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ABSTRACT

VVIDE-BAND MAXIMUM LIKELIHOOD DIRECTION 
FINDING BY USING THE TREE-STRUCTURED EM

ALGORITHM

Nail Ca-dalli
M.S. in Electrical and Electronics Engineering 

Supervisor: Asst. Prof. Dr. Orhan Arikan 
July 1996

A thorough derivation of the Expectation Maximization (EM) algorithm, which 
is an iterative numerical method of Maximum Likelihood (ML) estimation, is pre­
sented for the case of estimating direction of arrivals of unknown deterministic 
wide-band signals incident from different directions onto a passive array. For the 
rec^uired signal estimation, alternative regularized least squares estimation tech­
niques are proposed with significant improvement over the standard least squares 
techniques. Also, for the angle of arrival estimation of a large number of signals, 
a tree structured EM algorithm is proposed and compared with the conventional 
EM approach. Extensive simulation results are presented for comparison of the 
proposed algorithms with the current high-resolution methods of wide-band di­
rection finding. In order to handle efficiently the case of available parametric prior 
models on the received waveforms, the required modifications are also given.

Keywords : Array Signal Processing, Source Localization, Wide-Band Direc­
tion Finding, Maximum Likelihood Estimation, Signal Parameter Estimation, 
EM Algorithm, Tree-Structured EM Algorithm.
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ÖZET

GENIŞBAiNTLI İŞARETLERİN YAYILIM YÖNLERİNİN 
BEKLENTİ ENBÜYÜKLEME (BE) YÖNTEMİ İLE EN OLASI

KESTİRİMİ

Nail Çadallı
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez yöneticisi: Yard. Doç. Dr. Orhan Arıkan 
Temmuz 1996

Alıcı bir dizi duyaca değişik yönlerden gelen genişbantlı kaynak işaretlerinin 
yayılım yönlerinin en olası kestirimi için Beklenti Enbüyükleme (BE) yönteminin 
tam bir sunumu yapılmıştır. Gerekli işaret kestirimi konusunda enküçük kareler 
yönteminden daha iyi ve gürbüz sonuçlar verebilen düzenlileştirilrrüş enküçük 
kareler çözümleri önerilmiştir. Ayrıca, çok sayıda kaynak olması durumunda, 
yayılım yönlerinin bulunabilmesi için Dallı Beklenti Enbüyükleme (DBE) yöntemi 
önerilmiş ve BE yöntemi ile karşılaştırılmıştır. Başarımlarını sınamak ve değerlen­
dirmek üzere, bu yöntemler varolan genişbantlı yüksek çözünürlüklü yöntemlerle 
de karşılaştırılmıştır. Kaynak işaretleri hakkında önceden bilgi veya modellerin 
olması durumunda yöntemlerde yapılması gerekli değişiklikler de verilmiştir.

Anahtar Sözcükler : Dizisel işaret Işlemlerne, Kaynak Yer Kestirimi, Geniş- 
bantlı Yayılım Yönü Kestirimi, Enbüyük Olabilirlik Kestirimi (En Olası Kesti- 
rim). Sinyal Değişkenlerini Bulma, Beklenti Enbüyükleme Yöntemi, Dallı Bek­
lenti Enbüyükleme Yöntemi.
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Chapter 1

INTRODUCTION

In many areas such as sonar, radar, radio-astronomy, seismology and imaging, re­
ception data acquired by an array of sensors are processed to obtain information 
about the source locations and the characteristics of the emitted signals [1]. Since 
the measurement model of the direction of arrival (DOA) estimation is common 
to other applications, the results obtained in this thesis are expected to be widely 
used. In this study, we are concerned with the direction of arrival estimation of 
superimposed wide-band signals within the Maximum Likelihood (ML) estima­
tion criterion by using the Expectation Maximization (EM) algorithm which is 
an iterative method for finding ML estimates [2]-[4].

The problem of direction of arrival estimation has been studied extensively 
both for the narrow-band and wide-band cases. .As a result of these studies, nu­
merous methods have been proposed for the solution of the problem. For the 
narrow-band case, the widely used ones are beamforming [5]-[8], linear prediction 
[9], Capon and Pisarenko methods [10] and others [11]-[16]. Although the max­
imum likelihood (ML) estimates are the most preferable [17], due to its higher 
computational cost, ML approach has not found much use in practice except for a 
few exact ML procedures such as Iterative Quadratic ML algorithm. Alternating 
Projection algorithm and Expectation Maximization algorithm [18, 19]. There­
fore, for the ML criterion, suboptimal algorithms are used such as Multiple Signal 
Classification (MUSIC) algorithm, and its improved version lor coherent signals, 
the Method of Direction Estimation (MODE) which are large sample approxi­
mations to ML and are based on the eigendecomposition of spatial correlation



matrix [20]-[26].
For the wide-band case, in order to avoid even more complicated ML estima­

tion, estimates based on combination of narrow-band solutions at each frequency 
bin have been proposed. But the aggregation of independent information relevant 
to each frequency bin does not significantly reduce the variance of the estimates. 
In order to approximate the coherent aggregation, different algorithms have been 
proposed in the literature [27]. The commonly used strategy is to focus the in­
formation of each bin onto a single subspace and perform a narrow-band solution 
there [28]-[38].

However, the superposition property of the data acquisition system can be ex­
ploited by using the Expectation Maximization algorithm so as to reduce greatly 
the complexity of the ML estimation since EM algorithm finds maximum like­
lihood estimates iteratively without actually computing the likelihood function. 
The derivation of the EM algorithm for the direction finding problem in the 
narrow-band case is available and it is also applied to wide-band signals [3]. In 
this thesis, following a more complete derivation of wide-band EM algorithm, we 
will investigate various possibilities in the estimation of signals yielding superior 
results than the original approach.

In EM formalism, the observation, incomplete data is obtained via a many-to- 
one mapping from the complete data space that includes signals which we would 
obtain as the sensor outputs if we were able to observe the effect of each source 
separately. The EM algorithm iterates between estimating the likelihood of the 
complete data using the incomplete data and the current parameter estimates (E- 
step) and maximizing the estimated log-likelihood function to obtain the updated 
parameter estimates (M-step). Under mild regularity conditions, the iterations of 
the ElM algorithm converges to a stationary point of the observed log-likelihood 
function, where at each iteration the likelihood of the estimated parameters is 
increased [39, 40].

Two extensions to the EM algorithm are proposed. The first one known as 
Cascade EM, (CEM), uses an intermediate complete data specification between 
the complete and incomplete data of the conventional EM method. It Wcis re­
ported that the CEM converges more rapidly and needs fewer cotnputatioris per 
iteration when compared with the EM algorithm [41]. The second variant of the 
EM algorithm is the Space Alternating Generalized EM (SAGE) algorithm, in



which the parameters are updated sequentially by alternating between several 
hidden data spaces, unlike the EM algorithm where parameters are updated si­
multaneously [42, 43]. In SAGE, the complete data spaces are organized such 
that the maximization step of the EM algorithm is performed in less informative 
data spaces providing fa.ster convergence.

In the present study, for the estimation of unknown signals arriving from 
different directions to a passive array, alternative regularized estimation schemes 
to the common least squares solution are investigated. For this purpose two 
different methods are used. The first one is an adaptive Tikhonov type regularized 
least-squares (RGLS) estimation method, and the second one is an averaged least- 
squares estimation (LS-SET) method over a set of angles in a neighborhood of 
the nominal angles. When this is performed for each direction separately, the size 
of the set containing the angles is smaller and the method is called LS-RSET, as 
an abbreviation for LS on a reduced set. It has been demonstrated that when 
regularized methods are used in the estimation of the received signals, the EM 
algorithm has better convergence behavior. Also, motivated with the ideas of 
CEM and SAGE, a tree structured hierarchy is used for the description of the 
relation between the complete data space and the observations. It is shown that 
the performance increases with respect to the non-tree structured EM algorithm 
even for moderate number of signals. In order to handle efficiently the case 
of available parametric prior models on the received waveforms, the required 
modifications are also given.

The thesis is organized as follows: In Chapter 2, the data model used in the 
secjuel is presented. In Chapter 3, first the maximum likelihood estimation prob­
lem is presented, then the EM algorithm is described both in statistical terms 
and in formulation to the problem at hand. Tree-structured EM algorithm is sug­
gested in Chapter 4. Then in Chapter 5, an extensive set of simulation examples 
is presented for the performance evaluation of the improvements suggested for 
the EM algorithm in comparison with the Cramer-Rao lower bound (CRLB) and 
the results of a recently proposed eigendecomposition-based subspace method for 
wideband signals. Finally we conclude with Chapter 6. There are appendices to 
the thesis for the sake of fluency in the text and the ease of reference.



Chapter 2

THE DATA MODEL

In this work, we will investigate the wide-hand direction finding in the absence 
of near-field sources. Although, in principle, the same methodology can be used 
for arbitrarily located sources, the added complexity of the data model makes 
the presentation of the ideas more difficult. A discussion on the data model with 
point sources located in the near field of a sensor array is given in [44].

The impinging individual wavefields of the far field sources have negligible 
curvature effect, hence, can be assumed to have the same direction of arrivals 
at the sensors. The superposition of the individual wavefields forms the total 
wavefield which is spatially sampled by the sensor array. In addition to the 
spatial sampling, the data is obtained after a uniform time sampling of the output 
of each sensor. In the following, we will mainly be concerned with the case of 
non-parametric and unknown but deterministic source signals. When a prior 
parametric model of the source signals is available, this additional information 
can readily be utilized within the proposed framework with more reliable direction 
of arrival estimates.

The number of the arriving signals are assumed to be known, that is, the 
detection phase is assumed to be performed accurately with the use of standard 
algorithms developed for this purpose [45]-[49]. Note that the number of signals 
arriving on the array may be more than the number of emitters in the case of 
multi-path propagation.

Here we will first consider the narrow-band observation model to emphasize 
the required modifications for the wide-band case which is detailed later. For the



case of M  narrow-band signal wavefronts from the directions 0i,()2 ■ ■ ■ incident 
onto an array of P sensors, which have known directional gain characteristics, the 
output of the i’th sensor, which is sampled at N  sampling points with a sampling 
interval of T ,̂ can be written as

M
yi{t) =  Y^ai {ei )si { t -Ti { 9 i ) )+Ui{t) ,  1 <  i  <  P ,  i  =  0, P , , . . . ,  ( ,  ( 2. 1)

l=l

where si{t) is the /’th signal emitted from the direction &i, Ui{t) is the noise 
at the i’th sensor which is zero mean, spatially and temporally white circularly 
symmetric complex Gaussian noise, a{{0) is the directional gain of the ?’th sensor, 
and Ti{0i) is the time delay (with respect to the phase center of the array) of 
the signal with the direction of arrival equal to 0i. Since the source signals are 
assumed to be narrow-band, the sensor outputs can be closely approximated as 
follows

M
vi(t) = +«.(»),

/=1
l < i < P ,  i = 0, r „ . . . , ( y v - l ) r .

(2.2)

which is based on the fact that for the narrow-band case, the signal amplitude 
does not change much during the period of time in which the signal passes across 
the array [4, 15]. In that case the time delay can be written as only a phase 
difference resulting in (2.2). However, for wide-band signals, there are both phase 
and amplitude variations across the array for which the validity of the narrow- 
band measurement model can not be justified.

In wide-band signal model, a quite general expression for the i’th sensor out­
put is

M
yi[t) = ¿ a ,( i ,0 ; )  * si{t -  Ti{0i)) + Ui{t), 1 < i < P, t = 0, T ,,...,(A f- I)!], ,

(2.3)
where in this case a,(i, 0i) represents the frequency dependent sensor gain. Since, 
the sensor gain is usually defined as a multiplicative operator in the Fourier 
Transform domain, the corresponding time domain expression involves the convo­
lutional form given as in (2.3). The corresponding sensor output in the frequency 
domain can be closely approximated by using DFT, yielding

M . 2̂гkτ̂ (0ı)
Y]{k) = ' £ M k , 0 i ) e - ^ ' - ^ S , { k )  + U,ik) , l < f < P ,  0 < k < F ,  (2.4)

l=l
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where Yi{k), Ai{k,9i), Si{k), Ui{k) are the F-point discrete Fourier transforma­
tions (DFT) of ai{t,0i), si{t), respectively. Since DFT is a unitary
transformation, the transformed noise is still a spatially and temporally white 
complex Gaussian noise sequence. The size of the DFT is chosen sufficiently 
large in order to make the linear and circular convolutions almost equivalent.

In the array signal processing literature, the sensor gains are usually chosen 
omnidirectional and independent of frequency [3, 4]. But the model set forth 
above is more realistic in the sense that sensors usually have gain characteristics 
which vary as a function of both direction and frequency [50, 51].

The following definitions are used to simplify the representation:

© =

h{k,e)
B{k,&)

S{k)
Y(k)

V(k)
s
y
u

5(0)

[̂ 1 9 i . .. 9m \^

= [Ai{k,9)e  ̂ p Ts 

= [hik,9y)...h{k,0M]] 
= [Sг{k) . . .Sм{k)f  
= [Yi ik) . . .Yp{k) f  
= [U,{k).. .Up{k)f  
= [S"’( 0 ) . . .S ^ ( F - l ) f  
= [Y ^ (0 ) .. .Y ^ (F - l) j

■27Tk rp(9) T

T

[ U '» . . . U 2’( F - l ) f  

d ia ^ { B (O ,0 ) ...B (F -  1,0)} .

Using these definitions, (2.4) can be written as

y  = B{&)S + U ,

(2.5)

(2.6)

or ecpii valent ly as

Y{k) = B{k ,Q)S{k)AV{k)  0 < k < F , (2.7)

This final compact form of the measurement relation, which is the same as the 
signal model of the Cramer-Rao Lower Bound formula in [23], is used in our 
derivations.



Chapter 3

ML ESTIMATION VIA EM 
ALGORITHM

In this chapter, first we discuss the maximum likelihood estimation of the direc­
tion of arrivals and point out the difficulties involved in the maximization of the 
likelihood function. Then, we present the most straightforward set up for the 
EM methodology to obtain efficiently the ML estimates.

As shown in Appendix A, probability distribution of the observations as a 
function of the unknown parameters is

fy{y;Q,S)  = (7ra' )̂- ’̂̂ e x p { - ^  ¿  [Y(A-) -  B{k,&)S{k)]^[Y(k) -  B(fc, 0)S(^·)]| ·
I ^ k=o )

(3.1)

This probability density function is called the likelihood function of the unknown 
parameters 0  and S [15, 52]. The Maximum Likelihood estimates for 0  and 
S maximize the likelihood function for a given set of observations. Since the 
likelihood function here is of an exponential form and since the logarithm is a 
monotonie function, maximizing the logarithm of the likelihood function is com­
putationally easier than maximizing the likelihood function itself. After discard­
ing constant terms, the logarithm of the likelihood function becomes

F-l

k=0



This function is referred to as the likelihood function in the sequel. In array signal 
processing applications, usually there is more importance attached to reliable es­
timation of the direction of arrival parameters. 0 .  Formally, maximum likelihood 
estimate for 0  is given as:

© = a r g r r ^ x |m a x |-  ^  [Y(A:) -  B(¿, 0)S(A:)]^[Y(¿·) -  B(A;, ©)S(A:)]

where the inner maximization is achieved by choosing S(^·) as 

S{k) = [B^(A:,©)B(A:,©)]-‘Bf(Ar,©)Y(A;),

(3.3)

(3.4)

which is the least squares solution for the signals for a given 0 .  Hence by using 
(3.3), we obtain the following formal expression for 0 :

F - l
0  = argnm xj -  y ]  [Y(Ar) -  B(^·, 0 )S(A:)] [Y(A;) -  B(Ar, 0)S(Ar)]  ̂ (3.5)

k=0

Expanding the summand and discarding the terms that are not dependent on 0 , 
we obtain

( F - l
0  =  arg max \ Y \ k ) B i k ,  0 )  (Bt(¿, ©)B(fc, ©)) ■* B^(^·, &)Y{k)  

® I fc=0

= arg max |  ^  Y ^ [ k ) W \k ,  &)W{k.  ©)Y(A;)1
® U=o J

( F - l  . ^
= arg rrmx < tr [w(A:, ©)Y(¿)Y^(^-)W^(A:, ©)■

. A :=0
(3.6)

where
W ( i ,0 )  = B (i:,0 ) (B'(A:,0)B(Í,·,©)) ‘ b '(/1-,0) (:).7)

Direct maximization of (3.6) by using numerical search methods is not only 
computationally demanding but also due to the usually complicated local max­
ima structure of the likelihood function, it is not guaranteed to converge to the 
global maxima. The Expectation Maximization (EM) method of obtaining the 
maximum likelihood estimates has been proposed to overcome the difficulty by 
an either parallel or sequential iterative search in much lower dimensional pa­
rameter spaces [2]. The EM method requires the identification of the so called



complete data space from which a many-to-orie mapping is clone t,o the incomplete 
data space, that is, the observation space. The underlying relation between the 
observed data y  and and the complete data X  is a many-to-one mapping of the 
form

n { X )  = y  . (3.8)

For the sake of notational simplicity let #  =  [0**̂  The observed data, y^
is a realization of the random variable y  with statistics $ ). Similarly the
complete data is represented by X  and the corresponding random variable by X 
with statistics (/T; $). Hence the statistical relation between the complete and 
incomplete data can be written as

f f i(X·, ^)dX = fy(y·, ^), n = {X\ n(X) = y}
J

(3.9)

(3.10)

(3.11)

Also, the following conditional density relation holds

/^(.V i«) = /> |j,(.l'|31:«)/j,(J> ;i), m ( X }  = y  .

Taking the natural logarithm of both sides of (3.10) yields

log fyiV;  * )  = log M X-,  * )  -  log ■*), m ( X )  = y  .

Multiplying both sides with fyyyiXly-, where is a particular parameter 
value, and integrating over Q, we obtain

lH y (X \y ; ^ ' ) \o g fy { y - , i ) d X  =

/,{|i(cV|Ji;#')log/,f(cV;$)dA·

- /  M y ( x m ^ ’M g M y ( X \ y ; i ) d X  .

/JQ
fJQ

Since
/jQ fy^y (X \y -^ ' )d X  = l ,

we can write

log !y{y\  = £ {log fy{X·, ^ ) \y ;  ^ '}  -  s  {log /^|y(A'|>^; $)|3^; $ '}

Now let

/C ($,$ ') = £{ \og fy{X- ,^ ) \y · ,^ '}  ,

V ($ ,$ ')  = S{\ogly^yi^X\y-,^)\y;^ '}  ,
£ ($ ) = f y { y - ^ ) = K : { ^ , ^ ' ) - v { ^ , ^ ' )  .

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)



Note that, in fact, £ ($ )  =  £(©,<S;3 )̂, only the argument is omitted for the 
sake of simplicity. By using the discrimination function and the theorem on its 
non-negativity [53], we can write

i
(3.18)

and using the expansion property of the logarithm function, the following in­
equality is obtained:

У(Ф',Ф') > У(Ф,Ф') . (3.19)

Using this in (3.17), a relation can be found between /С(Ф,Ф') and >С(Ф) inde­
pendent of У(Ф,Ф'). If we find the parameter Ф such that

Г(Ф,Ф ') > /С(Ф',Ф') (3.20)

then, from (3.17), for that particular value of Ф the following holds,

£ (Ф )> £ (Ф ')  . (3.21)

In other words, maximizing Л!^(Ф,Ф') with respect to Ф yields a more likely 
estimate than Ф'. This method of improvement on the current value of Ф', at 
time instant n, can be repeated in the following recursive algorithm:

E-step : Compute АГ(Ф,Ф")

M-step : Φ"■'■̂  = arg тах/С(Ф, Ф") .

(3.22)

(3.23)

In these recursive steps, it is guaranteed that the likelihood of the estimates 
monotonically improves [2]. In our application, the most commonly used complete 
data specification is Xt{k) = [Xu{k) ■ ■ ■ Xpi{k)] which is the spectrum of the 
signal that would be observed at the sensors if we were able to observe the effect 
of rth  source separately. The mean of the complete data X;(k) is h{k,9i)Si{k) 
and its statistics are determined by the additive noise. Then the many-to-one 
mapping for all sources from the complete data space to the incomplete data 
space can be written as

M
Y { k ) = J 2 M k ) ,  0 < k < F  .

i = l

(3.24)
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The corresponding log-likelihood function of the complete data is
F - l  M

£ ,( 0 ,5 ;  T) = -  X: ^  ||X,(A:) -  b(A:, ,̂)-5i( )̂||'' ,
A :=0  / = l

(;3.25)

where the complete data vector is defined as .V = [X^(0).. . 'SJ{F — 1)]^ and 
X(A;) =  [X^i(A:). . .  X^Ai(A:)] .̂ Here, the observed signal is decomposed to M  
constituents, hence each term of the summation on I can be maximized sepa­
rately. Therefore, in the estimation of 0i and Si{k), only X;(^) is used along with 
the observations. At the n'th iteration of the EM algorithm, expectation step 
conditionally estimates the likelihood of the complete data. Maximization step 
then finds the maximizer of the estimated likelihood. As shown in the Appendix 
B, the corresponding expectation step for the above complete data specification
is:

XΓ(̂ ’) = 5{X(A;)|0",S"(A:),Y(fc)}

= b{k,0f)sr(h) + ¿ [Y (^  -  B(l:,0")S"(ir))|
0 < k <  F (3.26)

In maximization step, the complete data likelihood which is formed by using 
X"(k) is maximized with respect to 9i and Si{k). The 0i is updated by numerically 
solving the following optimization problem:

0 “+> = a r g m a x |m a x |- ^ ‘ p |X ," ( t ) -b ( i ,( l ,)5 ,(« .- ) f |}  . (3.27)

where, as in (3.3), there are two maximization problems inside one another which 
must be simultaneously solved. Since, for a given 0i Vcilue, the solution of the /'th 
term in the inner maximization is

Si{k) = [h\kJh)hik.0,)]-^h\k,0i)Xf{k)  
h^{k,0t)Xf{k)

\ M k A W  ’
(3.28)

inserting this expression into (3.27) and solving for the outer maximization, the 
update for the direction of arrivals can be obtained formally as

(  F - l  M
0"+' = argmax -  y;||X r(l·) -

® l k=0 l-\
(3.29)
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Since the required optimization can be performed in M  individual optimizations 
of the nonnegative terms of the summation on /, significant computational saving 
is achieved compared to the required maximization in (3.3). Also, in this form, the 
required optimization can be performed in parallel where efficient one-dimensional 
optimization via line search methods can be used in each parallel process as shown 
in Figure 3.1 [54]. At the n ’th iteration of the EM algorithm the update formulas 
are as follows:

E-step

M-step

x r ( t )  = -  B ( i ,0 ”)S'‘(J:)|

r ·  = argmax E

5,"+'(fc) =

k=Q
bt(A:,6)r+')Xr(A:)

(3.30)

(3.31)

(3.32)l|b(A:,^ri)l|2 ·

In the above algorithm, corresponding to the joint maximization in (3.27), di­
rection of arrival estimation part of the maximization step is (3.31), whereas, 
(3.32) is the signal estimation stage which uses the least squares solution given 
in (3.28) which is to be called LS-EM from now on. In the maximization step, 
the direction of arrival and signal estimation phases can be performed either one 
after the other for each I separately, as in the conventional EM algorithm, or 
signal estimation stage can be performed after the direction of arrival estimation 
is completed for all 1. Actually, for the latter case, 0 "+i is available after (3.31) 
and can be inserted into (2.7). Then S"‘''^(^) can be solved for by using a number 
of alternatives such as the least squares (LS) solution which can be performed to 
estimate all M  signal waveforms at once by using all currently updated direction 
estimates, giving

S{k) = [B (̂ ·̂, ©)B(A:, &)Y{k) . (3.33)

This LS estimation has been proposed as a generalization of the EM algorithm 
to speed up convergence [4]. However, since the array manifold matrix B(^’,0 )  
is used instead of the steering vector h{k,0), the required inversion in (3.33) 
may cause numerical instability problems during the iterations of the algorithm, 
especially for the case of sources with small separation. One way to avoid this is 
the use of more robust regularized least squares (RGLS) estimate:

S{k) =  [B̂ (A:, Q)B(k, 0 ) + AiI]"'B^(^·, e)Y{k) (3.34)
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It is important to properly choose the regularization parameter ¡jl. Some com­
monly used methods for this purpose were investigated [55, 56]. In our imple­
mentations, two adaptive strategies for the choice of // are employed. First one, 
which is referred to as RGLS-1 , works with the known noise variance, whereas 
the other one, RGLS-2, can be used when the noise variance is unknown [57].

An alternative to the adaptively regularized least squares estimates for source 
signals is the following which is referred to as LS-SET solution,

S{k) = a.vgm m J^\ \Y{k) -B{k ,& )S{k) fd&

= y ^ B { k , 0 ) ^ B { k , Q ) d Q y y ^ B { k , Q ) ^ d & j Y { k ) ,  (3.35)

where 2  is a set of directions in a neighborhood of 0 .  Since in the cost func­
tion of LS-SET, we use an average penalty in the neighborhood of the estimated 
direction of arrivals, the LS-SET solution provides signal estimates which is ro­
bust to the inaccuracies in the direction of arrival estimates. For the ca.se of 
discrete neighborhood directions the integrals reduce to summations over an M- 
dimensional grid of L directions in each dimension. The number of required 
nested summations over an M  dimensional grid in the above expression increases 
with the dimension of the direction vector 0 .  Thus, the computational com­
plexity increases exponentially with M, being in the order of . Therefore, 
practically, this alternative, if used as above, is not preferable for large grid sizes 
and large number of superposed signals. However, since (3.35) is solely an alter­
native for the least squares solution, it can also be applied to the estimation in 
(3.28), that is, as in LS-EM, performing the estimation in each complete data 
space separately as follows:

Si{k) = arg min /  WX.i{k) — h{k,d¡)S¡(k)\\^dOi
Si(k) J 2 i

=  y ^  h\k,e¡)h{k,ei)do¡^ ' y^  hHk,e,)dei Xiik) . (3..36)

This solution is named as LS-RSET, as an abbreviation for LS on a reduced set, 
since the size of the set is much smaller. In that case, the summation terms are 
not nested inside each other, hence the computational load increases only linearly 
with M, being in the order of T x M.

EM algorithm starts with n = 0 at which time 0 °  is available, obtained 
by using a rough estimation. To find X?(A:) in (3.26), S')* is needed and it is
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estimated by using one of the methods of LS, RGLS or LS-SET. In that stage 
LS-EM and LS-RSET can not be used since they use the complete data in the 
estimation which is not available before the signal decomposition is performed. 
Then comes the expectation step where the observations are decomposed into 
complete data. In the maximization step, updates for the direction of arrivals 
and the signal values are obtained. For the signal estimation stage of this step, 
different alternatives other than LS-EM can be used such as LS, RGLS, LS- 
SET and LS-RSET. If it is desired to use the same signal estimation method 
throughout the process, the same method as in the initial signal estimation should 
be used in the signal estimation stage of the maximization step. For LS-RSET 
and LS-EM, initial signal estimation by using LS-SET or LS respectively may be 
preferable. The steps of the EM algorithm, explicitly showing the proper places 
to apply various alternatives, are summarized in Table 3.1.

The computational load (per iteration per frequency bin) of the alternative 
methods for signal estimation is shown in Table 3.2. J  is the maximum number of 
iterations, usually in the order of 10, for the adaptive routine in the RGLS method 
which finds the optimum ¡x in (3.34). RGLS method may be computationally 
more intensive than LS for the case of comparable M  and P values. However, in 
practice, the regularization parameter /i, which is determined for each frequency 
bin and given direction of arrival, can be computed a priori and stored in a 
lookup table, providing significant computational saving over the repeated use 
of the EM iterations thereafter. Furthermore, for large sized arrays and few 
sources, that is, for the case of large P and small M values, RGLS may even 
be computationally preferable without any need tor a lookup table. For large 
number of sources, LS-SET can also be expensive in computation depending on 
the number of neighboring directions in the set. Then, LS-RSET is a proper 
substitute for such a case, since it uses lower-dimensional data. For the whole 
picture of the computational complexity per iteration of the EM algorithm, one 
should add the computational complexity of the expectation step, the direction 
of arrival update stage of the maximization step and the initial signal estimation 
step as well.

In conventional EM approach and the variants proposed in this chapter, the 
source signals are modeled to be arbitrary band-limited functions of time. It is 
appropriate to take this course in the absence of any a priori information for the
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source signals. However, in many practical cases the source signals are known 
except for a few unknown parameters. For example, in the case of active direc­
tion finding applications, the received waveforms are scaled, phase and frequency 
shifted versions of the transmitted waveforms. Another example is the case of 
sources emitting signals which are known to be in a class of signals with a few 
members. For these cases, it is desirable to obtain maximum likelihood esti­
mates for the direction of arrivals of the received signals as well as the unknown 
parameters of the signal itself. For this purpose, all of the previously given EM 
approaches can be used with the required modification in the maximization stage.

The output of the sensors can be written in terms of the parametric signal as

Y{k) =  Bik,&)Sik,T) +  Uik) 0 < k < F , (3.37)

where F = [7 1 .. . ’Jm ] is the parameter set, each element of which is associated 
with the /’th source signal. Each parameter 7 may be a vector containing more 
than one element such as amplitude, phase, etc. of the signal. With the para­
metric signal model the maximization can be written as

©"+1 = a r g m a x |m a x |- E  E  ~  7 / ) f } }  (3.38)

For the inner maximization, a parametric optimization is employed to find a signal 
estimate S(Ar, F) for a given value of 0  and this is used in the outer maximization 
as

f F - l  M
 ̂ (3.39)©”+■ =  argtrgx j

k= 0  l=l

Depending on the parametric optimization used to find S(^, F), the maximiza­
tion step may be easy or difficult to compute. With this required change, (Tree- 
Structured) EM algorithm is applicable to the parametric signal case. The estima­
tion of the signal by using a parametric estimator should also be done efficiently, 
since the effect of the efficient signal estimation on the performance of the EM 
algorithm is demonstrated.
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[nitialization

1. Set n = 0.

2. Obtain a rough estimate for 0 °.

3. Using 0 °, solve (2.7) by LS, RGLS or LS-SET for S°(/fc) 

E-Step

4. Decompose the observation to complete data by using (3.26) 

iVI-Step

5.

6 .

Update 0 "  by using (3.31) for all /. If LS-EM or LS-RSET is to 

be used in Step 6, can be updated only.

Update S^{k) if LS, RGLS or LS-SET is used. Update Sf (k)  if 

LS-EM or LS-RSET is used. Do the latter for each / if 0 ™ is

updated in Step 5, otherwise goto Step 5 for the update of (9Li+i-

Loop

7. Increment n by 1 and continue from Step 4.

Table 3.1: Steps of the EM algorithm.
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Method Multvpli cation/Divis i o n Addition

LS ^  + M \ P  + i) + M { P - ^ ) + T/2(P + i) +  M{P -  f )

LS-EM 2 P M 2M{P -  1 )

RGLS-1 M P  +  M^ + 3M2 M P + M^ + 2M'^

+M{6 + U )  -h 5 -f 2J + U M  -  2J -  1

RGLS-2 M^ + 2M^ + {M + 1)P iV/3 -1- 2T/2 -H (M + i)P

M(9 + 7 J) + 2J  + 5 -f-A/(4i/ 1) — 2J — 1

LS-SET ( L ^  -  l)M^P + ^  + -  \ )M ‘̂ P -h L^'MP  + ^

+M{P - 1) fiVP - 2M

LS-RSET M{L +  l)P  + M 2MPL-MP-M

Table 3.2: Computational complexity of the signal estimation methods per iter­
ation per frequency bin.
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Y(k)

,n+l ,n+l

Figure 3.1; Block diagram of the EM algorithm at the n ’th iteration.
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Chapter 4

TREE-STRUCTURED EM 
ALGORITHM

In this chapter, we propose to use a multi-level tree structured mapping between 
incomplete and complete data spaces rather than the commonly used data set 
up for the EM algorithm presented in Section 3. In this way we aim to bring 
together the superior features of two former extensions of the EM algorithm, 
namely, the cascade EM (CEM) algorithm, and the Space Alternating General­
ized EM (SAGE) algorithm [41]-[43]. In CEM, an intermediate data specification 
between the complete and the incomplete data of the conventional EM method 
is used and intermediate EM steps at some iterations are performed. As a re­
sult, faster convergence with fewer computations per iteration is achieved when 
compared with the conventional EM algorithm. In SAGE, the parameters are 
sequentially updated by alternating between several hidden data spaces, unlike 
the EM algorithm where the parameters are updated simultaneously. The se­
quential maximization of the expected likelihood function in each hidden data 
space has been reported to be the main factor of the superior performance of 
SAGE compared to the conventional EM algorithm. With the purpose of cap­
turing beneficial features of these algorithms, we propose to use a multilevel data 
hierarchy as shown in Figure 4.1 for the example case of 7 sources. The leaves 
of the tree hosts the complete data X/(fc)’s and the root of the tree denotes the 
observation Y{k). The intermediate nodes correspond to the partial conditional 
incomplete data, Yij{k),  which are also updated during the iterations. It should
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be noted that the intermediate data at a particular node is not simply obtained 
by summing the complete data of the leaves. The relevant branching indicates the 
relationship of the complete and incomplete data of the EM algorithm. The asso­
ciated precise data assignment for the intermediate incomplete data is explained 
below.

In this setting, EM algorithm can be run for two sources at a time using the 
incomplete data at the joint node of two leaves which is obtained by using the 
intermediate data at the upper branch node and complete data which is not to 
be updated by the current run. For instance, to run EM algorithm for Xi(A:) and 
X 2(A;) we form the required incomplete data as

Yi.i(^) = Y {k)-Y ^h {k ,e i )S i {k ) ,
1=5

Y2,i{k) = Y iA k ) -T ,b (k .O i )S i { k )  ,
1=3

(4.1)

(4.2)

where Si{k) and 0i are the current values of the signal and direction of arrival 
respectively. After a number of iterations are performed on the branch of Y 2,i(^), 
EM algorithm can be run for the branch of Y 2,2{k) which can be found as follows

Y2.2(k) = Y i A k ) - T , b ( k J , ) S , { k )  , (43)
i = l

where, in this case, Si{k) and 0¡ for / = 1,2 are the updated values by the 
EM algorithm applied to the branch of Y2,i(^) before. This switching may be 
repeated a number of times or until a convergence criterion is satisfied. Having 
updated values of signal and direction of arrivals for / = i . . .  4, the EM routine 
can be run for the branch of Yi,2(^) with the same strategy of data assignment. 
The switching between the branches of Yi,i(¿) and Y i ^ k )  can be repeated too. 
In this tree structure, the branches can be seen as hidden data spaces that can be 
associated with the SAGE in the sense that not all of the parameters are updated 
at a time but only a subset of parameters are updated sequentially. Working 
in smaller dimensional spaces provides not only speed in convergence but also 
computational saving since in the tree structure, two sources are treated at a 
time with smaller dimensional matrices resulting in less number of computations 
per iteration. Therefore, it is suitable to use tree structure especially for large
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number of sources and computationally expensive regularized signal estimation 
methods.

X

X

X .

X

Figure 4.1: Binary tree structure tor the example case ot 7 sources.
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Chapter 5

SIMULATION RESULTS

In this chapter, we compare the proposed algorithms both with each other and 
with the conventional EM approach. Also, we investigate the performance im­
provement with respect to one of the most improved subspace based wide-band di­
rection finding algorithm known as Two Sided Correlation Transformation (TCT)
[38].

5.1 Simulation Set I

This part of the simulations include the performance evaluation of the EM al­
gorithm when, in the signal estimation stage of the maximization step, one of 
the proposed or the former signal estimation methods is used. The methods are 
termed as LS-EM, LS, RGLS, LS-SET and LS-RSET corresponding to (3.28), 
(3.33), (3.34), (3.35) and (3.36) respectively. The scenario is as follows: 2 wide­
band signals with true direction ot arrivals © = [35° — 20°]^ with respect to 
the normal of the array, are incident onto an array of 19 sensors. The number 
of the sensors is chosen by using the result of another simulation which is done 
to reveal the performance of the EM algorithm with changing sensor number. 
This simulation is detailed later. The array consists of colinear sensors which are 
coplanar with the arriving signals. This corresponds to the direction finding in a 
2-D space where the direction of arrival parameters for each direction are simply 
scalars of the azimuthal angle. However, the formulation in the previous chapters 
are valid for the 3-D case in which there is also an elevation angle component in
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the direction of arrival parameter 9i, which is a vector rather than a scalar in that 
case, corresponding to the /’th signal. A discussion on the required extension and 
the associated data model is given in [58]. The gain characteristics of the sensors 
are taken the same for all sensors which is also not a necessity. The directional 
and frequency dependence of the sensors are shown in Figure 5.1. Measurement 
noise in each sensor is assumed to be independent identically distributed circu­
larly symmetric complex white Gaussian noise. Signals are taken as coherent 
linear FM waveforms with bandwidth larger than the center frequency.

For each of the signal estimation alternatives, the EM algorithm is' run, within 
a convergence criterion and a bound on the maximum number of iterations, with 
an initial direction of arrival estimate 0 °  = [32° — 17°]^ for 10 realizations and 
signal-to-noise ratio ranging from -10 dB to 10 dB with 5 dB increments. Signal- 
to-noise ratio in decibels is defined as

energy of the noiseless observations
SN R  = 10 log 10 dB (5.1)variance of the noise

For initialization of the procedure, the initial signal estimation is performed by 
using RGLS-2 which is chosen by using the result of another simulation which is 
also detailed later. The performance is evaluated in terms of both the direction 
of arrival and the signal estimation error. The error for the direction of arrival 
estimation is

c@ = I I © - 0 f  , (5.2)

where © is the true direction of arrival and 0  is its estimate. For the signal 
estimation, error is defined in terms of time domain signal values cis

1 M N - l

e., = M N  ^
(5.3)

where .s/(i) is the estimated time domain signal and si(t) is the true signal wave­
form.

The direction of arrival estimation error of the EM algorithm using different 
signal estimation methods is shown in Figure 5.2-a together with the Crarner- 
Rao lower bound on the variance of the estimates and the results produced by 
the TCT algorithm. A magnified view of the results due to the signal estimation 
methods is shown in Figure 5.2-b. Shown in Figure 5.3 is the corresponding signal 
estimation error for each method.
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As seen in Figure 5.2, the performance of the RGLS method, which is almost 
the same for RGLS-1 and RGLS-2 algorithms, seems to be superior to the oth­
ers at all tried SNR values. This behavior is apparent especially at low SNR 
values, where the performance of LS degrades due to the numerical instability 
effect which is mentioned earlier. LS-SET and LS-RSET having almost identical 
behavior throughout the range of SNR values, also do better than LS or LS-EM 
for low SNR regions. Correspondingly, it is clear from F'igure 5..3 that the RGLS 
method is significantly superior in producing signal estimates. The LS-SET per­
forms slightly better than LS-RSET, both of which produce less error than the 
LS or LS-EM which are almost on the same curve. From these two figures, it can 
be said that, the signal and direction of arrival estimations are closely related. 
The TCT algorithm has not produced good results in the simulations. This may 
be due to the large bandwidth of the signals used. .A.lso, the large number of 
frequency bins used in our simulations may cause a difficulty in focusing different 
signal subspaces associated with particular frequency bins to a common focusing 
subspace.

As mentioned earlier, a separate simulation is performed for the comparison 
of the methods LS, RGLS and LS-SET for the initial signal estimation as a 
solution to (2.7) with 0® at hand. In order to adequately evaluate the signal 
estimation performance of the methods in case of initial direction of arrival error, 
the signal estimation is performed from the observations at SNR=0 dB, on a 
grid of directions corresponding to different deviations from the true values of 
each of the two direction of arrivals. The grid consists of 13 divisions for each 
dimension with equal deviation of 3° on each side of the true values. The error of 
signal estimation for each grid point corresponding to a pair of angles is plotted 
in Figure 5.4. The missing points in the surface of LS mesh, are due to the 
blow up of the method at those points. LS can show instable behavior in the 
case of ill-conditioned matrix even if the sources are not so close to each other. 
Actually, this is the reason that it needs regularization. On the other hand, 
regularized solution methods have estimated the signal robustly. RGLS-1 and 
RGLS-2 methods, which are close to each other in performance, produced better 
results than LS-SET as well. However, it is clear from the smoothness of the LS- 
SET mesh that, this method is more robust to inaccuracies in the initial direction 
of arrival. The best estimates of signals among the realizations are plotted in
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Figure 5.5 and the worst estimates in Figure 5.6. This provides a comparison 
on the limits of the estimation performance of the corresponding methods. It is 
clear that, LS-SET can produce acceptable results even at the worst case where 
the performance of others degraded.

For determining the number of sensors to be used in the simulations, a sepa­
rate simulation about the effect of the sensor number on the estimation is carried 
out. In that simulation the sensor number is increased from 3 to 31 by increments 
of 4 and the array is held symmetric around the origin. The direction of arrival 
and signal estimation error for the method RGLS-1 at an SNR value of 0 dB, 
as a function of the sensor number is shown in Figure 5.7. According to these 
results the sensor number is chosen to be 19 since there is insignificant decrease 
in the error after that point.

5.2 Sim ulation Set II

Here, as a complement to the previous section, the convergence behavior of the 
EM algorithm is to be evaluated which employs the signal estimation alternatives. 
The configuration is the same as in the previous section. The simulation is done 
for SNR=0 clB and the direction of arrival error is traced as the EM algorithm 
iterates. The result shown in Figure 5.8 is the average error of direction of 
cirrival estimates over 10 realizations as a function of iteration number of the EM 
algorithm. The convergence of RGLS methods clearly outperforms the others, 
providing a significant gain in the number of iterations which should be performed 
to reach a satisfactory convergence level. The convergence behaviors should also 
be taken into account together with the performance of the methods outlined in 
the previous set of simulations and the complexity of the algorithm tabulated 
in Chapter 3, in order to decide which method to use in a particular application 
where the criterion of the selection may be computational complexity, robustness, 
speed of convergence or all of them.
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5.3 Sim ulation Set III

In this part of the simulations, the tree-structured EM (TSEM) algorithm is 
compared with the conventional EM algorithm for the case of 4 sources from 
directions 0  = [35° — 20° — 50° 60°]^ at SNR=0dB. Initial directions are given 
as ©0 =  [32° -  47° -  17° 47°]^. In TSEM, the EM algorithm, which uses the 
LS-RSET in its signal estimation, is run for two sources at a time, with a maxi­
mum number of iterations of 5 at each branch. After 5 iterations at one branch, 
the algorithm switches to the other branch. This switching is also repeated 8 
times. Therefore, in total, 40 iterations of EM algorithm are performed for each 
direction of arrival. For comparison purposes, the EM algorithm is also run for 
4 sources with a maximum number of iterations of 40. The direction of arrival 
estimation error is traced throughout the processes and displayed in Figure 5.9 
where it can be clearly seen that the Tree-Structured EM algorithm has a sig­
nificantly high speed of convergence. Also, note that beyond this speed, tree 
structure provides saving in computation in each iteration due to the smaller size 
of matrices and vectors, handled in the algorithm.

26



(b)
Figure 5.1: (a) Directional and (b) frequency dependent gain of a sensor.
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(a)

(b)

Figure 5.2: (a) DOA estimation error of the EM algorithm together with CRLB 
and result of TCT. (b) Magnified view of EM result with different signal estima­
tion methods.
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Figure 5.3: Signal estimation performance of the EM algorithm with different 
signal estimation methods.
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UPPER:LS-SET 

LOWER: RQLS-2

angle 2

Figure 5.4: Signal estimation error of the methods LS, RGLS and LS-SET.
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(a) (b)

(c) (d)

Figure 5.5: True signals (dashed line) and best signal estimates (solid line) of the 
methods (a) LS, (b) RGLS-1, (c) RGLS-2, and (d) LS-SET among the realiza­
tions.
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(a) (b)

( c ) (cl)

Figure 5.6: True signals (dashed line) and worst signal estimates (solid line) 
of the methods (a) LS, (b) RGLS-1, (c) RGLS-2, and (d) LS-SET among the 
realizations.
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(a)

(b)

Figure 0.7: Performance of the EM algorithm with different number of sensors in 
the array, (a) Direction of arrival estimation error, (b) signal estimation error.
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X 10"

Figure 5.8: Trace of direction of arrival error.
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Figure 5.9: Convergence comparison of Tree-Structured EM algorithm and con­
ventional EM algorithm.
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Chapter 6

CONCLUSIONS

A thorough derivation of the Expectation Maximization algorithm, which is an 
iterative numerical method of Maximum Likelihood estimation, is presented for 
the case of estimating direction of arrivals and waveforms of unknown determin­
istic wide-band signals incident from dilferent directions onto a passive array of 
sensors. Also, the required modifications in the algorithm is given for the case of 
an available prior parametric model on the received signal waveforms.

To improve the accuracy, alternative regularized least squares estimation tech­
niques are proposed to replace the common least squares solution for estimation of 
incident signal waveforms. By the comparison of the proposed signal estimation 
alternatives both with each other and with the common least squares solution, it 
is shown that better estimates for the signal waveforms can be obtained by using 
regularized signal estimation methods.

In order to obtain reliable estimates for the direction of arrivals even at low 
signal-to-noise ratio and speed up the convergence of the EM algorithm, proposed 
alternative regularized signal estimation methods are applied to both the initial 
signal estimation step and the signal estimation stage of the maximization step 
in the EM algorithm. Also, it is shown that with better signal estimation during 
the iterations, EM algorithm converges faster to more reliable direction of arrival 
and signal estimates compared with the conventional EM algorithm.

As a generalization of the commonly used direct mapping, a binary tree struc­
tured multiple level data mapping is proposed between the observations and the
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complete data of the EM algorithm. It is demonstrated that the proposed Tree- 
Structured EM (TSEM) algorithm converges faster than the conventional EM al­
gorithm does even for moderate number of sources. In the binary tree structure, 
the EM algorithm can be run for two sources at a time with lower-dimensional 
data. Hence, in addition to speeding up the convergence, the tree structure 
provides considerable saving in computation, especially for large number of su­
perposed signals.
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Appendix A

Statistics of the Observations

Probability density function of a real Gaussian zero mean vector of size N  (A ’th 
order real multivariate Gaussian density) can be written as the joint distribution 
of the real components of the random vector as a result of the definition of the 
joint normality [59] as follows,

/(r)  = / ( r i , r 2,...,r /v )  = (2 7 r)"^ |C r2 e x p |-ir-^ C ~ ^ r| (A.l)

where C = £{rr^} is the covariance matrix. For a complex zero mean Gaussian 
vector z = u + jv  of size N, its statistical properties are specified in terms of the 
joint density of its components,

/(z) = f(ut,U 2,.--,ll!^,V i,V 2,...,V ,Y)

= (2Tr) ^ |D | ?exp<^--1 r j  1U V D - 1 u
V

(A.2)

where 2 + N  real parameters of correlations are held by the covariance matrix,

C,
D = ÛU Guv 

Cvu Gvv

On the other hand, the covariance of the complex vector z

Czz — Cuu + Cvv j  (Guv ~ Gvu) 1

(A.3)

(A.4)

has real parameters. Thus, unlike the real case, the density of z can not in 
general be determined in terms of Gzz· A special class of complex normal vectors
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that are statistically determined in terms of their covariance matrix is given by 
Goodman [60].

Theorem 1 ([59, 60]) For the random vector z = u + jv . if the vectors u and
V are such that

Cuu — Cvv and ~ V̂Il ^ (A.5)

then
Czz = 2 (Cuu ■“ iCuv) 7 (A.6)

and the density is given as

/(z) = (7r)“^ |C zzr^exp{-z^C "2^} . (A.7)

□

If z ~  A/*(0, cr Î) then u, v ~  jV(0, ^1)· This is a special case of the theorem 
and the density can be written as follows,

/(z )  = /(u ,v )  = (2 T r) -^ '^ (^ ) -^ e x p |- iz ^ ^ z | = (7T(7^)-'Vxp | - ^ z ^ z |  .
(A.8)

In (2.7), U(Ar) ~  Ai(0,cT^Ip^p). Therefore, the probability density function of 
the observations, where Y  is the underlying random variable, is as follows,

/y (y i0 ,S )  = | - ^  E  [Y(^) -  B(k,0)S(k)]^[Y(k) -  B (A ;,0 )S (^  .

(A.9)
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Conditional Multivariate 
Normal Density

Appendix B

In this appendix, the conditional density function of a multivariate normal dis­
tribution is presented. Let Xi and X2 be jointly normal random vectors of dis­
tributions j'V"(mi,Cn), yV"(m2,C 22) and orders N-i and N2 respectively. For real 
random vectors, the order is the length of the vector while for the complex case it 
is twice the length of the vector. The joint characteristics are expressed in terms 
of the vector [xi^X2̂ ]^, whose covariance matrix is

C = C u  C 12 

C2t C22

The conditional distribution can be obtained by

./■(xi-X'i)
/ ( X l | X 2 ) =

/(X'i)

The distribution of X2 is

/(X2) =  (2 7 T)“ '^ |C 2 2 r ^ e .x p | - i ( x 2 -  m2)^C. ;̂2 (X2 -  m 2)| .

(B.l)

(B.2)

(B.3)

The joint density /(x i,X 2) is to be expressed in terms of the submatrices of the 
matrix C. From the inverse of a partitioned matrix.

c - i  =
Co‘ - C o ‘Ci2C22‘

(B.4)

46



and

where

|C| = |C ,,| · |Co| ,

Co = Cu -  CnC^ICf ,  .

Then the joint density can be written as

(B.5)

(B.6)

/ ( X l , X 2 )  =  ( 2 7 t ) “̂ ^ | C 2 2

1
 ̂ · |Co|-i

^(x, -  mi)

- ( X 2  -  m 2 ) ^ C 2 2 ^ C f 2 C o ^ ( x i  -  m i )

-(xi -  mi)^C-‘Ci2 C2"2'(x2 -  m2 )
+  ( X 2  -  m 2 ) ’̂ C j 2 ‘ C f 2 C o ‘ C i 2 C j 2 ^ ( X 2  -  m 2)

+(X2 -  m2)^C.^2Hx2 -  m2)]} . (B.7)

Upon division by /(X'i), the term (27t) '^1C22|  ̂ cancels and the last term of 
the exponent in (B.7) vanishes. The remaining terms can be written as

/ ( X l | X 2 )  =  ( 2 7 r ) " 5 ^ | C o r 2  e x p { - i [ X i  -  m i  -  C i 2 C 2 2 ‘ ( X 2  -  m 2 ) ] ^

•Co [̂xi -  mi -  C i2Ĉ 2Hx2 -  m2)]} . (B.8)

This is the density of a multinormal distribution with mean vector

mi + C 12C 22HX2 “  rn2) 7

and covariance matrix Cq.

(B.9)
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Form of the CRLB Expression

Appendix C

The Crainer-Rao Lower Bound for the unbiased estimates of the direction of 
arrivals for the narrow-band case has been derived [24, 25]. Here the wide-band 
data model is applied to this derivation and the theorem given in [24] is modified 
accordingly as the following:

Theorem 2

P > M  and b(A:, V 9 are linearly independent. 
£ { \]{k )}= d  

S [V { k ) \ j \k )}  = a^l 

s [v {k ) \] ^ {k )]  = a

¿:{U(fc)U (̂/)} = 5{u(/l;)u^(0} = 0 f o r  k ^ l

and U{k) Gau.'isian.

With the above assumptions, the Cramer-Rao Lower Bound for the parameter® 
is given as,

A l  
A 2

AML

CRB(@) =

varcnio·^) =

F-i
Ue {GtfcDt [l -  Bk DG^}

Lit=:0

- 1

P F ’

( c . i )

(C.2)

where

B, = B(A:,©) (C.3)
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Gk =  d iag {S i {k ) . . .  SM(k)}

d(i>) = [d ,{0). . .dp{9)Y =
T dh{k^9)

80
8bYk,9) dbp{k,9)  ̂T

89 89

iCA)
(C.o)

(C.6)

□

The derivative terms in our application can be evaluated as

dbiik,9) _  8 ( ., 8bi(k,9) 8 ,2sJLnm] (C.7)

Since we take the dependence of the sensor gain separable in terms of frequency 
and direction, we can write

A,(k,9) ^  A{(k)A im  . (C.8)

Then,

f  ■ 2 , r k  r j ( S )  8  /  2 T r k T i ( 9 )  : 2 w k  r i ( l > )  8 t : (  9 ) '
d,(t>) = A<dk)e-‘- r  r, + A.{k,l)) ( ' · ·  - ~

(C.9)
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