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ABSTRACT

HIGH-GAIN SAMPLED-DATA CONTROL
OF INTERCONNECTED SYSTEMS

Haluk Altunel
M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. M. Erol Sezer
January 2002

Stabilization of interconnected systems using adaptive, decentralized, high-gain,
sampled-data controllers is considered. Main applications of high-gain method-
ology to various systems under modeling uncertainties are reviewed. Then,
sampled-data, high-gain and decentralized control techniques are combined to
find a solution to stabilization of interconnected systems, while satisfying the
overall synchronization of the whole system. It is shown that overall system can
be stabilized in continuous and discrete time domains by applying an adaptation

mechanism for perturbations with unknown bounds.

Keywords: interconnected system, subsystem, high-gain control, decentralized
control, sampled-data control, perturbation, adaptation, state feedback, output

feedback
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OZET

BILESIK SISTEMLERIN YUKSEK KAZANCLI
ORNEKLENMIS KONTROLU

Haluk Altunel
Elektrik ve Elektronik Miithendisligi Bolimii Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. M. Erol Sezer
Ocak 2001

Bilegik sistemlerin uyumlu, ayrisik, yiiksek kazanch, orneklenmig veri
geribeslemesi ile kararlilastirilmasi incelenmistir. Yiiksek kazan¢ yonteminin
modelleme belirsizligi olan cegitli sistemlerdeki ana uygulamalari gozden
gecirilmigtir. Daha sonra orneklenmis veri, yiisek kazang ve ayrigik geribesleme
teknikleri bilegik sistemlerin karalastirilmaisi icin birlikte kullanilmigtir, ayni
zamanda toplam sistemin esgiidiimii saglanmigtir. Toplam sistemin sinirlari
bilinmeyen belirsizliklere karsi stirekli ve oOrneklenmis zaman boyutlarinda

kararhilastirilabildigi uyum mekanimasinin uygulanmasi ile gosterilmistir.

Anahtar kelimeler: bilegik sistem, alt sistem, yiiksek kazanch kontrol, ayrisik
kontrol, orneklenmis veri kontrolu, belirsizlik, uyumluluk, durum geribeslemesi,

cikt1 geribeslemesi
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Chapter 1

INTRODUCTION

High-gain control is a powerful tool to stabilize complex systems under additive
perturbations and/or with modeling uncertainties that can be represented as
additive perturbations. The basic idea behind high-gain control is to achieve a
sufficiently high degree of stability of a nominal system to overcome any desta-

bilizing effect of perturbations.

High-gain control has its roots in root-locus method and the small gain the-
orem [19]. As an illustration of the application of high-gain control, consider a

single-input/single-output (SISO) system described as

& = Av+bu+bg'x

y = 'z

where the term bg” z represents linear additive perturbations that satisfy the so

called matching conditions [6]. Let

h(s) =c"(sI — A)™'b = %

and



The transfer function of the perturbed system is calculated as

hy(s) = "(sI—A—=bg")™"b
= T (sI — AT —bg" (s — A)~'] 7"
= cT(sT —A) o1 — gT(sI —A) ot
h(s)
1—g(s)

q(s)
d(s) — p(s)

Comparing h(s) and hy(s), we observe that matching perturbations affect only

the poles of the system but not the zeros. It is precisely this nature of the
perturbations that allow for achieving stability by means of high-gain feedback

control. For illustration purposes, let us assume that

hs) = L) T A
d(s) s*+dis" 4 +d,’

that is, h(s) has relative degree one, and that ¢(s) is a stable polynomial. Then,
under constant output feedback

u=—kx

the closed-loop transfer function of the perturbed system becomes

) o hy(s) q(s)
") = Ty (5) = d05) = (o) + )

so that closed-loop characteristic polynomial is

dy(s) = d(s) — p(s) + kq(s)

Since

deg(d — p) = deg(q) + 1

it follows that as k — oo, n — 1 zeros of d,(s) approach the stable zeros of ¢(s)
and the nth one tends to —oo. In other words, there exists a critical gain k. such
that ch(s) is stable for all £ > k.. The value of k. depends on the location of zeros

of q(s) as well those of d(s) — p(s), which in turn, depend on the perturbations.



An alternative interpretation of the above result can be provided in the light
of the small-gain theorem. Expressing h,(s) as

q(s) o
. AV ha(s) h
o (s) = —TOVROT___ (s)

(s)  p(s) ;
L= d(s)q+kq(s)% 1= h(s)r(s)

we observe that the closed-loop perturbed system can be viewed as a feedback

connection of two systems with transfer functions

cov o q(s)  h(s)
Ms) = Ty + kals) — 15 kh(s)

and

respectively. Since ¢(s) is stable by assumption, r(s) represents a stable system.
On the other hand, by choosing k sufficiently large, not only ﬁ(s) can be made
stable, but also || A(s) ||l can be made arbitrarily small. Then, the small-gain
theorem guarantees stability of the closed-loop perturbed system for sufficiently

large k.

Both the root-locus and the small-gain interpretations of high-gain feedback
remain valid even when the relative degree of h(s) is larger than one, which
necessitates the use of dynamic output feedback. A further point worth to be
mentioned is that since the roles of the input and output are symmetric as
far as output feedback is concerned, the argument above can be repeated for
perturbations of the form hc’x, that is, perturbations satisfying the matching
conditions on the output side. Both types of perturbations fall in a class termed

”structured perturbations” [18].

The idea introduced above is applicable to single-input/single-output (SISO)
systems whose zeros are stable and whose relative degree, high frequency gain and
perturbation bounds are known. For multi-input/multi-output (MIMO) systems
same requirements are valid. In [3], the idea was improved one step further, and

systems with relative degree one were stabilized without knowing the bounds of



perturbation by adaptively adjusting the controller gain. In [10], systems with
higher relative degree were considered, where the gain parameter was increased

adaptively at discrete instants.

High-gain technique is also used with sampled-data controllers by keeping the
same assumptions on nominal system and perturbations as in the continuous-time
case. In [8], SISO systems with controllers that operate on the sampled values of
output have been stabilized. However, sampling action changes the perturbation
structure such that perturbations are exponentiated in converting to discrete-
time. To solve this problem sampling period was chosen as reciprocal of the
gain, so that perturbations simply do not have enough time between successive

sampling instants to cause instability.

Interconnected systems have been worked on by considering interconnections
between subsystems as perturbation sources. The difficulty here is to achieve
overall stability by using decentralized controllers. It is well-established [15] that
once the interconnections satisfy matching conditions, then decentralization of
the control does not create additional difficulty in stabilization by state-feedback.
In [8], this nature of decentralized control was exploited to stabilize intercon-

nected systems using sampled-data high-gain state feedback.

Applying high-gain sampled-data output-feedback control to interconnected
systems is the main topic of the thesis. As in the continuous-time case, each
subsystem is considered as a separate system with its own inner dynamics and
sampled-data dynamic output feedback controllers are designed according to
these inner structure. Parallel to single system controller, gains are chosen as
the reciprocal of sampling period. Thus, sampling periods of subsystems are
not necessarily the same and to be able talk on an overall stability of the whole
system, synchronization is necessary. Then, question arises as: How can synchro-
nization be satisfied without disturbing the gain constraints of the system? To

answer this problem, all the sampling intervals of subsystems are chosen to be



synchronized on a common sampling period, that is, common sampling period
is an integer multiple of each subsystem periods, by keeping in mind the recip-
rocal relation between sampling period and gain. On the other hand, common
sampling interval is not static, that means, it changes with time for adaptive

adjustment.

Similar to the previous cases, in sampled-data decentralized control, an adap-
tation mechanism is employed against unknown interconnection bounds. How-
ever, applying the same adaptation rule as in the previous cases, can cause
uncontrolled increase in gain parameter. This can prevent us from satisfying
overall continuous-time stability. Hence, gain parameter is kept constant for a
fixed time interval, which provides us overall continuous time and discrete time

stabilities together.

The organization of the thesis is as follows:

In Chapter 2, the important high-gain applications are reviewed. The basic
canonical forms that are used throughout the high-gain analyses are explained
before single input state feedback case. Then a perturbed SISO system is sta-
bilized with high-gain dynamic output feedback. Unbounded perturbations are
beaten by applying an adaptation mechanism to increase the gain in a required

way. Afterwards, interconnected systems are stabilized in continuous-time.

Chapter 3 is devoted to the analysis of sampled-data, high-gain control of
interconnected systems. After stating the problem explicitly, open-loop behavior
of subsystems are obtained based on the analysis in Chapter 2. Then, the rule of
choosing the sampling intervals are mentioned before an explanatory example.
Next, by applying the discrete dynamic output feedback controller, closed-loop
behavior of the sampled system is obtained. Stabilization analysis is done based
on the methodology in Chapter 2. Lastly, for unbounded systems, a proper

adaptation action is proposed to obtain overall continuous-time stability.



In Chapter 4, an explanatory example of sampled-data control of intercon-
nected systems are presented based on the method in Chapter 3. As an in-
terconnected system, three coupled inverted penduli system is considered with
a coupling spring connector. The stabilization methodology is applied to the

system and the results are obtained with the help of a computer simulation.

Last Chapter is devoted to concluding remarks by revisiting the important

points of the high-gain sampled-data control.



Chapter 2

A REVIEW OF HIGH-GAIN
CONTROL

2.1 Two Canonical Forms

In this section, we present two canonical forms for single-input (single-input/
single-output) systems which we shall frequently refer to throughout the thesis,

and at the same time introduce the notation used.

Consider a single-input system described as
S:1,=Ax,+bu (2.1)

where z, € R" is the state of S, u € R is a scalar input, and A, and b, are
constant matrices of appropriate dimensions. S can be denoted by the pair
S = (A4,,by). It is well known that if S is controllable, then by a suitable
coordinate transformation x, = Tz it can be transformed into an equivalent

system S = (A, b), where

A = T7'AT = Ap 4 bydy

b = T7'b, =1y (2.2)



with

0 1 0 0
Ap=1| T b= s =, L - (2.3)
00 ... 1 0
00 ...0 1

The pair (A, b) is said to be in controllable canonical form. It is a useful structure

in constructing stabilizing state feedback laws as we consider in the next section.

Now consider a single-input/single-output (SISO), controllable and observ-

able system
S:13, = Ayx,+byu
Yy = T (2.4)

which is represented by a triple S = (A4,, by, cg). Let S have the scalar transfer

function
. "ot s 4 gy
h(s) = cL(sI — A)) "', = @: i z 2.5
( ) p( P) p qop(s) o Sn_i_plsn*l_i_..._i_pn ( )
S is said to have the relative degree
ny =n—n, = deg(p) — deg(q) (2.6)

and the high-frequency gain ¢,. If S is stable, h(s) behaves like h(s) = qo/s"

for large | s |. It has been shown [12] that S = (A,,b,,c,) can be transformed

into an equivalent system S = (A, b,c") with

A, d,rct 0
A = I ) b= qo0
bfd:}fo Ar+ bfd?f by
&= [ 0 F ] (2.7)

where Ay and by have the structure in (2.3) with A being of order ny and by of

compatible size;
cf = [ 10 ...0 ]
and A, is of order n, = n — n; and has the characteristic polynomial

det(sT — A,) = q(s) = 5™ +q8™ '+ -+ qy, (2.8)



2.2 High-gain State Feedback

Consider a system with nonlinear, time varying perturbations described as
S:i=Ar+bu+e(t,x) (2.9)

where we assume that the nominal system (A, b) is controllable and the pertur-

bations satisfy the matching conditions [6]
e(t,z) = byg(t, x) (2.10)
We further assume that ¢ in (2.10) is bounded as
[g(t,z) S ag || = | (2.11)

for some oy > 0. Without loss of generality, assume that the pair (A,b) is
already transformed into its controllable canonical form in (2.2) with the term

byd}x included in the perturbation; that is, assume
A=Ay b=y
where A, and by are as in (2.3).
To stabilize S, we use a state feedback control
w=—k"zr, k' =|k, ko ... k (2.12)

which results in a closed-loop system

~

S:i= A +bpg(t,x) (2.13)
where ) }
0 1 0
Ap=Ar — kT =
0 0 1
—kn —kpoy ... =k




A 7 is in companion form with the characteristic polynomial

~

d(s) = s" +kis" "+t ky (2.14)

Let k7 be chosen such that flf has distinct eigenvalues
\Ni=—po;, i=1,2,....n (2.15)

where o; > 0, 0; # o, for i # j, and p > 0 is a parameter to be specified. It is

known that A s has a modal matrix

1 1
. Al A
Q =
)\111—1 )\nfl
1 1 1
-0 —0y,
- g ' = RQ (2.16)
I pn—l In (_O.I)n 1 (_O.n)n—l |
such that
)\1 01
An On

The transformation x = Qf, transforms the closed-loop system S into

~

S:i=—pDi+é(t, ) (2.17)
where
é(t,2) = Q 'brg(t,Q7)
= Q'R 'byg(t, Q%)
= Q7' "byg(t, Q)

= p'"Q 7 bsy(t, Q1) (2.18)

10



Clearly,

lea) I < 7" 11Q7"0; Il 9(t, Q2) |
< a1 Q7 |1 Q2 |l
< gt Qb TR Q I ]
< ogflQ o QN2 |
< G|l (2.19)

and ¢, is independent of the gain parameter p.
Let v(#) =|| & ||>= 27% be a candidate for a Lyapunov function for S. Then
o = 237 (- pDi +é(t, 7))

< 2w —ay) || 3 | (2.20)

Whatever ¢, is, for a given o > 0, p can be chosen sufficiently large to have
Ominp — Qg > 0 so that ©(2) < —20wv(2). This shows that the closed-loop system
can be made exponentially stable with arbitrary degree o of stability.

Note that the closed-loop characteristic polynomial is of the form

d(s) = s" + pdys" '+ -+ pd, (2.21)

where dy, ..., d, are uniquely determined by oy, ..., 0, and are fixed. Comparing

(2.21) and (2.14), we observe that

kT = pndn pn_ldnfl - pdl

that is, the stabilizing control in (2.12) is a high-gain state feedback.

11



2.3 High-gain Dynamic Output Feedback

Consider a single-input/single-output (SISO) system with nonlinear, time vary-

ing perturbations

S:& = Ar+bu+e(t o)

y = c'x (2.22)

where y € R is the scalar output of the system. We assume that the perturbations
are of the form

e(t,x) = bg(t,x) + h(t,y) (2.23)

Note that the first term bg(¢, x) in (2.23) satisfies the matching condition on the
input side and the second term h(t,y) = h(t,cTx) on the output side. We further

assume that g is bounded as in (2.11) and h is bounded as

1At y) [I< on |y | (2.24)
for some ay, > 0.

We also make the following assumptions concerning the nominal system
(A, b, cT).
o (A,b,cT) is controllable and observable
e (A,b,c") has stable zeros, that is, ¢(s) in (2.5) is stable.

e the relative degree ny = n —n, and the high-frequency gain ¢, are known.

We assume without loss of generality that A, b and ¢T are already transformed
into the forms in (2.7). Then including the b;df,z, and byd},zf terms in bg(t, z)

and dopciay term in h(t,y), the system in (2.22) can be described as

Sk, = Aoxy+ ho(t,y)
Ty = Apxy+ qbru+brg(t,xo, xs) + hy(t,y)

y = crg (2.25)

12



To the system S, we apply a dynamic output feedback control of the form
[18]
C:i, = pAxe+ p" by

u = gy (pclze+ p" " dey) (2.26)

where z. € R%/71, p is a gain parameter to be specified and A, b., ¢!, and d.

are constant matrices such that

| Ay bt by ]

Ap = (2.27)
Lo A
is stable [2].
Defining
R;'z -|
Bo =19, iy = [ $ (2.28)
.
where _ -
1
R; = P
pnffl
and noting that
R;lAfRf = pAy, R;lbf = plinfbf, C?Rf = C? (2.29)
the closed-loop system S consisting of S and C is described by
S:qy = Ao+ éo(t, i, dy)
i‘f = pAfi'f—i-éf(t,fo,i'f) (230)

13



Although we have included bd},z, and byd},;xy in bg(t, ) and dopcfay term in
h(t,y), we state these terms explicitly here to see their effects on the perturba-

tions:

Colt, o, By) = dogCiay+ ho(t,ciay)

en(t, o, Ty)
0

Er(t, To,Tf) =

én(t, 2o, iy) = R;'bpdjxe+ R;'bsd]f s + qoR; 'brg(t, o, )

+ R'hg(t,cray) (2.31)

It is not difficult to show using (2.23), (2.24) and (2.29)that

[eo(ts Zop) | < cop || 2 |

et @, ip) (| < apo |l 2o |l +aps || 2 |l

for some a,f, ap, and app > 0.

Since A, is stable by assumption and flf is made stable by the choice of the

controller parameters, there exist positive definite matrices P, and Py such that

ATP, + P A, = —I

A?Pf—l-PfAf = ] (2.32)

We now choose v(i,, &) = &1 P&, + 24 P&, as a Lyapunov Function for S.

Using (2.30), (2.32) and (2.32), © can be majorized as

(30, 27) < =€ Q(p)E (2.33)
where
T
&= [lal Nl and
1 ooy | P |l —apo | Py |
Qlp) = [ 1
| oo 1Pyl —ap I Pl =205 | P

14



From (2.33), we observe that for given bounds a,f, as, and a;; and any given

0 < a < 1, p can be chosen sufficiently large to have A,,;,(Q) > «, so that
B0, dp) < —a || € [P< ~200(2,, ) (2.34)

where
1 o
o=

" 2max {)\maI(Po)a )\maI(Pf)}

This shows that & can be made exponentially stable with degree of stability

o, which depends mainly on the degree of stability of A, and the perturbation

bounds.

The argument above is valid even when the gain p is time-varying provided
that p is bounded. Boundedness of | p | is required because of the fact that when
p is time-varying then the transformation in (2.28) introduces additional pertur-
bation terms (containing p) into the closed-loop system S in (2.30). However,
as long as | p | is bounded, say | p |< 1, then there exists a critical value p = p*
for which Q(p*) in (2.33) (actually a modified version of it that also takes into
account the effect of | p |) is just positive-definite, so that S is stable for any
p > p*. Clearly, p* depends on the perturbation bounds (as well as the nominal
closed-loop system parameters). If these bounds are not known, then p must be
adjusted by an adaptation mechanism which increases p (slowly) to a sufficiently
high (but bounded) value for which S is stable. Based on this observation, the

gain-adaptation rule is chosen as [§]
p(t) =min {1,y |y |* +e. || 2. [|* } (2.35)
where a, > 0 and a, > 0 are arbitrary constants.

The adaptation mechanism works as follows. If p(t) < p* for all ¢t > ¢4, then
(2.35) implies that p(t) — pso < p*, which in turn requires that y(¢) — 0 and
2(t) — 0 as t — oo. Then, by (2.26), we have u(t) — 0 and controllability

and observability of the nominal system implies that z(t) — 0 as t — 0.

15



On the other hand, if p(t*) > p* for some t* > t,, then S is exponentially
stable, so that
| y(t) [< Mye 7" | y(1) |

and

| 2(t) |< MoemU0) | () |

for t > t*, where o is the degree of exponential stability of S. Then, from (2.35),

we obtain

VAN

p(t)

o) + / (ay | y(r) [2 4o, || 2(r) |P)dr

*

< plt) + My[L— e 2]

where
oy, M7 | y(t*) P e M2 || 2(t) 1P

r 20

Hence, p(t) — pso = p(t*)+ M, as t — oo. This shows that the adaptation

rule in (2.35) does not result in an ever-increasing gain.

2.4 Sampled-data Output Feedback Control

Once it is shown that the perturbed system S in (2.22) can be stabilized by a
high-gain dynamic output feedback controller C as in (2.26), a natural question
is whether & can be stabilized by a discrete version of C operating on sampled

values of the output.

Let tx, k = 0,1,..., denote the sampling instants and let T} = t511 —
denote the sampling intervals. To provide maximum flexibility in the analysis,

we consider a non-uniform sampling, that is, T} is not necessarily a constant.

16



Letting t =t + sT, 0 < s <1, defining

Top(8) = xo(ty + sTk)
IL’fk(S) = D;kll‘f(tk + STk)
ur(s) = u(ty + sTy)

y(s) = y(tx + sTk) (2.36)

where

Dy, = ' (2.37)

and noting that
D7 AgDye = T ' Ay
Dby = by
D = T e
the behavior of S in (2.22) over the k-th sampling interval can be described by
S :tion(s) = TiAowor(s) + Theor (s, zsk(s))

Trr(s) = Asxpn(s) + Thesn(s, vor(s), 25r(5)) + qoTibsur(s)

-1
y(s) = T.7 c?xfk(s) (2.38)
where the perturbations e, and ey satisfy

ek (s xpm) | < cop || g |

| esr(ss Tok, i) I| < po || To || +app || wpp || (2.39)

for some a,f, apo and agp > 0.

The controller to be used for stabilization of the perturbed system in (2.38) is
a discrete version of C in (2.26). Observing that a faithful discretization of a high-

gain controller requires fast sampling, p, = T}, ! seems to be a reasonable choice

17



for the controller gain. This choice has the additional advantage of providing
simplicity in the stability analysis as only a single parameter, T}, is used to adjust
both the sampling interval and the controller gain. Based on this observation

the following sampled-data controller is proposed 8]

Cp:ak+1] = Awk]+ T, ™ bey(ty)
wlk] = Tk_lcchc[k] + Tk_nfdcy(tk)
up(s) = q;'wlk], 0<s<1 (2.40)

where z.[k] € R" ! is the discrete state of Cp at t = .

As shown in [8], the behavior of the closed-loop system consisting of S in
(2.38) and the controller Cp in (2.40) at the sampling instants can be described

by a discrete model

Sp:dolk+1] = Bpiolk] + Eon (K, 3o[k], 74 [K])
Gplk+ 1] = ®pigk] + Epe (b, @[k, 74 [K]) (2.41)
where
i‘o[k] = l‘ok(())
R z51(0)
Tpk] =
xc[k]
and
<i>o = elkdo
. et +Tpd.ct Tyl
b, = = 2 (2.42)
bcc:}C A,
with

1
Pf:/ eAfbedT
0

It is further shown in [8] that if the sampling intervals 7}, are such that

Tk+1 < Tp <1

T e
(=) < 14T, (2.43)
Tt

18



then the perturbation terms in (2.41) can be bounded as

ok (B0, @) | < TiBoo || o | +TkB0s | 24 ||

| Erwlh, T, ) | < TiBro |l To | +TkBss || 21 | (2.44)

Since A, is assumed to be stable, there exists a positive definite matrix P,
such that

AP, +P,A, =T

which implies that
|| (i)ZPo(i)o - P, ||§ —Yolk (2.45)

for some 7, > 0. Also, & in (2.42) represents the system matrix of a controllable
and observable discrete system (es, T’ i c?) in a feedback configuration with a
discrete controller (A, b., ¢!, d.), and thus can be made Shur-stable by a suitable
choice of the controller parameters [2]. Then there exists a positive definite Py

such that

i Pyo; — Py =—1 (2.46)

Let v[k] = &7 [k]Poiio[k] + 27 [k] Py ¢[k] be a candidate for a Lyapunov Func-
tion for the discrete closed-loop system in (2.41). Then, (2.43)-(2.46) imply that
there exists a T, < 1 that depends on the perturbation bounds such that the

difference of v[k] along the solutions of Sp can be bounded as
Avlk] < —oTyv[k] (2.47)

for some o > 0 provided 7} < T,. This shows that the discrete model of the
closed-loop system can be made exponentially stable by means of a discrete
controller having a sufficiently high gain and operating on sufficiently frequent
output samples. If T}, is also bounded from below so that ¢, = t0+25;3 T; — o0

as k —» oo, then the closed-loop sampled-data system S is also stable.
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As in the continuous-time case, if the perturbation bounds are not known,

then T}, is adjusted by an adaptation rule
Tkjrll =T, "' + T} min {ao, ay | y(te) |? +a. || 2(k) ||? } (2.48)

where

1
o, =2""" -1

and o, > 0 and «, > 0 arbitrary. This not only guarantees the restrictions in

(2.43), but also the requirement that

lim 7, =T, >0

k—o0

2.5 Decentralized Control of Interconnected

Systems

A natural extension of high-gain stabilization technique considered in the previ-
ous sections is decentralized control of interconnected system that consist of N

subsystems described as

Si . ii = AZ$Z + bzuz + ei(t, x)

where z;(t) € R™ is the state of S; u;(t) € R and y;(t) € R are scalar input and
output of S;, and e;(¢, z) represents the interconnections between S; and other

subsystems with
T
— | T T T - ,

It is observed that the interconnections can be treated as perturbations on the

nominal subsystems described by the triplets (4;, b;, c! ).

As in the case of a single system, we assume that

o (A;, b;, cl') are controllable and observable
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o with h;(s) = cf'(sI — A;) b = qungig, the zeros of ¢;(s) are stable

e high-frequency gain go; and the relative degree ny = deg(p;) — deg(g;) of each
subsystem are known

e the interconnection terms are of the form

ei(t,x) = b;gi(t,x) + hi(t,y) (2.50)

where y = col [y;], and
N
[git,2) | < ) ad izl
j=1

N
Ity | < ) ol Ly (2.51)
i=1

for some constants af;, aj; > 0.

The overall system can be represented as
S:% = Ax+ Bu+ E(t,z)
y = Cx
with obvious definitions of x, v, y and A, B, C and E. The assumptions on
(A, B,C) and the perturbations E(t,z) allows for the design of a centralized
high-gain dynamic output feedback controller that stabilizes S. As shown in
[18], stability can also be achieved by means of decentralized output-feedback
controllers provided their gains are in certain proportions that depend on the
relative degrees of the subsystems. In other words, the local controller for the
i-th subsystem is chosen as
. n i*l
Ci:dei = piletei+p;”" Dey;

n iil
u; = piCZ;-IL’Ci + 1% ! dciyi (252)
where local gains are generated from a common gain as
pi = p" (2.53)

21



where v; depend (in a complicated way) on the relative degrees of the subsystems.

It has been shown in [18] by a Lyapunov analysis that the overall system in
(2.49) can be stabilized by means of decentralized controllers in (2.52) provided
p is sufficiently high. As discussed in Section 2.3, p can even be time-varying as
long as p is bounded. As in the case of a single system, how high p should be
depends on the bounds of the strength of interconnections. If these bounds are

not known, then it can be adjusted by a centralized adaptation rule
p=min{lay ||y * +a. [ z || } (2.54)
where x. = col [x].

The main difficulty arises when we consider stabilization of the interconnected
system in (2.49) by means of decentralized sampled-data controllers. This prob-

lem is the main topic of the thesis and is considered in the next chapter.
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Chapter 3

DECENTRALIZED
SAMPLED-DATA CONTROL

3.1 Problem Statement

Consider an interconnected system consisting of N subsystems S; described in
(2.49). Under the assumptions mentioned in Section 2.5, we transform each

subsystem to the canonical form in (2.25) and describe it as
Sitdoi(t) = Aumoi(t) + eoi(t, z(t))
Tr(t) = Aprgi(t) + et wo(t), v5(t) + qoibsiui(t)
yit) = chaglt) (3.1)
where z,, € R", x5 € R, u; € R, y; € R and
T, = col[zy], xf=collry], vy =-colly]

We also assume that the interconnections also satisfy the conditions in Section

2.5, that is

eoi(t,xp) = holt,y)

eri(t,xo,xp) = brigi(t,x) + hpi(t,y) (3.2)
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where
N
lgta)| < (Zaf}’ |y | +02 [ 2y, | )
j=1

N
| hoi(t,zp) | <> ok | iy |
7=1

N
h
I gtz | < > o [ efmy | (3.3)
j=1
for some af > 0, afjf >0, ) > 0 and a?jf >0 withé,jel,...,N.

Our purpose is to stabilize the overall interconnected system by using discrete
version of the decentralized controllers in (2.52) operating on sampled values of
local outputs. To guarantee synchronous operation of the controllers, which is
needed to derive a discrete-time model of the closed-loop system, we assume that
each output is sampled an integer number of times in a certain common sampling
interval. That is, if

Tk = tk+1 — Tk (34)

denote the k-th common sampling interval, the i-th controller takes uniform

samples of y;(t) separated by
Ty,

T = M (3.5)

where M;;, is an integer, Note that the common sampling interval is not constant;
in fact, it is deliberately assumed to be non-constant to allow for adaptive adjust-
ment. Similarly, the number of samples taken by the i-th controller in a common
sampling interval is not constant, although samples are uniform throughout each

common sampling interval.

We now turn our attention to the process of discretizing local controllers in
(2.52). To provide simplicity in the design of the controllers, we set the gain of
each controller to the reciprocal of its sampling interval, as we did in Section 2.4,
that is

pi(t) =T,', th<t<tpg (3.6)

24



Recall, however, that to achieve stability of the overall system with decen-
tralized control, gains of the controllers are required to be in certain proportions;

that is
pi(t) = p" (1) (3.7)
where v; > 0 are integers that depend on the relative degrees of the subsystems.
In terms of T}, (3.7) requires
Tiw = pp" (3.8)
for some pp > 0. To satisfy (3.5) and (3.8) simultaneously, we choose p, = I}, > 1,

an integer. Then, with

1
Tp=—, t1=12,...,N (3.9)
I
and
P (3.10)
k — I;c/min .

where v, = min{y;}, we observe that
Ty =1 "™ Ty = My Ty, (3.11)
that is, (3.5) is also satisfied

Finally, we define the largest common measure of 7;;’s as the basic unit
interval in the k-th common sampling interval and denote it by 7. Thus

1
- ]'Ile’max

Th (3.12)

where v, = max{y;}. Clearly, each local sampling interval T} contains an

integral number of 7, that is

Tip = I, "1, = NigTg (3.13)
Note that
M. Ni, = Izmax_ymin =Lg, +1=1,2,....N (314)
so that
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3.2 Open-Loop Behavior of The Interconnected

System and Sample-Rate Selection

As a first step to derive a discrete-time model for the closed-loop interconnected
system we obtain expressions for the solutions of the subsystems with u;(¢) in
(3.1) as external inputs supplied by local sampled-data controllers. Since 7} is
the largest interval over which all u;(t) are constant, we analyze the behavior of

the subsystems over each interval
tk—FlTkStStk—F(l—Fl)Tk, [=0,1,...,L,—1 (316)

separately. For this purpose, we let t =t + [7, 4+ s7%, 0 < s < 1, and define

Toikt(8) = @oi(ty + Ik + sTk)
xfikl(s) = D;z}cl‘fl (tk + lTk + STk) (317)
where _ -
Ty
Dy, = ' (3.18)
Tik
1

with m; = ny; for simplicity in notation.

On noting that

_ Tk 1
D ApiDpiy = —Ap=—
Tk fik“1 i fik Ek fi Nzk:

Dybri = by

Api = Agi

C:,Cz'sz'k = E?i_lc?i (3.19)
and defining the auxiliary variable w;; as

Wikl = qgiui(t), tr + lTk <t<tp+ (l —+ 1)Tk (320)
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subsystem descriptions in (3.1) are transformed into

SitGoimi(s) = TeAoiToini(s) + eom (s, T ii(s))
Triri(s) = ApnTrin(s) + efir (8, Ikl(S)) + Tb vk
Yiri(s) = E?i_lc?ﬁfim(s) (3.21)
where
Coikl (3, :Efkl(s)) = Trhy (tk + 1y, + ST, kaxfkl(s))
erin (8, ri(s)) = Tebrigi(tr + Ik + 57, Tora (5), D pra(s))

+ TkD;i}chfi (tk + 1y, + ST, C’fokxfkl(s)) (3.22)
with 2o = col [Zoir], Tpr = col [zpin], Cp = diag|c};] and Dy = diag[D ).

Using (3.3), the interconnection terms in (3.22) can be bounded for T}, <1

as

N
| ot (s, zpm) | < TkZa?fT;Zrl [l
j=1

N
1
lesivi(s,zpm) || < 7Y () || @ojua |+ TH ™ | 2w 1)

j=1

N
s 1
+ T ™Y el T e || (3.23)

j=1

The key to stabilization of the interconnected system is to choose the local
sampling intervals so as to have the smallest possible bounds on the interconnec-

tion in (3.23). For this purpose, we choose the integers v; in (3.9) as

Y m; # 1
y=¢ ™t 7 (3.24)
v+1 m;=1

where

v= ] (mi-1) (3.25)

m; #1
m;distinct
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O(e]) [ Of)) | 0(l])
m; =1, m; =1 Vinaz Vinaz Vinaz
mi=1,m; #1 | Umaz +V | Viaz | Vmaz +V
my; 7A 1, m; = 1 Vmazx Vmax Vmaz — V
my; 7£ 1, m; 7A 1| Vmae +V Vmax Vmazx

Table 3.1: Orders of af]f, Zf]", and aff

With this choice of v/s, the bounds in (3.23) can be expressed as

| €oini (s, zpm) || < Za ) 2 g |l

N
lesiw (s, mm) [ <Y (@l () N wog | +0f (17 1 pie 1) (3.26)
j=1

where af]f, ”0 and a{jf are polynomials in Ik’l with the smallest power of Ik’l
denoted O(+). O(:) for these polynomials can be calculated from (3.23) as shown

in Table 3.1.

To start analysis of the open-loop behavior of S;, we first write the solution

of (3.21) as
Toirt(8) = €™ 2;000(0) + Eiona(5)
xfikl(s) = eAf““sxfikl(s)+§fikl(s)+7'kbfik(s)wikl (327)
where
Sioki(s) = / e e (2, mp1(2)) dz
0
anls) = [ ez u2)) ds (3.28)
0
and
brir(s) = Tk/ eMikZ iz (3.29)
0

We now try to obtain bounds on || &x || and || &figr || in (3.28). For this

purpose, we first rewrite (3.21) in compact form as
Tri(s) = E(Sa Tr(S), wkl) (3.30)
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where

Tr = col[Toiki, T ikl]

WEr = COl [wikl]
and E(s, zy, vg) is defined accordingly. Then

T (s) = x(0) + /08 E(z, xy(2), wy)dz (3.31)

Taking the norm of both sides of (3.31), and noting that || = (s) || dominates

norms of other terms involving || x,(s) ||, we obtain

| 2ra(s) (<] 2 (0) ] +/Os(% | 2 (2) || +7rcw || wi [)dz (3.32)

We use a variation of Gronwall Lemma [4] to convert (3.32) to an explicit in-

equality in || x(s) ||. For this purpose, we define

n(s) = 7 (0) | +/08 (0 [l w0a(z) | + 700w || wia || )2

and
k(s) = e **n(s) — / TeQe % || wy || dz
0
Then
£(0) = n(0) = zr(0) ||
and
E(s) = aze || zp(s) | —n(s)] <0

so that

k(s) <|| zx(0) ||

which implies

[EZION

VAN

n(s) < e (|| 2a(0) || + / e || we | d2)
0

o’ || i (0) [| +7a® || wi || (3.33)

VAN
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oy [ owrh | owy) | o) | o) | oBl)
m; =1, mj =11 2V, Vinax 2Umaz Vinax Vinaz 2Umaz
mi=1,m; #1 | 2Upmaz | Vimaz +V | 2Vmaz +V Vinaa Vinaa 2
mi#1,m;j=1| 2Upqe, Vinaz 2Vmax Vinaz — V | Vmaz — V | 2Viman — V
my; 7A 17 m; 7é 1 2Vmam Vmaz +V 2Vmam +v Vmaz Vmax 2l/ma:v

Table 3.2: Orders of £77, 51] , B BZ] , BZ] and 6{;”

for some o > 0 and a* > 0.

Now, the norm of &z (s) in (3.28) can be bounded as

N

1 €pima(s) 1< D B N wogma0) | +8] 11 2 pia(0) | 85 Twia ) (3.34)

J=1

where the orders of the polynomials are found from (3.26) and (3.33) as
foy FAN — n; fo If
O(Bij ) = O(Bij )= mm{o(%’j ), O(ai' )}
fwy : fo If
O(ﬁij ) = Vmax—l—mln{(’)(ai 7, O« ;; )} (3.35)
These orders are tabulated in the second half of Table 3.2.

Although similar bounds can be obtained for || £&,(s) ||, we can do better by
first obtaining less conservative bounds on zf;(s) than those given by (3.33),

and then using these bounds in (3.28). From (3.27) and (3.34) we observe that
N
|2 pia (s Z Y o O) 1| 45 1l 2 0) | 49" T wjne ) (3:36)

where %fjo, *yz-f and %] are of the same order as BZ] , @fjf and ijw except that
O(v!7) = 0 and O(") = vmax. Now, taking the norm of &, (s) in (3.28) and
using (3.26) and (3.36), we obtain

| wals) || < ga [Z(%J I 0a0) | 434 (@) 4957 ] )|

j=1

N
< Z( 2 | oga0) 1| 48 1| 25y 0) | +52 |wm|) (3.3

J=1
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where

N
— o f
iojo - Za%%;
r=1
N
of _ fff
51']‘ = Zafr%«j
r=1

N
o= Y aflyly (3.38)
r=1

Using Table 3.1, second half of Table 3.2 (adapted for %fjf and *yz-’;w ) and

(3.38), and considering all possibilities, we find out that
O( z'ojo) = 2VUmaz
o) = 0af))
OBY) = Vinaa +O(0f]) (3.39)

which are tabulated in the first half of Table 3.2.

Finally, for future use, we note from (3.27) that

n

| aa(s) 1< 3 (%-”f o (O) 1| 47427 1 2500(0) | 492 | ey | ) (3.40)

j=1

00
ij

O(?) = 0.

where fyfjf and 7/ have the same orders as ;7 Bf’-f and [?Y except that

ij 0 Mg i

Example 3.1.

Consider an interconnected system of N = 6 subsystems with m; = my =1,

ms =my = 2 and ms = mg = 3. Then
v=2

, V=V =0, 1ny=u=2, vys=1=1

Hence,
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T =T : T /16=1
1k 2k k k

T =T : | | T 2=81
3k 4k | ] k k

T =T : | | : T =161
5k 6k | ] k k

Figure 3.1: Relative lengths of T, 1 =1,...,6
To illustrate relative lengths of T}z, suppose I, = 2. Then

1 1
Tm:TQk:Tk:ﬁa T3k=T4k:Z, Tsp =Top =T = 5

Thus

My, = My, =16, M3y, = My, =2, M = Mg, =1

and

Nip = Nop =1, Nz = Ny =8, N5 = Ng, =16

Note that Ny My, = 16 = I, "™, Relative lengths of T};, are shown in Figure
3.1.

Orders of (aff,off, o). (87, 87), 657, (8], 8], 85", (g7l vg) and
(%] ,%J;f ,7{; ) are calculated from Table 3.1 and Table 3.2, are tabulated in
Table 3.3-3.7.

(3.27) describes the continuous-time behavior of the open-loop interconnected
system over a basic unit interval ¢, + I, < ¢t < ¢ + (I + 1)7,. To describe the
behavior of the subsystems at the discrete instants t; + [y, we let [ = pN;. + q,

p=0,1,...,M;; —1,¢g=0,1,..., N;; — 1 and define the discrete-time states

Toilk, Dy 4] = ToikpNiy+q(0) = Toi(te + pTix + q73)

vpilk,p,d] = Tpinpnyra(0) = Dpasi(ty + pTir + q7i) (3.41)
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i

1,2
3-6

Table 3.3: Orders of afjf, al?

ij

and o

1
J

i

] 1,2

3-6

1,2
3-6

(10,5,10)
(10,5,10)

(10,7,12)
(10,7,12)

Table 3.4: Orders of 5°

f
ijaﬁfja

ow
and [

i

J| L2

3-6

1.2
3-6

(5,5,10)
(3,3,8)

(5,5,10)
(5,5,10)

Table 3.5:

Orders of 3

s Bl

and 61-’;-“’

1

3

4

5

(0,5,10)

(10,7,12)

(10,7,12)

10,7,12

10,7,12

10,5,10

(10,7,12)

(10,7,12)

10,7,12

10,7,12

10,5,10

(0,7,12)

(10,7,12)

10,7,12

(10,7,12)

(0,7,12)

( )
( )
(10,7,12)
(10,7,12)

10,7,12

10,5,10

(10,7,12)

(10,7,12)

(0,7,12)

||| —]—~
~— = [— | — |~

10,7,12

O | W I N~

( )
( )
(10,5,10)
( )
( )

10,5,10

(10,7,12)

(10,7,12)

(10,7,12)

(0,7,12)

Table 3.6:

Orders of
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1 2 3 4 5 6

1] (5,0,5) | (5,5,10) | (5,5,10) | (5,5,10) | (5,5,10) | (5,5,10)
2 [ (5,5,10) | (5,0,5) | (5,5,10) | (5,5,10) | (5,5,10) | (5,5,10)
31 (3:3.8) | (338) | (5,0,5) | (5,5,10) | (5,5,10) | (5,5,10)
113338 | (338) | (5,510) | (5,0,5) | (5,5,10) | (5,5,10)
51 (338) | (3,3.8) | (5,5,10) | (5,5,10) | (5,0,5) | (5,5,10)
6] (338) | (3,3.8) | (5,5,10) | (5,5,10) | (5,5,10) | (5,0,5)

Table 3.7: Orders of %-J;-O, %fjf , and ﬁjw

Note that for p=0,1,..., M, — 1

xoi[k;p; Nzk] - xoi[k;p + 15 0]

and for p = M;;.

Toilk, Mig, Ni] = xolk +1,0,0]

zpilk, Mg, Nit) = DiygDyigpazgilk +1,0,0] (3.43)

Evolution of [k, p,q] and zy;[k,p,q] can be found by evaluating (3.27) at

s = 1, which gives

xoi[kapa q + ]-] = eAOiTkl‘oi[kapa q] + goi[kapa q]

zpilkypog+1] = eMraplk,p,q) + nlk, pya] + Tl pikWik pngrq  (3.44)

where &[k, p, ¢+ 1] and &;[k, p, ¢ + 1] are obtained from (3.28) with [ = pN;; +¢
and s = 1 and I'j;; from (3.29) as

1
Flec = / Afikzbfidz (345)

Note that, from (3.34) and (3.37), we have

N

| ealhpa+1] 1< 2( | oga0) 1| 48 | 550 0) || +52 |wm|)

N

| 5ilkspr g+ 1] ||sz(m 1 0 (0) 1| +85 1| 21300(0) ||+ij’“|wjm|>

(3.46)
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forq=0,1,..., Nj — 1, where [ = pN;, + q.

For fixed k and p, solution of (3.44) for ¢ =0,1,..., Ny — 1 is obtained as

q—1

moi[ka b, q] = 6A0iq7—kl‘oi[ka b, 0] + Z 6A0i(q_1_r)7k§oi[ka D, ’I"]
r=0
q—1

l‘fi[kapa q] = 6Aﬁkql‘fi [kapa 0] + Z eAfik(Q7lir)Tk§0i[kapa ’I“]
r=0

qg—1

+ D met I v (3.47)
r=0

Evaluating (3.47) for ¢ = Ny, noting that

Nty = Ty

ApigNig = Ay

and
wik,pNik-i-r == wik,pNik, r = 0, 1, ey Nzk -1
we obtain
Nijp—1
xoi[k,p, Nik] _ 6AoiTikxoi[k,p, 0] + Z eri(NikflJ‘)foi[k,p, 7"]
r=0
N;p—1
zpilkyp, Nil = eMiaylk,p, 0] + Z eArieNin=1=r) e 1l 7]
r=0
Nir—1
+ Z TkeAfik(Nik_I_T)Ffik’wik’p]vik (348)
r=0
Defining

1
Ffi:/ eAfibeidZ
0
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and noting that

—-

Tl =

M

Nip—1
P / Afzk: zkzbf dZ
zk 1

/ erin(str)p s

Nip—1
= E TkeAf”“’"/ Afikzbfidz

k
zk

M

Nip—1
= ) metrnNaTm D (3.49)
r=0
(3.48) can be written as
Szd : Toi [kap + ]-] = AOlle"I’.OZ [kap] + goi[kap]

vplk,p+ 11 = eYiaglk,pl + &plk, p) + Tl piwilk,p) - (3.50)

where
l‘oi[kap] = l’m[k,p,()]
wilk,p] = Wikpn,, (3.51)
and
zk 1
Eoilk,p] = Z e ot g Ll p, ]
le 1
gfz[kap] = Z eAfik(Nik_l_r)gfi[kapar] (352)
r=0

(3.50) constitutes the discrete model of S; at local sampling instants. To
complete the model, we need to obtain bounds on the &k, p] and [k, p] terms
which represent the discrete-time effects of interconnections. However, since they
depend not only on z, and z s but also on wy;, we postpone this to the next section

until after we obtain a model for the closed-loop system.
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3.3 Decentralized Controllers and The Closed-

Loop System

We generate local control inputs w;[k, p] in (3.50) by the discrete version of the

decentralized controllers in (2.52) which are described as

Cl: wulk,p+1] = Agwelk,p] + Ty ™ beiyi(ty + pTi)

wilk,p] = Ty 'chaeulk,p) + Ty ™ deyi(te + pTix) (3.53)

where z;[k,p] € R™ ! is the state of C¢ at the local sampling instant ¢, + pTi

with the convention that

Teilk, Mix) = wes[k + 1,0].

Using

vilte + pTie) = clyzpite + pTin) = ¢ Dyinagilk, p]

= Ty ciprpilk, p)

the closed-loop subsystem S¢ consisting of S¢ in (3.50) and C? in (3.53) is de-

scribed as
St: dulk,p+1] = Poioilk,p] + Euilk, p]
irlk,p+1] = ®paplk,p] + Enilk, ) (3.54)
where
Toilk,p] = zoilk, D], éoi[k,p]zfoi[k,p]
irilk,p] = oaitk,2) . Epilk,p] = ilhr) (3.55)
eilk, pl 0
and
D, = etoilin

~ 6Afi + FfidCiC?i Fficz;

bci C};‘ Aci
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Solution of (3.54) is given by

i‘oi [kap]

Evaluating (3.56) for p =

= ik, O] +Zq>” sg ik, ]

- kO]—!—Z(I)pls{fzks]

M;, and noting that

Toilky, Mik) = Zoilk +1,0]

"i.fi[ka Mzk] - Di_lchi,k-i-li‘fi [k + 1, 0]

where

Dy,
Dy=| "™
I

(3.56)

(3.57)

the behavior of Szd over a common sampling interval is described by the discrete-

time model
St
where
and
EnilK]
Epilk)
Note that

M M T ) .
M — eAoiMixTir — eAszk, i=1,2,.

Zoilk +1] = Mz (k] + (k]

Brlk+1] = ®Y*apk] + Eplk]

Toilk] = Zoilk, 0]

Tpilk] = Zyilk,0]

lk' 1
— Z @M”“ = sfoz k, s]
= (Dz_k+1D I)@lekjh[k]
zk: 1
+ zk+1 Dy, Z (I)Mlk - s ]

N

ey

(3.58)

(3.59)

(3.60)

(3.61)

To complete the closed-loop discrete-time model in (3.58), we need to obtain

suitable bounds on the interconnection terms &,[k] and €[] in
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of Zo[k] and Z;[k]. For this purpose, we first obtain bounds of &k, p, ¢| and
&rilk,p, q] in (3.44) for a fixed p and for ¢ =0,1,..., N;; — 1, then use (3.52) and
(3.55) to obtain bounds for &,[k, s] and £;[k, s] in (3.56) for s = 0,1,..., My —1
and finally (3.60) to obtain bounds of &,[k] and &[k]. The crucial point is to
eliminate all the intermediate variables | 24i(0) |, | 2 fiki(0) | and | wyyy | that
appear in the expressions for &,[k, p, ¢ and &;[k, p, q]. | wik | can easily replaced

with appropriate bounds on | Z [k, p,q] | by using (3.47) and (3.53), that is
| wirg |< O(T) | &ilk, o] NI, pNi <1< (p+1) N (3.62)

However, elimination of | z,(0) | and | f4,(0) | requires that we should keep
track of them by using (3.36) and (3.40). We illustrate the elimination proce-
dure for the typical case considered in Example 3.1, where the subsystems are
ordered in increasing Ty (decreasing v;), which is important in elimination of the

intermediate variable in a systematic way.

We start with [ = 1, which corresponds to p = 0, ¢ = 1 for all the subsystems

and for which we have

N
I ealk,0,1] |I< Z( 89 | ogi0(0) 1| 487 1| 2310(0) | +82° | wyno |)

N
I 5l 0,1] 1< Z( I a510(0) | 877 || 250000 | +ﬁ;;w|wjko|) (3.63)

Substituting

| Zojro(0) || =[] Zo;[k, O] |
| 7£x0(0) ||

| wiro | < O(Ty") || glk, 0] |

VAN

| @5k, O] |

and noting that

min{O(87)), O(57") + O(T;")} = O(B))

min{O(8L)), O(BL") + 0(T;1)} = OB (3.64)
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We rewrite (3.63) as

N

| €ailk, 0,11 [ < D B [ ok, O] | +85 || &g(k, 0] |
j=1
N

I €ailk, 0,171 <Y BI || ok, O] | +B85 1| 250k, 0] | (3.65)
7=1

Note that 5's in (3.63) and (3.65) are not the same. However, they are of the
same order and we used the same symbol not to introduce more complexity in

the notation.

We also need bounds of || 1 (0) || and || z1(0) || to be used in the next
step. Using (3.36) and (3.40) and noting that (3.64) is also valid for +'s, we

similarly obtain

| Zoi1 (0) [|< Z%" 1 ok, O] | 5] Nl 235k, 0] |

I i (0) [ < 27 1 0l O] 1| 4+ 1 5k, O] (3.66)

Before proceeding any further, we also note that for i = 1,2 (for which

Nir = 1), (3.65) and (3.66) can also be interpreted as

| Ealke, 1< 325, 857 1| Zoslk, O] 1 487 || 451k, 0] |
Ik, 1T 11< 2255 ﬁij 1 ol O] | +85 || 25k, 0] |

i=1,2  (3.67)

and

1 oilke, 1] 1< 32500 987 1 2ol O] | 5] 11 g0k, O] ]

i=1,2  (3.68)
1 alke, 1 11< 32500 A 11 &g oy O] ||+ 11 g, 0] |

Now, let [ = 2, which corresponds to

p=1,g=1 for 1=1,2

p=0,g=2 for 1=3—-6

40



and therefore, requires separate analysis for 7,7 = 1,2 and for ¢,7 = 3 — 6. For

1t =1,2, we have

2
Ealk, 2] < DB I Foslky 1] | +85 | &gk, 1] 1 +557 | wina |

j*l

+ ZB I oen (1) 1 455 11 g (1) | 465 [ wino | (3.69)

Using
| wii [< O || a2k TN, G =1,2
and (3.64), the last two terms in the first sum above can be combined under
ijf | [k, 1] ||. Substituting || ze1(1) || and || 271 (1) || from (3.66), (3.69)

becomes

WE

Enlk,2) < B || doj [k, 1) | +87 || 5[k, 1] |

<.
Il
—

NE

N
(Z ij 717‘ +510]f7]fr0> || jor[kao] ||
j=3

J
N

(Z o +62f7frf> 50k, 0] |
=3

r=1

] =

r=1

NE

B3 | wiro | (3.70)

<.
Il
w

Using tables 3.1-3.4, it can be shown that

N
o S+ sdr) = o

=3

OB + Vpay 7 =1,2
E : 00 Of Of If _ ur ’
< /61,] f)/]r z] /Y]r ) - of ) (371)
0B i=3-6

Assimilating | w;x; | terms for j =3 —6in || Z;[k, 0] || terms with the help of
(3.64), substituting the expressions for || Z,;[k, 1] || and || Z;[k, 1] || from (3.66),

and using (3.71), (3.70) eventually reduces to

smk21<z( U, O 1| 482 [ 2531k, 0 ||), =12 (7
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Similarly, we can bound éfi[k,2], i = 1,2, by exactly the same expression
with 377 and ﬁio]f replaced with Bz-fjo and 6ifjf . Clearly, the same expression is also
valid for i = 3 — 6, except that the left-hand sides are &,[k,0,2] and &k, 0, 2].
Finally, the bounds of || [k, 2] || and || Z [k, 2] || for i = 1, 2; and of || z4ik2(0) ||

and || zx2(0) || are given by the same expressions with 3's replaced with +'s.

The analysis above shows that the perturbation terms at any discrete instant
t = ty + I, are bounded by fA's times corresponding initial discrete states at

t = t;. Hence, &,[k] and £;[k] in (3.58) are bounded as
1alk] | < Z KU +67 1 2 750R0

1Enlk] || < (II DjyyiDix =T ||> I gilk]

N
. ( | Dyt D | ) S8 || ugli] 1 4527 || 35K | (3.73)
=1
Note that provided
I 12
<ﬁ> <c (3.74)
Iy,
for any fixed ¢ > 1, we have
| D7 D 1< o
| D Dy~ < e~ 1

in which case (3.73) becomes

N

Vealk] I < D787 1l @os k] | 485 | &p5[k] I
=1

1E€nlk] I < DB 1 oilk] || +857 1| &(K] | (3.75)
j=1

3.4 Stabilization By Decentralized Control

Since (Ayi, by, c};) are controllable and observable with Ay; having all their eigen-

values at the origin, (e?/i,T fiac?i) are also controllable and observable. Then,
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the local controller parameters (A, bei, cL., de;) can be chosen such that P i in
(3.56) have desired eigenvalues [2]. Let C¢ be chosen to have ®; Schur stable,
that is, with all eigenvalues within the unit circle ' . Then, there exist positive

definite matrices Pfi such that
o} P&y — Pry=—1, i=12,...,N (3.78)
from which we also obtain
(@) Py @) — Ppy = T = $bgy — - — (@M (@M (3.70)

On the other hand, since A,; is Hurwitz stable by assumption, there exist positive

definite matrices poi such that

Az;poi - PoiAoi =1 (380)
Then
A M A agr - Te q T, A
((Doiik)TPOi((Poiik) _ Poi — / E <€A0itpoi€AOit> dt
Te .
= - / etoi! Pyeto dt (3.81)
0
so that
ik [(éﬂfik)Tﬁoi(éf,V{ik) — ﬁm} Goi < —CoiTh || Zoi ||? (3.82)
for some c¢,; > 0 independent of T},.
We now choose
N
olK] = 3 (4161l + S0Py
i=1
INote that
izl — )Ty = Hyi(2) (3.76)
is the zero-order hold discrete equivalent of
Hyi(s) = - (3.77)

with normalized sampling period T; = 1 and approximates the zero-order hold equivalent of S;
at high frequencies.
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as a Lyapunov function for the closed-loop discrete-time interconnected system
in (3.58). Calculating
Avlk] = vk + 1] — v[k]

along the solutions of (3.58) and using (3.75), (3.79) and (3.82), Av[k] can be

majorized as
Av < —2T[K] ([ — Q(Ik)> 2[K] (3.83)
where

z[k] = col [(Coilkym)% | Zoilk] (I, Il 2 5ilK] II} (3.84)

and Q|Ix] is a symmetric matrix of the form

Q[Ik] _ Qoo[lk] Qof[lk] (385)

Qorllk]  Qyylk]
with Qoollx] = [qg’;’[lk]] having the elements
g7 [Ix] = O(1;")

Qorlli] = [quf [Ik]] the elements

ofir 1 (’)(I,:_Vm?ax), m;=1,mj#1lorm; #1,m; =1
qZ] [Ik] - —Vmax
O(I, * ), otherwise

and Qr[I] = [qlfjf []] the elements

if O ™"), my=1,m;#Llorm;#1,m;=1
4;; [Ik] =
O(I,"™=), otherwise

Note that if m; = 1 for any of the subsystems, then v, = 2v + 1 so that
V — Umax/2 = —1/2. Since all powers of I} in each of the expressions above are
negative it follows that there exists sufficiently large I, > 1 that depends on the
bounds of the interconnections in (3.3) such that I — Q[I] is positive definite
for all I, > I.. This establishes the (Shur) stability of the discrete-model of the

closed-loop interconnected system.
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3.5 Adaptation of Sampling Intervals and Con-

troller Gains

In the previous section, we established that if the bounds of the interconnections
are known, then we can find I, such that the discrete model of the closed-loop
system is stable for all I, > I,. If the bounds of the interconnections are not
known, then I, is not known a priori and [; has to be adjusted by some means
until it reaches the desired unknown value of I,. A simple way of achieving this

is to adjust I using the following rule:

pe+1 = pp+min{l, Si}
dy || y(te) || +de || ze(tr) ||

Sk

This rule guarantees that Ij is non-decreasing and also
Iy < I+ 1

so that

Ik+11/ 1\v v
(I—k) §(1+[—k) <2

for any I, > 1 and therefore (3.74) is also satisfied. However, there are two

problems associated with the choice in (3.86).

The first problem is that I, might increase indefinitely. In this case, T} =

1/17™™ will decrease forever and it is possible that

k—1
lim ¢, = khm (to + ZTk) =15 < 00
—00

koo 1=0
Then, the discrete model in (3.58) will represent the closed-loop system only on
a finite interval [tg,?,) and we cannot deduce stability of the actual sampled-
data system from stability of the discrete model. In fact, arbitrarily large I is
practically impossible, as that means infinitely fast sampling and arbitrarily high

gains.
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The second problem associated with the choice in (3.86) is that the degree of

stability of the discrete-model might get smaller in successive common sampling

intervals, resulting in poorer and poorer convergence of z[k|. To see this consider

(3.83), which implies that

Avlk] < =Xmin (I = QL)) || 2[#] [I?
< =X || 2[R] |17
where
A = Amin (I — QIL])
Since
F2[k) 17> o™ 1 2[K] [7> coliy "™ Ay v[k]
where

A

)\M = max{)\max(poi)a )\max(Pfi)}
(3.87) implies that
ol + 1] < o2l

where
Co)‘m
I]:min )\M

azzl— <1 for I.> Iun

Hence

| #8] I1< M([] ) I 2001, M >0

(3.87)

(3.88)

(3.89)

(3.90)

which is the best bound on || Z[k] || that we can obtain from Lyapunov analysis.

Since o, — 1 as I, — 0o, we observe that uncontrolled increase in I should be

avoided.

To avoid the problems mentioned above, we propose to keep I, unchanged for

a fixed duration of time At that contains an integral number of every possible

common sampling interval T = I, "™". A convenient choice is At = 1, which

contains

At
?k :[kmm — Mk
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common sampling intervals. Thus I} is updated (if necessary) only at the discrete

instants to, to + 1, to + 2, etc.

To analyze the stability properties of the closed-loop system described at

to+ k, k=1,2,..., we define new discrete-time state variables as

on[k] = Zo|My+ -+ My_4]

for k=1,2,.... Then from (3.58), we obtain

~ A

Xoilk +1] = U, X,;[k] + Zoi[k]

where
\i]oz — @MkMzk Aonka 61401
S MMy &I
Uy = (IDfZ.’c k QDf’;
and
My—1
Soilk] = Z QLTI mPMIE LMy + -+ My + p)
Mk 1
Zpilk] = Z (I’Mk MG L[ My + - My_y + p]

(3.91)

(3.92)

(3.93)

(3.94)

An analysis similar to the one carried out, for £,[k] and &[k] in the previous

section reveals that provided I;’s satisfy (3.74), we have

IZailk] || < Z 21 KXok 1| +87) 1 Xk ]

I=slk) I < Z T Xoglk) 1485 1 X[k |

J

(3.95)

We now proceed with the stability analysis of Section 3.4. However, this time

we choose ]502- directly to satisfy

(3.96)



which is possible as U,; in (3.93) are Schur-stable (independent of Tj). Using

VK] =) (Xoilk] Py Xoilk] + X pilk] P X i k]) (3.97)
as a Lyapunov function for the closed-loop discrete-time system in (3.92), we

find that
AVIE] < ~Z7K](I ~ QIK)) Z[A] (3.8)

where now

ZIk] = col [ || Xoilk] |l | Xpilk] |/ ]

and the blocks of

A Qoo{k] C?Of [k]
QU = |
okl Qpylk]
have the elements
Q] = O[]
of o O[I]:_Vmax] , Ty = l,m]- §£ 1
4q;; [k] =
O[I, "™=] , otherwise

R O[I;Cjiumax] ,m; = l,m]- §£ 1
il k] =

O[I, "] , otherwise

(3.99)

Again, there exists I, such that I — Q[k] is positive definite for all I, > I,.
However, the difference from the previous case is that I, does not appear in the
expression (3.89) for the degree of exponential stability oj. In other words, there

exists fixed o, < 1 such that
| XTk] 1< Mot =R || X (ko) || (3.100)

for all I, > I,. This is exactly what prevents I from growing indefinitely under

the adaptation rule in (3.86) as we explain below.

Suppose that I, > I, for some k,. Then S?is exponentially stable with degree

of stability o, so that Sy in (3.86) satisfies

Sk <n || X[k] |I?
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for some 7 > 0. Using (3.100) with ko = k., we have
Sk < MR | X[k |?

for all k£ > k, so that

k-1
P < P+ Sk
1=k
) | _ p2khe)
< pe +0M? | X[k | B

*

Then limg_,, pr < 0o and therefore
lim [, = [, < o0

k— o0

This guarantees stability of the closed-loop sampled-data system.
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Chapter 4

AN EXAMPLE: COUPLED
INVERTED PENDULI

Consider the system consisting of three coupled inverted penduli shown in Figure
4.1 [14]. We assume that first two penduli form a subsystem, while the third one

a second subsystem interconnected with the first one through a coupling spring.

The system is modeled by three non-linear second order differential equations

as

Sy mnl%lén = mnlng sin 1 — k116011 — k1c(911 - 912) - b11911
— blc(éll — 912) + uq
m12l%2é12 = m12112g sin 6o — k19612 + k1c(911 - 912) - b12912

+ blc(éll - 912) - kc(tan 012 — tan 02) (41)

SQ . mglgéQ = m2l2 sin 92 — k202 — b292 —+ kc(tan 012 — tan 92) + Usg (42)

where 61, 015 and # are angular displacements of the penduli from the vertical
equilibria and u; and uy are the external torques (inputs) applied to the first and

third penduli. The parameters in (4.1) and (4.2) summarized in Table 4.1.
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Figure 4.1: Three coupled inverted penduli

k11, k12, ko :spring coefficients
b1, b12,bo  :damping coefficients

k. :spring coefficient coupling mqs and mo

kic, bic :spring and damping coefficients coupling mq; and mys

Table 4.1: Parameters appearing in (4.1) and (4.2)
Defining

T = 001[911,911,912,912], y1=912

T2 = 001[92,92]a Yo =

(4.1) and (4.2) can be rewritten in state form as

illl 0 1 0 0 T11
. 1 1 1 1
Z12 T Ty g3 —dyy Z12
81 . = +
3.2‘13 0 0 0 1 T13
. 1 1 1 1
T14 (g Qg —Qy3 —0yy L14
0
d} sin
2 11
_|_
0
d}, sinx3 — di,(tan z13 — tan zy))

ol

U



i'21 0 1 T2l 0
82 . = + U9
I —ay —aj T2 b3
0
+ (4.4)
d3, sin g1 + d3,(tan x13 — tan o)
where
A= ki + ke Al = by + b1 Al = ke ol = bic
2 muly, TR maly P mals” Y mnld
ol = kic ol — bic ol — ko + kic al = b1 + b1
41 m12l%2 ) 42 m12l%2 ) 43 m12l%2 ) 44 m12l%2
1 g k
= ——, d, ==, d,= <
2 mul%l 4 lio 42 m121%2
and
k b
2 2 2 2
a o Qg9 = —5,
21 mQZ% 22 mQZ%
1 g k
b2 J— , 2 — -, 2 = —C 45
2 mQZ% 21 l2 22 mQZ% ( )
Decoupled subsystems have the transfer functions
Hy(s) = bt S + ayy (4.6)
P '
and
Hy(s) = R (4.7)
2s2 4 . '
from which we observe that
4, aj, =0
my =
37 aAILZ 7& 0
and
mo = 2

Note that, if aj, # 0, then for H;(s) to have a stable zero, we need a}, /al, > 0.

For illustration purposes, let us assume

T o1 1 1 71 12
Ay =9 = ag3 =gy = by =b3 =1



Then &7 and S, are described by

& = Az + bu; + bigi(x) + hi(y)

S; : i=1,2
yi = cl
where
01 0 0 0
00 0 0 1
Alz ;blz
00 0 1 0
11 -1 —1 0
csz[O()lo]
[0 1 0]
A2: )
|00 1|
g-[1 0]
and

g2(7) =0
0
0

hi(g) =
0

di, siny; — diy(tany; — tanys)

0

hZ(y) =

| d3 sinys + di,(tany, — tanyy) |

With this choice of parameters, (A;,b;, c!) are controllable and observable and

s+1 1
H = =
1(5) s2(s2+s+1) s?
Since m; = 3 and my = 2, we have v = 2, v; = 1 and 1, = 2. Therefore,
1 1
le:Tk:— and Tgk:Tk:

I 2
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We calculate

N —
N[= O

1
e I B e
0

=
=
—_
—_

and

eA”{l 1}, Ff2:/16Af2tbf2dt:[%-|
01 0

We choose the controller parameters as

. [0 01244 | | 05756 |
{

) cl —

1 —0.4222 J [ —2.0472 J

Cor = [ 0 —1.0667 ] ,  de = —1.0667
to place the eigenvalues of &)fl at
212=08Fj04, 234=047F70.2, 25=0
and

A = —0.15, b = 0.75

Ceo = 0.5, de=—0.5
to place the eigenvalues of i) f2 at
210 =08F 704, 23=0
quite arbitrarily.
At this point, we note that

1 i
Hyi(2) = C?i(ZI — et = Z2{—} = asi(2)

smi’ dp(z)
as can be verified by observing that
122+42+1 1
T Apy—1p _
cplel =) T = o= —p = 215}
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and that
1 241 1
T Aro\—1
Cro(z] —e2) " Tpy = 212 Z{3}

This observation allows us to design the local controllers in z-domain: If

Hei(2) = coi(2] — Aci) bei + dei = 31018

then the eigenvalues of ® i are the zeros of the associated closed-loop character-
istic polynomial

dri(2) = dgi(2)dei(2) = 47i(2)4ei (2)
Once d. and ¢, are determined to assign the zeros of chZ(z) desired values,
(Aei, bes, L dy;) are found by a suitable realization of H,(z). This is exactly

what we did above, where we used an observable canonical realization of H;(2)

to obtain (A, bey, ¢!}, der).

The closed-loop system is simulated with a computer program, which employs
full nonlinear model of the system and uses 4-step Runga-Kutta method with a
step size h & 0.001.(Actually in each common sampling interval a different step
size hy ~ 0.001 is used to have an integral number of hj, in 7;. For example, when
I, = 4, which corresponds to a 7, = 1/16, step size is chosen to be h; = 1/992
so that 7, = 62hy.)

Arbitrary initial conditions are chosen as z11(0) = 0.2, £13(0) = 0.1, z12(0) =
214(0) = 0, 21(0) = 0.3, 92(0) = 0, and I, = 2. That is, all three penduli
start from rest and displaced from their vertical equilibria. The results shown
in Figure 4.2-4.5 indicate that proposed adaptive, decentralized sampled-data
controllers stabilize the system within a reasonable time interval of about 6 sec.
From Figure 4.2, we observe that [ is stabilized at I, = 6, resulting in steady
local sampling intervals of T = 1/6 and Ta, = 1/36 and corresponding local
gains p;p = 6 and pyr = 36. Inputs shown in Figure 4.3 indicate that controller

gains are not excessively high to result in unacceptable input levels.

95



0.55 -

0.50

0.45 I
0.40 I
0.35 I
0.30 I
0.25 7
0.20 I
0.15 I
0.10 I

0.05 -

0.00

- =

0.0

Figure 4.2:

5.0

Subsystem sampling intervals: Ty (solid), Tox(dashed)

4.0 -
3.0 -
20 -

1.0

0.0
-1.0

2.0 +

| L ru(LL_f = ﬂtrm

|
|

T

I

I

| L

L

I

|

|

I

I

I

1.0 2.0 3.0 4.0 5.0 6.0

7.0 8.0 9.0 10.0

Figure 4.3: Inputs: u4(solid), us(dashed)

26



0.40

0.30

0.20

0.10

A\
\ ~
0.00 .
s

-0.10

-0.20 |
-0.30 | .
_0.40 L L L L L L L L L

00 10 20 30 40 50 60 70 80

9.0 100

Figure 4.4: States: x1(solid), z13(dotted) and x5 (dashed)

0.40

0.30

0.20 | i
0.10 |
0.00

-0.10 \

-0.20

-0.30

-0.40 -— — —_ :
00 10 20 30 40 50 60

7.0

9.0 10.0

Figure 4.5: Outputs: y;(solid), y2(dashed)

o7



Chapter 5

CONCLUSION

In this thesis, stabilization scheme of interconnected systems by using high-gain,
decentralized and sampled-data controllers is worked on. For structured inter-
connections, it is shown that overall system achieves stability with fast sampling

rates of controllers.

In Chapter 2, important high-gain applications are reviewed to prepare the
necessary background for the main problem. The investigation is started by
stating the controllable canonical forms that are the backbone of the system
representation in all high-gain problems throughout the thesis. For the simplest
case, single input system is stabilized by using high-gain constant state feed-
back controllers. Then single-input/single-output (SISO) systems are considered
with high-gain dynamic output feedback controllers. In the next step, instead of
continuous-time, sampled-data controllers are employed. Then, interconnected
systems are examined by combining decentralized and high-gain control tech-
niques. In each case, against unknown bounds of uncertainties, an appropriate

adaptation mechanism is employed to adjust the gain accordingly.

In Chapter 3, sampled-data controllers are applied to interconnected sys-

tems, where interconnections are assumed as the major perturbations. In each

o8



subsystem, sampling interval of controller is chosen as the reciprocal of the gain.
However, for overall stability, all controllers should be synchronized. Therefore,
an overall gain is defined and all gains of subsystems are related to this param-
eter according to their relative degrees. By this way, all subsystem controllers
are synchronized on a common sampling period which is an integer multiple of
each subsystem period. Overall gain (naturally overall sampling period) changes
with time for adaptive adjustment. In case of unknown perturbation bounds, an
adaptation action is applied to decrease the sampling rate sufficiently. To protect
from indefinitely decreasing sampling period, overall gain is kept unchanged for

a fixed period of time.

Simulation of the proposed control methodology is presented on a spring
connected inverted penduli system, in Chapter 4. By choosing arbitrary initial

conditions, overall system is stabilized in a reasonable time.

High-gain has been used for stabilization of a variety of systems with uncer-
tainties. To be able to apply this technique, the system should be combination of
a controllable and observable nominal system and additive perturbations which
satisfy the matching conditions. As a further research area, high-gain can be

applied to perturbed systems with more general uncertainties.

In sampled-data output feedback case, we have defined gain as the reciprocal
of sampling period. Although this simplifies the stability analysis, we lose de-
gree of freedom by manipulating one parameter instead of two. Employing new
relations between gain and sampling periods for other types of uncertainties can

be another topic to investigate.

By decreasing the sampling intervals sufficiently, we have obtained overall

stability of the system. If we keep these sampling rates, the stability will be

29



preserved. Decreasing sampling rates without disturbing the stability seems pos-
sible for some systems. As a further work, these systems and increment margin

of sampling rates can be explored.
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