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A sampling-based framework for finding the optimal representation of a finite energy optical field using a finite
number of bits is presented. For a given bit budget, we determine the optimum number and spacing of the samples
in order to represent the field with as low error as possible. We present the associated performance bounds as
trade-off curves between the error and the cost budget. In contrast to common practice, which often treats sampling
and quantization separately, we explicitly focus on the interplay between limited spatial resolution and limited
amplitude accuracy, such as whether it is better to take more samples with lower amplitude accuracy or fewer
samples with higher accuracy. We illustrate that in certain cases sampling at rates different from the Nyquist rate is
more efficient. © 2013 Optical Society of America
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1. INTRODUCTION
This article addresses the problem of efficient representation
of a finite-energy nonstationary optical field using a finite
number of bits. We consider the scenario where a finite num-
ber of equidistant samples of the field is used for the repre-
sentation. Each sample is of finite accuracy; that is, there
is a finite number of distinguishable amplitude levels in each
sample. Therefore, one can use a finite number of bits to
represent each sample. The total number of bits used for
all of the samples constitutes the bit cost associated with the
representation. For a given bit cost budget, we determine the
optimum number and spacing of the samples in order to re-
present the field with as low error as possible. Our framework
leads to performance bounds associated with the finite repre-
sentation of optical fields, in the form of trade-off curves be-
tween the representation cost and the error. We investigate
the optimal values of parameters, such as the spacing, num-
ber, and accuracy of the samples, in order to achieve the most
advantageous cost-error trade-off. We also discuss how the
degree of coherence of the field and the level of noise affects
our results.

Our approach emphasizes an important and sometimes
overlooked issue in representation of optical fields, namely
the limited amplitude accuracy of the samples. When a signal
is to be represented with its samples, the Shannon–Nyquist
sampling theorem is often used as a guideline. The theorem
states that a band-limited signal with maximum frequency
B∕2 Hz can be recovered from its equidistant samples taken
1∕B apart. In practice, signals may not be exactly band-
limited, but rather effectively band-limited in the sense that
the signal energy beyond a certain frequency is negligible.
In such cases, the effective bandwidth is often used to deter-
mine a sampling interval. Another practical constraint is the
impossibility of taking an infinite number of samples. Thus, it
is common to determine an effective spatial extent L in the
sense that the signal energy is negligible outside this extent,
and use only the samples that fall in this effective spatial
extent. This approach leaves us with a finite number LB of

samples. This approach may not always be the most appropri-
ate manner in which to use the Shannon–Nyquist sampling
theorem; there may be cases where one can do better by
incorporating other available information. In particular,
consider the practical scenario where the field is to be repre-
sented with a finite number of finite accuracy samples. Use of
the conventional approach in this scenario raises a number
of issues. For one thing, the concept of effective bandwidth
and effective spatial extent is intrinsically ambiguous, in that
there is some arbitrariness in deciding beyond what point
the signal may be assumed negligible. This approach also
completely ignores the fact that the samples will have limited
amplitude accuracy. When we are required to represent the
signal with a prespecified number of bits, the sampling inter-
val dictated by the conventional sampling theorem may not
be optimal. For instance, depending on the circumstances,
it may be preferable to work with a larger sampling interval
and a higher number of amplitude levels. In order to find the
optimal values of these parameters, we must abandon the
conventional approach and jointly optimize over the sampling
interval and amplitude accuracies. Even when the amplitude
accuracies are so high that we can assume the sample values
to be nearly exact, the conventional sampling theorem may
still not predict the optimal sampling interval if we are re-
quired to represent the signal with a given finite number of
samples (especially when that number is relatively small).

One of the questions we ask in this context is the following:
given that in practice the samples will have limited amplitude
accuracy, is it possible to achieve lower reconstruction
errors by choosing to sample at a rate different than the
Nyquist rate? Although one may expect to compensate for
the limited accuracy of the samples by oversampling, the
precise relationships between the sampling parameters and
the reconstruction error are not immediately evident. In this
paper we give quantitative answers to this question by deter-
mining the optimal sampling parameters and the resulting
performance bounds for the best achievable error for a given
bit budget.
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A study of these issues can also lead to a better understand-
ing of what happens to the information carried by a wave field
as it propagates. How well the field values at particular
points in space can represent the whole field, has to do with
how much information these values carry about the rest of
the field. Many works in different areas, such as optics, elec-
tromagnetics, and information theory, have studied different
aspects of the information-theoretical relationships in propa-
gating wave fields. The concept of number of degrees of
freedom is used in several works including [1–18]. Other
works have adopted a sampling theory approach [19–22].
The concepts of structural and metrical information discussed
in [23] have found application in [2,24,25]. Some researchers
have focused on computational issues, where the aim is to
process the signals without losing any significant information,
as well as by using as little computational resources as
possible, such as [26–29]. A number of works utilizing infor-
mation theoretic concepts such entropy or channel capacity in
different contexts have appeared [30–46]. Our purpose is to
contribute to the understanding of the information theoretical
relationships in optical fields by focusing on the trade-offs
between amplitude accuracy and spatial resolution, and the
trade-offs between the error and the bit budget.

We now present a brief overview of our article. In Section 2,
we present the problem formulation, where we consider a
general framework where the samples are taken after the field
passes through a linear system. In Section 3, we present
Gaussian–Schell model (GSM), the random field model used
in our numerical experiments. We show the invariance of our
error-cost trade-off curves for GSM fields propagating through
first-order systems in Section 4. In Section 5, we present the
optimum sampling strategies and the error-cost trade-off
curves. We compare our optimal trade-off curves with the
ones that would be obtained if the Shannon–Nyquist sampling
theorem was used as the guideline in Section 6. In Section 7,
we provide a general discussion on representation of optical
fields using finite numbers of bits. Some concluding remarks
are given in Section 8.

2. PROBLEM FORMULATION
Let the input field f �x� reside in the z � 0 plane, which is
perpendicular to the optical axis z. Considering only one
transverse dimension for simplicity, let f �x� be a zero-mean
finite-energy proper complex Gaussian random field (random
process). f �x� passes through a possibly noisy linear system to
produce the output g�x�:

g�x� � Lf f �x�g � n�x�; (1)

where Lf:g denotes the linear optical system, and n�x� is a
random field denoting the system noise. n�x� is modeled as
a zero-mean proper complex Gaussian random field. We as-
sume that the unknown random field f �x� and system noise
n�x� are statistically independent.

M finite-accuracy equidistant samples of g�x� are taken
with the sampling interval Δx. The limited amplitude accuracy
of the samples is modeled through an additive noise field

si � g�ξi� �mi; (2)

where x � ξ1;…; ξM ∈ R are the equidistant sampling loca-
tions with the spacing Δx, and the midpoint x0 � 0.5�ξ1 � ξM �.

We assume that the mi’s are independent, zero-mean, proper
complex Gaussian random variables. We further assume that
the mi’s are statistically independent of f �x� and n�x�. By
putting si in vector form, we obtain s � �s1;…; sM �T . Before
moving on, we underline that mi models the uncertainty
introduced by the measurement process. We usually have
some degree of control over it; for instance, we can reduce
it by using more accurate devices, provided we are willing
to pay the price. On the other hand, the system noise n�x�
corresponds to other sources of uncertainty that are indepen-
dent of the measurement process, and that we mostly have no
control over, such as the thermal noise in the environment,
uncontrolled fluctuations in the light source, or another infor-
mation bearing signal, which is of no interest to us.

There is a cost associated with each sample. The cost
associated with the ith sample is given by Csi � log2�σ2si∕σ2mi

�
and is measured in bits. Here, σ2si � E�jsij2� and σ2mi

� E�jmij2�,
so that σsi∕σmi

is essentially the ratio of the spread of the
signal to the spread of the uncertainty, which corresponds
to the number of distinguishable levels (dynamic range).
Hence, the logarithm of this number may be considered to
provide a measure of the number of bits needed to represent
this variable. For a field value at a given location, smaller
noise levels (smaller σ2mi

) correspond to a sample with higher
amplitude accuracy and higher cost. On the other hand, a
larger noise level corresponds to lower amplitude accuracy
and lower cost. Further discussion of this cost function and
some applications can be found in [44,47,48]. Here we will
assume that the accuracy (hence the cost) associated with
each sample is the same; that is, Csi � Cs1 , i � 1;…; M .
The total cost of the representation is then simply
CT � P

M
i�1 Csi � MCs1 .

With the vector s at hand, one can construct an estimate
of the continuous field f �x� given s. How well can f �x� be
recovered based on s? To make this question precise, we
can find f̂ �xjs�: the minimum mean-square error (MMSE)
estimate of f �x� given s. This is the estimate that will minimize
the mean-square error between the original field and the re-
constructed field given the observations s. The error of this
estimate will, of course, depend on the number, locations,
and accuracies of the samples. For a given CB, our objective
is to choose the number of the samples M and the locations
of the samples ξ1;…; ξM , while satisfying CT ≤ CB, with the
objective of minimizing the MMSE between f �x� and f̂ �xjs�.
We note that since the cost of each sample is assumed to
be the same, by choosing the number of samples we also
determine the cost of each sample.

This problem can be stated as one of minimizing over Δx,
x0, and M to determine the error:

ε�CB� � min
Δx;x0;M

E
�Z

D
j f �x� − f̂ �xjs�j2dx

�
; (3)

subject to CT ≤ CB. We consider all signals and estimators
over some bounded domain D. Let Kf �x1; x2� �
E�f �x1�f ��x2�� and Kn�x1; x2� � E�n�x1�n��x2�� denote the
covariance functions of f �x� and n�x�, respectively. Here, �
denotes complex conjugation. We assume that f �x� is a finite-
energy random field,

R
∞
−∞ Kf �x; x�dx < ∞, and Kn�x; x�

is bounded. An earlier version of this problem that does
not include a system L or noise n�x� was considered in [46].
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At this point it is worth recalling some of the properties of
MMSE estimation. As noted above, f̂ �xjs� is the estimate that
minimizes the mean-square error between f �x� and f̂ �xjs�
for a given s. The associated mean-square error E�RD jf �x�−
f̂ �xjs�j2dx� does not depend on the realization of the random
vector s, but only on the joint probability distribution of f �x�
and s. Under the current problem formulation, for a given cost
budget CB, this joint probability distribution is determined by
the number M and the locations of the samples (ξ1;…; ξM ).
The formulation (3) seeks the best choices for these sampling
strategy parameters.

The MMSE estimate in (3) can be written as f̂ �xjs� �P
M
j�1 hj�x�sj � h�x�s, where h�x� � �h1�x�;…; hM�x�� [49,

Chap. 6]. We note that, given a set of samples, the set of func-
tions h�x� are the optimal functions that minimize the mean-
square error between the actual field and the reconstructed
field. Here, h�x� satisfies the equation [49, Chap. 6]

Kf s�x� � h�x�Ks; (4)

where Kf s�x� � E� f �x�s†� � �E� f �x�s�1 �;…; E� f �x�s�M �� is the
cross covariance between the input field f �x� and the repre-
sentation vector s, and Ks � E�ss†� is the autocovariance of s.
The symbol † denotes complex conjugate transpose. To deter-
mine the optimal linear estimate, one solves this last equation
for h�x�. The resulting estimate

P
M
j�1 hj�x�sj can be inter-

preted as the orthogonal projection of the unknown random
field f �x� onto the subspace generated by the samples sj , with
hj�x� being the projection coefficients.

Before leaving this section, we would like to comment on
the error introduced by estimating f �x� only in the bounded
region D. Let us make the following definitions: let f̂ �xjs� be
shortly denoted as f̂ �x�. Let us define f̂ D�x� as f̂ D�x� � f̂ �x� for
x ∈ D and f D�x� � 0 for x∉D. Then, the error of representing
f �x� with f̂ D�x� can be expressed as

E
�Z

∞

−∞
jf �x� − f̂ D�x�j2dx

�

� E
�Z

x∈D
jf �x� − f̂ D�x�j2dx

�
� E

�Z
x∉D

jf �x� − f̂ D�x�j2dx
�

(5)

� E
�Z

x∈D
jf �x� − f̂ D�x�j2dx

�
� E

�Z
x∉D

jf �x�j2dx
�

(6)

� ε�CB� �
Z
x∉D

Kf �x; x�dx: (7)

Hence, (7) states that the error of representing a field on the
entire line can be expressed as the sum of two terms; the first
term expressing the approximation error in this bounded re-
gion, and the second term expressing the error due to neglect-
ing the function outside this bounded region (the energy of the
field outside region D). Since the field is finite-energy, the
second term can be made arbitrarily close to zero by taking
a large enough regionD and ε�CB� becomes a goodmeasure of
representation performance over the entire space.

3. RANDOM FIELD MODEL
In our examples, we use the GSM for f �x�. This is a random
optical field model with various generalizations and

applications [50–59]. A GSM source is characterized by the
covariance function

Kf �x1; x2� � Af exp
�
−
x21 � x22
4σ2I

�
exp

�
−
�x1 − x2�2

2σ2ν

�

× exp
�
−
jk
2R

�x21 − x22�
�
: (8)

Here, Af > 0, j �
������
−1

p
. The parameters σI > 0 and σν > 0

determine the width of the intensity profile and the width
of the complex degree of spatial coherence, respectively. R
represents the wavefront curvature.

This covariance function may be represented in the
form Kf �x1; x2� �

P∞
k�0 λkϕk�x1�ϕ�

k�x2�, where λ0 ≥ λ1…λk ≥
λk�1;… are the eigenvalues and ϕk�x� are the orthonormal
eigenfunctions, k ∈ Z� [51,52,57]. This is the coherent-mode
decomposition of the GSM source, where every eigenfunction
is considered to correspond to one fully coherent mode. The
ratio of the largest eigenvalue λn to the lowest eigenvalue λ0 is
given by λn∕λ0 � �1∕�β2 � 1� β��β∕2�2 � 1�0.5��n, where β is
defined as

β � σν
σI

: (9)

β may be considered as a measure of the degree of (global)
coherence of the field [52,57]. As β increases, the eigenvalues
decay faster, so that the effective number of modes required
to represent the field decreases and the field is said to be more
coherent. In contrast, as β decreases, the eigenvalues decay
slower, so that the effective number of modes required to
represent the field increases and the field is said to be more
incoherent.

Various aspects of the propagation of GSM fields through
optical systems have been well studied; see, for instance
[53–57,59]. A fundamental result in this area that we will make
use of is the following: say we have an optical system that may
be represented by an ABCD matrix (ray-transfer matrix).
When a GSM field passes through such an optical system,
the output is again a GSM field with new parameters σ0I , σ

0
ν,

and R0
out [53,54]. It is known that the ratio β � σ0I∕σ0ν does

not change as the field passes through such systems
[50,53,54]. Hence, σ0ν is given simply by σ0ν � βσ0I .

Our system noise model is characterized by the following
covariance function: Kn�x1 − x2� � An exp�−�x1 − x2�2∕2σ2ν;n�,
with σν;n � βnσI , βn < β.

4. TRADE-OFF CURVES FOR GSM FIELDS
ARE INVARIANT UNDER PROPAGATION
THROUGH FIRST-ORDER OPTICAL
SYSTEMS
We now consider the problem of sampling the output of a first-
order optical system in order to represent the input optical
field. Such systems are also referred to as ABCD systems
or quadratic-phase systems [60]. Mathematically represented
by linear canonical transforms [61], these systems encompass
arbitrary concatenations of lenses, mirrors and sections of
free space, as well as quadratic graded-index media. In the
next section, we will consider a given bit budget and find
the minimum possible representation error for that budget.
Varying the bit budget, we will obtain trade-off curves
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between the error and the cost budget (for instance, look for-
ward to Fig. 1 for an example). Here, we are concerned with
how first-order optical systems change these trade-off curves;
in other words, does it make any difference if we represent the
signal with samples of the output of such a system, rather than
with samples of the input itself? We will show that for GSM
fields, the cost-error curves are invariant under passage
through arbitrary ABCD systems; that is, these systems have
no effect on the error versus cost trade-off curves. Moreover,
we show that the optimum sampling strategy at the output can
be easily found by scaling the optimum sampling strategy at
the input. We assume that the parameters A, B, C, D of the
ABCD matrix are real with AD − BC � 1. We first consider
the case where there is no system noise n�x�, and then discuss
the effects of noise.

Let us express the covariance function associated with a
GSM field with parameters σI , β, R as

KσI ;β;R�x1; x2� � Af exp
�
−
x21 � x22
4σ2I

�
exp

�
−
�x1 − x2�2
2�βσI�2

�

× exp
�
−
jk
2R

�x21 − x22�
�
: (10)

We note the following scaling property for the R � ∞ case:

Kσ0I ;β;∞
�−x1; x2� � KσI ;β;∞

�
−x1

σI
σ0I

; x2
σI
σ0I

�
; (11)

which expresses the fact that the covariance function associ-
ated with a given σI can be found by scaling that associated
with another σ0I . The error expression depends on the joint
distribution of the samples s and the field f �x�, which in turn
is determined through the covariance functions. Considering
the representation of f �x� in terms of its samples, we also note
that for a given set of σmi

, the cost associated with a set of
sampling points remains unchanged if the sampling points
are scaled by σ0I∕σI . Hence, we conclude that for the case
R � ∞ and L is the identity, the error does not depend on
σI , provided the sampling points are scaled appropriately.
As a result, the cost-error trade-off curves will be the same
for different values of σI , and the optimum sampling strategies
will be scaled versions of each other.

Here we show that the conclusion of the preceding para-
graph continues to remain valid even when R ≠ ∞. We will
first show that for a given set of sampling points ξ1;…; ξM ,
and a given covariance matrix Km, the associated costs

and the error for all values of R are the same. This, in fact,
stems from the fact that the curvature term corresponds to
uncorrelated phase terms. Let the covariance function associ-
ated with f �x� be KσI ;β;∞�x1; x2�. Let f̄ �x� be the zero-mean
complex proper field with the covariance function

E�f̄ �x�f̄ ��x�� � KσI ;β;R�x1; x2� (12)

� KσI ;β;∞�x1; x2� exp
�
−
jk
2R

�x21 − x22�
�

(13)

� E�f �x�f ��x�� exp
�
−
jk
2R

�x21 − x22�
�
: (14)

We first observe that the presence of a curvature does not
affect the cost associated with a sample. The cost associated
with the ith sample s̄i � f̄ �ξi� �mi is given by Cs̄i �
log2�σ2si∕σ2mi

�, where σ2si � E�js̄ij2� � E�jf̄ �ξi�j2� � E�jmij2� �
E�jf �ξi�j2� � E�jmij2�. Hence, the cost of a sample with a given
E�jmij2� � σ2mi

does not depend on the value of R.
We now show that the error does not depend on the value

of R; that is, for a given set of sampling locations and a given
set of σmi

, the errors associated with estimating f �x� and
f̄ �x� are the same. Let us define the vector g as
g � �f �ξ1�;…; f �ξM��T , i � 1;…; M . Now, the vector of finite
accuracy samples of f �x� is given by s � g�m, where
m � �m1;…;mM �T . Let the M ×M covariance matrix of the fi-
nite accuracy samples be denoted by E�ss†� � K s � Kg � Km,
where the element in the ith row and lth column of Kg is given
by KσI ;β;∞�ξi; ξl�, i; l � 1;…; M . The cross covariance between
f �x� and s is given by the 1 ×M row vector E�f �x�s†� � d�x�,
where the lth element is given by KσI ;β;∞�x; ξl�. Similarly, we
define s̄ � ḡ� m̄, where ḡ � �f̄ �ξ1�;…; f̄ �ξM��T . Consequently,
we have K s̄ � K ḡ � K m̄, where the element in the ith row and
lth column is given by KσI ;β;R�ξi; ξl�, and E�f̄ �x�s̄†� � d̄�x�,
where the lth element is given by KσI ;β;R�x; ξl�. Now, let
T � diag�ti�, ti � exp�−�jk∕2R�ξ2i ��, i � 1;…; M . We observe
that

K s̄ � K ḡ � Km (15)

� TKgT† � TKmT† (16)

� TK sT†; (17)

where (16) follows from the fact that TKmT† �
diag�ti�diag�σ2mi

�diag�t�i � � diag�σ2mi
� � Km, since jtij �

j exp�−�jk∕2R�ξ2i ��j � 1. We also observe that

d̄�x� � exp�−�jk∕2R�x2��d�x�T†: (18)

Now, using these results, we finally show that the error is
independent of the value of R. We consider the error for
the field at a given point x. Denoting the MMSE estimate of
f̄ �x� given s̄ as ˆ̄f �xjs̄�, the associated MMSE can be expressed
as [49, Chap. 6]

E�jf̄ �x� − ˆ̄f �xjs̄�j2� � KσI ;β;R�x; x� − d̄�x�K−1
s̄ s̄ d̄�x�† (19)

� KσI ;β;∞�x; x� − d�x�K−1
ss d�x�† (20)

� E�jf �x� − f̂ �xjs�j2�: (21)
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Fig. 1. Error versus cost budget CB, β � 1∕8 (varying SNR).
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In obtaining (20), we used (17), (18), TT† � I, and
j exp�−�jk∕2R�ξ2i ��j � 1, where I is the M ×M identity matrix.
Hence, we have shown that the value of R does not change
the error.

So far we have shown that (i) for R � ∞, the error does not
depend on σI , provided the sampling points are appropriately
scaled; (ii) for a given set of sampling points and σmi

, the
associated errors and costs do not depend on R. Thus, we
conclude that for a given GSM field with a specified value
of β, the cost-error trade-off curves associated with the prob-
lem of estimating a field based on its own samples do not
depend on σI and R. Now, recall that GSM fields remain
GSM fields with the same β, but different σI and R after
passing through first-order optical systems [50,53,54]. This,
combined with the previous observations, show that the
error associated with estimating the output field by sampling
the output, is the same as the error associated with estimating
the input field by sampling the input (under the same cost).

Finally, we consider the problem of sampling the output of
a first-order optical system in order to estimate the input field.
We first recall that the MMSE is invariant under unitary
transformations; that is, the MMSE associated with estimating
f �x� based on a random vector s is the same as the MMSE
associated with estimating Lff �x�g, if L is a unitary transfor-
mation. We also recall that optical systems represented by real
A, B, C, D parameters are unitary systems [62, Chap. 9].
Hence, for any such system, the MMSE associated with esti-
mating the input of the optical system and the output of the
optical system based on a given set of samples of the output
are the same. Thus, combining this with the observations of
the previous paragraph, we conclude that the error versus
cost trade-offs for the estimation of the input of an optical
system based on the samples of the input field are the same
as those based on the samples of the output field. (The same
conclusion also holds for estimating the output based on the
samples of the input or the output.) In other words, finite-
accuracy samples of the output field are as good as finite-
accuracy samples of the input field for the broad class of
first-order optical systems.

We now discuss the effect of noise n�x�. Here we will show
that, as in the noiseless case, when the system L is identity
and R � ∞, the error value does not depend on σI , provided
the sampling points are scaled appropriately. To show this in
the noisy case, we need to show that the associated covari-
ance functions can be scaled with σI . (i) The scaling property
of Kf �x� was already discussed at the beginning of this section.
(ii) The noise covariance function also scales with σI , in a
manner similar to (11). It follows from (i) and (ii) that the
covariance of the observations also scales with σI . We also
note that, due to statistical independence of f �x� and n�x�,
the cross covariance of f �x� and s only depends on the covari-
ance function of f �x�, which is known to scale with σI . Hence,
all associated covariances have the scaling property. Thus, we
can now conclude that the error for a given set of sampling
points for a given σI , can be found by looking at the error
for another σI at a scaled set of sampling points. We also
note that for a given set of σmi

, the cost associated with a
set of sampling points, remains unchanged under appropriate
scaling. This implies that the trade-off curves are invariant
for different σI values and the optimum sampling points
can be found by scaling.

5. OPTIMAL TRADE-OFFS BETWEEN
REPRESENTATION ERROR AND BIT
BUDGET
In this section, we present trade-off curves between the error
and the cost budget, and the optimum sampling parameters
achieving these curves.

To be able to observe the effect of the degree of coherence
on the results, we use two different β values: β � 1∕8 and
β � 1 in our numerical experiments. We choose βn � 1∕32.
We consider different noise levels parameterized through
the SNR, defined as the ratio of the peak signal and noise lev-
els: SNR � Af ∕An. We consider the values SNR � 1; 10;∞ to
cover a wide range of problem instances. We choose the
interval D equal to �xL; xH � � �−5σI ;�5σI � to ensure that
the signal values are safely negligible outside D. We report
the error as a percentage defined as 100ε�CB�∕ε0, where
ε0 �

R∞
−∞ Kf �x; x�dx � Af

������
2π

p
.

We would like to note that error-cost trade-off curves do
not depend on the total energy of the signal. More precisely,
when there is no system noise n�x�, the error-cost curves are
independent of the constant Af in (10). When there is system
noise n�x�, the error-cost curves do not depend on the indi-
vidual values of Af and An, but only on the ratio SNR � Af ∕An.

Based on the discussion of Section 4, we note that in the
noiseless case (SNR � ∞), the presented cost-error trade-
off curves are valid for any ABCD system with real parame-
ters, AD − BC � 1. The optimum sampling points are easily
found by scaling in proportion to the ratio of input and
output σI s. When SNR ≠ ∞, the curves are obtained for the
case L is the identity operator and R � ∞, and these do not
generalize to arbitrary ABCD systems. But the optimum
sampling points for one value of σI can still be found from
those for another by scaling.

For simplicity in presentation, in our simulations we focus
onΔx and set the less interesting x0 � 0. To compute the error
expressions and optimize over the parameters of the represen-
tation strategy, we discretize the x space with the spacing
Δc. We approximate the integral in (3) as

P
k∈DN

jf �kΔc�−
f̂ �kΔcjs�j2Δc, where DN � fk:kΔc ∈ Dg. The estimates are only
calculated at these discrete points: f̂ �kΔcjs� � h�kΔc�s. To de-
termine the estimate functions h�kΔc�, we solve the equation
Kfs�kΔc� � h�kΔc�Ks for each k ∈ DN . In order to find the
optimum sampling interval, we use a brute force method,
where for a given CB we calculate the error for varying Δx

and M , and choose the values providing the least error. We
note that the optimization variable Δx and the discretization
variable Δc are not the same. Δx is the sampling interval
whose optimal value we seek, whereas Δc is the discrete grid
spacing we employ in the numerical experiments.

Figures 1 and 2 present the error versus bit budget curves
for varying SNR for a relatively incoherent field (β � 1∕8)
and for a relatively coherent field (β � 1), respectively. As
expected, the error decreases with increasing cost budget
in all cases. We note that ε�CB� is very sensitive to increases
in CB for smaller CB. Then it becomes less responsive and
eventually saturates.

We observe that in each of these figures, as the noise level
becomes higher, it becomes more difficult to obtain low val-
ues of error. We observe that for both values of β, when there
is no system noise (SNR � ∞), the error goes to zero as we
increase the cost. This means that, no matter how small the
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error tolerance ε > 0 is specified to be, the continuous finite-
energy field can be represented with a finite number of bits.
This observation is discussed in more detail in Section 7.

Comparing these figures, we observe that for the relatively
incoherent case (Fig. 1), it is more difficult to achieve low val-
ues of error for a given bit budget. But as the field becomes
more coherent (Fig. 2), the field values at different locations
become more correlated with each other, the total uncertainty
in the field decreases, and it becomes a lot easier to achieve
lower values of error.

We now investigate the relationship between the optimum
sampling strategies and the problem parameters CB, SNR,
and β. The optimum sampling interval Δx and the optimum
number of samples M that achieve the errors given in Fig. 1
are presented in Figs. 3 and 4 for SNR � ∞ and SNR � 1. The
optimum sampling interval Δx and the optimum number of
samplesM that achieve the errors given in Fig. 2 are presented
in Figs. 5 and 6 for SNR � ∞ and SNR � 1.

When there is no system noise n�x�, the optimum sampling
strategies can be informally interpreted in the light of the com-
petition between the following driving forces: (i) to have as
many effectively uncorrelated samples as possible, (ii) to have
samples whose variances are as high as possible, and (iii) to
have samples which are as highly accurate as possible. When
there is system noise n�x�, each sample tells less about the
value of the field. In order to wash out the effect of noise,
one is often willing to take samples at field locations which
are considerably correlated, and which one would probably
not take samples at, had there been no noise.

We observe that in all cases, in general, as CB increases,
the optimum sampling interval decreases and the number

of samples increases: when we have more bits to spend, we
use a higher number of more closely spaced samples. When
CB is low, the optimal strategy is to use a low number of more
distantly spaced samples so that each sample has a reasonable
accuracy and each of them provides effectively new informa-
tion about the field. As the allowed cost increases, we can
afford more samples with high enough accuracies and we
prefer to use more closely spaced samples so that we can get
more information about field values we previously had to
neglect when the allowed cost was lower.

Comparing Figs. 3 and 4 (or Figs. 5 and 6), we observe that
as the noise level increases, the samples should be taken more
closer (the sampling interval decreases). When a sample is
noisy, one would expect the information provided by that
sample to be smaller, encouraging us to take more closely
spaced samples so as to compensate for the effects of noise.
We also observe that as the noise level increases, one should
take a higher number of samples M . This observation may
seem trivial, since decreasing the sampling interval automati-
cally increases the number of samples within a certain spatial
range. However, we note that here the range over which sam-
ples are taken does not remain constant but also decreases.
(The variances of field values decrease as we move away from
the x � 0 point, so that the field here is highly contaminated
by noise. Since samples taken here are of little value for rep-
resenting the field, it is reasonable to expect that it will be
better not to take these samples, thereby decreasing the
spatial range the samples are taken over.) However, the de-
crease in the spatial range is not as much as to compensate
the decrease in the sampling interval, so in the end the number
of samples taken increases.
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Fig. 2. Error versus cost budget CB, β � 1 (varying SNR).
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Fig. 3. Number of samples and optimum sampling interval versus
cost budget, β � 1∕8, SNR � ∞.
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Fig. 4. Number of samples and optimum sampling interval versus
cost budget, β � 1∕8, SNR � 1.

0 100 200 300 400
0

20

40

60

80

100

 

 

0 100 200 300 400

0.25

0.5

0.75

1

1.25
M
∆x σI

Sa
m

pl
in

g
In

te
rv

al
σ I

N
um

be
r

of
Sa

m
pl

es

Cost Budget (bit)

Fig. 5. Number of samples and optimum sampling interval versus
cost budget, β � 1, SNR � ∞.
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Comparing Figs. 3 and 5, we see that when the field is more
coherent, it is desirable to take a fewer number of samples
which are farther apart. When the field is more coherent,
under the GSM correlation structure, the field value at each
point becomes more correlated with field values farther away.
Hence, there is a tendency to space the samples well in order
to get effectively new information from each sample. Also, the
variances of the field values decrease as we move further
away from the x � 0 point, so we prefer not to waste any
of our bit budget on such samples. As a result, the optimum
number of samples is smaller, which is consistent with the fact
that more coherent fields have a lower number of effective
modes (the number of uncorrelated random variables
required to effectively represent the field).

6. COMPARISON WITH SHANNON–

NYQUIST SAMPLING BASED APPROACHES
A common approach in sampling optical fields is to use the
Shannon–Nyquist sampling theorem as a guideline. As out-
lined in Section 1, in this traditional approach, one determines
an effective frequency extent B, and an effective spatial extent
L, which are used to determine the sampling interval, and the
spatial extent the samples will be taken over, respectively.
Here, we will compare the error versus cost budget curve
that is obtained following this traditional approach with the
optimal curves obtained with our approach and shown in
Figs. 1 and 2. But first we review how the traditional Shannon–
Nyquist approach applies to random fields. A fundamental re-
sult in this area states that the Shannon–Nyquist sampling
theorem can be generalized to wide-sense stationary (WSS)
signals: a band-limited WSS signal can be reconstructed in
the mean-square sense from its equally spaced samples taken
at the Nyquist rate [63]. References [64,65] further generalize
this result to nonstationary random fields: let v�x� ∈ R be a
finite-energy random field. Let us consider the covariance
function of the Fourier transform of the field defined as
Sv�ν1; ν2� � E�V�ν1�V��ν2��, where V�ν� is the Fourier trans-
form of v�x�. If Sv�ν; ν� � 0, for jνj > B∕2, then the field
can be recovered from its samples in the mean-square sense;
that is, E�jv�x� −P∞

k�−∞ v�k∕B�sinc�xB − k�j2� � 0.
We now explicitly work out the conventional sampling ap-

proach for GSM fields. The effective spatial extent of the field
will be determined by looking at the intensity distribution
Kf �x; x� � exp�−x2∕2σ2I �, which has a Gaussian profile with
standard deviation σI . Most of the energy of a Gaussian lies
within a few standard deviations so that the effective spatial

extent can be taken as �−rσI ; rσI �. The intensity of the Fourier
transform of the field; that is, the diagonal of the covariance
function of the Fourier transform of the field also has a
Gaussian profile Sf �ν; ν� ∝ exp�−f 2∕2σ2I;F �, where Sf �ν1; ν2� �
E�F�ν1�F��ν2��, where F�ν� is the Fourier transform of f �x�,
and σI;F � �1∕2π�

��������������������������������
�1∕β2� � �1∕4�

p
∕σI (see, for instance [66]).

We take the effective frequency extent as �−rσI;F ; rσI;F �. This
implies a sampling interval of 1∕�2rσI;F �. The number of
samples is found by dividing the effective spatial extent to
the sampling interval as follows:

Ms �
2rσI

1∕�2rσI;F �
� 2r2

π

�
1

β2
� 1

4

�
0.5
: (22)

Hence, for each cost budget value CB, the cost associated with
each sample will be CB∕Ms. In our experiments, we round
Ms to the nearest integer. To ensure a fair comparison with
the approach of this paper, we again use the mean-square
estimate to estimate the signal from the Nyquist samples.

We now compare the error versus bit budget trade-offs
obtained with the approach presented in this article, with
those obtained by using the traditional approach described
above. We use two different r values; r � 2, and r � 3.
Figures 7 and 8 compare the trade-off curves for β � 1∕8
and β � 1, respectively. The dotted curves and the dashed/
solid lines show the results for the optimal sampling
scheme and the sampling theorem based scheme, respec-
tively. As expected, for all cases, the optimum sampling
strategy gives better trade-offs compared to the sampling
strategies based on the sampling theorem.

We note that when there is no system noise n�x�, and if we
determine the effective extents appropriately, we would
expect to obtain error values close to zero for high values
of cost budget. We observe that this is indeed the case for
r � 3, but not for r � 2. This suggests that r � 2 is a poor
choice for defining the effective extents, and illustrates the
importance of determining effective extents appropriately.

When r � 3 and there is no system noise, for both relatively
low and high degrees of coherence, the optimal strategy and
the traditional strategy differ by a greater amount for low
values of cost budget. This observation may be interpreted
as follows: when the cost budget is low, the relatively high
number of samples dictated by the sampling theorem will
result in the samples being relatively inaccurate, leading to
poor performance. (As we have seen earlier, for low cost
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Fig. 6. Number of samples and optimum sampling interval versus
cost budget, β � 1, SNR � 1.
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values, it is better to use a smaller number of samples with
relatively better accuracy.) As the cost budget increases, the
difference between the two approaches gets smaller, and both
strategies achieve error values very close to 0, as expected.
For low values of cost budget, the traditional approach with
r � 2 dictates a sampling strategy closer to the optimal one,
compared to r � 3, and gives error values closer to the opti-
mal strategy. Yet, as observed above, it gives relatively poor
error values for higher values of cost budget, and therefore
cannot be considered a good sampling approach for all values
of the cost budget.

When the system noise level is high, the difference between
the optimal and traditional strategies is pronounced for almost
all values of cost budget. The sampling theorem assumes that
the samples will be noiseless, and therefore cannot exploit
the opportunity for noise elimination through oversampling.
(We observe that the traditional strategy with r � 2 gives
poorer results compared to the r � 3 case, which may be
attributed to the relatively low number of samples dictated
by the former.) We observe that the performance difference
between the traditional approaches and the optimal strategy
is more pronounced for the coherent case. When the field is
more coherent, the sampling theorem-based strategy dictates
the use of a fewer number of more distantly spaced samples,
compared to the incoherent case. However, in the presence of
noise, the optimal strategy is not that much different for the
incoherent and coherent cases, and dictates that we use a
comparably larger number of more closely spaced samples
even when the field is coherent. Therefore, the traditional
sampling strategies are more markedly inferior than the
optimum strategy in the coherent case.

7. DISCUSSION
In Section 5 we illustrated that, given an arbitrarily small but
nonzero error tolerance, it is possible to represent a finite-
energy optical field with a finite number of bits without
exceeding that error tolerance. At first glance, this may appear
as a surprising observation. After all, the optical field in
question takes continuous amplitude values in continuous
and unbounded space, and attempting to use a finite numbers
of bits to represent such a field is a severe restriction: such
finite representations usually involve a finite number of sam-
ples each quantized to a finite number of levels. Therefore,
here we further discuss this from different perspectives.

First, consider the very simple case of a single sample of the
field. Let us assume this sample can assume values between
Alow and Ahigh and we have agreed to represent this value
with an error tolerance of ΔA. Then, it follows that there will
be ∼�Ahigh − Alow�∕ΔA distinguishable levels, which can then
be represented by ∼log2��Ahigh − Alow�∕ΔA� bits.

Now let us return to the field f �x�. We may think of the
finite-energy condition as a limitation on how large the
amplitude values of the field can be. On the other hand,
the specified error tolerance can be considered to determine
the minimum separation of two signals such that they are
still considered distinguishable. The finite-energy condition
restricts the signal to reside within a hypersphere of specific
radius, whereas the error tolerance defines a certain
volume within which signals are considered indistinguishable.
Roughly speaking, the number of distinguishable signals is
given by the volume of the hypersphere divided by the volume
defined by the finite error tolerance. Since this number is fi-
nite, the signal can be represented by a finite number of bits.

We now take a somewhat more mathematical, closer look
at this issue. In each step of our argument, we introduce a
limitation, a form of “finiteness,” in the representation of the
field (such as limiting the fields to a bounded region), and
argue that the error introduced by each of these limitations
can be made arbitrarily small. This way, we aim to illustrate
how different forms of “finiteness” contribute to the overall
picture. Our approach is based on the coherent-mode decom-
position. We also note that it is more common to discuss
concepts related to “finiteness” in a deterministic setting,
and in connection with band-limited approximations, rather
than the stochastic setting and approximations based on
covariance functions we employ.

Let us consider a finite-energy zero-mean random field that
will be approximated using a finite number of bits. For the
sake of convenience, let us assume that the random field
takes real values. Let us first focus on the error introduced by
the limitation of representing the signal in a bounded region D
instead of the infinite line. As stated in (6), the total error of
such an approximation can be expressed as the sum of two
terms: one is the approximation error on D, and the other one
is the energy outside D. The energy outside D can be made
arbitrarily small by taking D large enough. This is the first form
of “finiteness” introduced in the representation of the signal.

We now focus on the approximation error on D. The ques-
tion is whether it is possible to make the approximation error
arbitrarily close to zero; that is, whether it is possible to re-
present the field in a bounded region with a finite number
of bits. The answer is not obvious since we are dealing with
a field taking continuous amplitude values on a bounded
but still continuous space. To give an affirmative answer, we
will rely on the existence of the Karhunen–Loéve expansion
of the covariance function of the unknown field with a dis-
crete eigenvalue spectrum as

Kf �x1; x2� �
X∞
k�0

λkϕk�x1�ϕ�
k�x2�; (23)

where λ0 ≥ λ1…λk ≥ λk�1;… are the eigenvalues and ϕk�x� are
the orthonormal eigenfunctions, k ∈ Z�. This is the coherent-
mode decomposition of the random optical field. Here, each λi
and ϕi pair is considered to correspond to one fully coherent
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mode. Existence of such an expansion for covariance func-
tions on a bounded region is guaranteed by Mercer’s theorem;
see, for example, [67, Chap. 7]. Therefore, the signals can be
decomposed as

f �x� �
X∞
k�1

zkϕk�x�; x ∈ D; (24)

where the random variables zk are zero-mean random varia-
bles with E�jzkj2� � λk. Hence, a continuous field on the
bounded region can be represented with an infinite but at least
denumerable number of variables, namely the random varia-
bles zk, k ∈ Z�. Here, it is also known that

R
D Kf �x1; x2�dx �P∞

k�0 λk [67, Chap. 7]. Since Kf �x1; x2� is finite-energy, the
left-hand side of this equation (the energy on the region D),
is also finite. Hence, the right-hand side is also finite and
we should have λk → 0 as k → ∞. Now, let us consider the
truncation error

E
�Z

D

���� f �x� −
XN
k�1

zkϕk�x�
����
2

dx
�

� E
�Z

D

����
X∞
k�1

zkϕk�x� −
XN
k�1

zkϕk�x�
����
2

dx
�

(25)

� E
�Z

D

����
X∞

k�N�1

zkϕk�x�
����
2

dx
�

(26)

�
X∞

k�N�1

E�jzkj2� (27)

�
X∞

k�N�1

λk: (28)

Thus, by choosing larger and larger but still finite values of N ,
we can bring the truncation error below any finite value, no
matter how small. This observation shows that finite-energy
optical fields can be represented by a finite number of varia-
bles (z1;…; zN) for any given nonzero error tolerance.

Finally, we would like to argue that it is possible to re-
present the field not only with a finite number of variables,
but also with a finite number of bits. Here the question is
whether it is possible to represent the finite-variance random
variables z1;…; zN with a finite number of bits, to meet a
given arbitrarily small nonzero error tolerance. The answer
is affirmative and a classical result in information theory
(rate-distortion theory [68, Chap. 13]). Although one would
need an infinite number of bits to represent a continuous num-
ber perfectly (with zero error), it is possible to represent such
a number with a finite number of bits with an arbitrarily
small but nonzero error. With this last step, we conclude
our argument showing that finite-energy optical fields can
be represented by a finite number of bits with an arbitrarily
small nonzero error tolerance.

In the first step of the argument of this section, we
argued that the error introduced by limiting the signal to a
bounded region can be made small. Actually, this step can
be dispensed with altogether since finite-energy fields have

Karhunen–Loéve expansions on the infinite line with a dis-
crete eigenvalue spectrum (and hence coherent-mode decom-
positions with denumerable modes). Indeed, in the literature
authors sometimes write the coherent-mode decomposition of
an optical field in the form of a summation without explicit
reference to a bounded domain or any detailed discussion
of the existence of such an expansion on the infinite line. Here
we would like to point out that this practice is supported by
mathematical results: [69, Thm. 1] states that along with con-
tinuity, having

R
∞
−∞ Kf �x; x�dx < ∞ and Kf �x; x� → 0 as jxj →

∞ is sufficient to ensure such a representation. We note that
both of these conditions are plausible in a physical context:
the first one is equivalent to the finite-energy assumption
and the second one requires the intensity of the field to vanish
as jxj increases, properties one commonly expects from
physically realizable fields.

8. CONCLUSIONS
Although optical fields are usually represented by functions of
continuous variables, we know that in effect they carry a finite
amount of information. This finiteness is intrinsically related
to the finiteness of the energy and the specified nonzero
error tolerance or noise in the system. Since we would like
to quantify these, and since we often use digital systems to
process information, we have set ourselves the goal of repre-
senting the field as efficiently as possible; that is, with as small
a number of bits as possible.

We focused on various trade-offs in the representation of
optical fields, mainly: (i) the trade-offs between the achievable
error and the cost budget, (ii) the trade-offs between the
accuracy, spacing, and number of samples. We have derived
the optimal bounds for simultaneously achievable bit cost and
error and obtained the optimal sampling parameters neces-
sary to achieve them. These performance bounds are not only
of interest for better understanding of information relation-
ships inherent in propagating wave fields, but can also lead to
guidelines in practical scenarios.

In contrast to common practice, which often treats sam-
pling and quantization separately, we have explicitly focused
on the interplay between limited spatial resolution and limited
amplitude accuracy. Under a given cost budget, we have in-
vestigated whether it is better to take a higher number of
samples with relatively lower cost per sample (hence, with
lower amplitude accuracy), or a lower number of samples
with relatively higher cost per sample (hence, with higher
amplitude accuracy). Our results further reveal how, for the
optimum number of samples determined, we should choose
the space and frequency coverages. That is, we have answered
the question of whether it is better to take more closely
spaced samples (with wider frequency coverage but smaller
spatial coverage), or to take more distant samples (with
smaller frequency coverage but larger spatial coverage). We
have seen that in certain cases, sampling at rates different
than the Nyquist rate turns out to be more efficient. We also
investigated how these results are affected by the degree of
coherence of the field and the noise level. Furthermore, we
observed how the optimal sampling parameters change with
increasing cost budget.

The optical field at one part of a system is not independent
from the optical field at another part of the system. In other
words, knowledge of the field at one part of the system gives
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us a certain degree of information about the field at other
parts. Thus, we also considered the case where the signal
is represented by samples taken after the signal passes
through a linear system. For the case of GSM fields, when
there is no noise, we have shown that finite-accuracy samples
of the output field are as good as finite-accuracy samples of
the input field, for the broad class of first-order optical sys-
tems. This class includes arbitrary concatenations of lenses,
mirrors and sections of free space, as well as quadratic
graded-index media. The cost-error trade-off curves obtained
turn out to be the same as those obtained for direct sampling
of the input, and the optimum sampling points can be found by
a simple scaling of the direct sampling results.

Our results may be of use in practical applications where
partially coherent information-bearing light fields are to be
recorded. Our conclusions may be particularly relevant to
digital holography where measurement devices located at dis-
crete points in space are used to record the hologram. Our
results suggest that in some cases it may be more efficient
to sample the optical field at rates different than the Nyquist
rate. Our bit budget framework can also be of interest in a
typical holography scenario, where one first records a huge
amount of data, and then proceeds to process this data in or-
der to transmit or store it using a smaller number of bits. With
our approach, instead of this two-step procedure, one can
acquire the data more efficiently in the first place, under
the given bit budget.
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