High-gain technique is also used with sampled-data controllers by keeping the

same assumptions on nominal system and perturbations as in the continuous-time

case. In [8], SISO systems with controllers that operate on the sampled values of

output have been stabilized. However, sampling action changes the perturbation

structure such that perturbations are exponentiated in converting to discrete-

time. To solve this problem sampling period was chosen as reciprocal of the

gain, so that perturbations simply do not have enough time between successive

sampling instants to cause instability.

Interconnected systems have been worked on by considering interconnections

between subsystems as perturbation sources. The diÆculty here is to achieve

overall stability by using decentralized controllers. It is well-established [15] that

once the interconnections satisfy matching conditions, then decentralization of

the control does not create additional diÆculty in stabilization by state-feedback.

In [8], this nature of decentralized control was exploited to stabilize intercon-

nected systems using sampled-data high-gain state feedback.

Applying high-gain sampled-data output-feedback control to interconnected

systems is the main topic of the thesis. As in the continuous-time case, each

subsystem is considered as a separate system with its own inner dynamics and

sampled-data dynamic output feedback controllers are designed according to

these inner structure. Parallel to single system controller, gains are chosen as

the reciprocal of sampling period. Thus, sampling periods of subsystems are

not necessarily the same and to be able talk on an overall stability of the whole

system, synchronization is necessary. Then, question arises as: How can synchro-

nization be satis�ed without disturbing the gain constraints of the system? To

answer this problem, all the sampling intervals of subsystems are chosen to be
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synchronized on a common sampling period, that is, common sampling period

is an integer multiple of each subsystem periods, by keeping in mind the recip-

rocal relation between sampling period and gain. On the other hand, common

sampling interval is not static, that means, it changes with time for adaptive

adjustment.

Similar to the previous cases, in sampled-data decentralized control, an adap-

tation mechanism is employed against unknown interconnection bounds. How-

ever, applying the same adaptation rule as in the previous cases, can cause

uncontrolled increase in gain parameter. This can prevent us from satisfying

overall continuous-time stability. Hence, gain parameter is kept constant for a

�xed time interval, which provides us overall continuous time and discrete time

stabilities together.

The organization of the thesis is as follows:

In Chapter 2, the important high-gain applications are reviewed. The basic

canonical forms that are used throughout the high-gain analyses are explained

before single input state feedback case. Then a perturbed SISO system is sta-

bilized with high-gain dynamic output feedback. Unbounded perturbations are

beaten by applying an adaptation mechanism to increase the gain in a required

way. Afterwards, interconnected systems are stabilized in continuous-time.

Chapter 3 is devoted to the analysis of sampled-data, high-gain control of

interconnected systems. After stating the problem explicitly, open-loop behavior

of subsystems are obtained based on the analysis in Chapter 2. Then, the rule of

choosing the sampling intervals are mentioned before an explanatory example.

Next, by applying the discrete dynamic output feedback controller, closed-loop

behavior of the sampled system is obtained. Stabilization analysis is done based

on the methodology in Chapter 2. Lastly, for unbounded systems, a proper

adaptation action is proposed to obtain overall continuous-time stability.

5



In Chapter 4, an explanatory example of sampled-data control of intercon-

nected systems are presented based on the method in Chapter 3. As an in-

terconnected system, three coupled inverted penduli system is considered with

a coupling spring connector. The stabilization methodology is applied to the

system and the results are obtained with the help of a computer simulation.

Last Chapter is devoted to concluding remarks by revisiting the important

points of the high-gain sampled-data control.
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Chapter 2

A REVIEW OF HIGH-GAIN

CONTROL

2.1 Two Canonical Forms

In this section, we present two canonical forms for single-input (single-input/

single-output) systems which we shall frequently refer to throughout the thesis,

and at the same time introduce the notation used.

Consider a single-input system described as

S : _xp = Apxp + bpu (2.1)

where xp 2 <
n is the state of S, u 2 < is a scalar input, and Ap and bp are

constant matrices of appropriate dimensions. S can be denoted by the pair

S = (Ap; bp). It is well known that if S is controllable, then by a suitable

coordinate transformation xp = Tx it can be transformed into an equivalent

system S = (A; b), where

A = T�1ApT = Af + bfd
T
f

b = T�1bp = bf (2.2)

7



with

Af =

2
66666664

0 1 : : : 0

...
...

. . .
...

0 0 : : : 1

0 0 : : : 0

3
77777775
; bf =

2
66666664

0

...

0

1

3
77777775
; dTf =

h
�dn : : : �d1

i
(2.3)

The pair (A; b) is said to be in controllable canonical form. It is a useful structure

in constructing stabilizing state feedback laws as we consider in the next section.

Now consider a single-input/single-output (SISO), controllable and observ-

able system

S : _xp = Apxp + bpu

y = cTp xp (2.4)

which is represented by a triple S = (Ap; bp; c
T
p ). Let S have the scalar transfer

function

h(s) = cTp (sI � Ap)
�1bp = q0

q(s)

p(s)
= q0

sno + q1s
no�1 + � � �+ qno

sn + p1sn�1 + � � �+ pn
(2.5)

S is said to have the relative degree

nf = n� no = deg(p)� deg(q) (2.6)

and the high-frequency gain qo. If S is stable, h(s) behaves like hf (s) = q0=s
nf

for large j s j. It has been shown [12] that S = (Ap; bp; c
T
p ) can be transformed

into an equivalent system S = (A; b; cT ) with

A =

2
4 Ao dofc

T
f

bfd
T
fo Af + bfd

T
ff

3
5 ; b = q0

2
4 0

bf

3
5

cT =
h

0 cTf

i
(2.7)

where Af and bf have the structure in (2.3) with Af being of order nf and bf of

compatible size;

cTf =
h
1 0 : : : 0

i

and Ao is of order no = n� nf and has the characteristic polynomial

det(sI � Ao) = q(s) = sno + q1s
no�1 + � � �+ qno (2.8)

8



2.2 High-gain State Feedback

Consider a system with nonlinear, time varying perturbations described as

S : _x = Ax+ bu + e(t; x) (2.9)

where we assume that the nominal system (A; b) is controllable and the pertur-

bations satisfy the matching conditions [6]

e(t; x) = bg(t; x) (2.10)

We further assume that g in (2.10) is bounded as

j g(t; x) j� �g k x k (2.11)

for some �g > 0. Without loss of generality, assume that the pair (A; b) is

already transformed into its controllable canonical form in (2.2) with the term

bfd
T
f x included in the perturbation; that is, assume

A = Af ; b = bf

where Af and bf are as in (2.3).

To stabilize S, we use a state feedback control

u = �kTx; kT =
h
kn kn�1 : : : k1

i
(2.12)

which results in a closed-loop system

Ŝ : _x = Âfx + bfg(t; x) (2.13)

where

Âf = Af � bfk
T =

2
66666664

0 1 : : : 0

...
...

. . .
...

0 0 : : : 1

�kn �kn�1 : : : �k1

3
77777775

9



Âf is in companion form with the characteristic polynomial

d̂(s) = sn + k1s
n�1 + � � �+ kn (2.14)

Let kT be chosen such that Âf has distinct eigenvalues

�i = ���i; i = 1; 2; : : : ; n (2.15)

where �i > 0, �i 6= �j for i 6= j, and � > 0 is a parameter to be speci�ed. It is

known that Âf has a modal matrix

Q̂ =

2
66666664

1 : : : 1

�1 : : : �n
...

...

�n�11 : : : �n�1n

3
77777775

=

2
66666664

1

�

. . .

�n�1

3
77777775

2
66666664

1 : : : 1

��1 : : : ��n
...

...

(��1)
n�1 : : : (��n)

n�1

3
77777775
= RQ (2.16)

such that

Q̂�1Âf Q̂ =

2
6664
�1

. . .

�n

3
7775 = ��

2
6664
�1

. . .

�n

3
7775 = ��D

The transformation x = Q̂x̂, transforms the closed-loop system Ŝ into

Ŝ : _̂x = ��Dx̂ + ê(t; x̂) (2.17)

where

ê(t; x̂) = Q̂�1bfg(t; Q̂x̂)

= Q�1R�1bfg(t; Q̂x̂)

= Q�1�1�nbfg(t; Q̂x̂)

= �1�nQ�1bfg(t; Q̂x̂) (2.18)

10



Clearly,

k ê(t; x̂) k � �1�n k Q�1bf kj g(t; Q̂x̂) j

� �g�
1�n

k Q�1bf kk Q̂x̂ k

� �g�
1�n

k Q�1bf kk R kk Q kk x̂ k

� �g k Q
�1bf kk Q kk x̂ k

� �̂g k x̂ k (2.19)

and �̂g is independent of the gain parameter �.

Let v(x̂) =k x̂ k2= x̂T x̂ be a candidate for a Lyapunov function for Ŝ. Then

_̂v = 2x̂T
�
� �Dx̂ + ê(t; x̂)

�

� �2(�min�� �̂g) k x̂ k
2 (2.20)

Whatever �̂g is, for a given � > 0, � can be chosen suÆciently large to have

�min�� �̂g � � so that _v(x̂) � �2�v(x̂). This shows that the closed-loop system

can be made exponentially stable with arbitrary degree � of stability.

Note that the closed-loop characteristic polynomial is of the form

d̂(s) = sn + �d1s
n�1 + � � �+ �ndn (2.21)

where d1; : : : ; dn are uniquely determined by �1; : : : ; �n and are �xed. Comparing

(2.21) and (2.14), we observe that

kT =
h
�ndn �n�1dn�1 : : : �d1

i

that is, the stabilizing control in (2.12) is a high-gain state feedback.

11



2.3 High-gain Dynamic Output Feedback

Consider a single-input/single-output (SISO) system with nonlinear, time vary-

ing perturbations

S : _x = Ax + bu+ e(t; x)

y = cTx (2.22)

where y 2 < is the scalar output of the system. We assume that the perturbations

are of the form

e(t; x) = bg(t; x) + h(t; y) (2.23)

Note that the �rst term bg(t; x) in (2.23) satis�es the matching condition on the

input side and the second term h(t; y) = h(t; cTx) on the output side. We further

assume that g is bounded as in (2.11) and h is bounded as

k h(t; y) k� �h j y j (2.24)

for some �h > 0.

We also make the following assumptions concerning the nominal system

(A; b; cT ).

� (A; b; cT ) is controllable and observable

� (A; b; cT ) has stable zeros, that is, q(s) in (2.5) is stable.

� the relative degree nf = n� no and the high-frequency gain qo are known.

We assume without loss of generality that A, b and cT are already transformed

into the forms in (2.7). Then including the bfd
T
foxo and bfd

T
ffxf terms in bg(t; x)

and dofc
T
f xf term in h(t; y), the system in (2.22) can be described as

S : _xo = Aoxo + ho(t; y)

_xf = Afxf + q0bfu+ bfg(t; x0; xf) + hf (t; y)

y = cTf xf (2.25)

12



To the system S, we apply a dynamic output feedback control of the form

[18]

C : _xc = �Acxc + �nf�1bcy

u = q�10

�
�cTc xc + �nf�1dcy

�
(2.26)

where xc 2 <
nf�1, � is a gain parameter to be speci�ed and Ac, bc, c

T
c , and dc

are constant matrices such that

Âf =

2
4 Af + bfdcc

T
f bfc

T
c

bcc
T
f Ac

3
5 (2.27)

is stable [2].

De�ning

x̂o = xo; x̂f =

2
4 R�1f xf

xc

3
5 (2.28)

where

Rf =

2
66666664

1

�

. . .

�nf�1

3
77777775

and noting that

R�1f AfRf = �Af ; R�1f bf = �1�nf bf ; cTfRf = cTf (2.29)

the closed-loop system Ŝ consisting of S and C is described by

Ŝ : _̂xo = Aox̂o + êo(t; x̂o; x̂f )

_̂xf = �Âf x̂f + êf (t; x̂o; x̂f ) (2.30)

13



Although we have included bfd
T
foxo and bfd

T
ffxf in bg(t; x) and dofc

T
f xf term in

h(t; y), we state these terms explicitly here to see their e�ects on the perturba-

tions:

êo(t; x̂o; x̂f) = dofc
T
f xf + ho(t; c

T
f xf )

êf (t; x̂o; x̂f) =

2
4 êf1(t; x̂o; x̂f )

0

3
5

êf1(t; x̂o; x̂f) = R�1f bfd
T
foxo +R�1f bfd

T
ffxf + q0R

�1
f bfg(t; xo; xf )

+ R�1f hf (t; c
T
f xf) (2.31)

It is not diÆcult to show using (2.23), (2.24) and (2.29)that

k êo(t; x̂o; x̂f) k � �of k x̂f k

k êf(t; x̂o; x̂f) k � �fo k x̂o k +�ff k x̂f k

for some �of , �fo and �ff > 0.

Since Ao is stable by assumption and Âf is made stable by the choice of the

controller parameters, there exist positive de�nite matrices Po and Pf such that

AT
o Po + PoAo = �I

ÂT
f Pf + Pf Âf = �I (2.32)

We now choose v(x̂o; x̂f ) = x̂To Pox̂o + x̂Tf Pf x̂f as a Lyapunov Function for Ŝ.

Using (2.30), (2.32) and (2.32), _v can be majorized as

_v(x̂o; x̂f ) � ��TQ(�)� (2.33)

where

� =
h
k x̂o k k x̂f k

iT
and

Q(�) =

2
4 1 ��of k Po k ��fo k Pf k

��of k Po k ��fo k Pf k �� 2�ff k Pf k

3
5
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From (2.33), we observe that for given bounds �of , �fo and �ff and any given

0 < � < 1, � can be chosen suÆciently large to have �min(Q) � �, so that

_v(x̂o; x̂f ) � �� k � k2� �2�v(x̂o; x̂f) (2.34)

where

� =
1

2

�

max
�
�max(Po); �max(Pf )

	
This shows that Ŝ can be made exponentially stable with degree of stability

�, which depends mainly on the degree of stability of Ao and the perturbation

bounds.

The argument above is valid even when the gain � is time-varying provided

that _� is bounded. Boundedness of j _� j is required because of the fact that when

� is time-varying then the transformation in (2.28) introduces additional pertur-

bation terms (containing _�) into the closed-loop system Ŝ in (2.30). However,

as long as j _� j is bounded, say j _� j� 1, then there exists a critical value � = �?

for which Q(�?) in (2.33) (actually a modi�ed version of it that also takes into

account the e�ect of j _� j) is just positive-de�nite, so that Ŝ is stable for any

� > �?. Clearly, �? depends on the perturbation bounds (as well as the nominal

closed-loop system parameters). If these bounds are not known, then � must be

adjusted by an adaptation mechanism which increases � (slowly) to a suÆciently

high (but bounded) value for which Ŝ is stable. Based on this observation, the

gain-adaptation rule is chosen as [8]

_�(t) = min
�
1; �y j y j

2 +�z k xc k
2
	

(2.35)

where �y > 0 and �z > 0 are arbitrary constants.

The adaptation mechanism works as follows. If �(t) < �? for all t � t0, then

(2.35) implies that �(t) �! �
1
� �?, which in turn requires that y(t) �! 0 and

z(t) �! 0 as t �! 1. Then, by (2.26), we have u(t) �! 0 and controllability

and observability of the nominal system implies that x(t) �! 0 as t �! 0.
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On the other hand, if �(t?) � �? for some t? � t0, then Ŝ is exponentially

stable, so that

j y(t) j�Mye
��(t�t?)

j y(t?) j

and

j z(t) j�Mze
��(t�t?)

j z(t?) j

for t > t?, where � is the degree of exponential stability of Ŝ. Then, from (2.35),

we obtain

�(t) � �(t?) +

Z t

t?
(�y j y(�) j

2 +�z k z(�) k
2)d�

� �(t?) +M�[1� e�2�(t�t
?)]

where

M� =
�yM

2
y j y(t

?) j2 +�zM
2
z k z(t

?) k2

2�

Hence, �(t) �! �
1
= �(t?)+M� as t �!1. This shows that the adaptation

rule in (2.35) does not result in an ever-increasing gain.

2.4 Sampled-data Output Feedback Control

Once it is shown that the perturbed system S in (2.22) can be stabilized by a

high-gain dynamic output feedback controller C as in (2.26), a natural question

is whether S can be stabilized by a discrete version of C operating on sampled

values of the output.

Let tk; k = 0; 1; : : : , denote the sampling instants and let Tk = tk+1 � tk

denote the sampling intervals. To provide maximum 
exibility in the analysis,

we consider a non-uniform sampling, that is, Tk is not necessarily a constant.
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Letting t = tk + sTk; 0 � s � 1, de�ning

xok(s) = xo(tk + sTk)

xfk(s) = D�1
fk xf (tk + sTk)

uk(s) = u(tk + sTk)

yk(s) = y(tk + sTk) (2.36)

where

Dfk =

2
66666664

T
nf�1

k

. . .

Tk

1

3
77777775

(2.37)

and noting that

D�1
fkAfDfk = T�1k Af

D�1
fk bf = bf

cTfDfk = T
nf�1

k cf

the behavior of S in (2.22) over the k-th sampling interval can be described by

S : _xok(s) = TkAoxok(s) + Tkeok
�
s; xfk(s)

�

_xfk(s) = Afxfk(s) + Tkefk
�
s; xok(s); xfk(s)

�
+ q0Tkbfuk(s)

yk(s) = T
nf�1

k cTf xfk(s) (2.38)

where the perturbations eok and efk satisfy

k eok(s; xfk) k � �of k xfk k

k efk(s; xok; xfk) k � �fo k xok k +�ff k xfk k (2.39)

for some �of , �fo and �ff > 0.

The controller to be used for stabilization of the perturbed system in (2.38) is

a discrete version of C in (2.26). Observing that a faithful discretization of a high-

gain controller requires fast sampling, �k = T�1k seems to be a reasonable choice

17



for the controller gain. This choice has the additional advantage of providing

simplicity in the stability analysis as only a single parameter, Tk, is used to adjust

both the sampling interval and the controller gain. Based on this observation

the following sampled-data controller is proposed [8]

CD : xc[k + 1] = Acxc[k] + T
1�nf
k bcy(tk)

w[k] = T�1k cTc xc[k] + T
�nf
k dcy(tk)

uk(s) = q�1o w[k]; 0 � s < 1 (2.40)

where xc[k] 2 <
nf�1 is the discrete state of CD at t = tk.

As shown in [8], the behavior of the closed-loop system consisting of S in

(2.38) and the controller CD in (2.40) at the sampling instants can be described

by a discrete model

ŜD : x̂o[k + 1] = �̂ox̂o[k] + �̂ok
�
k; x̂o[k]; x̂f [k]

�

x̂f [k + 1] = �̂f x̂f [k] + �̂fk
�
k; x̂o[k]; x̂f [k]

�
(2.41)

where

x̂o[k] = xok(0)

x̂f [k] =

2
4 xfk(0)

xc[k]

3
5

and

�̂o = eTkAo

�̂f =

2
4 eAf + �fdcc

T
f �fc

T
c

bcc
T
f Ac

3
5 (2.42)

with

�f =

Z 1

0

eAf� bfd�

It is further shown in [8] that if the sampling intervals Tk are such that

Tk+1 � Tk < 1

� Tk

Tk+1

�nf�1
� 1 + Tk (2.43)
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then the perturbation terms in (2.41) can be bounded as

k �̂ok(k; x̂o; x̂f ) k � T 2
k�oo k x̂o k +Tk�of k x̂f k

k �̂fk(k; x̂o; x̂f ) k � Tk�fo k x̂o k +Tk�ff k x̂f k (2.44)

Since Ao is assumed to be stable, there exists a positive de�nite matrix Po

such that

AT
o Po + PoAo = �I

which implies that

k �̂T
o Po�̂o � Po k� �
oTk (2.45)

for some 
o > 0. Also, �̂f in (2.42) represents the system matrix of a controllable

and observable discrete system (eAf ;�f ; c
T
f ) in a feedback con�guration with a

discrete controller (Ac; bc; c
T
c ; dc), and thus can be made Shur-stable by a suitable

choice of the controller parameters [2]. Then there exists a positive de�nite Pf

such that

�̂T
f Pf �̂f � Pf = �I (2.46)

Let v[k] = x̂To [k]Pox̂o[k] + x̂Tf [k]Pf x̂f [k] be a candidate for a Lyapunov Func-

tion for the discrete closed-loop system in (2.41). Then, (2.43)-(2.46) imply that

there exists a T? < 1 that depends on the perturbation bounds such that the

di�erence of v[k] along the solutions of ŜD can be bounded as

�v[k] � ��Tkv[k] (2.47)

for some � > 0 provided Tk � T?. This shows that the discrete model of the

closed-loop system can be made exponentially stable by means of a discrete

controller having a suÆciently high gain and operating on suÆciently frequent

output samples. If Tk is also bounded from below so that tk = t0+
Pk�1

j=0 Tj �!1

as k �!1, then the closed-loop sampled-data system Ŝ is also stable.
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As in the continuous-time case, if the perturbation bounds are not known,

then Tk is adjusted by an adaptation rule

T�1k+1 = T�1k + Tkmin
�
�o; �y j y(tk) j

2 +�z k z(k) k
2
	

(2.48)

where

�o = 2
1

n
f
�1
� 1

and �y > 0 and �z > 0 arbitrary. This not only guarantees the restrictions in

(2.43), but also the requirement that

lim
k!1

Tk = T
1
> 0

2.5 Decentralized Control of Interconnected

Systems

A natural extension of high-gain stabilization technique considered in the previ-

ous sections is decentralized control of interconnected system that consist of N

subsystems described as

Si : _xi = Aixi + biui + ei(t; x)

yi = cTi xi (2.49)

where xi(t) 2 <
ni is the state of Si ui(t) 2 < and yi(t) 2 < are scalar input and

output of Si, and ei(t; x) represents the interconnections between Si and other

subsystems with

x =
h
xT1 xT2 : : : xTN

iT
= col [xi]

It is observed that the interconnections can be treated as perturbations on the

nominal subsystems described by the triplets (Ai; bi; c
T
i ).

As in the case of a single system, we assume that

� (Ai; bi; c
T
i ) are controllable and observable
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� with hi(s) = cTi (sI � Ai)
�1bi = q0i

qi(s)

pi(s)
, the zeros of qi(s) are stable

� high-frequency gain q0i and the relative degree nfi = deg(pi)� deg(qi) of each

subsystem are known

� the interconnection terms are of the form

ei(t; x) = bigi(t; x) + hi(t; y) (2.50)

where y = col [yi], and

j gi(t; x) j �

NX
j=1

�
g
ij k xj k

k hi(t; y) k �

NX
j=1

�h
ij j yj j (2.51)

for some constants �
g
ij, �

h
ij > 0.

The overall system can be represented as

S : _x = Ax +Bu+ E(t; x)

y = Cx

with obvious de�nitions of x, u, y and A, B, C and E. The assumptions on

(A;B;C) and the perturbations E(t; x) allows for the design of a centralized

high-gain dynamic output feedback controller that stabilizes S. As shown in

[18], stability can also be achieved by means of decentralized output-feedback

controllers provided their gains are in certain proportions that depend on the

relative degrees of the subsystems. In other words, the local controller for the

i-th subsystem is chosen as

Ci : _xci = �iAcxci + �
nfi�1

i bcyi

ui = �ic
T
cixci + �

nfi�1

i dciyi (2.52)

where local gains are generated from a common gain as

�i = ��i (2.53)
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where �i depend (in a complicated way) on the relative degrees of the subsystems.

It has been shown in [18] by a Lyapunov analysis that the overall system in

(2.49) can be stabilized by means of decentralized controllers in (2.52) provided

� is suÆciently high. As discussed in Section 2.3, � can even be time-varying as

long as _� is bounded. As in the case of a single system, how high � should be

depends on the bounds of the strength of interconnections. If these bounds are

not known, then it can be adjusted by a centralized adaptation rule

_� = min
�
1; �y k y k

2 +�z k xc k
2
	

(2.54)

where xc = col [xci].

The main diÆculty arises when we consider stabilization of the interconnected

system in (2.49) by means of decentralized sampled-data controllers. This prob-

lem is the main topic of the thesis and is considered in the next chapter.
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Chapter 3

DECENTRALIZED

SAMPLED-DATA CONTROL

3.1 Problem Statement

Consider an interconnected system consisting of N subsystems Si described in

(2.49). Under the assumptions mentioned in Section 2.5, we transform each

subsystem to the canonical form in (2.25) and describe it as

Si : _xoi(t) = Aoixoi(t) + eoi
�
t; xf (t)

�

_xfi(t) = Afixfi(t) + efi
�
t; xo(t); xf (t)

�
+ q0ibfiui(t)

yi(t) = cTfixfi(t) (3.1)

where xoi 2 <
noi, xfi 2 <

nfi, ui 2 <, yi 2 < and

xo = col [xoi]; xf = col [xfi]; y = col [yi]

We also assume that the interconnections also satisfy the conditions in Section

2.5, that is

eoi(t; xf ) = hoi(t; y)

efi(t; xo; xf) = bfigi(t; x) + hfi(t; y) (3.2)
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where

j gi(t; x) j �

� NX
j=1

�
go
ij k xoj k +�

gf
ij k xfj k

�

k hoi(t; xf ) k �

NX
j=1

�ho
ij j c

T
fjxfj j

k hfi(t; xf ) k �

NX
j=1

�
hf
ij j c

T
fjxfj j (3.3)

for some �
go
ij > 0, �

gf
ij > 0, �ho

ij > 0 and �
hf
ij > 0 with i; j 2 1; : : : ; N .

Our purpose is to stabilize the overall interconnected system by using discrete

version of the decentralized controllers in (2.52) operating on sampled values of

local outputs. To guarantee synchronous operation of the controllers, which is

needed to derive a discrete-time model of the closed-loop system, we assume that

each output is sampled an integer number of times in a certain common sampling

interval. That is, if

Tk = tk+1 � tk (3.4)

denote the k-th common sampling interval, the i-th controller takes uniform

samples of yi(t) separated by

Tik =
Tk

Mik

(3.5)

whereMik is an integer, Note that the common sampling interval is not constant;

in fact, it is deliberately assumed to be non-constant to allow for adaptive adjust-

ment. Similarly, the number of samples taken by the i-th controller in a common

sampling interval is not constant, although samples are uniform throughout each

common sampling interval.

We now turn our attention to the process of discretizing local controllers in

(2.52). To provide simplicity in the design of the controllers, we set the gain of

each controller to the reciprocal of its sampling interval, as we did in Section 2.4,

that is

�i(t) = T�1ik ; tk � t < tk+1 (3.6)
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Recall, however, that to achieve stability of the overall system with decen-

tralized control, gains of the controllers are required to be in certain proportions;

that is

�i(t) = ��i(t) (3.7)

where �i > 0 are integers that depend on the relative degrees of the subsystems.

In terms of Tik, (3.7) requires

Tik = ���ik (3.8)

for some �k > 0. To satisfy (3.5) and (3.8) simultaneously, we choose �k = Ik � 1,

an integer. Then, with

Tik =
1

I�ik
; i = 1; 2; : : : ; N (3.9)

and

Tk =
1

I�mink

(3.10)

where �min = minf�ig, we observe that

Tk = I�i��mink Tik = MikTik (3.11)

that is, (3.5) is also satis�ed

Finally, we de�ne the largest common measure of Tik's as the basic unit

interval in the k-th common sampling interval and denote it by �k. Thus

�k =
1

I�maxk

(3.12)

where �max = maxf�ig. Clearly, each local sampling interval Tik contains an

integral number of �k, that is

Tik = I�max��ik �k = Nik�k (3.13)

Note that

MikNik = I�max��mink = Lk; i = 1; 2; : : : ; N (3.14)

so that

Tk = Lk�k (3.15)
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3.2 Open-Loop Behavior of The Interconnected

System and Sample-Rate Selection

As a �rst step to derive a discrete-time model for the closed-loop interconnected

system we obtain expressions for the solutions of the subsystems with ui(t) in

(3.1) as external inputs supplied by local sampled-data controllers. Since �k is

the largest interval over which all ui(t) are constant, we analyze the behavior of

the subsystems over each interval

tk + l�k � t � tk + (l + 1)�k; l = 0; 1; : : : ; Lk � 1 (3.16)

separately. For this purpose, we let t = tk + l�k + s�k, 0 � s � 1, and de�ne

xoikl(s) = xoi(tk + l�k + s�k)

xfikl(s) = D�1
fikxfi(tk + l�k + s�k) (3.17)

where

Dfik =

2
66666664

Tmi�1
ik

. . .

Tik

1

3
77777775

(3.18)

with mi = nfi for simplicity in notation.

On noting that

�kD
�1
fikAfiDfik =

�k

Tik
Afi =

1

Nik

Afi = Afik

D�1
fikbfi = bfi

cTfiDfik = Tmi�1
ik cTfi (3.19)

and de�ning the auxiliary variable wikl as

wikl = q0iui(t); tk + l�k � t < tk + (l + 1)�k (3.20)
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subsystem descriptions in (3.1) are transformed into

Si : _xoikl(s) = �kAoixoikl(s) + eoikl
�
s; xfkl(s)

�

_xfikl(s) = Afikxfikl(s) + efikl
�
s; xkl(s)

�
+ �kbfivikl

yikl(s) = Tmi�1
ik cTfixfikl(s) (3.21)

where

eoikl
�
s; xfkl(s)

�
= �khoi

�
tk + l�k + s�k; Dfkxfkl(s)

�

efikl
�
s; xkl(s)

�
= �kbfigi

�
tk + l�k + s�k; xokl(s); Dfkxfkl(s)

�

+ �kD
�1
fikhfi

�
tk + l�k + s�k; CfDfkxfkl(s)

�
(3.22)

with xokl = col [xoikl], xfkl = col [xfikl], Cf = diag [cTfi] and Dfk = diag [Dfik].

Using (3.3), the interconnection terms in (3.22) can be bounded for Tk � 1

as

k eoikl(s; xfkl) k � �k

NX
j=1

�ho
ij T

mj�1

jk k xfjkl k

k efikl(s; xfkl) k � �k

NX
j=1

(�
go
ij k xojkl k +�

gf
ij T

mj�1

jk k xfjkl k)

+ �kT
1�mi

ik

NX
j=1

�
hf
ij T

mj�1

jk k xfjkl k (3.23)

The key to stabilization of the interconnected system is to choose the local

sampling intervals so as to have the smallest possible bounds on the interconnec-

tion in (3.23). For this purpose, we choose the integers �i in (3.9) as

�i =

8<
:

�

mi�1
mi 6= 1

� + 1 mi = 1
(3.24)

where

� =
Y
mi 6=1

midistinct

(mi � 1) (3.25)
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O(�
of
ij ) O(�

fo
ij ) O(�

ff
ij )

mi = 1, mj = 1 �max �max �max

mi = 1, mj 6= 1 �max + � �max �max + �

mi 6= 1, mj = 1 �max �max �max � �

mi 6= 1, mj 6= 1 �max + � �max �max

Table 3.1: Orders of �
of
ij , �

fo
ij , and �

ff
ij

With this choice of � 0is, the bounds in (3.23) can be expressed as

k eoikl(s; xfkl) k �

NX
j=1

�
of
ij (I

�1
k ) k xfjkl k

k efikl(s; xkl) k �

NX
j=1

(�
fo
ij (I

�1
k ) k xojkl k +�

ff
ij (I

�1
k ) k xfjkl k) (3.26)

where �
of
ij , �

fo
ij and �

ff
ij are polynomials in I�1k with the smallest power of I�1k

denoted O(�). O(�) for these polynomials can be calculated from (3.23) as shown

in Table 3.1.

To start analysis of the open-loop behavior of Si, we �rst write the solution

of (3.21) as

xoikl(s) = eAoi�ksxiokl(0) + �iokl(s)

xfikl(s) = eAfiksxfikl(s) + �fikl(s) + �kbfik(s)wikl (3.27)

where

�iokl(s) =

Z s

0

eAoi�k(s�z)eoikl
�
z; xfkl(z)

�
dz

�fikl(s) =

Z s

0

eAfik(s�z)efikl
�
z; xkl(z)

�
dz (3.28)

and

bfik(s) = �k

Z s

0

eAfikzbfidz (3.29)

We now try to obtain bounds on k �oikl k and k �fikl k in (3.28). For this

purpose, we �rst rewrite (3.21) in compact form as

_xkl(s) = E
�
s; xkl(s); wkl

�
(3.30)
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where

xkl = col [xoikl; xfikl]

wkl = col [wikl]

and E(s; xkl; vkl) is de�ned accordingly. Then

xkl(s) = xkl(0) +

Z s

0

E
�
z; xkl(z); wkl

�
dz (3.31)

Taking the norm of both sides of (3.31), and noting that k xfkl(s) k dominates

norms of other terms involving k xkl(s) k, we obtain

k xkl(s) k�k xkl(0) k +

Z s

0

(�x k xkl(z) k +�k�w k wkl k)dz (3.32)

We use a variation of Gronwall Lemma [4] to convert (3.32) to an explicit in-

equality in k xkl(s) k. For this purpose, we de�ne

�(s) =k xkl(0) k +

Z s

0

�
�x k xkl(z) k +�k�w k wkl k

�
dz

and

�(s) = e��xs�(s)�

Z s

0

�k�we
��xz

k wkl k dz

Then

�(0) = �(0) =k xkl(0) k

and

_�(s) = �xe
��xs[k xkl(s) k ��(s)] � 0

so that

�(s) �k xkl(0) k

which implies

k xkl(s) k � �(s) � e�xs
�
k xkl(0) k +

Z s

0

�k�we
��xz

k wkl k dz
�

� �x
k xkl(0) k +�k�

w
k wkl k (3.33)
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O(�ooij ) O(�
of
ij ) O(�owij ) O(�

fo
ij ) O(�

ff
ij ) O(�

fw
ij )

mi = 1, mj = 1 2�max �max 2�max �max �max 2�max

mi = 1, mj 6= 1 2�max �max + � 2�max + � �max �max 2�max

mi 6= 1, mj = 1 2�max �max 2�max �max � � �max � � 2�max � �

mi 6= 1, mj 6= 1 2�max �max + � 2�max + � �max �max 2�max

Table 3.2: Orders of �ooij , �
of
ij , �

ov
ij , �

fo
ij , �

ff
ij and �

fv
ij

for some �x > 0 and �w > 0.

Now, the norm of �fikl(s) in (3.28) can be bounded as

k �fikl(s) k�

NX
j=1

(�
fo
ij k xojkl(0) k +�

ff
ij k xfjkl(0) k +�

fw
ij j wjkl j) (3.34)

where the orders of the polynomials are found from (3.26) and (3.33) as

O(�
fo
ij ) = O(�

ff
ij ) = minfO(�

fo
ij );O(�

ff
ij )g

O(�
fw
ij ) = �max +minfO(�

fo
ij );O(�

ff
ij )g (3.35)

These orders are tabulated in the second half of Table 3.2.

Although similar bounds can be obtained for k �oikl(s) k, we can do better by

�rst obtaining less conservative bounds on xfikl(s) than those given by (3.33),

and then using these bounds in (3.28). From (3.27) and (3.34) we observe that

k xfikl(s) k�

NX
j=1

(

fo
ij k xojkl(0) k +


ff
ij k xfjkl(0) k +


fw
ij j wjkl j) (3.36)

where 

fo
ij , 


ff
ij and 


fw
ij are of the same order as �

fo
ij , �

ff
ij and �

fw
ij except that

O(

ff
ii ) = 0 and O(


fw
ii ) = �max. Now, taking the norm of �oikl(s) in (3.28) and

using (3.26) and (3.36), we obtain

k �oikl(s) k �

NX
r=1

�
of
ir

� NX
j=1

�


fo
rj k xojkl(0) k +


ff
rj k xfjkl(0) k +


fw
rj j wjkl j

��

�

NX
j=1

�
�ooij k xojkl(0) k +�

of
ij k xfjkl(0) k +�

ow
ij j wjkl j

�
(3.37)
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where

�ooij =

NX
r=1

�
of
ir 


fo
rj

�
of
ij =

NX
r=1

�
of
ir 


ff
rj

�owij =

NX
r=1

�
of
ir 


fw
rj (3.38)

Using Table 3.1, second half of Table 3.2 (adapted for 

ff
ij and 


fw
ij ) and

(3.38), and considering all possibilities, we �nd out that

O(�ooij ) = 2�max

O(�
of
ij ) = O(�

of
ij )

O(�owij ) = �max +O(�
of
ij ) (3.39)

which are tabulated in the �rst half of Table 3.2.

Finally, for future use, we note from (3.27) that

k xoikl(s) k�

nX
j=1

�

ooij k xojkl(0) k +


of
ij k xfjkl(0) k +


ow
ij j wjkl j

�
(3.40)

where 
ooij , 

of
ij and 
owij have the same orders as �ooij , �

of
ij and �owij except that

O(
ooii ) = 0.

Example 3.1.

Consider an interconnected system of N = 6 subsystems with m1 = m2 = 1,

m3 = m4 = 2 and m5 = m6 = 3. Then

� = 2; �1 = �2 = 5; �3 = �4 = 2; �5 = �6 = 1

Hence,

T1k = T2k = �k =
1

I5k
; T3k = T4k =

1

I2k
; T5k = T6k = Tk =

1

Ik
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Figure 3.1: Relative lengths of Tik, i = 1; : : : ; 6

To illustrate relative lengths of Tik, suppose Ik = 2. Then

T1k = T2k = �k =
1

32
; T3k = T4k =

1

4
; T5k = T6k = Tk =

1

2

Thus

M1k =M2k = 16; M3k = M4k = 2; M5k =M6k = 1

and

N1k = N2k = 1; N3k = N4k = 8; N5k = N6k = 16

Note that NikMik = 16 = I�max��mink . Relative lengths of Tik are shown in Figure

3.1.

Orders of (�
of
ij ; �

fo
ij ; �

ff
ij ), (�

oo
ij ; �

of
ij ; �

ow
ij ), (�

fo
ij ; �

ff
ij ; �

fw
ij ), (
ooij ; 


of
ij ; 


ow
ij ) and

(

fo
ij ; 


ff
ij ; 


fw
ij ) are calculated from Table 3.1 and Table 3.2, are tabulated in

Table 3.3-3.7.

(3.27) describes the continuous-time behavior of the open-loop interconnected

system over a basic unit interval tk + l�k � t � tk + (l + 1)�k. To describe the

behavior of the subsystems at the discrete instants tk + l�k, we let l = pNik + q,

p = 0; 1; : : : ;Mik � 1, q = 0; 1; : : : ; Nik � 1 and de�ne the discrete-time states

xoi[k; p; q] = xoik;pNik+q(0) = xoi(tk + pTik + q�k)

xfi[k; p; q] = xfik;pNik+q(0) = D�1
fikxfi(tk + pTik + q�k) (3.41)
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j 1,2 3-6

i

1,2 (5,5,5) (7,5,7)

3-6 (5,5,3) (7,5,5)

Table 3.3: Orders of �
of
ij , �

fo
ij , and �

ff
ij

j 1,2 3-6

i

1,2 (10,5,10) (10,7,12)

3-6 (10,5,10) (10,7,12)

Table 3.4: Orders of �ooij , �
of
ij , and �owij

j 1,2 3-6

i

1,2 (5,5,10) (5,5,10)

3-6 (3,3,8) (5,5,10)

Table 3.5: Orders of �
fo
ij , �

ff
ij , and �

fw
ij

1 2 3 4 5 6

1 (0,5,10) (10,5,10) (10,7,12) (10,7,12) (10,7,12) (10,7,12)

2 (10,5,10) (0,5,10) (10,7,12) (10,7,12) (10,7,12) (10,7,12)

3 (10,5,10) (10,5,10) (0,7,12) (10,7,12) (10,7,12) (10,7,12)

4 (10,5,10) (10,5,10) (10,7,12) (0,7,12) (10,7,12) (10,7,12)

5 (10,5,10) (10,5,10) (10,7,12) (10,7,12) (0,7,12) (10,7,12)

6 (10,5,10) (10,5,10) (10,7,12) (10,7,12) (10,7,12) (0,7,12)

Table 3.6: Orders of 
ooij , 

of
ij , and 
owij
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1 2 3 4 5 6

1 (5,0,5) (5,5,10) (5,5,10) (5,5,10) (5,5,10) (5,5,10)

2 (5,5,10) (5,0,5) (5,5,10) (5,5,10) (5,5,10) (5,5,10)

3 (3,3,8) (3,3,8) (5,0,5) (5,5,10) (5,5,10) (5,5,10)

4 (3,3,8) (3,3,8) (5,5,10) (5,0,5) (5,5,10) (5,5,10)

5 (3,3,8) (3,3,8) (5,5,10) (5,5,10) (5,0,5) (5,5,10)

6 (3,3,8) (3,3,8) (5,5,10) (5,5,10) (5,5,10) (5,0,5)

Table 3.7: Orders of 

fo
ij , 


ff
ij , and 


fw
ij

Note that for p = 0; 1; : : : ;Mik � 1

xoi[k; p;Nik] = xoi[k; p+ 1; 0]

xfi[k; p;Nik] = xfi[k; p+ 1; 0] (3.42)

and for p = Mik

xoi[k;Mik; Nik] = xoi[k + 1; 0; 0]

xfi[k;Mik; Nik] = D�1
fikDfi;k+1xfi[k + 1; 0; 0] (3.43)

Evolution of xoi[k; p; q] and xfi[k; p; q] can be found by evaluating (3.27) at

s = 1, which gives

xoi[k; p; q + 1] = eAoi�kxoi[k; p; q] + �oi[k; p; q]

xfi[k; p; q + 1] = eAfikxfi[k; p; q] + �fi[k; p; q] + �k�fikwik;pNik+q (3.44)

where �oi[k; p; q+1] and �fi[k; p; q+1] are obtained from (3.28) with l = pNik+ q

and s = 1 and �fik from (3.29) as

�fik =

Z 1

0

eAfikzbfidz (3.45)

Note that, from (3.34) and (3.37), we have

k �oi[k; p; q + 1] k�

NX
j=1

�
�ooij k xojkl(0) k +�

of
ij k xfjkl(0) k +�

ow
ij j wjkl j

�

k �fi[k; p; q + 1] k�

NX
j=1

�
�
fo
ij k xojkl(0) k +�

ff
ij k xfjkl(0) k +�

fw
ij j wjkl j

�

(3.46)
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for q = 0; 1; : : : ; Nik � 1, where l = pNik + q.

For �xed k and p, solution of (3.44) for q = 0; 1; : : : ; Nik � 1 is obtained as

xoi[k; p; q] = eAoiq�kxoi[k; p; 0] +

q�1X
r=0

eAoi(q�1�r)�k�oi[k; p; r]

xfi[k; p; q] = eAfikqxfi[k; p; 0] +

q�1X
r=0

eAfik(q�1�r)�k�oi[k; p; r]

+

q�1X
r=0

�ke
Afik(q�1�r)�fikvik;pNik+1 (3.47)

Evaluating (3.47) for q = Nik, noting that

Nik�k = Tik

AfikNik = Afi

and

wik;pNik+r = wik;pNik
; r = 0; 1; : : : ; Nik � 1

we obtain

xoi[k; p;Nik] = eAoiTikxoi[k; p; 0] +

Nik�1X
r=0

eAoi(Nik�1�r)�oi[k; p; r]

xfi[k; p;Nik] = eAfixfi[k; p; 0] +

Nik�1X
r=0

eAfik(Nik�1�r)�fi[k; p; r]

+

Nik�1X
r=0

�ke
Afik(Nik�1�r)�fikwik;pNik

(3.48)

De�ning

�fi =

Z 1

0

eAfizbfidz
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and noting that

Tik�fi =

Nik�1X
r=0

Tik

Z r+1

N
ik

r

N
ik

eAfikNikzbfidz

=

Nik�1X
r=0

Tik

Nik

Z 1

0

eAfik(s+r)bfids

=

Nik�1X
r=0

�ke
Afikr

Z 1

0

eAfikzbfidz

=

Nik�1X
r=0

�ke
Afik(Nik�1�r)�fik (3.49)

(3.48) can be written as

S
d
i : xoi[k; p+ 1] = eAoiTikxoi[k; p] + �oi[k; p]

xfi[k; p+ 1] = eAfixfi[k; p] + �fi[k; p] + Tik�fiwi[k; p] (3.50)

where

xoi[k; p] = xoi[k; p; 0]

xfi[k; p] = xfi[k; p; 0]

wi[k; p] = wik;pNik
(3.51)

and

�oi[k; p] =

Nik�1X
r=0

eAoi(Nik�1�r)�oi[k; p; r]

�fi[k; p] =

Nik�1X
r=0

eAfik(Nik�1�r)�fi[k; p; r] (3.52)

(3.50) constitutes the discrete model of Si at local sampling instants. To

complete the model, we need to obtain bounds on the �oi[k; p] and �fi[k; p] terms

which represent the discrete-time e�ects of interconnections. However, since they

depend not only on xo and xf but also on wkl, we postpone this to the next section

until after we obtain a model for the closed-loop system.
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3.3 Decentralized Controllers and The Closed-

Loop System

We generate local control inputs wi[k; p] in (3.50) by the discrete version of the

decentralized controllers in (2.52) which are described as

C
d
i : xci[k; p+ 1] = Acixci[k; p] + T 1�mi

ik bciyi(tk + pTik)

wi[k; p] = T�1ik cTcixci[k; p] + T�mi

ik dciyi(tk + pTik) (3.53)

where xci[k; p] 2 <
mi�1 is the state of Cdi at the local sampling instant tk + pTik

with the convention that

xci[k;Mik] = xci[k + 1; 0]:

Using

yi(tk + pTik) = cTifxfi(tk + pTik) = cTifDfikxfi[k; p]

= Tmi�1
ik cTifxfi[k; p]

the closed-loop subsystem Ŝ
d
i consisting of Sd

i in (3.50) and Cdi in (3.53) is de-

scribed as

Ŝ
d
i : x̂oi[k; p+ 1] = �̂oix̂oi[k; p] + �̂oi[k; p]

x̂fi[k; p+ 1] = �̂fix̂fi[k; p] + �̂fi[k; p] (3.54)

where

x̂oi[k; p] = xoi[k; p]; �̂oi[k; p] = �oi[k; p]

x̂fi[k; p] =

2
4 xfi[k; p]

xci[k; p]

3
5 ; �̂fi[k; p] =

2
4 �fi[k; p]

0

3
5 (3.55)

and

�̂oi = eAoiTik

�̂fi =

2
4 eAfi + �fidcic

T
fi �fic

T
ci

bcic
T
fi Aci

3
5
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Solution of (3.54) is given by

x̂oi[k; p] = �̂
p
oix̂oi[k; 0] +

p�1X
s=0

�̂
p�1�s
oi �̂oi[k; s]

x̂fi[k; p] = �̂
p

fix̂fi[k; 0] +

p�1X
s=0

�̂
p�1�s
fi �̂fi[k; s] (3.56)

Evaluating (3.56) for p = Mik and noting that

x̂oi[k;Mik] = x̂oi[k + 1; 0]

x̂fi[k;Mik] = D�1
ik Di;k+1x̂fi[k + 1; 0] (3.57)

where

Dik =

2
4 Dfik

I

3
5

the behavior of Ŝd
i over a common sampling interval is described by the discrete-

time model

Ŝ
d
i : x̂oi[k + 1] = �̂Mik

oi x̂oi[k] + �̂oi[k]

x̂fi[k + 1] = �̂Mik

fi x̂fi[k] + �̂fi[k] (3.58)

where

x̂oi[k] = x̂oi[k; 0]

x̂fi[k] = x̂fi[k; 0] (3.59)

and

�̂oi[k] =

Mik�1X
s=0

�̂Mik�1�s
oi �̂oi[k; s]

�̂fi[k] = (D�1
i;k+1Dik � I)�̂Mik

fi x̂fi[k]

+ D�1
i;k+1Dik

Mik�1X
s=0

�̂Mik�1�s
fi �̂fi[k; s] (3.60)

Note that

�̂Mik

oi = eAoiMikTik = eAikTk ; i = 1; 2; : : : ; N (3.61)

To complete the closed-loop discrete-time model in (3.58), we need to obtain

suitable bounds on the interconnection terms �̂oi[k] and �̂fi[k] in (3.58) in terms
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of x̂oi[k] and x̂fi[k]. For this purpose, we �rst obtain bounds of �oi[k; p; q] and

�fi[k; p; q] in (3.44) for a �xed p and for q = 0; 1; : : : ; Nik� 1, then use (3.52) and

(3.55) to obtain bounds for �̂oi[k; s] and �̂fi[k; s] in (3.56) for s = 0; 1; : : : ;Mik�1

and �nally (3.60) to obtain bounds of �̂oi[k] and �̂fi[k]. The crucial point is to

eliminate all the intermediate variables j xoikl(0) j, j xfikl(0) j and j wikl j that

appear in the expressions for �oi[k; p; q] and �fi[k; p; q]. j wikl j can easily replaced

with appropriate bounds on j x̂fi[k; p; q] j by using (3.47) and (3.53), that is

j wikl j� O(T�1ik ) k x̂fi[k; p] k; pNik � l < (p+ 1)Nik (3.62)

However, elimination of j xoikl(0) j and j xfikl(0) j requires that we should keep

track of them by using (3.36) and (3.40). We illustrate the elimination proce-

dure for the typical case considered in Example 3.1, where the subsystems are

ordered in increasing Tik (decreasing �i), which is important in elimination of the

intermediate variable in a systematic way.

We start with l = 1, which corresponds to p = 0, q = 1 for all the subsystems

and for which we have

k �oi[k; 0; 1] k�

NX
j=1

�
�ooij k xojk0(0) k +�

of
ij k xfjk0(0) k +�

ow
ij j wjk0 j

�

k �fi[k; 0; 1] k�

NX
j=1

�
�
fo
ij k xojk0(0) k +�

ff
ij k xfjk0(0) k +�

fw
ij j wjk0 j

�
(3.63)

Substituting

k xojk0(0) k = k x̂oj[k; 0] k

k xfjk0(0) k � k x̂fj[k; 0] k

j wjk0 j � O(T�1jk ) k x̂fj [k; 0] k

and noting that

minfO(�
of
ij );O(�

ow
ij ) +O(T�1jk )g = O(�

of
ij )

minfO(�
ff
ij );O(�

fw
ij ) +O(T�1jk )g = O(�

ff
ij ) (3.64)
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We rewrite (3.63) as

k �oi[k; 0; 1] k �

NX
j=1

�ooij k x̂oj[k; 0] k +�
of
ij k x̂fj[k; 0] k

k �fi[k; 0; 1] k �

NX
j=1

�
fo
ij k x̂oj[k; 0] k +�

ff
ij k x̂fj [k; 0] k (3.65)

Note that � 0s in (3.63) and (3.65) are not the same. However, they are of the

same order and we used the same symbol not to introduce more complexity in

the notation.

We also need bounds of k xoik1(0) k and k xfik1(0) k to be used in the next

step. Using (3.36) and (3.40) and noting that (3.64) is also valid for 
0s, we

similarly obtain

k xoik1(0) k�

NX
j=1


ooij k x̂oj[k; 0] k +

of
ij k x̂ij[k; 0] k

k xfik1(0) k�

NX
j=1



fo
ij k x̂oj [k; 0] k +


ff
ij k x̂ij[k; 0] k (3.66)

Before proceeding any further, we also note that for i = 1; 2 (for which

Nik = 1), (3.65) and (3.66) can also be interpreted as

k �̂oi[k; 1] k�
PN

j=1 �
oo
ij k x̂oj[k; 0] k +�

of
ij k x̂fj[k; 0] k

k �̂fi[k; 1] k�
PN

j=1 �
fo
ij k x̂oj[k; 0] k +�

ff
ij k x̂fj[k; 0] k

9=
; i = 1; 2 (3.67)

and

k x̂oi[k; 1] k�
PN

j=1 

oo
ij k x̂oj[k; 0] k +


of
ij k x̂fj[k; 0] k

k x̂fi[k; 1] k�
PN

j=1 

fo
ij k x̂oj[k; 0] k +


ff
ij k x̂ij[k; 0] k

9=
; i = 1; 2 (3.68)

Now, let l = 2, which corresponds to

p = 1; q = 1 for i = 1; 2

p = 0; q = 2 for i = 3� 6
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and therefore, requires separate analysis for i; j = 1; 2 and for i; j = 3� 6. For

i = 1; 2, we have

�̂oi[k; 2] �

2X
j=1

�ooij k x̂oj[k; 1] k +�
of
ij k x̂fj[k; 1] k +�

ow
ij j wjk1 j

+

NX
j=3

�ooij k xojk1(1) k +�
of
ij k xfjk1(1) k +�

ow
ij j wjk0 j (3.69)

Using

j wjk1 j� O(T�1jk ) k x̂fj [k; 1] k; j = 1; 2

and (3.64), the last two terms in the �rst sum above can be combined under

�
of
ij k x̂fj[k; 1] k. Substituting k xojk1(1) k and k xfjk1(1) k from (3.66), (3.69)

becomes

�̂oi[k; 2] �

2X
j=1

�ooij k x̂oj[k; 1] k +�
of
ij k x̂fj[k; 1] k

+

NX
r=1

� NX
j=3

�ooij 

oo
jr + �

of
ij 


fo
jr

�
k x̂or[k; 0] k

+

NX
r=1

� NX
j=3

�ooij 

of
jr + �

of
ij 


ff
jr

�
k x̂fr[k; 0] k

+

NX
j=3

�owij j wjk0 j (3.70)

Using tables 3.1-3.4, it can be shown that

O

� NX
j=3

�ooij 

oo
jr + �

of
ij 


fo
jr

�
= O(�ooir )

O

� NX
j=3

�ooij 

of
jr + �

of
ij 


ff
jr

�
=

8<
:

O(�
of
ir ) + �max i = 1; 2

O(�
of
ir ) i = 3� 6

(3.71)

Assimilating j wjkl j terms for j = 3� 6 in k x̂fj[k; 0] k terms with the help of

(3.64), substituting the expressions for k x̂oj[k; 1] k and k x̂fj[k; 1] k from (3.66),

and using (3.71), (3.70) eventually reduces to

�̂oi[k; 2] �

NX
j=1

�
�ooij k x̂oj[k; 0] k +�

of
ij k x̂fj [k; 0] k

�
; i = 1; 2 (3.72)
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Similarly, we can bound �̂fi[k; 2], i = 1; 2, by exactly the same expression

with �ooij and �
of
ij replaced with �

fo
ij and �

ff
ij . Clearly, the same expression is also

valid for i = 3� 6, except that the left-hand sides are �oi[k; 0; 2] and �fi[k; 0; 2].

Finally, the bounds of k x̂oi[k; 2] k and k x̂fi[k; 2] k for i = 1; 2; and of k xoik2(0) k

and k xfik2(0) k are given by the same expressions with � 0s replaced with 
0s.

The analysis above shows that the perturbation terms at any discrete instant

t = tk + l�k are bounded by � 0s times corresponding initial discrete states at

t = tk. Hence, �̂oi[k] and �̂fi[k] in (3.58) are bounded as

k �̂oi[k] k �

NX
j=1

�ooij k x̂oj[k] k +�
of
ij k x̂fj[k] k

k �̂fi[k] k � O

�
k D�1

i;k+1Dik � I k

�
k x̂fi[k] k

+ O

�
k D�1

i;k+1Dik k

� NX
j=1

�ooij k x̂oj[k] k +�
of
ij k x̂ij[k] k (3.73)

Note that provided �
Ik+1

Ik

��

� c (3.74)

for any �xed c > 1, we have

k D�1
i;k+1Dik k� c

k D�1
i;k+1Dik � I k� c� 1

in which case (3.73) becomes

k �̂oi[k] k �

NX
j=1

�ooij k x̂oj[k] k +�
of
ij k x̂fj[k] k

k �̂fi[k] k �

NX
j=1

�
fo
ij k x̂oj[k] k +�

ff
ij k x̂fj[k] k (3.75)

3.4 Stabilization By Decentralized Control

Since (Afi; bfi; c
T
fi) are controllable and observable with Afi having all their eigen-

values at the origin, (eAfi;�fi; c
T
fi) are also controllable and observable. Then,
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the local controller parameters (Aci; bci; c
T
ci; dci) can be chosen such that �̂fi in

(3.56) have desired eigenvalues [2]. Let Cdi be chosen to have �̂fi Schur stable,

that is, with all eigenvalues within the unit circle 1 . Then, there exist positive

de�nite matrices P̂fi such that

�̂T
fiP̂fi�̂fi � P̂fi = �I; i = 1; 2; : : : ; N (3.78)

from which we also obtain

(�̂Mik

fi )T P̂fi(�̂
Mik)� P̂fi = �I � �̂T

fi�̂fi � � � � � (�̂Mik�1)T (�̂Mik�1) (3.79)

On the other hand, since Aoi is Hurwitz stable by assumption, there exist positive

de�nite matrices P̂oi such that

AT
oiP̂oi � P̂oiAoi = �I (3.80)

Then

(�̂Mik

oi )T P̂oi(�̂
Mik

oi )� P̂oi =

Z Tk

o

d

dt

�
eA

T

oi
tP̂oie

Aoit

�
dt

= �

Z Tk

0

eA
T

oi
tP̂oie

Aoitdt (3.81)

so that

x̂Toi

�
(�̂Mik

oi )T P̂oi(�̂
Mik

oi )� P̂oi

�
x̂oi � �coiTk k x̂oi k

2 (3.82)

for some coi > 0 independent of Tk.

We now choose

�[k] =

NX
i=1

�
x̂Toi[k]P̂oix̂oi[k] + x̂Tfi[k]P̂fix̂fi[k]

�

1Note that

c
T
fi(zI � e

Afi)�1�fi = Hfi(z) (3.76)

is the zero-order hold discrete equivalent of

Hfi(s) =
1

s
mi

(3.77)

with normalized sampling period Ti = 1 and approximates the zero-order hold equivalent of Si
at high frequencies.
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as a Lyapunov function for the closed-loop discrete-time interconnected system

in (3.58). Calculating

��[k] = �[k + 1]� �[k]

along the solutions of (3.58) and using (3.75), (3.79) and (3.82), ��[k] can be

majorized as

�� � �zT [k]

�
I �Q(Ik)

�
z[k] (3.83)

where

z[k] = col

�
(coiI

��m
k )

1

2 k x̂oi[k] k; k x̂fi[k] k

�
(3.84)

and Q[Ik] is a symmetric matrix of the form

Q[Ik] =

2
4 Qoo[Ik] Qof [Ik]

QT
of [Ik] Qff [k]

3
5 (3.85)

with Qoo[Ik] =

�
qooij [Ik]

�
having the elements

qooij [Ik] = O(I��maxk )

Qof [Ik] =

�
q
of
ij [Ik]

�
the elements

q
of
ij [Ik] =

8<
:

O(I
��

�max
2

k ); mi = 1; mj 6= 1 or mi 6= 1; mj = 1

O(I
��max

2

k ); otherwise

and Qff [Ik] =
�
q
ff
ij [Ik]

�
the elements

q
ff
ij [Ik] =

8<
:

O(I���maxk ); mi = 1; mj 6= 1 or mi 6= 1; mj = 1

O(I��maxk ); otherwise

Note that if mi = 1 for any of the subsystems, then �max = 2� + 1 so that

� � �max=2 = �1=2. Since all powers of Ik in each of the expressions above are

negative it follows that there exists suÆciently large I
�
> 1 that depends on the

bounds of the interconnections in (3.3) such that I � Q[Ik] is positive de�nite

for all Ik � I
�
. This establishes the (Shur) stability of the discrete-model of the

closed-loop interconnected system.
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3.5 Adaptation of Sampling Intervals and Con-

troller Gains

In the previous section, we established that if the bounds of the interconnections

are known, then we can �nd I? such that the discrete model of the closed-loop

system is stable for all Ik > I?. If the bounds of the interconnections are not

known, then I? is not known a priori and Ik has to be adjusted by some means

until it reaches the desired unknown value of I?. A simple way of achieving this

is to adjust Ik using the following rule:

�k+1 = �k +minf1; Skg

Sk = dy k y(tk) k +dc k xc(tk) k

Ik = int (�k) (3.86)

This rule guarantees that Ik is non-decreasing and also

Ik+1 � Ik + 1

so that �Ik+1

Ik

��
�

�
1 +

1

Ik

��
� 2�

for any Ik � 1 and therefore (3.74) is also satis�ed. However, there are two

problems associated with the choice in (3.86).

The �rst problem is that Ik might increase inde�nitely. In this case, Tk =

1=I�mink will decrease forever and it is possible that

lim
k!1

tk = lim
k!1

(t0 +

k�1X
l=0

Tk) = t
1
<1

Then, the discrete model in (3.58) will represent the closed-loop system only on

a �nite interval [t0; t1) and we cannot deduce stability of the actual sampled-

data system from stability of the discrete model. In fact, arbitrarily large Ik is

practically impossible, as that means in�nitely fast sampling and arbitrarily high

gains.
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The second problem associated with the choice in (3.86) is that the degree of

stability of the discrete-model might get smaller in successive common sampling

intervals, resulting in poorer and poorer convergence of x̂[k]. To see this consider

(3.83), which implies that

�v[k] � ��min

�
I �Q[Ik]

�
k z[k] k2

� ��m k z[k] k2 (3.87)

where

�m = �min

�
I �Q[I?]

�

Since

k z[k] k2� coI
��min
k k x̂[k] k2� coI

��min
k ��1M v[k]

where

�M = max
i
f�max(P̂oi); �max(P̂fi)g

(3.87) implies that

v[k + 1] � �2kv[k] (3.88)

where

�2k = 1�
co�m

I�mink �M
< 1 for Ik � Imin (3.89)

Hence

k x̂[k] k�M
� k�1Y
l=0

�l
�
k x̂[0] k; M > 0 (3.90)

which is the best bound on k x̂[k] k that we can obtain from Lyapunov analysis.

Since �k ! 1 as Ik !1, we observe that uncontrolled increase in Ik should be

avoided.

To avoid the problems mentioned above, we propose to keep Ik unchanged for

a �xed duration of time �t that contains an integral number of every possible

common sampling interval Tk = I��mink . A convenient choice is �t = 1, which

contains

�t

Tk
= I�mink =Mk
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common sampling intervals. Thus Ik is updated (if necessary) only at the discrete

instants t0, t0 + 1, t0 + 2, etc.

To analyze the stability properties of the closed-loop system described at

t0 + k, k = 1; 2; : : : , we de�ne new discrete-time state variables as

X̂oi[k] = x̂oi[M0 + � � �+Mk�1]

X̂fi[k] = x̂fi[M0 + � � �+Mk�1] (3.91)

for k = 1; 2; : : : . Then from (3.58), we obtain

X̂oi[k + 1] = 	̂oiX̂oi[k] + �̂oi[k]

X̂fi[k + 1] = 	̂fiX̂fi[k] + �̂fi[k] (3.92)

where

	̂oi = �̂MkMik

oi = eAoiMkTk = eAoi

	̂fi = �̂MkMik

fi = �̂
I
�i

k

fi (3.93)

and

�̂oi[k] =

Mk�1X
�=0

�̂
(Mk�1��)Mik

oi �̂oi[M0 + � � �+Mk�1 + �]

�̂fi[k] =

Mk�1X
�=0

�̂
(Mk�1��)Mik

fi �̂fi[M0 + � � �+Mk�1 + �] (3.94)

An analysis similar to the one carried out for �̂oi[k] and �̂fi[k] in the previous

section reveals that provided Ik's satisfy (3.74), we have

k �̂oi[k] k �

X
j

�ooij k X̂oj[k] k +�
of
ij k X̂fj[k] k

k �̂fi[k] k �

X
j

�
fo
ij k X̂oj[k] k +�

ff
ij k X̂fj[k] k (3.95)

We now proceed with the stability analysis of Section 3.4. However, this time

we choose P̂oi directly to satisfy

	̂T
oiP̂oi	̂oi � P̂oi = �I (3.96)
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which is possible as 	̂oi in (3.93) are Schur-stable (independent of Tk). Using

V [k] =
X
i

�
X̂oi[k]P̂oiX̂oi[k] + X̂fi[k]P̂fiX̂fi[k]

�
(3.97)

as a Lyapunov function for the closed-loop discrete-time system in (3.92), we

�nd that

�V [k] � �ZT [k]
�
I � Q̂[k]

�
Z[k] (3.98)

where now

Z[k] = col
�
k X̂oi[k] k; k X̂fi[k] k

�

and the blocks of

Q̂[k] =

2
4 Q̂oo[k] Q̂of [k]

Q̂T
of [k] Q̂ff [k]

3
5

have the elements

q̂ooij [k] = O[I��maxk ]

q̂
of
ij [k] =

8<
:

O[I���maxk ] ; mi = 1; mj 6= 1

O[I��maxk ] ; otherwise

q̂
ff
ij [k] =

8<
:

O[I���maxk ] ; mi = 1; mj 6= 1

O[I��maxk ] ; otherwise

(3.99)

Again, there exists I
�
such that I � Q̂[k] is positive de�nite for all Ik � I

�
.

However, the di�erence from the previous case is that Ik does not appear in the

expression (3.89) for the degree of exponential stability �k. In other words, there

exists �xed �
�
< 1 such that

k X̂[k] k�M�(k�k0)
�

k X[k0] k (3.100)

for all Ik � I
�
. This is exactly what prevents Ik from growing inde�nitely under

the adaptation rule in (3.86) as we explain below.

Suppose that Ik � I
�
for some k

�
. Then Ŝd is exponentially stable with degree

of stability �
�
so that Sk in (3.86) satis�es

Sk � � k X̂[k] k2
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for some � > 0. Using (3.100) with k0 = k
�
, we have

Sk � �M2�2(k�k�)
�

k X̂[k
�
] k2

for all k � k
�
so that

�k � �k� +

k�1X
l=k�

Sk

� �k� + �M2
k X̂[k

�
] k2

1� �
2(k�k�)
�

1� �2
�

Then limk!1 �k <1 and therefore

lim
k!1

Ik = I
1
<1

This guarantees stability of the closed-loop sampled-data system.
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Chapter 4

AN EXAMPLE: COUPLED

INVERTED PENDULI

Consider the system consisting of three coupled inverted penduli shown in Figure

4.1 [14]. We assume that �rst two penduli form a subsystem, while the third one

a second subsystem interconnected with the �rst one through a coupling spring.

The system is modeled by three non-linear second order di�erential equations

as

S1 : m11l
2
11
��11 = m11l11g sin �11 � k11�11 � k1c(�11 � �12)� b11 _�11

� b1c( _�11 � _�12) + u1

m12l
2
12
��12 = m12l12g sin �12 � k12�12 + k1c(�11 � �12)� b12 _�12

+ b1c( _�11 � _�12)� kc(tan �12 � tan �2) (4.1)

S2 : m2l
2
2
��2 = m2l2 sin �2 � k2�2 � b2 _�2 + kc(tan �12 � tan �2) + u2 (4.2)

where �11, �12 and � are angular displacements of the penduli from the vertical

equilibria and u1 and u2 are the external torques (inputs) applied to the �rst and

third penduli. The parameters in (4.1) and (4.2) summarized in Table 4.1.
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Figure 4.1: Three coupled inverted penduli

k11; k12; k2 :spring coeÆcients

b11; b12; b2 :damping coeÆcients

k1c; b1c :spring and damping coeÆcients coupling m11 and m12

kc :spring coeÆcient coupling m12 and m2

Table 4.1: Parameters appearing in (4.1) and (4.2)

De�ning

x1 = col [�11; _�11; �12; _�12]; y1 = �12

x2 = col [�2; _�2]; y2 = �2

(4.1) and (4.2) can be rewritten in state form as

S1 :

2
66666664

_x11

_x12

_x13

_x14

3
77777775

=

2
66666664

0 1 0 0

�a121 �a122 �a123 �a124

0 0 0 1

a141 a142 �a143 �a144

3
77777775

2
66666664

x11

x12

x13

x14

3
77777775
+

2
66666664

0

b12

0

0

3
77777775
u1

+

2
66666664

0

d12 sinx11

0

d141 sinx13 � d142(tanx13 � tan x21)

3
77777775

(4.3)
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S2 :

2
4 _x21

_x22

3
5 =

2
4 0 1

�a221 �a222

3
5
2
4 x21

x22

3
5 +

2
4 0

b22

3
5 u2

+

2
4 0

d221 sinx21 + d222(tanx13 � tanx21)

3
5 (4.4)

where

a121 =
k11 + k1c

m11l
2
11

; a122 =
b11 + b1c

m11l
2
11

; a123 =
k1c

m11l
2
11

; a124 =
b1c

m11l
2
11

a141 =
k1c

m12l
2
12

; a142 =
b1c

m12l
2
12

; a143 =
k12 + k1c

m12l
2
12

; a144 =
b12 + b1c

m12l
2
12

b12 =
1

m11l
2
11

; d141 =
g

l12
; d142 =

kc

m12l
2
12

and

a221 =
k2

m2l
2
2

; a222 =
b2

m2l
2
2

;

b22 =
1

m2l
2
2

; d221 =
g

l2
; d222 =

kc

m2l
2
2

(4.5)

Decoupled subsystems have the transfer functions

H1(s) = b12
a142s+ a141
s4 + : : :

(4.6)

and

H2(s) = b22
1

s2 + : : :
(4.7)

from which we observe that

m1 =

8<
:

4; a142 = 0

3; a142 6= 0

and

m2 = 2

Note that, if a142 6= 0, then for H1(s) to have a stable zero, we need a141=a
1
42 > 0.

For illustration purposes, let us assume

a141 = a142 = a143 = a144 = b12 = b22 = 1

a121 = a122 = a123 = a124 = a221 = a222 = 0
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Then S1 and S2 are described by

Si :
_xi = Aixi + biui + bigi(x) + hi(y)

yi = cTi xi

9=
; i = 1; 2

where

A1 =

2
66666664

0 1 0 0

0 0 0 0

0 0 0 1

1 1 �1 �1

3
77777775
; b1 =

2
66666664

0

1

0

0

3
77777775

cT1 =
h
0 0 1 0

i

A2 =

2
4 0 1

0 0

3
5 ;

2
4 0

1

3
5

cT2 =
h
1 0

i

and

g1(x) = a121x11 + a122x12 � a123x13 � a124x14 + d12 sin x11

g2(x) = 0

h1(g) =

2
66666664

0

0

0

d141 sin y1 � d142(tan y1 � tan y2)

3
77777775

h2(y) =

2
4 0

d221 sin y2 + d222(tan y1 � tan y2)

3
5

With this choice of parameters, (Ai; bi; c
T
i ) are controllable and observable and

H1(s) =
s+ 1

s2(s2 + s+ 1)
; H2(s) =

1

s2

Since m1 = 3 and m2 = 2, we have � = 2, �1 = 1 and �2 = 2. Therefore,

T1k = Tk =
1

Ik
and T2k = �k =

1

I2k
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We calculate

eAf1 =

2
6664

1 1 1
2

0 1 1

0 0 1

3
7775 ; �f1 =

Z 1

0

eAf1tbf1dt =

2
6664

1
6

1
2

1

3
7775

and

eAf2 =

2
4 1 1

0 1

3
5 ; �f2 =

Z 1

0

eAf2tbf2dt =

2
4 1

2

1

3
5

We choose the controller parameters as

Ac1 =

2
4 0 �0:1244

1 �0:4222

3
5 ; bc1 =

2
4 0:5756

�2:0472

3
5

cTc1 =
h
0 �1:0667

i
; dc1 = �1:0667

to place the eigenvalues of �̂f1 at

z1;2 = 0:8� j0:4; z3;4 = 0:4� j0:2; z5 = 0

and

Ac2 = �0:15; bc2 = 0:75

cc2 = 0:5; dc2 = �0:5

to place the eigenvalues of �̂f2 at

z1;2 = 0:8� j0:4; z3 = 0

quite arbitrarily.

At this point, we note that

Hfi(z) = cTfi(zI � eAfi)�1�fi = Zf
1

smi

g =
qfi(z)

dfi(z)

as can be veri�ed by observing that

cTf1(zI � eAf1)�1�f1 =
1

6

z2 + 4z + 1

(z � 1)3
= Zf

1

s3
g
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and that

cTf2(zI � eAf2)�1�f2 =
1

2

z + 1

(z � 1)2
= Zf

1

s2
g

This observation allows us to design the local controllers in z-domain: If

Hci(z) = cTci(zI � Aci)
�1bci + dci =

qci(z)

dci(z)

then the eigenvalues of �̂fi are the zeros of the associated closed-loop character-

istic polynomial

d̂fi(z) = dfi(z)dci(z)� qfi(z)qci(z)

Once dci and qci are determined to assign the zeros of d̂fi(z) desired values,

(Aci; bci; c
T
ci; dci) are found by a suitable realization of Hci(z). This is exactly

what we did above, where we used an observable canonical realization of Hci(z)

to obtain (Ac1; bc1; c
T
c1; dc1).

The closed-loop system is simulated with a computer program, which employs

full nonlinear model of the system and uses 4-step Runga-Kutta method with a

step size h � 0:001.(Actually in each common sampling interval a di�erent step

size hk � 0:001 is used to have an integral number of hk in �k. For example, when

Ik = 4, which corresponds to a �k = 1=16, step size is chosen to be hk = 1=992

so that �k = 62hk.)

Arbitrary initial conditions are chosen as x11(0) = 0:2, x13(0) = 0:1, x12(0) =

x14(0) = 0, x21(0) = 0:3, x22(0) = 0, and Ik = 2. That is, all three penduli

start from rest and displaced from their vertical equilibria. The results shown

in Figure 4.2-4.5 indicate that proposed adaptive, decentralized sampled-data

controllers stabilize the system within a reasonable time interval of about 6 sec.

From Figure 4.2, we observe that Ik is stabilized at I
1
= 6, resulting in steady

local sampling intervals of T11 = 1=6 and T21 = 1=36 and corresponding local

gains �1k = 6 and �2k = 36. Inputs shown in Figure 4.3 indicate that controller

gains are not excessively high to result in unacceptable input levels.
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Figure 4.2: Subsystem sampling intervals: T1k(solid), T2k(dashed)
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Figure 4.3: Inputs: u1(solid), u2(dashed)
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Figure 4.4: States: x11(solid), x13(dotted) and x21(dashed)
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Figure 4.5: Outputs: y1(solid), y2(dashed)
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Chapter 5

CONCLUSION

In this thesis, stabilization scheme of interconnected systems by using high-gain,

decentralized and sampled-data controllers is worked on. For structured inter-

connections, it is shown that overall system achieves stability with fast sampling

rates of controllers.

In Chapter 2, important high-gain applications are reviewed to prepare the

necessary background for the main problem. The investigation is started by

stating the controllable canonical forms that are the backbone of the system

representation in all high-gain problems throughout the thesis. For the simplest

case, single input system is stabilized by using high-gain constant state feed-

back controllers. Then single-input/single-output (SISO) systems are considered

with high-gain dynamic output feedback controllers. In the next step, instead of

continuous-time, sampled-data controllers are employed. Then, interconnected

systems are examined by combining decentralized and high-gain control tech-

niques. In each case, against unknown bounds of uncertainties, an appropriate

adaptation mechanism is employed to adjust the gain accordingly.

In Chapter 3, sampled-data controllers are applied to interconnected sys-

tems, where interconnections are assumed as the major perturbations. In each
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subsystem, sampling interval of controller is chosen as the reciprocal of the gain.

However, for overall stability, all controllers should be synchronized. Therefore,

an overall gain is de�ned and all gains of subsystems are related to this param-

eter according to their relative degrees. By this way, all subsystem controllers

are synchronized on a common sampling period which is an integer multiple of

each subsystem period. Overall gain (naturally overall sampling period) changes

with time for adaptive adjustment. In case of unknown perturbation bounds, an

adaptation action is applied to decrease the sampling rate suÆciently. To protect

from inde�nitely decreasing sampling period, overall gain is kept unchanged for

a �xed period of time.

Simulation of the proposed control methodology is presented on a spring

connected inverted penduli system, in Chapter 4. By choosing arbitrary initial

conditions, overall system is stabilized in a reasonable time.

High-gain has been used for stabilization of a variety of systems with uncer-

tainties. To be able to apply this technique, the system should be combination of

a controllable and observable nominal system and additive perturbations which

satisfy the matching conditions. As a further research area, high-gain can be

applied to perturbed systems with more general uncertainties.

In sampled-data output feedback case, we have de�ned gain as the reciprocal

of sampling period. Although this simpli�es the stability analysis, we lose de-

gree of freedom by manipulating one parameter instead of two. Employing new

relations between gain and sampling periods for other types of uncertainties can

be another topic to investigate.

By decreasing the sampling intervals suÆciently, we have obtained overall

stability of the system. If we keep these sampling rates, the stability will be
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preserved. Decreasing sampling rates without disturbing the stability seems pos-

sible for some systems. As a further work, these systems and increment margin

of sampling rates can be explored.
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