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a b s t r a c t

Wedescribe a polynomial-size conic quadratic reformulation for amachine-job assignment problemwith
separable convex cost. Because the conic strengthening is based only on the objective of the problem, it
can also be applied to other problems with similar cost functions. Computational results demonstrate the
effectiveness of the conic reformulation.
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1. Introduction

We consider a machine-job assignment problem with control-
lable processing times arising in flexible manufacturing systems.
Processing times on computer numerically controlled (CNC) ma-
chines can be compressed by increasing the cutting speed and the
feed rate at a convex increasing cost for compression. Thus, when
processing time becomes a decision variable, one is faced with a
trade-off between increasing yield and cost of machining, which
can be modeled as a nonlinear mixed 0–1 profit maximization
problem.
If compression of processing times is not allowed, themachine-

job assignment problem reduces to the classical generalized
assignment problem, which is N P -hard as it contains the 0–1
knapsack problem. In practice, the nonlinearity of the compression
cost makes this assignment problem particularly difficult to solve.
Even for the quadratic case, commercially available software
packages that employ fast quadratic programming (QP) algorithms
within a branch-and-bound framework are far from solving large
instances of the problem.
In this paper we reformulate the problem using a polynomial

number of conic quadratic constraints [1,2]. Our approach for
developing conic reformulations is analogous to the polyhedral
approach for linear integer programming with the goal of
strengthening bounds from continuous relaxations of the problem.
We construct strong conic reformulations based on the convex
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hull description of a simple mixed integer set defined by nonlinear
inequalities. We refer the reader to [3,4] for convexification
techniques for nonlinear integer programs.
Whereas semidefinite programming relaxations of max-cut

and related combinatorial problems have been investigated ex-
tensively (e.g., [5–8]), research on conic mixed-integer program-
ming is so far fairly limited. Çezik and Iyengar [9] describe
Chvátal–Gomory and disjunctive cuts for conic integer programs.
Atamtürk and Narayanan [10] give nonlinear conic mixed-integer
rounding cuts for conic mixed-integer programming. Atamtürk
and Narayanan [11] describe lifting techniques for conic integer
programming.Whereas these papers develop cuts for general conic
mixed-integer programs, in this study we exploit the structure of
a certain objective function in order to derive strong conic formu-
lations.
Two recent papers study a similar structure and propose

alternative approaches to the one given here. Frangioni andGentile
[12] describe an interesting cutting plane procedure based on
linear outer approximations of the perspective of convex functions
and apply it to the unit commitment problem with a quadratic
cost function. Günlük et al. [13] give problem-specific linear
and nonlinear cuts for a quadratic cost facility location problem.
Although in the current paper we apply the conic strengthening to
themachine-job assignment problemwith controllable processing
times, because the conic reformulation technique is based on only
the objective function of the problem, it can also be applied to other
mixed 0-1 optimization problems with similar cost functions,
including those studied in these two recent papers.
The machine-job assignment problem with controllable pro-

cessing times arises in flexible manufacturing systems, where the
processing times of machines are numerically controlled. In such
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systems one employs a host of non-identical machines each hav-
ing different applicable machining power levels. The high cost of
investment in a flexible manufacturing system necessitates care-
ful planning and scheduling of jobs on the machines as discussed
in Gürel and Aktürk [14].
In the scheduling literature Vickson [15] was the first to

consider controllable processing times. In recent years there has
been a growing interest in controllable processing times. For a
similar problem to ours with linear processing cost functions,
Trick [16] provides certain optimality properties and heuristic
algorithms based on these properties. We refer the reader to
Shabtay and Steiner [17] for a recent survey of related studies.
This paper is organized as follows. In Section 2 we give the def-

inition of the machine-job assignment problem with controllable
processing times and a nonlinear mixed 0–1 programming formu-
lation for it. In Section 3 we describe the conic strengthening in
general and apply it to the machine-job assignment problem. In
Section 4we present extensive computational results on the intro-
duced formulations.

2. Problem definition

Given n jobs and m non-identical parallel machines with finite
capacity, the machine-job assignment problem is to choose a
subset of the jobs and assign them to the machines so that the
total profit from the assignment ismaximized. Letting ci denote the
available machining time for machine i = 1, . . . ,m, and pij and hij,
the regular processing time and profit corresponding to job j if it
is assigned to machine i, the problem can be modeled as a linear
0–1 program. This problem is also referred to as the generalized
assignment problem [18].
In a flexible manufacturing system, where jobs are processed

on computer numerically controlled (CNC) machines, processing
times can be reduced by appropriately setting the machining
parameters such as cutting speed and feed rate. However,
compressing processing time naturally leads to reduced tool
life, and, consequently, increased machining cost. We model the
change in the machining cost due to processing time compression
y ≥ 0 as f (y) = kya/b, where a and b are integers satisfying
a ≥ b > 0 and k > 0, so that f is an increasing and
convex function of compression. The function f reflects the
relationship between compression and cost in that as one
decreases the processing time of a job, it becomes more expensive
to compress it further. Technical specifications of a job such as
its length, diameter, required surface quality, as well as machine
and tool type determine the cost coefficients k, a, and b. Defining
a binary assignment variable xij equal to 1 if job j is assigned
to machine i and 0 otherwise, and compression variable yij for
each machine-job pair, the machine-job assignment problem with
controllable processing times can be formulated as the following
nonlinear mixed 0-1 program:

max
m∑
i=1

n∑
j=1

(hijxij − fij(yij))

s.t.
n∑
j=1

(pijxij − yij) ≤ ci, i = 1, . . . ,m, (1)

(MJ0) `ijxij ≤ yij ≤ uijxij, i = 1, . . . ,m, j = 1, . . . , n, (2)
m∑
i=1

xij ≤ 1, j = 1, . . . , n, (3)

xij ∈ {0, 1}, yij ∈ R+, i = 1, . . . ,m, j = 1, . . . , n. (4)
Constraint (1) ensures that the jobs assigned to machine i take

no more than the machine capacity ci. Constraint (2) ensures that
compression is allowed on the processing time of job j on machine
i only if job j is assigned to machine i and that compression is
within specified limits 0 ≤ `ij ≤ uij < pij. Finally, constraint (3)
guarantees that each job is assigned to at most one machine.
MJ0 is N P -hard as it reduces to the generalized assignment

problem when all uij’s are zero. The nonlinearity introduced with
the option of compression of processing times makes the problem
much harder to solve, in practice, compared to the generalized
assignment problem. Note that MJ0 is a maximization problem
with a concave objective and the feasible set of its continuous
relaxation

P =
{
(x, y) ∈ R2mn

+
: (1), (2), (3)

}
is a polyhedron. In contrast to the case of generalized assignment
problem, optimal solutions to its continuous relaxation are found
typically in the interior of this polyhedron or almost all xij are
fractional. Consequently, branch-and-bound algorithms based on
such relaxations require excessive branching to find feasible
integer solutions. Even when f is quadratic, i.e., a/b = 2, it is a
challenge to solve practical-size instances of MJ0 with quadratic
MIP solvers of commercial software packages. We will elaborate
on the computational difficulty of solving MJ0 in Section 4.
Rather than developing a special purpose algorithm for MJ0,

our goal is to reformulate the problem so that its continuous
relaxation is stronger and the formulationmay be solved by readily
available solvers of optimization software packages. In particular,
we describe a conic quadratic relaxation for MJ0. The conic
strengthening presented here is also applicable to other mixed 0-1
minimization problems with a similar objective function.

3. Conic reformulations

In this section we describe the conic strengthening and show
how to express it using a polynomial number of conic quadratic
constraints. For strengthening the formulation it is convenient to
work with the epigraph of f . So, by introducing auxiliary variables
tij ∈ R+ we bring the nonlinear objective into the constraints and
linearize the objective of the formulation as

max
m∑
i=1

n∑
j=1

(hijxij − kijtij)

(MJ1) s.t. y
aij/bij
ij ≤ tij, i = 1, . . . ,m, j = 1, . . . , n, (5)
(1), (2), (3), (4).

MJ1 is not necessarily easier to solve than MJ0. On the
contrary, solvers can usually deal with nonlinearity in the
objective easier than nonlinearity in the constraints. MJ1 is an
intermediate formulation that will enable us to derive a strong
conic formulation.
For our purpose it suffices to concentrate on the mixed 0–1 set

C =
{
(x, y, t) ∈ {0, 1} × R+ × R+ : ya/b ≤ t, `x ≤ y ≤ ux

}
with a ≥ b > 0 and u ≥ ` ≥ 0. Observe that constraints of C are of
the form (2), (4) and (5). The proposed strengthening is applicable
to any optimization problem that contains C as a substructure.
Consider solutions of C satisfying y = ux. It is easy to see that for
a > b and u > 0 each point on the curve defined as
L =

{
(x, y, t) ∈ R3 : 0 < x < 1, y = ux, ya/b = t

}
is an extreme point of the continuous relaxation of C . The set
of points L is illustrated with the dashed curve in Fig. 1(a). Next
we will reformulate C so that L is eliminated from its continuous
relaxation.

3.1. Strengthening the continuous relaxation

First, observe that for C , as y, t ≥ 0 and b > 0, inequality
ya/b ≤ t is equivalent to

ya ≤ tb. (6)
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Fig. 1. Surfaces defined by inequalities (6) and (7).
We propose to strengthen (6) as

ya ≤ tbxa−b. (7)

Because a ≥ b, for 0 ≤ x ≤ 1 inequality (7) implies (6). It is
also clear that (7) is valid for C as for x ∈ {0, 1} it reduces to (6).
Thus,wemay replace (6)with (7). Consider, then, the strengthened
continuous relaxation of C:

CS =
{
(x, y, t) ∈ R3 : ya ≤ tbxa−b,
`x ≤ y ≤ ux, 0 ≤ x ≤ 1, 0 ≤ t} .

Although (7) is highly nonlinear, CS is a convex set. Indeed, it is easy
to show that CS is the smallest convex relaxation of C .

Proposition 1. The convex hull of C, conv(C), equals CS .

Proof. Consider the disjunction C0 ∪ C1, where C0 := {(x, y, t) ∈
C : x = 0} and C1 := {(x, y, t) ∈ C : x = 1}; thus, C = C0 ∪ C1. To
see that conv(C) ⊆ CS consider points (0, 0, t0) ∈ C0, (1, y1, t1) ∈
C1, and a convex combination

(x, y, t) = (1− λ)(0, 0, t0)+ λ(1, y1, t1)
= (λ, λy1, (1− λ)t0 + λt1)

for some 0 ≤ λ ≤ 1. Clearly, t ≥ 0, 0 ≤ x = λ ≤ 1, and
`x = λ` ≤ λy1 = y ≤ λu = ux. To see that (7) holds as well
for (x, y, t), observe that

(λy1)a = (λbya1)(λ
a−b) =

(
(1− λ)0+ λya/b1

)b
λa−b

≤ ((1− λ)t0 + λt1)b λa−b,

where the last inequality holds from 0 ≤ t0 and y
a/b
1 ≤ t1.

For CS ⊆ conv(C), consider an arbitrary point (x, y, t) ∈ CS . If
x = 0 or x = 1, then (x, y, t) ∈ C ⊆ conv(C) trivially. On the
other hand, if 0 < x < 1, then (x, y, t) is a convex combination
of (0, 0, 0) ∈ C0 and (1, y/λ, t/λ) with λ = x. To see that the
latter point is in C1, observe that y/λ ≤ u and (y/λ)a ≤ (t/λ)b, or
ya ≤ tbλa−b as (x, y, t) ∈ CS . �

Inequality (7) is illustrated in Fig. 1(b). This figure shows that (7)
defines the curved boundary of conv(C) and that any point (x, y, t)
on it with 0 ≤ x ≤ 1 is a convex combination of C0 and C1.
It should be clear from the proof of Proposition 1 that inequality

(7) indeed defines the epigraph of the perspective of f . Recently,
Frangioni and Gentile [12] proposed an interesting cut generation
method based on perspective functions. Their approach is to
generate supporting hyperplanes of the perspective of a convex
function as cuts to improve relaxations with convex objective
on a polyhedral set. Although this is a more general approach
as it applies to any separable convex function, as also stated
by Frangioni and Gentile in their computational study, there are
practical difficulties with approximating the perspective with a
large number of linear inequalities and solving a relaxed problem
as this leads to finding infeasible integer solutions that need to
be avoided. Here we use the nonlinear constraint (7) explicitly
by reformulating it via conic quadratic constraints as discussed in
Section 3.2.

3.2. Conic quadratic representation

Now we give an efficient representation of the set CS using a
polynomial number of conic quadratic constraints. As explained
in [2], for a positive integer l, an inequality of the form

r2
l
≤ s1s2 · · · s2l , (8)

for r, s1, . . . , s2l ≥ 0 can be expressed equivalently using O(2
l)

variables and O(2l) hyperbolic inequalities of the form

u2 ≤ v1v2, u, v1, v2 ≥ 0. (9)
Furthermore, each constraint u2 ≤ v1v2 can be written as a conic
quadratic (second-order cone) constraint
‖(2u, v1 − v2)‖ ≤ v1 + v2. (10)

Proposition 2. For integral a ≥ b ≥ 0 inequalities

ya ≤ tbxa−b, x, y, t ≥ 0

can be expressed equivalently using O(log2 a) variables and O(log2 a)
conic quadratic constraints of the form (10) and x, y, t ≥ 0.

Proof. For l = dlog2 ae, using y ≥ 0, we may rewrite constraint
(7) as

y2
l
≤ tbxa−by2

l
−a. (11)

Now it is clear that (11) is a special case of (8) with s1 = · · · =
sb = t, sb+1 = · · · = sa = x, sa+1 = · · · = s2l = y. Following the
construction in [1], inequalities (9) can be built using a binary tree
with leaf nodes for 1, t, t2, . . . , t2

blog2(b)c , x, x2, . . . , x2
blog2(a−b)c , and

y, y2, . . . , y2
l−1
. Each non-leaf node of the binary tree represents

a new hyperbolic inequality (9) and variable introduced. Because
the number of nodes in a binary tree is at most twice the number
of its leaves, the number of inequalities and variables in the conic
quadratic representation is at most O(log2 a). �

Observe that conic reformulations based on (6) can be obtained
by simply fixing x = 1 in this derivation. We refer to the conic
reformulation of MJ1 as CMJ1 and to the conic reformulation of
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Table 1
Computational results for the quadratic case: f (y) = ky2 .

κ n m MJ0 MJ1/CMJ1 CMJ2
rgap egap opt nodes cpu rgap egap opt nodes cpu rgap egap opt nodes cpu

1 7.52 – 5 189 0 7.52 – 5 1,218 1 0.10 – 5 12 0
50 5 12.51 – 5 128,323 132 12.51 0.43 3 323,893 464 3.65 – 5 457 1

10 22.47 4.41 0 624,766 1043 22.47 3.79 0 392,314 1008 8.39 – 5 4,510 12

1 6.09 – 5 3,712 1 6.09 – 5 16,783 20 0.05 – 5 10 0
0.1 100 5 9.37 2.58 0 672,453 1024 9.37 4.36 0 423,227 1008 1.17 – 5 22,821 43

10 12.83 7.39 0 329,917 1030 12.83 9.24 0 151,869 1009 1.95 – 5 1,700 16

1 6.02 1.08 3 989,865 613 6.02 1.74 0 484,487 1006 0.01 – 5 7 0
200 5 8.98 5.61 0 361,756 1020 8.98 6.62 0 213,382 1011 0.30 – 5 33,813 139

10 11.04 8.77 0 175,442 1015 11.04 10.26 0 106,441 1010 0.93 0.34 1 81,283 960

1 4.78 – 5 479 0 4.78 – 5 3,142 3 0.05 – 5 6 0
50 5 9.38 0.00 4 454,232 567 9.38 2.64 0 419,522 1006 1.01 – 5 1,385 3

10 13.29 5.30 0 424,676 1032 13.29 7.48 0 163,283 1005 2.72 – 5 110 3

1 4.25 – 5 57,907 20 4.25 – 5 256,231 448 0.01 – 5 4 0
0.2 100 5 8.34 3.68 0 705,626 1014 8.34 5.13 0 239,838 1006 0.17 – 5 401 4

10 10.67 7.24 0 302,122 1018 10.67 8.83 0 111,759 1011 0.83 – 5 5,321 60

1 4.05 1.36 0 2,013,387 1015 4.05 2.38 0 174,711 1006 0.00 – 5 0 0
200 5 8.58 6.43 0 356,130 1016 8.58 7.28 0 122,386 1012 0.04 – 5 903 12

10 9.77 8.27 0 140,988 1012 9.77 10.11 0 45,361 1008 0.29 0.06 1 41,833 891

Optimal 35.56% 25.56% 91.11%
MJ2, where

max
m∑
i=1

n∑
j=1

(hijxij − kijtij)

(MJ2) s.t. y
aij
ij ≤ t

bij
ij x

aij−bij
ij , i = 1, . . . ,m, j = 1, . . . , n,

(1), (2), (3), (4),

as CMJ2. In the next section we compare these alternative conic
reformulations computationally.

4. Computational experiments

In order to test the computational impact of the conic
strengthening we have performed experiments with different
formulations of the problem using quadratic and cubic objective
functions: f (y) = ky2 and f (y) = ky3. All experiments are
performed using ILOG CPLEX Version 11.0 with default settings on
a 3.12 GHz Linux workstation with 1 GB memory with a 1000 CPU
seconds time limit.
We performed experiments on data sets with varying number

of jobs (n = 50, 100, 200), machines (m = 1, 5, 10), and capacity
factors (κ = 0.1, 0.2). For each experimental configuration of
n,m, κ , we generated five instances with hij from Uniform [2.0,
6.0], kij from Uniform [1.0, 3.0], pij from Uniform [1.0, 3.0], `ij = 0,
and uij from pij× Uniform [0.2, 0.8]. All machines have capacity
equal to

c = κ/m×
n∑
j=1

m∑
i=1

pij/m,

so that the capacity factor κ controls the total machining capacity
mc , independent of the number of machines.
We compare three formulations for the quadratic case f (y) =

ky2. The first formulation is MJ0, which is a mixed 0–1 program
with quadratic objective, solved by CPLEXMIQP solver. The second
one is CMJ1, which is a quadratically constrained quadratic MIP
(it is equal to MJ1 for the quadratic case) with constraints y2 ≤ t
for each machine-job pair. Finally, the third one is CMJ2, the conic
reformulation based on the strengthened inequality (7) y2 ≤ tx,
which is already hyperbolic for the quadratic case.
We summarize the results of this experiment in Table 1. For

each formulation we report the averages for the percentage gap
Table 2
Alternative conic formulations for the cubic case: f (y) = ky3.

CMJ1 CMJ2′ CMJ2

Hyperbolic inequalities y2 ≤ v1
v21 ≤ ty

y2 ≤ v1v2
v21 ≤ ty
v22 ≤ x

y2 ≤ v1x
v21 ≤ ty

between the continuous relaxation at the root node and best
feasible solution known (rgap), the number of branch-and-bound
nodes explored (nodes), and the total cpu seconds (cpu). We also
report the number of instances that could be solved to optimality
within the time limit (opt) and if there are instances that could not
be solved, for them,we report the average percentage gap between
the best known upper bound and lower bound at termination
(egap). The continuous relaxations at the root node were solved
within a fraction of second for all instances; therefore, we do not
report them in the tables.
Note that the integrality gap at the root node is the same forMJ0

andCMJ1 and it takes longer time to solve CMJ1 thanMJ0.Whereas,
most of the instances could not be solved to optimality with either
MJ0 or CMJ1 within the time limit, all but eight of the 90 instances
could be solved to optimality using the strong conic formulation
CMJ2. For those eight unsolved instances with CMJ2 the average
optimality gap at termination is only 0.2%.
Because the continuous relaxation of MJ0 is a QP, it is solved

faster than the quadratically constrained QP relaxation of CMJ1.
Thus, a conic reformulation is not helpful when its relaxation has
the same bound as for the QP. On the other hand, with conic
formulation CMJ2, the integrality gap at the root node is reduced
to only 1.20%, which in turn leads to a much smaller branch-and-
bound tree. Even though the continuous conic relaxations take
longer to solve than QPs, it pays off when solving the integer
problem due to the bound strengthening.
In Table 1we also observe that with tightermachining capacity,

the integrality gap is higher for all problems sizes. Moreover,
the integrality gap increases with the number of machines, but
decreaseswith the number of jobs. Nevertheless, instances become
harder to solve for all formulations as the size increases. However,
whereas only the smallest instances can be solved with MJ0, conic
reformulation CMJ2 scales well with size.
The next experiment is on the cubic case f (y) = ky3.

Inequalities (6) and (7), used in CMJ1 and CMJ2 for this case, are
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Table 3
Computational results for the cubic case: f (y) = ky3 .

κ n m CMJ1 CMJ2′ CMJ2
rgap egap opt nodes cpu rgap egap opt nodes cpu rgap egap opt nodes cpu

1 11.36 – 5 1,760 3 4.38 – 5 518 2 0.10 – 5 8 0
50 5 17.10 – 5 119,490 457 10.13 0.57 4 47,076 324 3.74 – 5 904 3

10 26.28 5.04 0 213,562 1021 17.76 4.28 0 86,957 1015 7.14 – 5 1,978 18

1 8.77 – 5 35,302 114 3.39 – 5 5,556 33 0.06 – 5 13 1
0.1 100 5 13.05 6.64 0 156,366 1015 6.41 2.82 0 98,823 1012 0.70 – 5 3,510 19

10 17.24 13.26 0 68,649 1016 9.78 7.24 0 63,352 1014 1.71 0.94 3 52,681 431

1 8.89 4.12 0 181,625 1010 3.31 1.04 0 88,516 1012 0.00 – 5 0 0
200 5 12.81 10.34 0 77,939 1018 6.14 5.52 0 18,542 1057 0.18 – 5 12,612 121

10 15.17 15.12 0 31,901 1021 8.12 8.66 0 15,506 1014 0.70 0.43 1 34,551 1031

1 7.42 – 5 9,567 26 2.47 – 5 915 3 0.07 – 5 11 0
50 5 12.97 3.93 0 199,224 1006 6.38 1.02 1 91,371 971 0.82 – 5 437 4

10 17.25 11.42 0 82,549 1013 10.18 6.58 0 30,532 1008 2.72 – 5 998 15

1 6.49 2.30 0 117,997 1005 2.12 0.07 4 50,304 351 0.01 – 5 2 0
0.2 100 5 11.64 8.24 0 69,291 1011 5.08 3.20 0 33,804 1007 0.13 – 5 1,337 11

10 14.41 13.39 0 41,056 1011 7.44 7.31 0 13,800 1010 0.65 – 5 22,352 287

1 6.17 4.68 0 30,758 1005 2.01 1.45 0 22,191 1041 0.00 – 5 0 0
200 5 12.10 11.45 0 20,881 1011 5.34 4.92 0 11,905 1008 0.04 – 5 1,434 43

10 13.51 14.99 0 8,910 1012 6.70 7.76 0 3,566 1011 0.17 0.06 0 25,953 1027

Optimal 22.22% 26.67% 87.78%
y3 ≤ t and y3 ≤ tx2. In addition, in order to see whether only a
partial strengthening would be effective, we also compared CMJ1
and CMJ2 with a conic formulation with the simpler inequality
y3 ≤ tx. We refer to this partially strengthened formulation
as CMJ2′. In Table 2 we present the corresponding hyperbolic
constraints for these three formulations.
We summarize the results with the cubic objective in Table 3.

The first observation is that the integrality gaps are larger for the
cubic case than for the quadratic case and, consequently, the cubic
problems are overall more difficult to solve than the quadratic
problems. Out of 90 instances only 20 could be solved to optimality
with formulation CMJ1. Even though the partially strengthened
formulation CMJ2′ resulted some improvement due to smaller
integrality gap, most of the instances still could not be solved with
it. On the other hand, all but 11 instanceswere solved to optimality
with the strong formulation CMJ2. For those unsolved instances
with CMJ2 the average optimality gap at termination is only 0.35%.
These experiments demonstrate clearly the effectiveness of the

conic strengthening introduced here for solving the machine-job
assignment problem with controllable times.
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