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Impurity Effect on the Two-Dimensional-Electron Fluid-Solid Transition in Zero Field
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%e investigate the effect of impurities on the electron quid-solid transition with parameters
appropriate for the system recently studied by Pudalov et al. The nature of the crystalline state at
T = 0 in the presence of impurities is studied with the relaxation technique. The solid-fiuid transition
is studied via perturbation calculation and Monte Carlo simulation. The transition density is found to
shift from r,. = 37 for the pure system to r, = 7.5, close to that observed experimentally. At this small
value of r„ the fiuid energy is sensitive to the spin polarization but the solid is not, suggesting possible
interesting magnetic behavior.

PACS numbers: 73.40.Lq, 72.20.Ht, 72.20.My, 72.70.+m

Recently there has been much interest in the low
density limit of 2D electrons in GaAs heterojunctions in
an external magnetic field [1] and Si-MOSFET's in high
field where a freezing transition to a solid seems to occur
as the density is lowered.

Monte Carlo (MC) [2] and analytic calculations [3]
for the pure system at zero magnetic field suggest that
the solid-Quid transition occurs near r, = 37. Here r, =
1/Q~nati, where as = It e/m*e is the Bohr radius, n is
the density, m' (0.2 m for Si-MOSFET's) is the effective
mass, and e (7.7 for Si-MOSFET's) is the dielectric
constant. Recently Pudalov et al. [4] reported observation
of a Quid-solid transition in Si-MOSFET s near r, = 10.
The experiential systems are not perfect. To confront
experiment with theory, a quantitative calculation that
includes the effect of both electron-electron interaction
and external defects is essential. In this Letter we study
impurity on the electron Quid and solid with parameters
appropriate for the Si-MOSFET system investigated by
Pudalov et al.

We study the nature of the classical crystalline state
at T = 0 in the presence of impurities by seeking the
lowest energy configuration numerically with the quasi-
Newton method [5]. This follows our earlier study of
impurity effects on the GaAs heterostructures [6], where
we found the relaxation due to the impurities to be
well approximated by perturbation theory, the relaxation
being mainly longitudinal in nature. In the present case,
the main impurities are the Na' ions. The distance
between the impurities to the electrons divided by the
Bohr radius are here three times smaller than in the
GaAs heterostructures. We found that perturbation results
are no longer quantitatively accurate, but the average
relaxation is still 60% longitudinal in nature. In earlier
studies of impurity pinning [7], the longitudinal mode
is completely ignored. Examples of the relaxed state at
different r, and different impurity positions are shown in
Fig. 1. Close to the solid-Quid transition near r, = 7.5
the system is quite crystalline. It rapidly becomes quite
amphorous at r, = 20.
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FIG. 1 The relaxed lattice position at different r, for samples
with 56 particles under periodic boundary conditions.

The solid-quid transition is studied via perturbation cal-
culation and Monte Carlo simulation. With both methods,
the solid-Quid transition is found to shift from r, = 37 for
the pure system to r, = 7.5, close to the observed experi-
mental results. The dominant driving force behind the
phase transition seems to be the following: In the solid
phase, it is easier to adjust to the impurities; the differ-
ence between the impurity energies in the solid and Quid

phase compensated for the energy difference between the
solid and the quid phase. While the perturbation calcu-
lation is quantitatively inaccurate, it provides valuable in-

sight; the overall magnitude of this result and its density
dependence are consistent with the quantum Monte Carlo
results.

While at r, = 37 the energy of Quid and solid phases of
different polarizations are very close to each other, at the
small value of r, = 7.5 where the transition now occurs,
just as in the pure case the Quid energy is sensitive to the
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spin polarization but the solid is not, suggesting possible
interesting magnetic behavior accompanying the solid-
Auid transition. We now explain our results in detail.

The Hamiltonian of our system is the sum of the kinetic
energy, the interparticle Coulomb interaction, and the ex-
ternal impurity potential. The external potential comes
from [8] surface roughness and Na' charged impurities
(Vd) of concentration [4] of approximately 10'o cm 2 ran-
domly placed at positions R, in the x-y plane at a distance
d of 100 A. from the electrons. The Fourier transform
of Vd is given by Vd(q) = g, exp(iq R, )U(q), where

U(q) = —2~e exp( —qd)/eq is the Fourier transform of
the Coulomb potential. We have done calculations with
and without the surface roughness and found that the im-

purity energy changes by less than 5% at r, = 7.5. We
thus focus on Vd from now on.

We first discuss the classical crystalline state at T = 0
in the presence of impurities. We generate samples of
random positions of the impurities of a given density. For
each impurity configuration we look for the local mini-
mum for the sum of the total interelectron Coulomb po-
tential and the impurity energy, starting with an initial
configuration of a crystalline state [9]. This minimiza-
tion is achieved with the standard quasi-Newton algo-
rithm. The calculation is done under periodic boundary
conditions. We have extended the Ewald sum technique
to deal with the long range nature of the impurity poten-
tial [10]. Examples of the final configuration at differ-
ent electron densities are shown in Fig. 1. These results
suggest the following qualitative physical picture. The
impurity density is fixed. At small r„ the number of im-
purities per electron is small. For those electrons near an
impurity, they move by a substantial amount and quickly
"screen" it out. The resulting relaxation seems to be lo-
calized around the impurity. (See the graph for r, = 5.)
As r, is increased, the number of impurities per electron
is increased. The system becomes "amorphous" when
an effective "percolation threshold" is reached, when the
patches of local disturbance form a continuous network.
While near melting near r, = 7.5, the system seems quite
crystalline; this crystallinity is quickly lost so that at
r, = 20, the system looks quite random.

In the related problem of flux lattice melting [11],
dislocations are found to be induced by impurities in 2D
[12]. For our choice of parameters and sample size, we
do not observe impurity induced dislocations at r, = 7.5.
We think the difference lies in the softer interparticle
potential (which is logarithmic in character) and a bigger
and more rapidly varying impurity force for the flux line
lattices. On the other hand, dislocation may be present
near r, = 20, suggesting a threshold for its generation.
Dislocation pairs are also observed even in the pure
system as a result of quantum fluctuations [13].

We have recently studied [6] impurity effects in the
GaAs system where the dopants are farther away. We
found that Fourier transform of the relaxation is mainly

longitudinal in nature and well approximated by perturba-
tion theory. In the present case, the impurities are closer;
perturbation results are no longer quantitatively accurate.
For each sample we compute the deviation of the lattice
position and its longitudinal (I) and transverse (t) Fourier
transforms 6r~, = g;(r; —r;o)e~, e'q "'/~N Her. e e~, is
the polarization vector for mode j = I, t. We found that
the relaxation is still 60% longitudinal in nature. Earlier
studies of pinning [7] have ignored the longitudinal mode.

We next turn to a simple perturbation calculation for
the Quid and solid energies in the presence of impurities.
This calculation provides for physical insight into how
impurities can lower the energy of the solid phase.
The energy change E; of the electron system due to
an external potential V; in linear response is given by
—0.5+ y(q)V;(q)2/n, where g is the response function.
In the solid phase, in the harmonic approximation, the
response function is given by g„~;d(q + G) = g; ~(q +
G)eq; ~ /men~; [14]. In the fluid phase, we approximate the
response function with the random phase approximation
with the Hubbard correction. We show in Fig. 2(a) the
difference in this impurity energy between the solid and
the Quid phase, AE;, together with the pure solid and fiuid
energy differences at different densities. As we see from
the solid line representing the total energy difference, the
solid phase is favored for r,. ~ 8. Because of the localized
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FIG. 2. (a) The contributions to the difference in the energy
per particle between the solid and the fluid in units of
10 Ry as a function of density parameter r, The lines are
a spline fit to guide the eye. (b) The difference between solid
and fluid fixed-node MC energies per particle, E,. —E&, in units
of 10 Ry, as a function of the density parameter r,. for fluids
with different degrees of polarization. The lines are spline fits
through the points to guide the eye. (c) Same as (a), except that
the results are for variational calculations. (d) Single-particle
impurity wave functions at energies from the Fermi level to the
bottom of the band at y = 0 with x from one to the other side
of the box. The unit of length is such that the box length in
the x direction is 50.
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nature of the solid, p„&;d ) g];q„,d at large momentum
transfers; it is easier to take advantage of the impurities at
low densities. AE; becomes larger in magnitude than the
energy difference between the solid and the fluid phase
and thus stabilizes the solid at the transition point. While
we think this calculation captures the essential physics, it
may not be quantitatively very accurate. We thus turn to
quantum Monte Carlo calculations.

In the variational calculation, one starts with a trial
wave function W and calculates the expectation value of
the Hamiltonian ('P~H~'P) with a Monte Carlo method.
In the fixed-node calculation, one starts with the trial
wave function as an initial state, then solves the time
dependent Schrodinger equation assuming that the po-
sition of the node of the wave function remains un-
changed. The trial wave function 'P, (a = f or s for
fluids or solids) for the pure system is a product of
a Slater determinant D, (r) and a Jastrow factor, 0', =
D, (r) exp[ —g;~, u, (r,,)]. For the fluid, Df is a Slater de
terminant of plane waves. For the solid D, (r) is a deter-
minant of Gaussian orbitals exp[ —C(r —R)2] localized at
regular lattice sites. The Fourier transform of the solid
phase pseudopotential is 2u, (k) = —1 —4C'/k2 + (1 +
8C'/k + 4mu(k)/h2k2)05. C is set equal to C' in the
pure system. A table of C as a function of r, is given in
Ref. [14].

For the fluid trial wave functions in the presence of the
external impurities, we have solved for the single-particle
wave function in the presence of the screened impurity
potential U'(q) = —2m. e exp( —qd)/(qeH), where eH is
the Hubbard approximation to the screening function.
The product of a Slater determinant of these impurity
single-particle wave functions and the Jastro w factor
of the pure system is our starting point for the fixed-
node MC calculation. This choice of the trial function
represents a good approximation for the position of
the nodes. We have also performed fixed-node MC
calculations starting with the trial wave function for the
pure system and found the energy obtained to be indeed
higher.

The solid trail wave function in the presence of im-
purities is formed from a Slater determinant of Gaussian
orbitals located at the equilibrium sites described earlier
combined with the Jastrow factor for the pure solid. It
is believed [6,15] that an average gap develops for the
phonon modes in the presence of impurities. Thus the
constant C in the Gaussians need not be equal to the C' in
the Jastrow factor. We have experimented with making
them different and found that the difference is beyond the
accuracy of our calculation. We found, however, that a C
that is higher than that of the pure system by 10% gener-
ally provided for a slightly lower energy.

In our simulation, the impurity potential is tabulated
over a 200 X 200 mesh inside the box and interpolated in
between. We averaged over 10 impurity samples for the
different phases at different densities.

In Figs. 2(b) and 2(c), we show the average difference
between the solid and the fluid energies per particle (F., —
Ef) for fluids with two spin components for fixed-node
[Fig. 2(b)] and variational [Fig. 2(c)] MC calculations.
The solid-fluid transition now occurs near r, = 7.5. This
is consistent with recent experimental results of Pudalov
et al. [4], who observed transport anomalies suggestive
of a freezing transition in (100) Si-MOSFET's. The
fluctuation in the difference in energy between the solid
and the fluid is much smaller than the fluctuation of
the total energy. For r, = 7.5, the root mean squared
fluctuation of the energy difference is 2 X 10 4 Ry. The
errors at other densities are comparable. In contrast to
the pure system, the total energy difference changes quite
rapidly near the transition region, thus the demand on the
accuracy of the energy is much less than that for the pure
system. The impurity concentration is big enough that
the transition point is shifted from r, = 37 to r, = 7.5, an
experimentally accessible region.

At these higher densities the fluid energy depends on
the polarization even though the solid energy is still very
insensitive to the polarization. In (100) Si-MOSFET s,
the electrons occupy in momentum space two valleys
that are split by 2.4 K [16]. In addition, extrapolations
of results at finite field to zero field suggest that even
in zero external magnetic field the spin-up and spin-
down bands are split by =4 K in Si-MOSFET's [16]
and 0.09—0.36 K in GaAs heterojunctions [17]. In the
fluid at r, = 7.5, this splitting is comparable to the Fermi
energy of 6—7.3 K. To illustrate possible effects on the
polarization we have performed calculations for a partially
polarized fluid (29, 21, 9, and 0 particles for the 4
components) so that within the constraint of the finite
size system, the Fermi energies of the different spin-
valley manifold are as close to each other as possible after
the energy splitting has been incorporated. The result
for this case is also shown in Figs. 2(b) and 2(c). The
transition density is shifted slightly in this case. Because
of the splittings of the spin-valley manifolds we expect
the solid energy to be lowest when the lowest energy
spin-valley manifold is occupied, i.e., the solid is fully
polarized. On the other hand, for the fluid state, the
kinetic energy favors occupancy of the four spin-valley
manifolds.

We next turn to the physics of the transition. According
to Wigner [18], the potential energy gained due to the
formation of a solid, of the order of I/r„outweighs the
kinetic energy lost, of the order of 1/r~ for a low density.
At low densities the energy difference between the pure
solid and fluid is quite small and decreasing over a wide
range of densities. The contributions to the difference
in energy from the impurity potential is also shown
in Figs. 2(a) —2(c). For a constant density of external
defects, the energy gained from the external potential
does not decrease as the electron density is decreased and
eventually dominates as the density approaches zero. The
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significant amount of impurity energy suggests that the
driving force for the formation of a solid is not entirely
due to the Wigner mechanism.

There has been some question of the importance of
localization. The y = 0 section of five representative
single-particle wave functions P(x) in the presence of
external impurities at energies from the Fermi level to
the bottom of the band at r, = 7.5 is shown in Fig. 2(d).
The localization length [19], if any, is much bigger than
the box size of our simulation. As r, is increased, the
impurity effect does get bigger. Localization does not
seem to be a big driving force for the transition at r, =
7.5, however.

While the solid phase does not have long range order
in the presence of impurities [20], there can still be a
difference between the solid and the fluid. For example,
as we learn from past studies of finite temperature melting
[21], the solid-Iluid transition is connected with the
absence of a shear modulus and is not directly related to
the presence of long range order.

The possibility of an electron glass [19] and a Mott
transition [22] has been discussed in the literature. These
studies are connected with the possibility of the impurity
bound states forming a band. While the physics of the
solid formation is obviously related, there is one very
important difference. At r, = 7.5, the impurity density is
I/14 that of the electron density so that it is not possible
for each electron to reside on an impurity bound state. At
lower densities, these scenarios become important. The
variational wave function discussed here may provide a
different perspective to address the physics.

In conclusion, we have studied a model that reflects the
impurity effects in (100) Si-MOSFET's and found that the
solid-fluid transition can be shifted to experimentally ac-
cessible regions. The solid may be fully polarized, which
could be tested experimentally. The transition r, obtained
here is slightly lower than the experimental results. The
experimental impurity concentration is deduced indirectly
from transport measurements and thus approximate. For
this reason we consider the agreement between theory and
experiment reasonable.
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