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ABSTRACT

A SPANNING TREE APPROACH TO SOLVING THE 
ABSOLUTE p-CENTER PROBLEM

Burçin Bozkaya 
M.S. in Industrial Engineering 

Supervisor: Assoc. Prof. Barbaros Tansel 
May, 1995

The p-center problem on a network is a model to locate p new facilities that will 
serve n existing demand points on that network. The objective is to minimize 
the maximum of the weighted distances between each demand point and its 
nearest new facility. This type of problem usually arises in the location of 
emergency facilities like hospitals, police and fire stations. The problem is 
known to be VP-Hard on a cyclic network, but polynomial-time solvable on a 
tree network. In this study, a spanning tree approach to solving the problem on 
a cyclic network is discussed. First, the existence of an optimal spanning tree 
that gives the network optimal solution, is proved. Then, two specific types of 
spanning trees are introduced and experimentally tested whether they contain 
the optimal tree or not. Also, some properties of such an optimal tree are 
discussed and some special cases for which the optimal tree can be determined 
in polynomial time, are identified.

Keywords : p-center, covering.



ÖZET

p-MERKEZ PROBLEMİ ÇÖZÜMÜNE KAPSARAĞAÇ
YAKLAŞIMI

Burçin Bozkaya
Endüstri Mühendisliği Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Barbaros Tansel 
Nisan, 1995

p-Merkez problemi, bir serim üzerinde yeralan n talep noktasına hizmet vere
cek p merkezin serim üzerine yerleştirilmesini kapsamaktadır. Amaç, talep 
noktaları ile hizmet aldıkları en yakın merkezler arasındaki en büyük ağırlıklı 
uzaklığı enküçüklemektir. Uygulamada bu probleme, hastane, karakol, itfaiye 
gibi, acil hizmet gerektiren birimlerin yerleştirilmesi örnek gösterilebilir. Prob
lemin çözümünün, genel serimlerde ATV-Zor, ağaç serimlerde ise polinom za
manlı olduğu bilinmektedir. Bu çalışmada, problemi genel serimlerde çözmeye 
yönelik, o serimin kapsarağaçlarının kullanıldığı bir yaklaşım önerilmektedir. 
Öncelikle, serim eniyi çözümünü veren bir eniyi ağacın varlığı gösterilmiş, daha 
sonra iki ayrı özel ağaç tipinin serim eniyi çözümünü verip vermediği deney
sel olarak incelenmiştir. Ayrıca, eniyi ağacın ne gibi özelliklere sahip olduğu 
araştırılmış, belli özel durumlar için eniyi ağacın polinom zamanda bulunabi
leceği gösterilmiştir.

Anahtar sözcükler : p-merkez, kaplama.
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Chapter 1

Introduction

A significant part of the literature on the formulation and analysis of facil
ity location problems is on locating new facilities on a network. We refer to 
this related set of problems as “Network Location Problems”. In particular, 
the network under consideration might be a transportation network or a road 
network which contains demand points or customers located on the network. 
One typical case is when the demand points on the network are taken to be 
the network’s vertices and new facilities provide service through shortest paths 
reaching these demand points. Usually, there is a cost of providing material or 
service from a service facility to a demand point and the objective is to locate 
the new facilities so that some function of the costs is optimized.

We can distinguish between three major types of service facilities that are 
to be located : center-type (emergency-type, minimax) facilities which have to 
be located in such a way that they can respond to service calls as soon as pos
sible (like hospitals, fire stations, police stations, etc.) ; median-type facilities 
(minisum) which provide service to minimize the total cost ; and obnoxious- 
type (undesired, maximin or maxisum) facilities that are to be located as far 
as possible from a number of given points. The absolute p-center problem 
is of the first type ; namely, p new facilities are to be located with an ob
jective to minimize the maximum response time to service requests made by



demand points. When the response time is a linear function of distances be
tween demand points and service facilities, the objective reduces to minimizing 
the maximum of the ‘weighted’ distances between each demand point and its 
closest new facility.

To give the formal statement of the problem, let N  = (V,E) be a trans
portation network where

• V = {ui, U2, . . . ,  Un} is the set of vertices and

• E = {e,j = (u,·, Uj·)} is the set of edges of N.

We take each edge as a rectifiable arc of known positive length and by a point 
of the network N, we mean any point along any edge. A point may be interior 
to an edge or may be one of the endpoints of the edge. The following notation 
will be used throughout the remainder of the thesis :
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PN{x,y)

|eol
dN{x,y)

• ) Xp)

A path joining two points x and y on N.
Length of PN{x,y).
Length of edge Cij = (u,-,Uj).
Length of a shortest path between x and y on N. 
The set of locations of p new facilities to be 
located on N.

The assumptions that are imposed on the problem are as follows :

Al. W is a simple and connected network.

A2. Demand points are taken to be vertices of N.

A3. Any point of is a feasible location for each xj, j  = 1, . . .  ,p.

A4. All edges of N  satisfy (e,j| = (the ones that violate this equal
ity are called redundant edges and are deleted from N  without causing 
suboptimality (Kariv and Hakimi 1979 [25])).

A5. A nonnegative weight Wi is associated with each i = 1, . . . ,  n (usually 
interpreted as the frequency of service request or the relative importance



of the demand points). A weight of zero on a vertex implies that ver
tex is not actually a demand point but is viewed as one, as a modeling 
convenience.

A6. Each vertex receives service from the nearest center (ties are broken in 
favor of the smallest indexed center).
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To see how these assumptions are applicable to real life, consider the road 
network of a city where the intersections and the streets correspond to vertices 
and edges of N,  respectively. In practice, the intersections (vertices of N)  
might be quite probable locations for accidents and taken to be the demand 
points {wi being the probability of accident on the intersection u,). In case of 
an accident, the nearest health service facility is in charge, in order to provide 
the quickest response (assumption A6).

Now, let the shortest path distance on N  between a vertex u,· and a nearest 
center be denoted by Di\f{vi,XN), where

D7v(v.·, A'at) = .min dN{vi,Xj) 

Then the statement of the problem is .the following :

where.

^p(^) = fN{Xh) = min fN{XN)

/ tv(Xn ) = max Wi ■ DN{vi,XN)viev

( 1.1)

(1.2)

(1.3)

Any optimal set of locations is referred to as an absolute p-center of 
N  and z*{N) is referred to as the absolute p-radius of N. Throughout the 
remainder of the thesis, “p-center” and “p-radius” will be used, respectively, 

instead of these terms.

The problem is called unweighted (versus weighted) when Wi = 1, for all 
г = 1, . . .  ,n. It is vertex restricted (versus absolute) when each Xj is restricted 
to vertices of N. It becomes continuous when not only the vertices but all the 

points of N  are demand points.



There is a considerable amount of research on this problem. A detailed 
literature review will be provided in Section 2.1. One main characteristic of 
the problem is that it is AfV-Haxd when the network is a general one (e.g. 
one containing cycles) and polynomial-time solvable when it is a tree network 
(Kariv and Hakimi 1979 [25]). Hence, for a cyclic network N, one might be 
interested in solving the problem on a spanning tree T oi N  instead of solving 
on the network itself and still expect to find a p-center of N  (assume that T  
has the same vertex weights as N). Note that a spanning tree T  = {V',E') 
of N  contains all the vertices of N  (i.e. V  = V) but many edges are deleted. 
Denoting by dT{x,y) the length of a shortest path between x,y  £ T  when 
paths are restricted to edges of T, we have

drix.y) > dN{x,y)

since there are additional edges on N  that are not on T  and a shortest path on 
N  between x and y may use some of these edges. By a similar argument, the 
p-radius of T  is greater than or equal to the p-radius of N  because the additional 
edges may provide shorter shortest paths between vertices and centers so that 
the distance between a vertex and a nearest center may be smaller on N. In 
addition, the additional edges on N  contain additional feasible locations for 
Xj's which may contain better locations than those of T. Hence T  and N  

satisfy
z;(T) > z;(N)

So, the following major question arises as a consequence : does there exist 
a spanning tree T  (with the same vertex weights), what we will call an optimal 
tree., of N  which has the same p-radius as N. In other words, is there a spanning 

tree T oi N  which satisfies

CHAPTER 1. INTRODUCTION 4

r,(T) = z;(N) ?

Observe that if equality holds, then a p-center of T  is also a p-center of N. If 
the existence of such an optimal tree is proved, the next question is whether 
or not such a tree can be found in polynomial time. If this is the case, the 
absolute p-center problem can be efficiently solved by identifying the optimal
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tree T  and solving the problem on T, meaning that V  = AiV. Therefore, to find 
an optimal tree (if exists) in polynomial time must be as hard as the absolute 
p-center problem itself. However, if the existence of an optimal tree T  is known 
for a particular network N  and some properties of T  can be identified, these 
properties might be used to eliminate some of the spanning trees of N  and 
to search T  in the remaining set. Even if the remaining set does not contain 
a polynomial number of spanning trees, a search on a polynomial size subset 
of the remaining set (that is expected to contain trees similar to T) might be 
worth considering.

In this study, the answers to the above questions are investigated. First, 
the existence of such an optimal tree, for an arbitrary cyclic network N, is 
proved. Note that such a tree cannot be found in polynomial time simply by 
enumerating all the spanning trees of N,  since the number of these trees is not 
generally polynomial in n. Next, two types of spanning trees are introduced in 
order to limit the search for the optimal tree. These types of trees are, then, 
experimentally tested on random cyclic networks, to see whether they contain 
the optimal tree or not. Also, some properties of the optimal tree (that help to 
identify its edges) are discussed and some special cases for which the optimal 
tree can be identified in polynomial time are given.

The organization of the thesis is as follows : in Chapter 2, a literature 
review regarding the absolute p-center problem and some of its versions is 
given and the algorithms that are implemented in the experimental part of 
this study are discussed. In Chapter 3, the spanning tree approach to the 
problem is described. In Chapter 4, an experimental study on the two types of 
spanning trees introduced in Chapter 3 is carried and the results are discussed. 
Finally, Chapter 5 is the conclusion of the study where, also, the future work 

is discussed.



Chapter 2

The Literature R eview  and T he
A lgorithm s

2.1 T he L iteratu re  R ev iew

The absolute p-center problem is one of the fundamental problems in the net
work location theory. Different versions of the problem may be identified with 
respect to being weighted or unweighted, absolute or vertex-restricted, or being 
continuous. For this reason, the related literature will be grouped and reviewed 
under the following major categories :

• Absolute/Vertex Restricted 1-Center Problem

• Absolute/Vertex Restricted p-Center Problem, p > 1

• Heuristics

Tansel, Francis and Lowe 1983 [35] provide a survey on the literature regard
ing network location problems. The above outline is similar to theirs in the 
classification of different versions of the problem except the exclusion of the 
p-median problem and the additional review of heuristics.
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2.1.1 A bsolu te/V ertex  R estricted 1-C enter Problem

The weighted absolute 1-center problem was first defined and solved by Hakimi 
1964 [12]. In his study, he looks at the function

//v(A’Ar) = .max w,· · Z)/v(u,·, A/v)t=l,...,n

on each edge of the network, finds the local minimum center, and selects the 
best among all such 0{\E\) points as the absolute 1-center. His method requires 
a computational effort of 0{\E\ · · logn) (as shown by Hakimi, Schmeichel
and Pierce 1978 [14]) which becomes 0{\E\ ■ n ■ logn) for the unweighted case. 
Kariv and Hakimi 1979 [25] provide a refinement to this procedure and propose 
0(|£'j-ndogn) and 0{\E\-n) algorithms for the weighted and unweighted cases, 
respectively. Minieka 1981 [30] gives an O(n^) algorithm for the unweighted 
case.

Minieka 1980 [30] considers the “conditional” 1-center problem, where new 
facilities are located not only with respect to the existing facilities but with 
respect to themselves as well. He shows that this conditional problem can be 
reduced to an unconditional one.

Hooker 1986 [20] gives an algorithm that solves the version of the problem 
with a nonlinear convex cost function. He provides a unified approach to all 
versions of the problem for which particular solution procedures already exist. 
The procedure is based on solving convex subproblems on what Hooker calls 
‘treelike segments’. He uses the findings of Bearing, Francis and Lowe 1976 [6] 
and proposes a reasonably efficient algorithm.

The above procedures are devised for general networks, and also applicable 
to tree networks. However, when the network is a tree, which is a simpler 
structure, there are more efficient methods. Handler 1973 [15] proposes an 
0{n) algorithm for the unweighted case. His method is based on locating the 
1-center at the midpoint of any longest path of N. For the weighted case in 
general. Bearing and Francis 1974 [5] show that zl{N) is bounded below by
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^max = max /?,, wherel<z<j<n

^ _  dN{vi,Vj)
Pij — X I j_

Wi ' Ulj

Further, they show that this lower bound is always realized for tree networks. 
In this case, Zi{N) is equal to /lat for some vertices G V  and the 1-center 
is located uniquely on the path joining these two ‘critical’ vertices. Hakimi, 
Schmeichel and Pierce 1978 [14] reduce the computational effort for computing 
Anax· Related to this, Kariv and Hakimi 1979 [2.5] propose an 0{n ■ logn) 
algorithm for solving the absolute 1-center problem on a tree.

Bearing 1977 [4] and Francis 1977 [9] provide a similar bound for the nonlin
ear version. Shier and Bearing 1983 [33] suggest some necessary and sufficient 
conditions for the local optimum of the problem, for the same version. Further, 
they unify the known results for tree networks to a single procedure.

The research on the vertex restricted l-center problem goes as early as 
1869. Jordan 1869 [24] refers to this problem as a graph theoretic problem. 
Hakimi 1964 [12] gives an O(n^) algorithm based on Jordan’s findings. How
ever, Hedetniemi, Cockayne and Hedetniemi 1981 [18] propose 0{n) algorithms 
for the unweighted version, which are the most efficient ones to date.

For the weighted version, Rosenthal, Hersey, Pino and Coulter [32] present 
a generalized algorithm that solves a number of problems on trees one of which 
is the Tcenter problem.

The versions of the l-center problem are well-studied and there exist very 
efficient algorithms for this class of problems. More recent research on absolute 
p-center problem is mostly focused on exploring more general versions like the 
weighted absolute p-center problem with p > 1. There are also heuristics 
available in the literature. These will be discussed in the following two sections.



2.1.2 A b solute/V ertex  R estricted p-Center Problem ,

p >  1

The absolute p-center problem was first formulated by Hakimi 1965 [13]. The 
solution procedures proposed by Hakimi basically rely on solving a sequence 
of set covering problems.

The set covering problem and the covering problem are closely related with 
the p-center problem. The set covering problem is the following : Let A be 
an m X n matrix of zeros and ones. The matrix A is such that whenever 
a,j = 1 for some 1 < i < m and 1 < j  < n, a demand point of row i is 
covered by the supply point of column j. The objective is to select a minimum 
number of columns so that each row is covered by at least one column. The 
covering problem C{z) is similar to this problem. The objective is to locate 
the minimum number of centers on a network N, so that W{ · X n ) < z
is satisfied for all vertices u, € V, i.e. each vertex u,· is covered by a center 
within a distance of zjwi. If the minimum value to the covering problem C{z) 
is denoted by 7i*{z), then z*{N) satisfies

n*{z'l(N)) < p and n*{z) > p for all 2 < z*{N).

CHAPTER 2. LITERATURE REVIEW AND ALGORITHMS 9

The covering problem can be solved by solving an associated set covering 
problem. And most of the solution procedures for solving the absolute p-center 
problem rely on solving a sequence of covering problems. However, both the set 
covering and covering problems are known to be V'P-Hard (Kariv and Hakimi 
1979 [25]). Still, there exist finite algorithms for solving the absolute p-center 
problem.

For the unweighted case, Minieka 1970 [28] shows that the absolute p-center 
is restricted to the set P = P' U V where the set P' contains those points 
X (intersection points) such that djw{vi,x) — d;<f{vj,x) is satisfied for some 
distinct Vi, Vj € F  on some edge e. The procedure proposed by Minieka is then 
based on solving a finite number of set covering problems. Garfinkel, Neebe 
and Rao 1977 [11] provide some reduction rules in the number of columns and
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Handler 1979 [17] proposes similar rules for reduction in both the number of 
rows and columns.

For the weighted case, Christofides and Viola 1971 [3] suggest a solution 
procedure that solves a sequence of covering problems where, also, the solutions 
for n — 1, n — 2, . . .  ,p -f 1 centers are obtained. Kariv and Hakimi 1979 [25] 
show the A/”'P-Hardness of the weighted absolute p-center problem, where they 
suggest a finite procedure of 0{\EY  · (n^^“^)(log n)/(p — 1)1). The complexity 
is reduced to 0 {\E\^{'n?^~^)j{p — 1)!) for the unweighted case.

One important information about the p-center problem is that of finding 
an approximate solution to either the vertex restricted or the absolute version 
whose value is within 100% or 50% of z"^{N) is AfV-Haxd (Hsu and Nemhauser 
1979 [22]). This means that the discovery of any polynomial heuristic that 
provides a worst-case bound of 8 times optimal value, <5 < 2, will lead to 
■p = AfV. Hence, the best polynomial heuristic turns out to give 2 times 
optimal in the worst case (assuming V ^  AfV). In fact, such a heuristic exists 
and will be discussed in the following section.

For the vertex restricted p-center problem, Toregas, Swain, ReVelle and 
Bergman 1971 [38] propose a solution procedure again based on solving a se
quence of covering problems. Hooker 1989 [21] gives an algorithm that solves 
the multi-facility nonlinear problem efficiently for small p but admits higher 
values of p when some facilities are fixed beforehand.

Since the problem is A/’P-Hard, there only exist finite algorithms some of 
which perform well on large scale problems. However, when the underlying 
network is a tree, polynomial-time algorithms for the problem exist.

Handler 1978 [16] considers a special case of the absolute p-center problem, 
for p = 2, and proposes two 0{n) algorithms. His method is based on splitting 
the tree into two at an absolute 1-center and then solving 1-center on each part. 
Kariv and Hakimi 1979 [25] describe an 0(n^ · logn) algorithm. They show 
that z*{N) is one of the /3ij values (see Section 2.1.1) and solve the p-center 
problem by identifying all such values and performing a binary search on this
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set of values. For each value picked, the covering problem is solved in 0{n) 
time.

Tansel, Francis, Lowe and Chen 1982 [37] discuss the nonlinear p-center 
problem which also includes distance constraints that impose upper bounds on 
Df^{vi, X n ) ,Vvi € V.

Chandrasekaran and Daughety 1981 [1] describe a method for solving the 
continuous p-center problem. They suggest an 0{n) algorithm for solving the 
related covering problem and then an 0 {{n · logp)^) algorithm that solves the 
continuous p-center problem. Chandrasekaran and Tamir 1980 [2] propose a 
different method that uses the concept of intersection graph. The intersection 
graph contains those edges (u,, Uj) with u,, Uj G V, such that v,· and vj can 
both be covered by a single center within a distance of z/wi and zjwj., respec
tively. A clique cover found on this intersection graph provides a solution to 
the problem C{z). This procedure is polynomial in n and p. For the same prob
lem, Tamir 1985 [34] shows that the p-radius is a rational number p i/p2 where 
p, = 0 {n^ logd-fn® logp) with d being the sum of edge lengths and uses this re
sult to develop a finite algorithm. Megiddo, Tamir, Zemel and Chandrasekaran 
1981 [27] give an 0 {n · log  ̂n) algorithm to find the ^-th longest path in a tree 
and using this algorithm, they develop an 0 (?i-min(p-log^ n, n-logp)) algorithm 
for the continuous p-center problem.

2.1.3 H euristics

The A/’P-Hardness of the absolute p-center problem is proved by Kariv and 
Hakimi 1979 [25], by reducing the covering problem (whose A7'P-Hardness they 
also prove) to the absolute p-center problem. Consequently, some research has 
been made on finding approximate solutions to the problem, i.e. developing 
heuristics. Dyer and Frieze 1985 [7] suggest one for the vertex restricted version, 
which has a computational effort 0{np) and a worst-case bound of min(3, 1 + a) 
times z*{N) where a  = max. ry,/min. tu,. The procedure starts with locating 
the first center at the vertex with the maximum weight and carries on locating.
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at each iteration, a center at the vertex that has the maximum current weighted 
distance (among all the vertices) to its nearest center.

Hochbaum and Shmoys 1985 [19] propose an algorithm that gives approxi
mate solutions to the vertex restricted p-center problem that are no more than 
twice the optimal solution. Their algorithm assumes the triangular inequality 
on edge lengths, i.e. |e,j| < |e,jt| -f- |ejtj| for all triple, Vi,Vj,Vk G V. The pro
cedure uses the concepts of square of a graph and the dominating set problem. 
The dominating set problem is analogous to the covering problem for the ver
tex restricted case. The algorithm basically identifies a dominating set on the 
square of N  which is shown to give an objective function value no more than 
twice the z*{N). The algorithm is 0{\E\ · log |E|).

For the vertex restricted case, Martinich 1988 [26] propose two algorithms 
of computational complexity 0(\E\-\og ]jF|) and 0{\E\^). He proves that both 
of the algorithms converge to optimum for special cases and perform very well 
for relatively large values of p/n.

The best heuristic in terms of the worst-case bound is given by Plesnik 1987 
[31]. He generalizes Hochbaum and Shmoys’ algorithm to the absolute p-center 
problem with a polynomial time algorithm. The algorithm is the best possible 
one because due to Hsu and Nernhauser 1979 [22], finding an approximate 
solution to the problem within less than 100% times optimal is A/’'P-Hard.

2.2 T h e A lgorith m s

In this section, the algorithms that are used in the experimental part of the 
study are discussed. Since the problem is A/’P-Hard on cyclic networks, the 
corresponding algorithm is therefore not polynomial. Both algorithms rely on 
solving a sequence of covering problems, hence the covering problem has to be 
introduced before presenting the algorithms for the absolute p-center problem. 
Here is the formulation of the covering problem C{z), defined on N  with the
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same assumptions A1-A6 stated in Chapter 1 :

n*(z) = minlX/^fl 

s.t.

Wi-DN{vi,XN) < z (z = l , . . . , n ) (2.1)

In the covering problem, we want to locate a minimum number of centers on N  
such that for every vertex u,·, f = 1, . . . ,  n, a center is located within a distance 
of z/wi units, for fixed z. The relationship between this problem and the 
p-center problem is quite straightforward : z*[N) satisfies

n*(z*(A'’)) < p and n*{z) > p for all z < z*{N)

That is, we cannot reduce z*{N) anymore unless we are allowed to locate 
additional center(s).

The covering problem is A/”’P-Hard on cyclic networks and polynomial time 
solvable on tree networks (Kariv and Hakimi 1979 [25]). These authors suggest 
an 0{n) algorithm for the tree case. The cyclic case can be solved in

O
\E\-n^

= 0
'\E\P-n‘̂p'

(2.2)

time by solving an associated set covering problem with an 0(\E\ · n^) number 
of columns, once all the intersection points of N  are computed (see Section 2.2.1 
for the definition of an intersection point).

2.2.1 On a C yclic Network

Most of the algorithms for solving the absolute p-center problem on cyclic 
networks rely on solving a sequence of covering problems. In this study, for 
the purpose of solving the problem in the experimental part, the combination 
of the algorithm by Minieka 1970 [28] and the findings of Kariv and Hakimi 

1979 [25] is used.
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Kariv and Hakimi show that the optimal p-center is restricted to some set 
P = P' U V. This is an extension of the results of Minieka 1970 [28] where 
he showed the same thing for the unweighted case. The set P' contains those 
points X € e,j for some edge e,j € E, such that there exist two distinct vertices 
Vp, Vq ^ V that satisfy

Wp · dj\/{Vp, x) = Wq ■ d!\f{Vq, x) (2.3)

To explain the idea more clearly, let Dij{vk,t, N) = Wk ■ di\f{vk,t) be the 
weighted distance between Vk and a varying point t on edge e,j. We plot this 
function as in Figure 2.2.1a. Observe that the slope of Dij{vk,t, N)  is equal 
to iwk.  As shown in the figure, the function can have three shapes. A (B) 
corresponds to the case where a shortest path joining Vk and t, PN(vk, t), passes 
through Vi (vj) for all t G Cij, while C corresponds to the case where Pj\/(vk,t) 
passes through Vi for t in the subedge [u,·, a] and through vj for t in the subedge 
[a, Ujj. Here, a is the unique interior point of e,j such that there are two short
est paths of equal length from a to Vk, one visiting Vi and the other visiting vj. 
That is, a is the point where di\f{vk,t) is the same regardless of which vertex 
the shortest path passes through.

Now we can define the term intersection point. An intersection point 
is a point X € Cij where two weighted distance functions Dij{vp, ·, N)  and 
Dij{vq, ·, N) intersect, one with a positive, the other with a negative slope (see 
Figure 2.2.1b). The set P' is the set of such intersection points computed for 
all pairs Vp, Vq on each edge e,j {wp, ry, > 0 is required to maintain positive and 
negative slopes). Because we require opposite signs on slopes, Vp and Vq are 
two distinct vertices that satisfy (2.3). Once an intersection point is known 
to be a candidate location for an Xj (or a p-center is known to be restricted 
to the set P' Li V), a candidate value for the p-radius z*{N) is the value of 
the functions at an intersection point, i.e. Dij{vp,x, N). In this way, we can 
compute all the candidate values as we compute all the intersection points.

The important implication of the above result is that the p-center and z*{N) 
can be the computed by performing a finite search on the set of candidate 
values. The algorithm, though not polynomial, relies on this fact. A broad
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(b)
Figure 2.1: Weighted distance functions and intersection points

scheme of the algorithm is given below (we assume the distance matrix of N  
is constructed a priori, in 0{n^) time, see Floyd’s algorithm in [10]) :

p-CENT

0. Find all the intersection points on all edges and let Z = {z i , . . . , z i }  
be the ordered (ascendingly) set of distinct weighted distance function 
values associated with the intersection points. Set ziow <— Zi,Zhigh *— zi.

1. Perform a binary search on the set Z' = {ziow, · · · ■, Zhigh}· If = 1, 
STOP, z*{N) = ziow Else, find the ‘middle’ value Zmid in Z'. Go to 
step 2.

2. Solve C{Zjjiid̂ · If n {Zfnid) ^  P, set Ẑ igh < Zmid· Else set Zlow ^
Go to step 1.

For the complexity of the algorithm. Step 0. involves computation of the 
intersection points which is 0{\E\ ■ n^) and sorting of the  ̂ values which is
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0{\E\-rP -\og{\E\-rP)). Step 1. \sO{\E\-n^). In Step 2., the covering problem 
is solved for O(log(|^| -n^)) z values where the computational effort for solving 
the covering problem is

„ { 1 3 ^ )

Hence, the complexity of the p-CENT algorithm is

o I iog(|£;| ■ n*) |£|> n2p̂

2.2.2 On a Tree Network

The p-CENT algorithm in the previous section is also applicable for tree net
works. In this case, however, the set Z  can be computed in O(n^) time. Note 
that, in the cyclic ca.se, a pair of vertices Vp,Vq 6 V can form as many inter
section points (and 2 values) as the number of distinct paths joining Vp and 
Vq (with the assumption that Wp,Wq > 0). In other words, weighted distance 
functions of Vp and Vq intersect exactly once on a particular path joining Vp and 
Vq. In the tree case, Vp and Vq can be connected by exactly one path, meaning 
that this pair can form only one intersection point on the entire network N. 
The weighted distance function value corresponding to that intersection point 
is the /3pq value defined by this pair. Once the intersection points and the cor
responding 2 values are computed, the rest of p-CENT algorithm applies as in 
the cyclic case. This time the complexity of the algorithm is polynomial since 
the covering problem in Step 2 can be solved in O(n^) time (due to Tansel, 
Francis, Lowe and Chen 1982 [37]). However, Tansel, Francis and Lowe 1990 
[36] give a reduction in this complexity, so that the covering problem on a tree 
can be solved in 0(n)  time. The total complexity of the algorithm is then 
0(n^ · log n) which comes from the sorting operation in Step 0.



C hapter 3

T he Spanning Tree Approach

3.1 T h e F undam ental T heorem

In what follows, the spanning tree approach for solving the absolute p-center 
problem on cyclic networks will be discussed. The main idea is motivated by 
the fact that, for an arbitrary network N,  there always exists a spanning tree of 
N,  called an optimal tree of N,  whose p-center is also a p-center of N  with the 
same p-radius. Actually, this result is the fundamental theorem of this section 
and will be given at the end of the section. Before that, some related concepts 
have to be discussed.

Note that, any spanning tree T = {V',E') of A is a connected subgraph 
of N  that satisfies V  — V and E' Q E  with \E'\ = |y | — 1. Further, it 
is assumed that the vertices of T  have the same weights cissociated with the 
corresponding vertices of N. This structure of the spanning trees leads to the 
following observations :

O bservation 3.1 x ,y  x ,y  ^ N.

This follows from the definition of a spanning tree : e,j ^ T  e,j G N.

17
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O bservation 3.2 Let x ,y  E T. Then dxix^y) > di\/{x,y). Further, for arbi
trary Vi and X j ,  DT(vi,XT) > DN{vi,XT).

Since N  contains all the edges of T  plus some additional edges, all the shortest 
paths on T  are also on N. Further, the additional edges of N  may create 
shorter paths on N  between x and y, which implies drix^y) > dN{x,y). For 
the latter part, note that X t is also feasible on N  (by Observation 3.1), which 
leads to

DT{vi,Xr) = min dT{vi,Xj) > min d;^{vi,Xj) = Z?7v(v,·, A r̂) 

where the inequality follows from the first part of the observation.

O bservation 3.3 Let T  be a spanning tree of N. Then, the p-radius o fT  and 
p-radius of N  satisfy

r,(T) = M X j )  > M X n ) = r,(N)

Since a p-center of T, is a feasible location set on N  ̂ we have

z;(T) = î t (Xt )

— max Wi · Dxivi, X j )vi^V
> max Wi ■ Dj\[{vi,Xx)Viev
= M X i )

> M X ' m)

= r,(N)

where the first inequality follows from Observation 3.2 and the second follows 
from the optimality of X]^ on N. In words, any spanning tree T oi N  has a 
p-radius (associated with a p-center) not less than the p-radius of N. Observe 
that an optimal tree T of TV is a spanning tree of N  that satisfies the inequality 
of Observation 3.3 as equality. The following discussion will show how such an 
optimal tree can be constructed once a p-center of N  is known.

Let = {.Tj,. . . ,  .x·*} be a p-center of N. Partition V into disjoint subsets 
Vj, iov j  — 1, . . . ,  p as follows :
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Vi — {v, € V : Dis/ivi, X ^ )  = dj\/{vi,xl)}

V2 — {t>, G KWi : DN{vi,X^)  =

V3 = {v, e V\(Vi  U V2) : DN(vi,Xh) = dN(vi,xl)}

In other words, Vj contains those vertices of V  to which center Xj is nearest. 
Note that, if more than one center is nearest to some Vj, say xl^ , . . .  ,xl^ with 
1 < ki < ■ ■ ■ < kr < p, then u,· is put into the set I4 , (i.e., ties are broken in 
favor of the smallest indexed center).

Let Tj, j — 1, . . .  ,p he a. shortest path tree rooted at xJ and span vertices 
in Vj. Tj is defined to be the union of shortest paths PN{vi,x’j) between each 
Vi € Vj and Xj, hence its existence follows from the existence of Ps{vi,x'j) for 
each Vi G Vj. However, more than one shortest path may exist between Xj 
and a particular u, and in such a case, ties between alternative shortest paths 
are broken arbitrarily. Such a rooted tree can be constructed in polynomial 
time using Dijkstra’s well-known algorithm. Notice that, all the vertices in a 
particular Vj appear in Tj. Hence, Vj is a subset of the set of vertices of Tj and 
this result is given in Observation .3.4.

O bservation 3.4 T j  contains all the vertices o f V j  but may contain some ad
ditional vertices v ^  V j .

However, in Proposition 3.2, it will be proved that Vj and the set of vertices 
of T j  are the same. Now, consider the following observation which is valid for 
each T j  :

O bservation 3.5 Let Vt be a tip vertex ofTj .  Then vt € V j .

Observe that a vertex u, G T j  can appear in T j  in only two ways : either u,· G Vj  

and, therefore, a shortest path p!^{vi,Xj) is included in the union of shortest
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paths that form Tj ; or u,· ^  Vj but u,· appears on a shortest path Pn {v, Xj ) for 
some V ^  Vi and v E Vj (A vertex u, G Vj may satisfy both of these). Note 
that, the latter is not possible for a tip vertex Vt since Vt's being on some path 
Pn {v, Xj) violates its being tip vertex on Tj. Hence, only the former is possible, 
which implies that if is a tip vertex of Tj, it must be in Vj.

Why do we need these T /s ? Recall that, our primary objective is to 
show the existence of an optimal tree of N. We will see that, there exists an 
optimal tree of N  which contains the Tj’s as subtrees. In other words, Tj’s are 
combined in some way to form the optimal tree. The following proposition has 
an important role in the construction of an optimal tree from the Tj’s.

P roposition 3.1 Tj r\Tk = 4>  ̂ j  < k < p.

Proof: Suppose Tj C\ Tk ^  <f> for some j  < k. Then, 3ur G V  such that 
Vr € Tj n Tk. There are two cases, either Vr € Vj or not.

Figure 3.1: Intersecting rooted trees

Case 1. {vr e Vj) : Vr e Vj implies Vr ^  Vk. Since Vr e Tk, Vr must lie on the 
path Pr^ivt, xl), joining some tip vertex Vt e 14 of Tk and xl  (vr cannot be the 
tip vertex itself due to Observation 3.5). Observe that,

df./{vt,xl) = dT,{vt,xl)
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=  dT^{vt,Vr) + dTi,{vr,xl) 

= dN{vt,Vr) + dN(Vr,xl) (3.1)

since PT^{vt,xl) is a shortest path between vt and xl  on N.  Now, from Vr € Vj,
we have

dN(vr,x]) < dN{vr,xl). (3.2)

(3.1) and (3.2) together imply,

dN{Vt,xl )  =  dN{Vt,Vr) +  dN{vr ,xl )

> dN{vt,Vr) + dN{Vr,Xj)

> dN{vt,X*j) (3.3)

where the last inequality follows from the triangle inequality on networks. Since 
Vt Vk and k > j ,  d]>.i{vt, xl) < dj\f{vt, Xj) must hold. But this contradicts (3.3), 
hence Tj C\Tk = (¡> for this case.

Case 2. (Ur ^  Vj) ' This case will first be proved for j  = 1, i.e. Tj C\Tk = cf> 
for all /? > J = 1. Then, we will see that the proof can be repeated for 
j  = 2,3 , . . . ,  p — 1 sequentially.

Since Vr ^  Vi, we have d^ivryXl) > DN{vr,X'lf) (by the construction of 
Vi). But since Vr G Ti, there exists a tip vertex Vg of J\ such that s ^  r and 
Vs G Vi and

dN{vs,xl) = dT^{vs,xl)

= dT^{vs,Vr) + dT^{vr,xl)

= dN{Vs,Vr) + dN{Vr,X*i)

similar to Case 1. Let / > 1 be the index such that Vr E Vi. We have.

But then.

d j ' j ( ^ V r y X \ )  ^  (^Vr^ X j \ f )  d/\ (̂ur,3^ )̂

= d;^{Vs,Vr) + dN{Vr,xl)

(3.4)

(3.5)

(3.6)

(3.7)
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>  <lN{Vg, Vr) +  X*)

> c?jv(t;„xf)

^  DN{f^si Nji )̂

(3.8)

(3.9)

which is impossible (Here, (3.6) follows from v, € Vi, (3.7) from (3.4), (3.8) 
from (3..5), and (3.9) from the triangle inequality). Hence, Ti H Tk = <;i, for 
A: > 1.

Now, we will show that the above proof of Case 2 can be repeated for 
j  = 2,3, . . . , p  — 1 sequentially. To illustrate how this happens, let j  = 2. 
Recall that we have Vr € T2 H Tk for some k > 2 (the main assumption of the 
entire proof). Further, we have Ti f) T2 = (j> from the proof of the case j  = 1. 
Since Ti n T2 = <f>, we have Vr ^  Vi (otherwise, Vr G Vi would imply Vr ^  T\. 
Note also that Vr € T2). This and the assumption of Case 2 imply Vr ^  V} for 
some / > 2. Observe that, steps (3.5)-(3.9) are still valid when xj is replaced 
with X2, which lead to a contradiction. Hence, T2 D T)t = ^ for all k > 2. The 
process can be repeated for j  = 3 ,4 ,... ,p — 1 (in that order) similarly. This 
completes the proof of Proposition 3.1.

The Tjs' being disjoint gives the following proposition :

P roposition  3.2 Let V{Tj) be the vertex set ofTj. Then, V{Tj) = Vj.

Proof: The proposition will be proved, again, for j  = \ first. Since Ti spans all 
the vertices in Vi (by construction of Ti), Vi C V{Ti). To show V̂ (T'i) C Vi, let 
Vr G V̂ (T'i)· If Vr is a tip vertex of Ti, then Vr € V\ by Observation 3.5. If Vr is 
not a tip vertex, then there exists a tip vertex Vt of T\ such that Vr € P ti (î s, x!)· 
Assume Vr ^V \ .  Then

DN{vr,X*f^) < dN{vr,x\)

Let / > 1 be the smallest index for which Tlyv(ur,Ayy) = df]{vr,x*)· Then, 
the same sequence of operations (3.6)-(3.9) can be repeated, which leads to a
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contradiction. Hence, Vr G Vi even if Vr is not a tip vertex of Ti. It follows 
that V{Ti) = Vi.

The proposition is proved for j  > 1 in a similar way to Proposition 3.1. For 
j  = 2, 1\ OT2 = <t> (from the case i  = 1) implies Vr ^  V\. Let / > 2 be the 
smallest index for which Df^{vr,X'!^) ~ dN{vr,x'i). Then (3.6)-(3.9) are valid 
and lead to a contradiction. Hence, Vr G V2 which implies V{T2) = V2. This 
can be repeated for ji = 3,4 ,. . .  ,p — 1 in that order to complete the proof.

□

Why is it important to have disjoint T/s  ? Observe that, T /s partition N  
into p disjoint subtrees each containing only the vertices in the corresponding 
Vj. This implies that they can be connected to one another using p — 1 ad
ditional edges (that are not in any of the Tj’s) to obtain a spanning tree. In 
fact that’s why the tie-breaking rule in the partitioning of V is essential for 
a correctly worked out proof. Without the rule, the T /s need not be disjoint 
in which case the subgraph of N  defined by vertex set V and the union of all 
edges in T i , . . .,Tp may contain cycles which makes it highly difficult, if not 
impossible, to work out a satisfactory proof of the existence of an optimal tree. 
The following proposition states that the final tree constructed as described 
above is actually an optimal tree of N,  that we are looking for.

Proposition 3.3 Let T  be a spanning tree of N  formed by combining Tj 
described above. Then

s as

= M X t ) = fN(x·^) =  z;(N) (3.10)

Proof: We need to show only the middle equality since the others come from 
the definitions of z*{·). Suppose we solve 1-center problem on each Tj and let 
X  = {xi,...,.Tpj be the set of the corresponding 1-centers. Note that, X  is 
feasible on T  and N. Hence, we have

h ( X T ) < M X )  (3.11)

from the optimality of .YJ on T. Furthermore, let z\{Tj) be the 1-radius
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associated with 7). Then, for each Tj, we have

z;{Tj) = max {wi-dT,{vi,Xj)} 

< max {wi-drAvi,!*)}vieVj
= max {w,· ·U| t  Vj

<

which gives

f f i X t )  < M X )  = max zi{Tj) < z*{N) = f NiX^)

We also have f f { X f )  > from Observation 3.3, which implies

M X ’t ) = / « W ) ·

This completes the proof of Proposition 3.3.
□

To summarize, the set of 1-centers, is actually a p-center on both T  and 
N. Therefore, the p-center of T  is also optimal on regardless of the edges 
used to combine T /s into T  (since T  contains T /s as subtrees). Hence, we get 
z;{ f )  = z;(N).

The following theorem, which is actually the fundamental theorem of this 
section, is the summary of all the above discussion :

T heorem  3.1 Let N  = (V,E) ® network as defined in Chapter 1, that sat
isfies the assumptions A1-A6 stated. Let T{N)  be the collection of all spanning 
trees of N  which have the same weights Wi as N. Then, there exists a spanning 
tree T  Ç.T such that

^ ;(f)  = z;(N) (3.12)

Proof: The tree T  is the optimal tree that is constructed from the Tfs  and 
(3.12) follows from Proposition 3.3.

□
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Notice that, the construction procedure described in the above discussion 
does not help to find Tj's or construct T  at all. This is because the construction 
is well-defined once we have a p-center Xjy = { i j , . . . ,  x*} as a starting point. 
Normally, this is not the case because if we knew such an X*, we would not 
need to construct all those T/s  in the first place.

The implications of Theorem 3.1 are quite important for solving the problem 
on a cyclic network. If we can, somehow, determine an optimal tree T  for Nj we 
solve the p-center problem on T  and obtain the optimal solution for the cyclic 
network. Note that, the number of all spanning trees of N  is not polynomial. 
If it were possible to reduce the search for optimal tree to a polynomial-size 
subset of T, we would be able to solve the problem on N  in polynomial time. 
Of course, this would mean V  = AiV. Hence, identifying some properties of 
the optimal tree or identifying a set of spanning trees that includes the optimal 
tree would still be a valuable effort for solving the problem. In the following 
section, two particular types of spanning trees will be introduced and their 
relation to the optimal tree will be discussed.

3.2 R o o ted  S h ortest P a th  Trees

In this section, two types of spanning trees that are suspected to include the 
optimal tree are introduced. The trees will be referred to as rooted shortest 
path trees (or shortly RSPT) in general. As the name implies, RSPTs are 
constructed by picking some point(s) of N  as root(s) and taking the collection 
of shortest paths between each vertex of N  and the root(s).

First, the concept of an antipodal needs to be defined. The antipodal of 
vertex Vk on an edge eij is the unique point a where the distance function 
d^ivkit) (between Vk and a varying point t on e,j) reaches its maximum point 
(See Figure 3.2a). Three different shapes of this distance function are labeled 
A,B and C as in the figure. Observe that, for a distance function of type A 
or B, the antipodal is at one of the endpoints of e,_,, whereas for type C, it 
is at an interior point of e,j. For later use, the antipodals associated with
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type A and B distance functions will be referred to as type-1 antipodals, where 
the antipodals associated with type C distance functions will be referred to as 
type-2 antipodals. Note that, each vertex has exactly one antipodal on each 
edge, meaning a total of 0{\E\ · n) antipodals on N.

Figure 3.2: Distance functions and antipodals

Now we can describe the shortest path trees rooted at adjacent antipodal 
segments.

3.2.1 Trees R ooted  at Adjacent A ntipodal Segm ents

Consider any adjacent pair of antipodals, oi, 02, on edge e,j and let the adjacent 
antipodal segment [oi, 02],.,· be defined as the subedge of e,j that lies between ai 
and 02- Note that, all the weighted distance functions on the segment [ai,a2]ij 
have either shape A or shape B (see Figure 3.2b). This is because the existence 
of a type-C shape on [ai,a2]tj would imply a third antipodal strictly between 
oi and 02 which violates the adjacency. As a consequence, the set of vertices 
is uniquely partitioned into two sets Va ,Vb as follows :

• Va = {v, e V : dN{vi,ai) < dyv(v.-,«2)}

• Vb = {v, e V : dN{vi,ai) > ¿N(^’¿,«2)}
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The equality case is impossible because of the strictly increasing or decreasing 
weighted distance functions on [ai,a2]ti·

The shortest path tree, T{ai,a2), rooted at the segment [01, 02],̂  is con
structed as follows. Let Pyv(v:, oi) be a shortest path on N  between u, and 
ui (if there are more than one, P;v(v,, Oi) refers to the first one encountered). 
Then,

1. Construct TU(ai) = ai)

2. Construct TB{a2) = Uu.eVs "2)

3. Define T (a i,a2) = Ta{o,i ) U TeiaT) U [ai,a2]ij.

Figure 3.3: Shortest Path Tree Rooted at an Antipodal Segment

The trees constructed have the structure as shown in Figure 3.3. Actually, 
the idea why such trees might contain the optimal tree relies on some past 
empirical evidence. For many handworked small scale examples, it turned out 
that one of these trees always gave the optimal solution to the problem on a 
cyclic network. Hence, such trees are subject to search for the optimal tree.

Observe that, although the partition (V4, Fb ) is unique, alternative shortest 
paths joining vertices and antipodals may be encountered, in steps 1 and 2 
of the above procedure. For the moment, we assume that the first shortest
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path found is picked as P(u,, ·) and put into Ta or Tb - Note that, with this 
rule for breaking ties, one RSPT is constructed for each antipodal segment. 
Hence, a total of 0{\E\ · n) spanning trees of N  is constructed (each of them 
is constructed by using Dijkstra’s O(n^) shortest path algorithm and some of 
them may be identical). The total computational effort is, therefore, 0{\E\-n^) 
which can most likely be reduced to a lower order by avoiding repetitions in 
using Dijkstra’s algorithm at neighboring segments, but that is not our point 
of focus in this thesis. The RSPTs rooted at adjacent antipodal segments will 
be referred to as A-RSPT.

The question is the following : Is the optimal tree included in the set of trees 
so constructed? To answer this question, at least empirically, an experimental 
study on random networks is designed and implemented. The p-center problem 
is solved on all the trees constructed and the best p-center is compared with 
the p-center of the network. This is the subject of the next chapter, however, 
we will say that the answer to the question is ‘not always!’.

3.2.2 Trees Rooted at Intersection Points

One alternative set of spanning trees in which the optimal tree might be 
searched, is the set of shortest path trees rooted at intersection points of N. 
The consideration of this family of spanning trees does not rely on empirical 
evidence as in the case of antipodal segments, however, these trees have struc
tural similarities to the previous ones so that it might be worth considering.

The spanning trees rooted at intersection points of N  are constructed in a 
similar way to the antipodal case. This time, we do not partition V  into Va and 
Vbi but construct a single shortest path tree rooted at an intersection point of 
N  (an RSPT rooted at an intersection point will be referred as I-RSPT). This 
construction is repeated for all intersection points of N  which is 0{\E\ ■ n^) 
(0(71^) on each edge). Again, each I-RSPT is constructed in 0{ri^) time (by 
Dijkstra’s algorithm), which gives a total computational effort of 0{\E\ ■ ri )̂ 
(which may be reduced similarly). The alternative short paths are handled
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similarly. Unfortunately, our empirical results show that the optimal tree need 
not be an I-RSPT of N .

One important remark is about the existence of vertices with zero weights. 
Suppose that some of the vertices of N  have zero weights. Since a zero-weight 
vertex is not included in the computation of intersection points, N  has fewer 
intersection points compared to the case that no vertex has zero weight. How
ever, as long as the number of intersection points is 0{\E\ · n^), the existence 
of zero-weight vertices reduces only the number of I-RSPTs constructed, not 
the order.

3.3 T he O ptim al Tree

The proof of Theorem 3.1 suggests that the optimal tree is composed of p 
shortest path trees (T,’s) rooted at optimal centers of the network N. Let us 
call the edges that appear on these trees critical edges. All the other edges that 
do not appear on 7}’s but might be used to combine T j ' s  will be referred to as 
non-critical edges. Note that if there are alternative shortest paths in Tj’s or 
more than one optimal solution to the problem, there may be other optimal 
trees as well. Whether an edge switches from being critical to non-critical (or 
vice versa) with respect to different optimal trees is an open question and not 
studied in this thesis. But if we can identify as many non-critical edges as 
possible, the network that remains after deleting such edges still contains each 
T j  as a subgraph and hence, a p-center of original N  is still contained in the 
remaining N. In this case, we have the opportunity of working with a simpler 
network whose edges are all candidates for the edges of an optimal tree of N.

Is there a way to identify critical or non-critical edges? The answer to this 
question cannot be given easily for the absolute p-center problem. However, if 
we fix a value of z, we can partially identify non-critical edges for the associated 
covering problem, C(z).

First, note that an edge eij on a tree Tk is the only path on Tk (actually a
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shortest one on N,  by Assumption A4 of Chapter 1) between u,· and Vj. Hence, 
these two vertices can best be covered by locating the 1-center of (ignoring 
all the other vertices) at the point on e,j where the weighted distance functions 
of the two vertices intersect. Note that, this is the point which is

far from Vi and

W j

Wi ■

'«Jl
Wi -b Wj

|e.il
Wi  -f Wj

far from Vj (if this point is slightly perturbed, the weighted distance function 
value of one of the vertices definitely increases because of the positive and 
negative slopes). And the value of the weighted distance functions of both 
vertices at the intersection point will be

dN{Vi,Vj)
W i W j

'«Jl
Wi  -j- W j

Wi  W j

Suppose we solve the covering problem C { z )  for fixed 2. Then, a necessary 
condition for Vi and Vj to be on the same tree Tk (or in the same partition 14) 
is

, , s ^ 1 1
d N [ V i ,  V j )  < —  +  ---  =  2 · (— -f --- )

Wi  W j Wi  W i

and equivalently,
d N { V i , V j )  ^  ^
_L ^ j_ =  Pi j  <  ^ (3.13)
Wi Wi

Consider Figure 3.4. The shaded regions correspond to the distances within 
which a center must be located. In (b) and (c), any single center located in 
the intersection of regions will cover both vertices. However, in (a), the two 
regions do not overlap since (3.13) is not satisfied. Hence, the two vertices 
cannot be covered with a single center, even on the shortest path joining them. 
This implies that u,· and Vj cannot be in the same partition, i.e. the edge e,j 
cannot appear on any of the T j ' s .

Obviously, Wi,iOj > 0 is required so that (3.13) can be well defined. 
Hence, the necessary condition is applicable for only the vertex pairs Vi,Vj
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(a)

(b)

(c)

z /  w¡

z/W|

Figure 3.4: Covering two vertices with a single center

with Wi,Wj > 0 and e,j € E. Actually, if to,· =  0 for some i, then we do not 
need to consider covering u, and any other vertex by the same center (i.e. put 
them in the same partition), because does not even need to be covered (since 
it is not a real demand point).

This approach provides a method for eliminating some non-critical edges. 
Compute I3ij for all pairs u, , Vj and sort descendingly (even include the repeating 
ones). Let ^max > · · ■ > /̂ 2 > /̂ 1 be the sorted values. Find index r such that 
¡3i > 2, Vf > r. Now consider = /?,(, for i > r. If (u,,Ut) G E, then by the 
argument above, it is a non-critical edge and satisfies

est =  (vs,vt) ^ Tj,'^j =  l , . . . , p

Hence, e¡t can be deleted from N  without affecting n*{z), the optimal solution 
to C{z) (since the structure of T /s remains unchanged with the deletion of a 
non-critical edge). The process is repeated for each Ai that satisfies A'i > ■2̂·

The above procedure is for eliminating some of the non-critical edges of N  
(with respect to z). However, if 2: > ¡3max̂  there are no such edges. Another 
problem is when (u,, Uj) 0 E  even if ¡3ij > z exists. In this case, the problem 
C{z) is irreducible and we cannot identify any non-critical edges. But usually 
(for p > 1) there exist Aj > •2̂· For relatively large p, it is almost guaranteed 
to find such ¡3 values. The procedure can be used to increase the efficiency of
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the p-CENT algorithm by solving the covering problem on a simpler network.

Note that, the procedure assumes a fixed z. This means that, if the 
p-radius itself or an upper bound to p-radius is known, it is an easy task 
to identify some non-critical edges (if they exist). To obtain an upper bound 
on p-radius, we may construct all the A-RSPTs and I-RSPTs of the network 
N,  solve the absolute p-center problem on each and pick the best p-radius as 
the upper bound.

3.3.1 Two Special Cases

For a general cyclic network, it may be quite difficult to find the optimal tree 
in an efficient way. The following special cases, which are more general than 
a tree network, are the cases where we can construct a polynomial number of 
spanning trees one of which, we know, is the optimal tree.

T he Sim ple Cycle

The simple cycle is illustrated by the 8-vertex numerical example in Fig
ure 3.5.a. It is a single n-vertex cycle, nothing else. As one may guess, this 
network is the most trivial after the tree network with respect to edge struc
ture (it may be made even more trivial by assigning unit edge lengths and 
weights). Observe that, this n-vertex simple cycle has n spanning trees formed 
by deleting its edges one at a time. Hence, to find a p-center, we construct 
these n spanning trees by enumerating all edge deletions, solve the problem on 
each (in a total of 0{7i · ‘n? · log n) time) and take the best p-radius (notice that 
each zero-weight vertex decreases by 1 the total number of trees that have to 

be considered).

The above discussion is still valid when the simple cycle is generalized 
further by adding edges that do not introduce a second cycle (see Figure 3.5.b). 
Still, there are n spanning trees formed by deleting its edges one at a time. 
Hence, in order to find a p-center of A, again we enumerate all edge deletions
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(a)

Figure 3.5: The simple cycle

to construct n spanning trees, solve the problem on each and take the best 
7>radius.

T he C actus-type N etw ork

The cactus-type network, or simply cactus, is a one-step further generalization 
of the simple cycle. It contains W  cycles which do not pairwise intersect at 
more than one vertex. More formally, cactus is the network where each edge 
cannot appear in more than one cycle (see Figure 3.6).

In the figure, big circles actually represent the cycles. Let the cycles be de
noted by (71,(72, . . . ,  Cw and the number of edges they contain be denoted by 
ni, «2, · · ·) respectively. Obviously, there are ni · n.2 ■ ■ ■ nw spanning trees 
possible (all the combinations of deleting one edge from each cycle). Note that, 
there may be 0{n) cycles at most and each cycle may contain one additional 
edge (compared to a tree). Hence the total number of edges of the cactus is 
still 0{n). This implies that W  and each n, cannot be 0{n) at the same time 
(otherwise \E\ would be 0{rP)). Hence, if we denote the average number of 
edges per cycle by h, we have W -h  ^  \E\ ~  0{n). Note that the number of all 
spanning trees of the cactus is expressed by 5 = 7?i •112· ■ ■ nw for which iii
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is at most n (if there are no vertices outside the cycles and each vertex belong 
to exactly one cycle). From a well-known mathematical result, S  gets its max
imum value when rxi = U2 = · · · = nw = Then we have S  = ( ^ ) ^ ·  Note 
that, the first derivative of the expression with respect to W  is never zero, so 
that we can find a W* for which S is maximized when n is fixed. Furthermore, 
it is not possible to find a positive integer k such that S  < C · P(n^) where 
C is a positive constant and P(n'^) is a polynomial function in n of degree k. 
Hence, the number of all spanning trees of a cactus-network is not polynomial. 
For this reason, we need other techniques to identify the optimal tree, rather 
than polynomially solving all the trees.

It turns out that for the case p = 2, a polynomial number of spanning trees 
of a cactus include the optimal tree. In this case, the vertices are partitioned 
into two as Vi and V2 associated with trees Ti and T’2. This bipartitioning 
implies that no two cycles can contain vertices from both VI and V2 (otherwise 
7i and T2 would have to use the same single path joining two cycles in order to 
be connected, which means Ti DT2 7̂  (̂ ). Hence, all the vertices in a particular 
cycle (with at most one exceptional cycle) must belong to either Vi or V2· We 
will refer to such a cycle as a homogeneous cycle.

Consider Figure 3.7. Let the inter-cycle path between two cycles C, and 
Cj be denoted by Pij. Note that, this is the unique path on the cactus that 
connects Ci and Cj. Then, a gate gi{Ck) of a cycle Ck is defined as the unique
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vertex Vs that satisfies € C* D Pkt for some cycle (7/, with k ^  1. Let the 
degree of a cycle (7,· be defined to be the number of gates of Ci and be denoted 
by 8i (analogous to the case on a simple graph). Further, let the inside of a 
cycle be identified as the cycle itself plus all those edges that are branching 
out of the cycle at the vertices that are not gates of that cycle (as shown for 
the top-left cycle in the figure). Note that, the inside of a cycle cannot contain 
any edge of an inter-cycle path (except the endpoint of the inter-cycle path 
that intersects with the cycle at a gate) or the edges inside of other cycles. 
The remaining part of the cactus with respect to a cycle is the outside of that 
cycle. With these definitions, the homogeneity of a cycle has to be extended 
to include all the vertices inside of a cycle.

Suppose both x\ and X2 are outside of all of the cycles, i.e. they are both 
located on inter-cycle paths (which is the case in the figure). At this point, we 
are interested in identifying the edge(s) that should be removed from each cycle 
(the non-critical edges) so that we can construct the optimal tree. When a cycle 
is homogeneous, then there is only one non-critical edge on that cycle that has 
to be removed. For example, the cycle C\ in the figure is a homogeneous cycle 
and all the vertices inside of Ci belong to Vi (since is strictly nearer than 
X2). Therefore, there is only one non-critical edge on this cycle. Observe that, 
this edge is determined by the gate g2{Ci), namely the edge that contains the 
type-2 antipodal of g2{Ci). If the antipodal is on top of a vertex, then there



CHAPTER 3. THE SPANNING TREE APPROACH 36

are two alternatives for the non-critical edge in either direction. We can select 
either of them as the non-critical edge on this cycle, without destroying the 
properties of Ty. This implies that, for a homogeneous cycle, the non-critical 
edge on that cycle can deterministically be identified.

What happens when a cycle is not homogeneous (recall that at most one 
cycle can have this property). A cycle Cj’s being not homogeneous implies that 
some of the vertices inside of Cj are in Vi and the remaining are in V2 (e.g. 
the cycle C2 in the figure). This cycle has actually two non-critical edges to 
be removed, but for the purposes of constructing the optimal tree, we will be 
interested in identifying and removing only one of them (if both are removed, 
the cactus becomes disconnected). Observe that, it is not sufficient to know 
only the inter-cycle path on which x\ and X2 are fixed, in order to identify the 
cycle that is not homogeneous. We have to know the exact locations of xi and 
X2 to decide whether a cycle is homogeneous or not. However, if a homogeneous 
cycle exists, it must be on the way along some path joining xi and X2. So, for 
X\ and X2 fixed on some pair of inter-cycle paths, we would like to enumerate 
all the cycles along such a path, which is 0(n). We still have to identify a 
non-critical edge on a cycle that is not homogeneous, but again this is not 
deterministically possible if the exact locations of Xi and X2 are not known. 
So, for a cycle considered as not homogeneous, we would like to enumerate all 
edge deletions on this cycle (0(n)). This implies that, once xi and X2 are fixed 
on inter-cycle path(s) (there are 0{W^) of such path combinations), we need 
to construct 0(rP) spanning trees, which makes a total of 0{W^ · n^), for the 
case Xi and X2 restricted to inter-cycle paths. Since W  ~  0{n), it becomes 

0 (n‘*).

The other case is when x\ and X2 are restricted to inside of cycles. To 
analyze this case, let C\ and C2 be those two cycles, respectively, inside of which 
.Ti and X2 are located. There are 0{W^) combinations of C\ and C2· Observe 
that, the gates of Ci {C2) do not necessarily determine the non-critical edges on 
C\ (C2) anymore. Since we do not know the exact location of a;i (X2), we would 
like to enumerate all edge deletions for Ci (C2) (which is 0(n^)). Furthermore, 
there may be a cycle Ck (other than these two) which is not homogeneous.
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and it is not possible to deterministically identify this cycle and one of its non- 
critical edges, as in the previous case. So again we enumerate all the cycles 
along some path joining Ci and C^ and on each cycle considered, enumerate 
all the edge deletions. Hence, we have to construct 0{W^  · n*) spanning trees 
for this case (which dominates the order of previous case), which means that, 
for the case p = 2, we need to enumerate 0 (n®) trees (since w ~  0{n)) which 
will be guaranteed to contain the optimal tree.

One final remark will be for the p = 2 case on general networks. There 
is some empirical evidence which supports the idea that an optimal tree of 
N  is an A-RSPT. Although not proved theoretically, the evidence is that an 
adjacent antipodal segment on some edge of N  partitions V" into two sets Va 
and Vb exactly in the same way a 2-center of N  does. This means that solving 
the 1-center problem separately on Ta and Tb of Figure 3.3 is equivalent to 
solving 2-center on N. The following conjecture states this idea :

C onjecture  3.1 There exists a pair of adjacent antipodals 01, 02, located on 
some edge eij of N, such that one of th e shortest path trees rooted at the segment 
[oi,02],j, r ( o i ,02), satisfies 22(T (o i,02)) = z^iN).



C hapter 4

T he E xperim ental S tudy

4.1 T h e  D es ig n

The concept of an optimal tree brings a number of questions regarding how to 
find the p-center of a network N.  One of the aspects of the optimal tree that 
is considered in this study is the matter of identifying a set of spanning trees 
in which the optimal tree is included.

In this chapter, an experimental study on two sets of spanning trees (which 
are suspected to contain the optimal tree) is presented and discussed. These 
are the .sets of A-RSPTs and TRSPTs that are introduced and described in 
Section 3.2.1 and Section 3.2.2, respectively. The construction of these trees 
are based on the procedures given in these sections.

The experimental study is carried on random cyclic networks. The following 
modules were coded (in C language) in order to be used in the study : •

• NETGEN : Generates random cyclic networks.

• I POINTS : Computes all the intersection points of the input network.

• ZFIND : Extracts all 2: values from intersection points.

38
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• COVER

• AROOT

• IROOT

• AROOTE,

: Solves C(z) on an input network for an input z value. 

: Constructs A-RSPTs of an input network 

: Constructs I-RSPTs of an input network.

IROOTE : Exhaustive versions of the modules AROOT and IROOT. 

• PTPOL : Solves p-center problem on a range of trees constructed.

The random cyclic networks that are tested in the study are all generated 
by the NETGEN module according to the following factors and their associated 
levels :

n : Number of vertices, n G {10,20,30,40}.

n
Edge density, the ratio (in percent) \E\/ j  ̂ ), d € {25,50,75}.

w : Vertex weights, uniform from set {1,2,3}, or unweighted.

/ : Edge lengths, uniform from set {1,2,3,4,5}.

p : number of centers, p € {  {n/4j, n/2, }3n/4]}.

Observe that parameter n gives 4 levels; parameter d, 3 levels; parameter 
'w, 2 levels (weighted and unweighted) and parameter p, 3 levels. Hence, a 
total of 72 factor settings are generated. For each case, 10 random instances 
are generated which makes a total of 720 instances. The NETGEN module 
generates an instance of a random network (independent from p) as follows : 
it takes n,d  and tu status (weighted or unweighted) as input and starts with 
an empty network (n vertices, but no edges). It continues to generate random 

edges until a total number of

d
100

n
2

(4.1)
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edges are generated. Note that, this number of edges guarantees a d%-density 
network, but does not guarantee connectedness. Hence, if the network is not 
connected, NETGEN proceeds with generating additional random edges until 
the network becomes connected. In the second stage of the process, NETGEN 
deletes random edges from the network (without destroying the connectedness) 
until the total number of edges is reduced to d% level. Finally, it randomly gen
erates vertex weights and edge lengths. It must be noted that, an unweighted 
instance is constructed by simply setting equal to 1 the weights of the cor
responding weighted instance. This is for the purpose of testing whether or 
not, the unweightedness improve the results on the corresponding instances for 
which the optimal tree could not be found. Further, all the weighted instances 
were generated with positive weights in order not to simplify the structure of 
an instance with zero weights.

The IPOINTS and ZVALUE modules compute the intersection points and 
the associated z values to be used in modules IROOT, IROOTE and COVER, 
respectively. The COVER module solves the covering problem C{z) by solving 
a sequence of set covering problems as described in Chapter 2. Then this 
module is used to solve the p-center problem on a particular instance.

The AROOT and the IROOT modules are the two basic ones of the ex
periments. AROOT and IROOT construct the A- and I-RSPTs, respectively. 
Recall that, we may encounter alternative shortest paths in constructing these 
trees, one of which must be chosen. AROOT (IROOT) constructs one tree (by 
picking one of the alternative paths) for one antipodal segment (intersection 
point) and is, therefore, polynomial. However, AROOTE (IROOTE) enumer
ates all the alternative shortest paths and constructs all the trees that are 
rooted at that segment (intersection point). Obviously, the number of trees 
generated by AROOTE or IROOTE is not polynomial. The need for exhaus
tively constructing the trees is based on the following. As mentioned earlier, 
some empirical evidence supported the idea that these rooted trees always in
cluded the optimal tree. During the experiments, it was observed that some 
instances violated this evidence. However, this might simply be because of not 
choosing the correct shortest path (in case of alternative shortest paths), not
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because the trees do not include the optimal tree. To test this, the rooted trees 
were exhaustively constructed for those instances. However, it was observed 
that, even in this case, there were instances in which the optimal tree was not 
an A- or I-RSPT. This exhaustiveness also enables the experimenter to see how 
much improvement, in the gap between tree and network p-radii, is achieved by 
introducing this additional step. Note that, since enumerating all the shortest 
paths is not polynomial, this step is computationally hard to implement for 
large problem sizes.

Finally, the PTPOL module is designed to solve the p-center problem on the 
trees generated by the modules AROOT (AROOTE) and IROOT (IROOTE). 
The module uses the p-CENT algorithm given in Chapter 2 for solving the 
problem on a number of trees, for the p values given above.

4 .2  T he R esu lts

The experiment is considered to have two stages. In the first stage, for each 
instance of a cyclic network (there are 240 of them, solved for 3 p values, which 
makes 720), only one rooted tree is constructed for each adjacent antipodal 
segment of the instance. Then, the problem is solved on both the network 
and the trees constructed and the best p-radius among the trees is compared 
with the p-radius of the network. Recall that the total number of A-RSPTs 
(I-RSPTs) is 0{\E\ ■ 71̂ ) {0{\E\ · n*)) and the p-center problem on each tree 
is solved in 0{ri^ · log 7i) time. Hence, the total complexity of the first stage 
is 0{\E\ ■ n® · logn) for A-RSPTs and 0{\E\ ■ n« · logn) for I-RSPTs. The 
second stage (the exhaustive stage) is applied to those instances for which the 
optimal tree could not be found in the set of trees tested, in the first stage (i.e., 
a gap occurred, in the first stage, between the p-radii of the network and all 
the trees constructed). In this stage, all the possible trees are constructed (by 
enumerating all the alternative shortest paths) and the rest is carried out the 

same as in the first stage.

The instances are grouped in the following four major groups so that the
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results can be analyzed with respect to different criteria.

1. Weighted vs. unweighted (W and U).

2. Sparse vs. dense (d = 25,50, 75).

3. The value of p relative to n (p = [n /4 j,n /2 , [3n/4]).

4. The problem size (n = 10,20,30,40).

The four summary tables display the results with respect to these four groups. 
All the groups except the first one, aie further split into two subgroups as 
weighted (W) and unweighted (U). The tables contain two kinds of information 
under each group and subgroup, at each stage :

(a) the percentage of instances for which the optimal tree is in the set of 
trees tested.

(b) the maximum and average gap, for the instances in a particular 
(sub)group, between the p-radii of the network and that of the best A- 
RSPT (I-RSPT) in terms of the p-radius.

The summary tables 4.1, 4.2, 4.3 and 4.4 are actually extracted from the tables 
in Appendix A,B,C and D. The notation used in the latter set of tables has to 
be defined, before explaining the details of the summary tables.

The tables in the Appendix A,B,C and D list all the instances for which the 
optimal tree could not be found in the set of A- or TRSPTs constructed and 
tested, either in the first or second stage (or both). In these tables, n, d and S  
denote the number of vertices, the edge density (in percent) and the random 
seed number, respectively, for a particular instance of network. Now, denote 
the class of A-RSPTs constructed in the first and second stages by and 

respectively, with C T ^ . Let and T'  ̂ be the best trees associated 
with each stage, for a particular instance of network N,  that satisfy
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= min z;{T)
TeTX>

If an individual instance is denoted by I, then G1(I) and G2(I) (abbreviated 
as Gl and G2 in the tables) are defined as :

Gl(7) = 100 ■ ~

G2(/) = 100

z;(N)

^;(w)

Replace indices ‘A’ with ‘I’ for the set of I-RSPTs. Note that, a nonzero entry 
in a G2 column means that the optimal tree was not an RSPT for that instance. 
A nonzero entry in a Gl column but a zero entry in the associated G2 column 
means that the optimal tree is actually an RSPT for that instance, but since 
all the ties were broken incorrectly in Stage 1, it was not possible to construct 
and solve the optimal tree in the first stage.

Now we can move to the summary tables. Let the term success refer to 
finding the optimal tree in the set of trees tested, for a particular instance. 
Similarly, the term failure refers to failure in finding the optimal tree in the set 
of trees tested. The column headings used in the summary tables are, then, 
defined as follows :

G Group number

T Explanation of a particular group.

SG Subgroups of a particular group (Weighted and Unweighted).

T #  Total number of instances in a particular (sub)group.

S R i  Success ratio in stage f, i.e. the percentage of the instances in a particular 
(sub)group for which the optimal tree Wcis found in the set of trees tested.

C S R  Cumulative success ratio after stage 2.

F R  Failure ratio, the percentage of the instances for which the optimal tree 
could not be found even after the second stage.
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MGi Maximum gap in the corresponding (sub)group of instances in stage i. 
Let J  denote a (sub)group of instances. Then, MGi {MG2) of a partic
ular (sub)group J  is defined as :

MGi = m axG l(/)
/er

AGi Average gap in the corresponding (sub)group of instances, in stage i. Let 
J  be defined similarly. Further, let |J | be the number of instances in the 
(sub)group J . Then AG\ {AG2) of 1  is defined as :

Y L i e i O mAGi =

Note that, in the summary tables, type (a) and type (b) results are displayed 
separately under the headings ‘SUCCESS/FAILURE’ and ‘GAPS’.

In the rest of this chapter and in the Appendix, the 4-tuple ( n / d f WS/ RTS)  
will be used to refer different instances of the random networks. Here, n and 
d are as defined before, WS is the weight status (either ‘W’ or ‘U’, referring 
to whether the network is weighted or unweighted) and RTS is the rooted tree 
status (either ‘A’ or ‘F, referring to the types of trees. A- or I-RSPT, that are 
constructed from the network and tested).

The edge lengths and weights of random networks were initially designed to 
take values uniformly from sets {1,2,3,4,5} and {1,2,3}, respectively. How
ever, it might be the case that these values restrict the networks that are 
tested in this study, to a narrow subset of the entire population of networks 
(because of the nariow range of values for the two parameters). This may 
result in ignoring some instances that do not conform to the results regarding 
the instances actually tested. To avoid this, the edge lengths and weights were 
allowed to take values, again uniformly, from a wider set of values, namely the 
set {1,2, . . . ,  20). Again, 240 instances of random networks, with this property, 
were generated by NETGEN and tested for three p values, as in the previous 
case. However, for this set of instances, the exhaustive construction and test
ing (Stage 2) was NOT performed. The first stage on these instances, actually, 
resulted in an improvement on the percentages of finding the optimal trees, the
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amounts of maximum and average gaps. There were no instances that gave 
gaps larger than 100% (the largest gap in the previous case) and the overall 
percentage of finding the optimal tree was better than that of the previous 
case. So, Stage 2 was not performed on this set of instances.

The following two sections discuss the results of the experiments on A- and 
TRSPTs, respectively. The related statistics with respect to four major groups 
are displayed in Tables 4.1, 4.2, 4.3 and 4.4.

4.2.1 W ith  A djacent A ntipodal Segm ents

The experiments on the A-RSPTs are performed for 240 random instances of 
cyclic networks with 3 different values of p for each, as described in the previous 
section. The major question is the following : does this set of spanning trees 
necessarily contain the optimal tree? The results of the experiment, which 
will be displayed in detail, show that the answer to this question is ‘NO’, in 
other words, the optimal tree need not be an A-RSPT. However, it turns out 
that such trees are good approximations, at least empirically, to the optimal 
tree, in terms of the p-radius of the cyclic network. Furthermore, the empirical 
evidence supports the idea that failure to find the optimal tree as an A-RSPT 
does not occur very frequently.

Tables 4.1 and 4.2 are the summary tables for experiments on A-RSPTs, 
that correspond to two groups of instances with respect to weight and edge 
length values. Let Pi denote the group where edge lengths and weights come 
from set {1,2,3,4,5} and {1,2,3}, respectively. Similarly, let P2 denote the 
group where both edge lengths and weights come from set {1, 2,3 , . . . ,  20).

With Pi (see Table 4.1), the success ratio in Stage 1 is 83.75% and the 
cumulative success ratio (CSR)  is 96.11%, for ( · / · / ·  /A), the overall set of 
instances. This means that, if all the ties were broken appropriately in stage 
1, we would have only 3.89% of the instances with failure to find the optimal 
tree. Observe that all the values S R i , S R 2,C S R  and FR  are better in the 
unweighted case compared to the weighted case, and this is true for almost
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SUCCESS/FAILURE GAPS
G T SG T # SRi S R 2 CSR FR MGi MG2 AGi AG2

ALL 720 83.75 76.06 96.11 3.89 100.0 100.0 42.7 7.8
1 W 360 81.67 75.78 95.56 4.44 77.8 33.3 24.9 4.7

U 360 85.83 76.53 96.67 3.33 100.0 100.0 64.1 11.7
2 T 240 87.92 82.78 97.92 2.08 100.0 25.0 35.6 3.4

25% W 120 87.50 80.00 97.50 2.50 77.8 11.1 28.7 1.8
u 120 88.33 85.71 98.33 1.67 100.0 25.0 43.1 5.0
T 240 83.33 67.50 94.58 5.42 100.0 100.0 42.6 10.7

50% w 120 80.83 69.57 94.17 5.83 50.0 25.0 24.4 5.9
u 120 85.83 64.71 95.00 5.00 100.0 100.0 67.1 18.2
T 240 80.00 79.17 95.83 4.17 100.0 100.0 46.5 7.9

75% w 120 76.67 78.57 95.00 5.00 50.0 33.3 25.8 5.3
u 120 83.33 80.00 96.67 3.33 100.0 100.0 76.2 11.7

3 T 240 70.00 65.27 89.58 10.42 100.0 100.0 36.1 10.4
[n/4j w 120 66.67 65.00 88.33 11.67 50.0 33.3 25.7 6.3

u 120 73.33 65.63 90.83 9.17 100.0 100.0 49.1 15.5
T 240 84.58 91.87 98.75 1.25 100.0 100.0 57.2 4.3

n/2 w 120 84.17 89,47 98.33 1.67 66.7 33.3 27.1 3.1
u 120 85.00 94.44 99.17 0.83 100.0 100.0 88.9 5.6
T 240 96.67 100.00 100.00 0.00 100.0 0.0 31.6 0.0

i3n/4l w 120 94.17 100.00 100.00 0.00 77.8 0.0 21.8 0.0
u 120 99.17 100.00 100.00 0.00 100.0 0.0 100.0 0.0

4 T 180 95.56 100.00 100.00 0.00 100.0 0.0 41.6 0.0
n = 10 w 90 94.44 100.00 100.00 0.00 77.8 0.0 31.6 0.0

u 90 96.67 100.00 100.00 0.00 100.0 0.0 58.3 0.0
T 180 86.67 83.33 97.78 2.22 100.0 33.3 29.5 4.1

n = 20 w 90 85.56 84.62 97.78 2.22 33.3 11.1 19.6 1.6
u 90 87.78 81.82 97.78 2.22 100.0 33.3 44.2 7.1
T 180 81.11 76.47 95.56 4.44 100.0 50.0 43.9 6.3

n = 30 w 90 81.11 76.47 95.56 4.44 60.0 33.3 24.2 4.3
u 90 81.11 76.47 95.56 4.44 100.0 50.0 64.2 8.3
T 180 71.67 68.63 91.11 8.89 100.0 100.0 47.1 11.6

n = 40 w 90 65.56 67.74 88.89 11.11 66.7 33.3 28.6 7.0
u 90 77.78 70.00 93.33 6.67 100.0 100.0 75.8 18.8

Table 4.1: Summary table for (·/ ·/■ /A) instances
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SUCC./FAIL. 1 GAPS
G T SG T # SRi FR 1 MGi AGi

ALL 720 87.78 12.22 1 50.0 18.0
1 W 360 88.06 11.94 30.6 13.3

U 360 87.50 12.50 50.0 22.3
2 T 240 91.25 8.75 .33.3 13.2

25% W 120 90.83 9.17 27.0 12.5
u 120 91.67 8.33 33.3 13.9
T 240 • 85.42 14.58 50.0 18.4

50% w 120 86.67 13.33 30.6 15.5
u 120 84.17 15.83 50.0 20.8
T 240 86.67 13.33 50.0 20.6

75% w 120 86.67 13.33 26.6 11.7
u 120 86.67 13.33 50.0 28.6

3 T 240 70.00 30.00 50.0 16.9
[n/4j w 120 72.50 27.50 26.6 12.4

u 120 67.50 32.50 50.0 20.7
T 240 93.75 6.25 50.0 23.3

n/2 w 120 92.50 7.50 30.6 17.1
u 120 95.00 5.00 50.0 30.3
T 240 99.58 0.42 12.5 12.5

[3n/4] w 120 99.17 0.83 12.5 12.5
u 120 100.00 0.00 — —

4 T 180 96.11 3.89 13.0 7.7
n = 10 w 90 98.89 1.11 2.9 2.9

u 90 93.33 6.67 13.0 8.6
T 180 90.56 9.44 33.3 13.4

n = 20 w 90 91.11 8.89 26.6 8.6
u 90 90.00 10.00 33.3 17.8
T 180 86.67 13.33 50.0 20.1

n = 30 w 90 87.78 12.22 25.9 15.4
u 90 85.55 14.44 50.0 23.8
T 180 77.78 22.22 50.0 20.4

n = 40 w 90 74.44 25.56 30.6 14.5
u 90 81.11 18.89 50.0 28.0

Table 4.2: Summary results for ( · / · / ·  /A)  instances with lo and / from set 
, 20}
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all of the groups and subgroups. From this viewpoint, the A-RSPTs seem to 
perform better on unweighted instances.

In general, Stage 2 was able to eliminate most of the failure instances of 
Stage 1. In terms of the maximum gaps, no gap higher than 100% was observed. 
Contrary to the success ratios, the U instances had worse (higher) maximum 
and average gaps compared to the W instances. Stage 2, although does not 
change MG, decreases AG significantly for both W and UW groups.

The results with respect to groups 2,3 and 4 are summarized as follows :

2. A general pattern is that the Stage 1 and Stage 2 success ratios decrease 
as the density increases. For the U subgroups, the success ratio is again 
generally higher compared to W subgroups. The MG does not change 
with density (always 100%), but AG increases apparently as the density 
increases. Stage 2 decreases both the failure rates and average gaps 
of Stage 1 significantly but does not improve maximum gaps except for 
d = 25%. The A-RSPTs apparently performed better on relatively sparse 
instances of networks.

3. The Stage 1 and 2 success ratios increase as p gets nearer to n or as p/n  
increases. Again, SR{ are higher for the U instances. The major problem, 
in terms of success ratios, is with p = [n/4j. In this case, SRi is quite 
below the overall average SRi.  The least improvements in maximum and 
average gaps occurred again with this case, which implies that A-RSPTs 
show relatively poor performance for this case.

4. As n increases, all the success ratios decrease and amount of maximum 
and average gaps increase. Although the A-RSPTs again perform bet
ter for the U instances, the performance significantly decreases as the 
problem size (n) increases.

With P2 (see Table 4.2). the success rate in Stage 1 is 87.78% which is better 
than the case with Pi. Since Stage 2 is not performed for this group of instances, 
FR  in this case is not comparable with FR  in the Pi case. However, a general



CHAPTER 4. THE EXPERIMENTAL STUDY 49

pattern of the results indicate that when the edge lengths and weights take 
values from a wider set, both the success ratios, maximum and average gaps 
improve. Furthermore, we observe, contrary to the Pi case, that the A-RSPTs 
perform better on W instances for most of the groups and subgroups. The 
patterns within each group, although similar to the Pi case, are summarized 
as follows :

2. The success ratio is relatively high for sparse instances in this group. 
The maximum and average gaps in overall figures increase as density 
increases, though this is slightly violated for W and U subgroups. The 
A-RSPTs seem to perform better again on relatively sparse instances of 
networks.

3. The problem in the Pi case is also observed in this group. For p = [n /4 j, 
the success ratio is quite below the overall figure and the maximum and 
average gaps are considerably large. The A-RSPTs performed poorly in 
this case. On the other hand, for p — [3n/4], the A-RSPTs contain the 
optimal tree for almost all instances in the group. Again, the performance 
of the A-RSPTs increase as p gets nearer to n.

4. The pattern is similar to the P\ case, as the problem size increases, the 
performance of the A-RSPTs (in terms of both the success ratios and 
gaps) decrease.

Observe that, in either of the cases Pi or P2, unweighted instances give 
larger maximum and average gaps than corresponding weighted instances. This 
is possibly because of the following : for the unweighted instances, a 2: value 
associated with an intersection point either has a fractional part of 0.5 or 
is integer. This is because the 2 value generated by a pair of vertices u,, Uj 
on a particular path joining them is just half the distance between u, and Vj. 

Because of this structure of z values, whenever a gap occurs between a network 
p-radius and a tree p-radius, it is a positive integer multiple of 0.5 and this may 
cause the gap to be high when the network p-radius is small in quantity (if the 
network p-radius is 0.5 and tree p-radius is the possible smallest value with a



CHAPTER 4. THE EXPERIMENTAL STUDY 50

gap, which is 1, then the gap is 100% in terms of network p-radius). In short, 
the 2 values for the unweighted instances are more discretized compared to 
those of the weighted instances. Observe from the tables in Appendix that a 
number of gap figures for unweighted instances have values 100%. However, 
for the weighted instances, the fractional parts of 2 values can theoretically be 
anything from the interval [0, 1). So, the tree p-radii can get closer to network 
p-radii for the weighted instances.

Note that, the average gaps for the group P2 are significantly smaller than 
those of the group Pi. This might be because a wider range of values for the 
weights and edge lengths produce a similar effect on the 2 values, as described 
above. That is, a wider range of values may generate a relatively more con
tinuous set of 2 values. This argument can also be used to explain why the 
success ratios are relatively high in the Pi case.

Another related observation is the following : in the Pi case, the U instances 
apparently gave better success ratios. However, in the P2 case, we observe that 
this distinction is not so strict. For a considerable number of W subgroups, 
the success ratio is higher than the U instances. This can be explained by 
a similar reasoning. Moving from Pi to P2, the 2 values corresponding to 
weighted instances become more continuous which may increase the possibility 
of finding the optimal tree. However, for the U instances, the structure of 2 

values do not change, only a number of new values are added (in practice, it 
was observed that, the number of 2 values significantly increased from Pi to 
P2). Hence, it is reasonable for the W instances to have better success ratios 
compared to Pi case and the success ratios of U instances.

Note that Stage 2 (with Pi) eliminates most of the failure instances of Stage 
1 and improves maximum and especially average gaps significantly. However, 
since this stage involves the exhaustive construction of trees and is not poly
nomial, it is computationally very expensive to perform this stage for large 
problem sizes. To a.void such a computational burden, some rules for break
ing ties among alternative shortest paths in Stage 1 would be useful in order 
to get better average or maximum gap figures. The concepts of critical and
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non-critical edges (see Section 3.3) can be used to eliminate some of the edges 
(if they exist) once an upper bound z on the p-radius of the cyclic network is 
known. The non-critical edges are identified with respect to z and whenever 
such edges appear in a tie for the alternative shortest paths, they are ignored 
and the set of edges in the tie is reduced in size. The two problems with this 
method are the following : an upper bound may not be available, and even if z 
is known, there may be no non-critical edge. The first one is relatively easy to 
overcome, the best p-radius of a particular set of spanning trees may be used 
as an upper bound, but the value of z can be still so high that no non-critical 
edge can be identified with respect to this z. To avoid this, some method to 
find a good 2 has to be known.

4.2.2 W ith  Intersection Points

The same 1440 instances (720 for Pi and 720 for P2) are used to test the I- 
RSPTs. Recall that, the maximum number of I-RSPTs that can be constructed 
is 0{\E\ · n^) where the same number of A-RSPTs is 0{\E\ · n). So the testing 
of TRSPTs requires more computational effort.

The tables 4.3 and 4.4 are the two summary tables for the testing of I- 
RSPTs with Pi and P2·, respectively. The answer to our major question is again 
‘NO’, i.e. the optimal tree need not be an I-RSPT. However, the maximum gap 
occurred in the experiment is 100% which supports the idea that these trees 
are also good approximations of the optimal tree. In general, we observe that 
the success ratios are lower and maximum and average gaps are higher with 
the I-RSPTs compared to A-RSPTs. Hence, empirical evidence imply that the 
A-RSPTs are better approximations of the optimal tree than the I-RSPTs are 

(for both the P\ and P2 instances).

With Pi (see Table 4.3), the overall success ratio is 81.94% in the first 
stage and this goes up to 93.89% after the second stage. That is, 6.11% of the 
instances ended up with failure to find the optimal tree. Note that, this figure 
is larger compared to that of the A-RSPTs (which was 3.89%). Also, the U
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SUCCESS/FAILURE GAPS
G T SG T # SRi S R 2 C SR F R MGi MG2 AGi AG2

ALL 720 81.94 66.17 93.89 6.11 100.0 100.0 43.4 9.7
1 W 360 80.28 67.60 93.61 6.39 77.8 33.3 25.8 5.6

U 360 83.61 64.42 94.17 5.83 100.0 100.0 64.6 14.6
2 T 240 86.25 66.69 95.42 4.58 100.0 25.0 34.6 5.8

25% W 120 85.83 64.71 95.00 5.00 77.8 20.0 27.3 4.2
U 120 86.67 68.75 95.83 4.17 100.0 25.0 42.4 7.5
T 240 81.67 61.38 92.92 7.08 100.0 100.0 44.6 11.1

50% W 120 80.00 66.67 93.33 6.67 66.7 25.0 26.6 5.5
u 120 83.33 55.00 92.50 7.50 100.0 100.0 66.2 17.9
T 240 77.92 69.81 93.33 6.67 100.0 100.0 48.5 10.9

75% w 120 75.00 70.00 92.50 7.50 50.0 33.3 24.7 6.5
u 120 80.83 69.57 94.17 5.83 100.0 100.0 78.6 16.7

3 T 240 67.50 53.85 85.00 15.00 100.0 100.0 36.2 13.7
[n/4j w 120 65.00 57.14 85.00 15.00 50.0 33.3 25.4 7.3

u 120 70.00 50.00 85.00 15.00 100.0 100.0 48.9 21.2
T 240 81.67 81.82 96.67 3.33 100.0 100.0 58.2 4.4

n/2 w 120 81.67 77.27 95.83 4.17 66.7 33.3 27.8 4.2
u 120 81.67 86.36 97.50 2.50 100.0 100.0 88.6 4.5
T 240 96.67 100.00 100.00 0.00 100.0 0.0 31.6 0.0

f.3n/4] w 120 94.17 100.00 100.00 0.00 77.8 0.0 21.8 0.0
u 120 99.17 100.00 100.00 0.00 100.0 0.0 100.0 0.0

4 T 180 95.00 100.00 100.00 0.00 100.0 0.0 42.0 0.0
n = 10 w 90 95.56 100.00 100.00 0.00 77.8 0.0 38.2 0.0

u 90 94.44 100.00 100.00 0.00 100.0 0.0 45.0 0.0
T ISO 85.00 58.52 93.78 6.22 100.0 50.0 33.4 9.8

71 = 20 w 90 83.33 66.67 94.44 5.56 33.3 25.0 20.5 5.2
u 90 86.67 50.00 93.33 6.67 100.0 50.0 49.6 15.6
T ISO 78.33 66.67 92.78 7.22 100.0 50.0 43.8 7.7

n = 30 w 90 77.78 65.00 92.22 7.78 50.0 33.3 24.2 5.1
u 90 78.89 68.42 93.33 6.67 100.0 50.0 64.5 10.5
T 180 69.44 63.64 88.89 11.11 100.0 100.0 48.2 12.6

n = 40 w 90 64.44 65.63 87.78 12.22 66.7 33.3 27.7 6.8
u 90 74.44 60.87 90.00 10.00 100.0 100.0 75.8 20.7

Table 4.3: Summary table for ( · /■ / ' /-^) instances
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S U C C ./FA IL. GAPS
G T SG T # SRi FR MGi AGi

A L L 720 86.67 13.33 66.7 18.2
1 W 360 86.94 13.06 30.6 12.6

U 360 86.39 13.61 66.7 23.3
2 T 240 90.83 9.17 33.3 13.6

25% W 120 90.00 10.00 27.0 11.7
u 120 91.67 8.33 33.3 15.9
T 240 84.17 15.83 50.0 18.4

50% w 120 85.83 14.17 30.6 16.0
u 120 82.50 17.50 50.0 20.4
T 240 85.00 15.00 66.7 20.7

75% w 120 85.00 15.00 26.6 10.0
u 120 85.00 15.00 66.7 31.3

3 T 240 68.33 31.67 66.7 17.1
[n/4j w 120 70.83 29.17 27.4 11.9

u 120 65.83 34.17 66.7 21.4
T 240 92.08 7.92 50.0 23.1

n/2 w 120 90.83 9.17 22.8 14.9
u 120 93.33 6.67 50.0 35.9
T 240 99.58 0.42 12.5 12.5

f3n/4l w 120 99.17 0.83 12.5 12.5
u 120 100.00 0.00 — —

4 T 180 96.11 3.89 13.0 8.6
n = 10 w 90 98.89 1.11 2.9 2.9

u 90 93.33 6.67 13.0 9.5
T 180 88.89 11.11 33.3 14.9

n = 20 w 90 91.11 8.89 26.6 8.6
u 90 86.67 13.33 33.3 19.1
T 180 85.56 14.44 33.3 18.4

n = 30 w 90 85.56 14.44 25.3 14.3
u 90 85.56 14.44 33.3 22.4
T 180 76.11 23.89 66.7 21.1

n = 40 w 90 72.22 27.78 30.6 13.4
u 90 80.00 20.00 66.7 31.9

Table 4.4: Summary results for ( · / · / ·  / / )  instances with w and I from set



CHAPTER 4. THE EXPERIMENTAL STUDY 54

instances perform better than W instances in terms of success ratios, but give 
larger maximum and average gaps than W instances do (as in the case with 
A-RSPTs). Note that, although the success ratios of stage 2 {SR2) are not as 
high as the SRi values, the second stage eliminates a significant portion of the 
failure instances of stage 1.

The general pattern within each (sub)group is quite similar to the A-RSPT 
case, and will be summarized as follows :

2. Success ratios decrease as the density increases. Maximum gaps do not 
change too much with the density but average gaps increcise as the density 
increases. U instances give better results in terms of the statistics. The 
I-RSPTs seem to perform better on relatively sparse and unweighted 
instances.

3. Success ratios significantly increase as p gets nearer to n. Maximum and 
average gaps do not change much with p. The performance of I-RSPTs 
is quite below the overall values for p = [n/4j. The U instances give 
better results also in this group. The I-RSPTs perform better on values 
of p nearer to n.

4. The performance (in terms of SRi,MGi and AGj) gets worse as the 
problem size increases. The I-RSPTs apparently give better results on U 
instances.

With /2 (see Table 4.4), the success ratio is 86.67% which is slightly less 
than the 87.78% of the corresponding A-RSPTs. The general pattern of results 
shows an improvement in terms of the success ratios and gaps, compared to 
Pi instances. We also observe that the distinction between W and U instances 
(in finding the optimal tree) is not so clear with this group of instances. We 
may explain this by the same argument in the previous section : the  ̂ values 
become more continuous when the edge lengths and weights come from a wider 
range of values.

The results within each group is summarized similarly as follows :
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2. Performance decreases as the density increases. I-RSPTs perform better 
on relatively sparse instances.

3. Performance increases as p becomes nearer to n. A significant portion 
(31.67%) of the instances fail to give the optimal tree as an I-RSPT. The 
trees perform better on relatively larger values of p.

4. Performance apparently decreases as the problem size increases.

The difference between the W and U instances in terms of the success ratios 
and gaps may be explained by the continuity of the z values. In general, the 
I-RSPTs give similar results to the A-RSPTs, but the performance of I-RSPTs 
is slightly worse than A-RSPTs. This makes us prefer to approximate the 
optimal tree by the A-RSPTs because these spanning trees are also fewer in 
quantity. In addition to this, note that stage 2 (with Pi instances) again reduces 
the number of failure instances significantly, hence breaking the ties appropri
ately in the construction phase is again an important matter of concern. The 
method with non-critical edges is also applicable with the I-RSPTs.

4.3  Sum m ary

The following is a summary of the experiment results in general :

• The optimal tree need not be an A- or I-RSPT.

• A-RSPTs are better approximations of the optimal tree than I-RSPTs 

are.

• The trees perform better on relatively sparse instances of networks.

• The trees perform better on larger values of p with respect to n.

• The performance decreases as the problem size increases.
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• Unweighted instances give better results when the weights and edge 
lengths come from a narrow range of values, but it is highly probable 
that W instances will perform better for wider range of values. •

• Making a weighted instance unweighted does not always help to find the 
optimal tree. There were some unweighted instances with failure to find 
the optimal tree even though the corresponding weighted instance gave 
a success (see Tables A..3 and A.4 for the instances (40/75/W/A) and 
(40/75/U/A) for p = n/2).



Chapter 5

Conclusion

In this thesis, a new approach to solving the absolute p-center problem on 
cyclic networks is discussed. The problem is known to be A/*P-Hard (Kariv 
and Hakimi 1979 [25]) on cyclic networks but polynomial-time solvable on 
tree networks (due to various polynomial algorithms). The new approach is 
based on identifying a spanning tree (an optimal tree) of a particular network 
under consideration, whose p-center and p-radius are also optimal to the cyclic 
network.

In Chapter 1, the absolute p-center problem is formulated. The related 
literature is discussed in Chapter 2 where, also, the solution procedures that 
are implemented in this study are given. The procedure for solving the problem 
on cyclic networks and the one for solving on tree networks are both based on 
solving a sequence of covering problems. The number of times the covering 
problem is solved is polynomial in either case, however, solving the covering 
problem itself on cyclic networks is A/’P-Hard (by Kariv and Hakimi 1979 
[25]) and polynomial on tree networks. Hence, the procedure used to solve 
the p-center problem on cyclic networks is performed in exponential time with 
time complexity 0  ^log(|£^| · n^) · and the one used for tree networks
is performed in polynomial time (0{n^ · logn)).

Chapter 3 is the core part of the thesis in that the fundamental theorem

57
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regarding the existence of an optimal tree is proved and the optimal tree is 
analyzed for properties of identification. It turns out that, such an optimal 
tree is composed of p disjoint subtrees ( T j ' s )  each of which is the subtree of the 
original network rooted at the optimal center Xj and that spans the vertices 
Vi € Vj covered by x'j (ties in ‘covering’ are broken by the smallest index of 
center).

When the network N  has a cyclic and possibly a dense edge structure, 
there is an exponential number of distinct spanning trees of N .  Hence, it is 
inefficient to construct all the spanning trees and solve the p-center problem 
on them. Instead, we may restrict the search for the optimal tree on a set of 
trees of polynomial number of elements and of some common property. Two 
types of spanning trees are introduced in Chapter 3 for this purpose : spanning 
trees rooted at (a) adjacent antipodal segments (A-RSPT) and (b) intersection 
points (I-RSPT) of N. The total number of A-RSPTs and I-RSPTs that can 
be constructed are 0{\E\ · n) and 0{\E\ ■ ri^). However, one major assumption 
here is that, alternative shortest paths may be encountered in the construction 
phase which may increase the number of trees exponentially, and to keep the 
number of trees polynomial, only one of such alternative paths is included in 
the construction.

The existence of alternative shortest paths impose another problem on the 
search for the optimal tree. We may pick a wrong path in all of the constructed 
trees, hence miss the optimal tree even if it is an A- or I-RSPT. One way to 
overcome this difficulty is to enumerate all the shortest paths and construct 
all the rooted trees. Since the number of these trees is exponential, this works 
only for small n .  Actually, this is the only way to be sure to test all the rooted 
shortest path trees.

Chapter 3 also provides a necessary condition for an edge’s being critical. 
Since, the vertices in the same partition must be covered by a single common 
center with the value € 14 for some partition 14 implies that

A. =
■ +  i

< z:{N)
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must be satisfied for the pair v,, Vj (assume Wi,wj > 0). Since there is 
no redundant edge on the network, each edge is also the shortest path be
tween its endpoints, meaning that for edge-defining pairs V{,Vj € V  (i.e., 

^ij =  G jB) with > 0, the violation of the above inequality im
plies Cij's being non-critical (e,j cannot appear on any of the 7)’s). Of course, 
this analysis requires the knowledge of z*{N) a priori, however when there is 
an upper bound for z*{N)., this may be used to eliminate some edges (without 
changing the p-center and the p-radius) from the network.

The last two sections of Chapter 3 discuss two special networks, that are 
more general than a tree, where the optimal tree can be found in a polynomial 
set of spanning trees. The first one is the simple cycle (and its generalized 
version) where the entire set of spanning trees is polynomial. The second one 
is the cactus network which is a collection of W  simple cycles that do not 
pairwise intersect at more than one vertex. For p = 2, an optimal tree of any 
cactus is shown to be included in an OivA) number of spanning trees of the 
cactus.

To see whether the optimal tree of a particular network is necessarily an A- 
or I-RSPT, an experimental study is designed and implemented, which is dis
cussed in Chapter 4. A total number of 2880 random instances of the problem 
are tested for both types and it was observed, after the exhaustive stage of the 
experiment, that the optimal tree need not be an A- or I-RSPT. However, most 
of the time, such trees were at least empirically good approximations of the 
optimal tree. The gap, in the p-radius, between the best of the trees and the 
original network N  was observed to be at most 2 times the p-radius of N. Ac
tually, the best known heuristic for the problem provides a 2-approximation on 
general networks. It was also observed that the chance of finding the optimal 
tree with the RSPTs tested is higher for the unweighted instances when the 
edge lengths and weights come from a narrow range of values. Also the trees 
perform well on relatively sparse networks. But, such trees’ failing to contain 
the optimal tree is more likely for small values of p relative to n. Although 
the RSPTs seemed to perform better in the unweighted case, they generated
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larger gaps than the weighted case and the weighted instances gave larger suc
cess ratios when the edge lengths and weights were designed to come from a 
wider range of values. However, in either case, the maximum gap was 100%. 
Another major observation was that making a failure weighted instance un
weighted did not help to find the optimal tree for some instances. And for 
some other instances, the unweighted network gave failure to find the optimal 
tree although the corresponding weighted instance did not give a failure.

The existence of an optimal tree of a particular network N  brings some other 
questions that might sketch the direction of future research on the subject. The 
problem of identifying a polynomial number of spanning trees that include the 
optimal tree still remains unsolved. In fact, this problem must be at least as 
hard as the p-center problem since solving this problem would mean solving 
the p-center problem in polynomial time. Furthermore, more properties of 
the optimal tree may be identified so that the search may be restricted on a 
narrower set of spanning trees. Some restrictions on the data of the network 
might be introduced so that this narrow set of spanning trees is reduced to a 
polynomial set. In addition, to find good rules for breaking ties that arise in 
the construction of the RSPTs is an important matter of concern. All these 
aspects imply that this approach may have an important potential for solving 
the problem more efficiently, or devising more efficient solution procedures for 
the generalization of the absolute p-center problem, like the continuous or non
linear versions.
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1 [” /4j 1 ^/2 1 [3^/4]
n d S 1 G2 1 G2 1 G2
10 25 10 1 25.0 0.0 1 1 77.8 0.0

50 08 1 5.0 0.0 1 1
75 02 25.0 0.0 1

07 1 25.0 0.0 1
20 25 02 25.0 0.0

08 11.1 0.0
10 4.2 0.0

50 03 25.0 9.4
05 25.0 0.0 12.5 0.0
08 33.3 11.1
10 12.5 0.0

75 02 20.0 0.0 33.3 0.0 1

03 20.0 0.0
09 12.5 0.0
10 20.0 0.0

30 25 01 33.3 0.0
04 .. 60.0 0.0
06 25.0 9.4

1 09 20.0 1 0.0
50 01 11.1 0.0

03 12.5 0.0
04 25.0 0.0
05 20.0 0.0
10 25.0 20.0

75 01 33.3 33.3
03 12.5 0.0
04 25.0 0.0 11.1 0.0
05 11.1 0.0
07 25.0 11.1
08 25.0 0.0
10 25.0 0.0

Table A.l: Results for (10,20,30/ · /W /A )  instances
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1 L” /4J n/2 1 i3«/41
n d S 1 G2 Gl G2 1 Gl G2
10 25 10 1 50.0 0.0 ] 100.0 0.0

75 01 1 25.0 0.0 1
20 25 03 1 25.0 0.0 1

09 20.0 20.0 50.0 0.0 1
50 05 25.0 0.0

08 25.0 0.0
09 25.0 25.0

75 04 33.3 0.0
05 33.3 33.3
08 50.0 0.0 100.0 0.0
10 100.0 0.0

30 25 01 25.0 0.0
03 50.0 0.0
05 50.0 0.0
06 50.0 25.0
08 50.0 0.0

50 04 33.3 33.3
06 33.3 0.0 100.0 0.0
09 33.3 0.0
10 33.3 33.3 100.0 0.0

75 04 100.0 50.0 100.0 0.0
05 100.0 0.0
07 33.3 0.0
08 100.0 0.0
09 100.0 0.0

Table A.2: Results for (10,20,30/ · /U /A) instances
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Ln/4J n./2 |'3n/4l
n d 5 G1 G2 Gl G2 Gl G2
40 25 02 40.0 6.7

03 33.3 0.0
05 25.0 0.0
06 25.0 0.0
08 12.8 0.0
10 11.1 11.1

50 01 25.0 25.0
02 20.0 0.0 25.0 0.0
03 12.5 0.0
04 33.3 20.0
05 25.0 0.0
06 66.7 25.0
07 38.9 0.0 25.0 0.0
08 50.0 25.0 12.5 0.0
10 20.0 0.0

75 01 4.2 0.0
02 50.0 20.0 12.5 0.0
03 25.0 0.0
04 50.0 33.3 12.5 0.0
05 33.3 0.0 12.5 0.0
06 50.0 0.0
08 33.3 0.0
09 50.0 25.0 25.0 0.0
10 25.0 25.0

Table A.3: Results for (40/ · /W /A )  instances
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[n/4j n /2 r3«/4]
n d 5 G1 G2 G\ G2 Gl G2
40 25 01 50.0 0.0

02 25.0 0.0
05 25.0 25.0
08 33.3 0.0

50 01 100.0 0.0
04 100.0 100.0
05 100.0 50.0
07 33.3 0.0
08 100.6 50.0 100.0 0.0
10 100.0 0.0 100.0 0.0

75 01 50.0 0.0 100.0 0.0
04 100.0 0.0
05 50.0 0.0 100.0 100.0
06 50.0 50.0
07 100.0 0.0
09 100.0 0.0

Table A.4: Results for (40/ · /U /A) instances
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[n/4j n/2 [3n/4]
n d 5 G\ G2 Gl G2 G\ G2
10 25 10 25.0 0.0 77.8 0.0

75 02 25.0 0.0
07 25.0 0.0

20 25 02 25.0 0.0
07 20.0 20.0
08 11.1 0.0
10 4.2 0.0

50 03 25.0 0.0
05 25.0 0.0 12.5 0.0
06 20.0 11.1
08 33.3 11.1

75 02 20.0 0.0 33.3 0.0
03 20.0 11.1
05 33.3 25.0
09 12.5 0.0
10 12.5 0.0

30 25 01 18.5 0.0
04 50.0 0.0
06 25.0 9.4
09 20.0 0.0
10 20.0 12.5

50 01 25.0 11.1 11.1 0.0
03 12.5 0.0
04 25.0 0.0
05 20.0 0.0 50.0 12.5
10 25.0 0.0

75 01 33.3 33.3
03 12.5 0.0
04 25.0 0.0
05 11.1 11.1
07 25.0 0.0
08 25.0 0.0 25.0 11.1
10 25.0 0.0

Table B.l: Results for (10,20,30/ · /W /I)  instances
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1 L«/4J 1 V 2 r3n/4]
n d 5 1 G2 1 Gl 6'2 G\ G2
10 25 10 1 50.0 0.0 1 1 100.0 0.0

50 10 1 16.7 0.0 1 1
75 01 25.0 0.0 1 1

09 1 33.3 0.0 1 1
20 25 03 1 25.0 0.0

06 25.0 25.0
09 20.0 20.0 50.0 0.0 1

50 01 33.3 33.3
09 25.0 25.0 50.0 0.0

75 04 33.3 0.0
05 33.3 33.3
08 100.0 50.0 100.0 0.0

1 10 100.0 0.01
30 25 01 25.0 0.0

03 50.0 0.0
05 50.0 25.0
06 50.0 25.0
08 50.0 0.0

50 04 33.3 33.3
06 33.3 33.3 100.0 0.0
08 33.3 0.0
09 33.3 0.0
10 33.3 33.3 100.0 0.0

75 02 100.0 0.0
04 100.0 50.0 100.0 0.0
05 100.0 0.0
07 33.3 0.0
09 100.0 0.0 100.0 0.0

Table B.2: Results for (10,20,30/ · /U /I)  instances
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Ln/4J n/2 [3n/4]
n d 5 Gl G2 Gl G2 Gl G2
40 25 02 40.0 6.7

03 33.3 0.0
05 25.0 11.1
06 25.0 0.0 33.3 0.0
10 11.1 11.1

50 01 25.0 25.0
02 20.0 0.0 25.0 0.0
03 12.5 0.0
04 33.3 11.1
05 25.0 0.0
06 66.7 25.0
07 38.9 0.0 25.0 0.0
08 50.0 25.0 12.5 0.0
10 20.0 0.0

75 01 4.2 0.0
02 50.0 20.0 11.1 0.0 12.5 0.0
03 25.0 0.0
04 50.0 33.3 12.5 0.0
05 33.3 0.0 12.5 0.0
08 20.0 0.0 33.3 0.0
09 50.0 25.0 25.0 0.0
10 25.0 25.0

Table B.3: Results for (40/ · /W /I)  instances
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1 L«/4J n /2 r3«/4]
n d S 1 G2 Gl G2 Gl G2
40 25 01 50.0 0.0

02 25.0 0.0 50.0 0.0
05 25.0 25.0
08 33.3 0.0

50 01 100.0 0.0
02 33.3 0.0
04 100.0 100.0 100.0 0.0
05 100.0 50.0
08 100.0 50.0 100.0 0.0
10 100.0 0.0 100.0 0.0

75 01 50.0 0.0 100.0 0.0
04 50.0 50.0 100.0 0.0
05 50.0 0.0 100.0 0.0
06 100.0 100.0
07 100.0 100.0
09 100.0 0.0

Table B.4: Results for (40/ · ¡U/1) instances
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Instances from group P2

[n/4j n/2 [■3n/4]
n d 5 1 Gl G\ G\
10 75 09 1 2.9
20 25 03 3.9

07 11.3
10 1 4.3

50 03 5.4 3.1
09 5.0
10 9.1

75 04 26.6
30 25 02 6.9

04 25.9
10 17.9

50 01 14.5
05 12.5
06 18.2
09 23.3

75 01 10.0
03 3.4 22.8
06 13.7

Table C.l: Results for (10,20,30/ · ¡WIA) instances
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[n/4j n/2
n d S Gl Gl
10 25 02 8.0

50 03 5.3
06 5.9
07 10.0
10 13.0

75 09 9.1
20 25 02 10.0

09 13.3
50 04 11.1

06 22.2
09 16.7
10 22.2

75 02 16.7
03 14.3
06 33.3

30 25 05 10.0
07 18.2
10 15.4

50 01 33.3
05 16.7
08 14.3 25.0
09 11.1

75 03 33.3
04 33.3 22.8
06 16.7 50.0
10 33.3

Table C.2: Results for (10,20,30/ · ¡U/A) instances
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[n/4j n/2 [3n/4]
n d 5* G1 Gl Gl
40 25 01 11.0

04 1.5 27.0
06 15.0
09 13.2

50 01 22.8
02 14.7
04 7.9 25.7
05 11.8
07 21.8 30.6
10 21.6

75 01 3.8
03 25.8 18.5
04 1.8
05 8.2 12.5
07 13.0
08 8.4 1.4
10 15.1

Table C.3: Results for (40/ · jW /A )  instances

[n/4j n/2
n d 5 Gl Gl
40 25 01 9.1

05 9.1 33.3
08 12.5

50 01 16.7
03 14.3 50.0
06 33.3
07 25.0
09 50.0

75 02 33.3
03 50.0 50.0
05 33.3
07 25.0
09 25.0 1.4
10 33.3

Table C.4: Results for (40/ · /U /A) instances
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1 L«/4J 1 «/2
n d 5 1 Gl 1
10 75 09 1 2.9 1
20 25 03 3.9

07 11.3
10 1 4.3 1

50 03 5.4 3.1
09 5.0
10 11 9.1

75 “04^ 26.6
30 25 03 25.3

05 13.3
06 11.5
09 7.1

50 01 14.5
05 12.5
06 24.1
09 23.3

75 01 10.0
03 1.7 22.8
06 13.7
07 6.7

Table D.l: Results for (10,20,30/ · /W /I)  instances
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[n/4j n/2
n d S Gl Gl
10 25 02 8.0

50 03 5.3
06 11.8
07 10.0
10 13.0

75 09 9.1
20 25 02 20.0

09 13.3
50 04 11.1

05 14.3
06 22.2
09 16.7
10 22.2 25.0

75 02 16.7
03 14.3
06 33.3
09 20.0

30 25 05 20.0
07 18.2
10 15.4

50 01 33.3
02 33.3
05 16.7
08 14.3
09 11.1

75 03 33.3
06 25.0
07 20.0
10 16.7 33.3

Table D.2: Results for (10,20,30/ · /U /I)  instances
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[n/4j n/2 |'3n/4]
n d 5 Gl Gl Gl
40 25 01 11.0

04 1.5 27.0
06 10.4
09 1.3.2 .........

50 01 22.8
02 19.0
04 7.9 25.7
05 11.8
07 27.4 30.6
09 8.7
10 21.6

75 01 3.8
03 12.3 18.5
04 1.8
05 8.2 12.5
07 13.0 1.1
08 8.4 1.4
10 15.1

Table D.3: Results for (40/ · ¡W /I) instances

[n/4j n/2
n d 5 Gl Gl
40 25 01 9.1

05 9.1 33.3
08 12.5

50 01 16.7
03 14.3 50.0
06 16.7
08 20.0
09 50.0

75 02 66.7
03 50.0 50.0
05 33.3
07 25.0
08 33.3 50.0
10 33.3

Table D.4: Results for (40/ · /U/ I)  Instances
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