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ABSTRACT

NETWORK FORMATION WITH SYSTEMIC RISK AND DEFAULT

INSURANCE

İdem, Mehmet Hamdi Berk

M.A., Department of Economics

Supervisor: Prof. Dr. Semih Koray

July 2016

In this paper, we study the networks that arise in the equilibrium when risk

averse investors play a network formation game for making joint investments

with each other. The outcomes of these projects are stochastic and hence,

depending on the shock realizations, investors may choose to default. However,

counterparty defaults are damaging and investors have the option to buy

default insurances against this damage. We show that in this model,

equilibrium networks consist of complete components of a certain size, which

maximize the expected utility of investors in that component. For a wide

variety of parameters, it turns out that investors choose not to buy any

insurance at the equilibrium.

Keywords: Default Insurance, Network Formation, Risk Aversion,

Strong-Stability, Systemic Risk.
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ÖZET

SISTEMIK RISK VE İFLAS SIGORTASI ILE AĞ OLUŞUMU

İdem, Mehmet Hamdi Berk

Yüksek Lisans, İktisat Bölümü

Tez Yöneticisi: Prof. Dr. Semih Koray

Temmuz 2016

Bu araştırmada, riskten kaçınan yatırımcılar birbirleriyle ortaklaşa yatırım

yapmak için bir ağ oluşumu oyunu oynadığında dengede ortaya çıkan ağları

çalışıyoruz. Projelerin neticeleri rastsal olduğu için, gerçekleşen şoklara bağlı

olarak, yatırımcılar iflas etmeyi seçebilir. Ancak, projelerdeki ortakların iflas

etmesi yatırımcılar için zararlıdır ve yatırımcıların bu zarara karşı iflas sigortası

alma seçeneği vardır. Biz bu modelde, denge ağların o belli bir büyüklükteki

tam bileşenlerden oluştuklarını ve bu büyüklüğün de bir bileşenin içindeki

yatırımcıların beklenen faydalarını ençoklaştıracak şekilde olduğunu gösterdik.

Geniş bir parametre çeşitliliği için, görünen odur ki yatırımcılar dengede sigorta

almamayı tercih etmektedir.

Anahtar Kelimeler: Ağ Oluşumu, İflas sigortası, Riskten Kaçınma,

Sıkı-Kararlılık, Sistemik risk.
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CHAPTER 1

INTRODUCTION

The term ‘systemic risk’ refers to the risk of an event that could cause the

collapse of the whole system. The 2008 crisis has shown economists that the

interconnectedness of a system is directly related to the aggregate risk that the

system bears. Hence, the literature on systemic risk has been growing at an

increasing pace after the 2008 crisis.

The failure of the institutions which were the intermediaries in most of the

Credit Default Swap (CDS) agreements is accepted by many as one of the most

important reasons of the 2008 crisis. These agreements are closely related to

default insurances in our model. Default insurance is an instrument used to

reduce an individual’s risk against the default of his partners. So, CDSs and

many other financial instruments can be considered as special types of default

insurance. In contrast to the important role of these financial instruments in

one of the biggest financial break-downs of the modern times, they received

very little attention in the theoretical literature on systemic risk. Like any kind

of insurance, default insurance is also sensible only in a set up where agents do

not enjoy the risk. For this reason, we investigate the equilibrium networks in a

model with risk averse investors who can buy default insurance.
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Among those who contributed to the systemic risk literature, Erol and Vohra

(2014) is almost unique in considering the endogenous network formation in a

model of systemic risk. In their model, risk neutral investors make joint

projects whose outcome is stochastic. After the outcomes of all projects realize,

investors decide whether to default from all projects or not. In their model, the

only core networks are those that have complete connected components of a

certain size. Our model and results are closely related to theirs. Particularly, we

add risk aversion and option of buying a default insurance to their model and

compare our results to theirs. The details of the relation of our study to theirs

will be made clear after the model is introduced. In a similar setup to theirs,

Erol (2015) focuses on a model of endogenous network formation where bailout

is possible and shows that intervention increases the interconnectedness of the

system and create a center-periphery structure which is by nature more volatile.

Allen and Gale (2000) and Babus (2016), focus on a two region model with two

types of costumers: early consumers and late consumers who fluctuate between

the regions and causing the liquidity uncertainty for banks. Both of these

studies find that the complete networks arise in the equilibrium and they are

more robust to systemic risk. However, Babus (2016) notes that the

completeness is only a sufficient condition but not a necessary one. Our results

show that the stability of complete networks requires the assumption of a very

high probability of a good shock.

Many studies (Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015a b: Glasserman

and Young, 2015: Caballero and Simsek, 2013: Gai and Kapadia, 2010: Eboli,

2013: Elliott, Golub, and Jackson, 2014: Cabrales, Gale, and Gottardi, n.d.)

investigate different aspects of systemic risk in network games where the

networks are exogenously given. Consideration of these studies include but are

not limited to dynamics of cross-holdings of firms, flow network analysis and
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liquidity shocks. For a very extensive survey of the literature, the reader can

refer to Chinazzi and Fagiolo (2015).

Zawadowski (2013) shows that banks buy less than the socially desirable level

of counterparty insurance because they do not consider the consequences of

their own failure on others in the system. However, their model does not

feature an endogenous network formation game; banks decide to work with

exogenously determined potential counterparties only.

Our results also at least partially extend those of Wilson (1968). Wilson shows

that when people’s information and risk preferences are identical and they are

making investment on their joint savings, the equilibrium investment decisions

are Pareto-optimal. In our model, we show that at least for some parameter

values, the outcome is Pareto-optimal even without the assumption of same risk

preferences.

We show that when people are risk-averse and they can buy default-insurance,

they form complete clusters in which everyone is directly connected to everyone

else and no one has connection with someone outside his own cluster. The size

of the cluster is determined such that it maximizes expected utility of investors.

Since the insurer makes the investors indifferent, the same equilibria would arise

when there is no insurance option. Hence, the insurance does not change the

network structure. If the probability of a good shock is lower than 0.5, we show

that everyone makes a single project and they do not buy insurance, no matter

how risk-averse they are. However, we have been unable to find a general result

for the existence of a functioning default insurance market or even illustrate it

by an example.
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CHAPTER 2

PRELIMINARIES

Let N = {1, 2, . . . , n} denote the set of risk-averse investors. Both investors and

the risk-neutral insurer have von Neumann - Morgenstern utility functions,

ui(xi) for each investor i. The investors try to maximize their utility which is a

strictly increasing, concave function of their monetary gains xi. The insurer

tries to maximize his profit,

π = (Total revenue)− (Total amount of coverage he has to provide) by setting

up prices for insurance.

We are going to represent joint projects with the edges of a graph, so we will

need the following formal definitions for the later discussions.

2.1 Definitions

Definition 1. A graph G is an ordered pair of sets (N,E) such that N is the

set of vertices (investors) and E is a subset of N ×N (the set of all possible

joint projects). We denote the set of all graphs on N by GN .

Let G = (N,E) be a given graph for the following definitions.
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Definition 2. H = (V,E ′) is a subgraph of a graph G = (N,E) if V ⊆ N and

E ′ ⊆ E.

Definition 3. We say that an edge ij ∈ E is adjacent to a vertex k ∈ N if

i = k or j = k.

Definition 4. The degree of a vertex is the number of edges adjacent to it.

Definition 5. A graph G is k-regular if every vertex in G has degree k.

Definition 6. A graph G is a star graph if there is a vertex i such that for any

j, k in N other than i, ij is in E and there does not exist jk in E such that

j 6= i and k 6= i.

Definition 7. A finite sequence of edges e1, e2, ..., ek ∈ E is a path of length k

in G if for any i, j ∈ {1, 2, ..., k} with i 6= j, ei ∩ ei+1 6= ∅, i = 1, 2, ..., k and

ei 6= ej. We will shortly say a k-path to a path of length k.

Definition 8. The graph G is connected, if for all vi, vj in N with vi 6= vj,

there is a path from vi to vj.

Definition 9. A subgraph H of a graph G is a component of G if it is

connected and there is no other connected subgraph H ′ of G which contains H

and H ′ 6= H.

Definition 10. Let G,G′ be graphs in GN . G′ is said to be reachable from G

via T ⊆ N if

1. ∀ij ∈ G : {i, j} ⊆ N \ T ⇒ e ∈ G′ and

2. ∀ij ∈ G′ : {i, j} ∩N \ T 6= ∅ ⇒ ij ∈ G.

We denote the expected utility of an investor i when the materialized graph is

G by EG [ui (xi)].
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Definition 11. Let k be in {1, 2, . . . , n}. A graph G ∈ GN is said to be k-stable

if there is no T ⊆ N with | T |≤ k such that there is some G′ reachable from G

via T with ∀i ∈ T : EG′ [ui (xi)] > EG [ui (xi)].

We say that a graph G ∈ GN is strong-stable if it is n-stable and Nash-Stable if

it is 1-stable.

2.2 The Process

The process works as follows:

1. Each investor i announces the set of investors whom he wants to join

projects with. If two investors i and j announce each other, we say that

the project ij is materialized. There is an independently, identically

distributed shock ωij to each materialized project ij whose distribution is

common knowledge. ωij has a Bernoulli distribution on Ω = {ω1, ω2} and

we denote the probability of a good shock with p: P (ωij = ω2) = p.

2. Knowing the distribution of shocks, insurer sets a price Pij
1 which denotes

the price i should pay to be insured against the default of j in materialized

project ij or declares that he is not offering insurance for i against j.

3. Each investor i decides whether to buy default insurance for his

materialized projects, if he is offered insurance.

4. Shocks to each materialized project ij are realized.

5. Observing realized shocks, each investor i decides whether to default or

not.

1In our model, an investor cannot buy insurance for a single project. However, insurer
still calculate the price of insurance of an investor by individually calculating the prices of
insurances for each of the investors project and adding them up.
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6. The insurer provides insurance coverage to each investor i if his partner j

in the materialized project ij defaulted and i himself did not.

Payoffs: Given the realized shock ωij to ij, without the insurance, the

monetary gains of each investor from project ij -depending on their default

decisions- are as follows:

Investor i

Investor j

ND D

ND (ωij, ωij) (ωij − 1, 0)

D (0, ωij − 1) (0, 0)

Payoffs from the joint project ij given the value of ωij

Clearly, depending on realized value of ωij, this “game” has a different

“dominant strategy”. However, since each investor either defaults in all projects

or not default at all, this is not actually a game in itself and defaulting in an

individual project is not a strategy. So, we render the action of defaulting in a

single project irrelevant by definiton2. Hence, investors will consider all of their

projects when they make their decisions about defaulting.

We consider an insurer who offers a price pij only if it gives a strictly positive

expected profit and in case there is no such price, he declares that he is not

offering insurance for i against j.

Assumption 1. ω1 < 0 < ω2 with 0 < ω2 < min

{
1

n− 1
,
−ω1

n− 2

}
.

Assumption 1 ensures that an investor has to default if he receives a negative

shock to a project or if he is uninsured and one of his partners receive a negative

shock. Hence, under this assumption, if a negative shock hits an edge in a

2However, as we mention in the conclusion, we hope to extend this assumption in the future
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component, every investor in the component must default in an equilibrium.

(See Erol and Vohra (2014) for a proof of this using rationalizable strategies.)
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CHAPTER 3

THE MODEL

Here, we first illustrate by an example and then prove that if the probability of

a good shock is less than 0.5, at the equilibrium, everyone has one edge and no

one buys insurance. We then consider another example where the only

strong-stable network is the complete network. Using insights from the results

of this example, we find a general necessary and sufficient condition for having

the complete network as the only strong-stable network. Lastly, we find a

general characterization of strong-stable networks.

3.1 Sparse Strong-Stable Networks

In this section we will first solve an example with four investors and then

generalize the results of this example to an arbitrary number of agents.
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3.1.1 Four investors example with p < 0.5

In this example, we have four investors and one insurer. Preference of investor i

is represented by ui (xi)
1 which is a strictly concave and strictly increasing

function, where xi is the total monetary gain of i from the game. We denote

the probability of a good shock as p, i.e., P (ω = ω2) = p. The preference of the

insurer is represented by his profit function. Investors can either buy insurance

for all of their projects or none of them. The insurer sets the price so as to

make the investors indifferent between buying the insurance and not. We

consider equilibria in which an agent who is indifferent between buying and not

buying the insurance buys the insurance. We have one crucial assumption here.

Assumption 2. p < 0.5.2

3.1.1.1 Expected Utilities

Since, the insurer makes the investors indifferent between buying the insurance

and not, we can find the equilibrium networks without taking the insurance

decisions into account. In the case with four investors, the expected utilities of

an investor in each network and each position are as given below.

3-regular network: Everyone has the same expected utility due to

symmetry:

p6u (3ω2) +
(
1− p6

)
u (0) .

1We drop the indices when there is no ambiguity.

2Since we have strict concavity, weak inequality here and in the rest of this analysis is
sufficient for all the results. But when this assumption is made with strict inequality, all of the
results are correct for all concave utility functions, not only for strictly concave ones.
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This calculation uses the fact that, even if a single negative shock hits an edge

in a component, everyone in the component has to default. So, if every edge

receives a positive shock, which happens with probability p6, everyone gets the

utility u (3ω2) and if there is at least one negative shock, then everyone defaults

and they receive u (0). In the following networks, we only provide the end-result

of this calculation.

2-regular network: Everyone has the same expected utility due to

symmetry:

p4u (2ω2) +
(
1− p4

)
u (0) .

1-regular network: Everyone has the same expected utility due to

symmetry:

pu (ω2) + (1− p)u (0) .

3-cycle: Everyone in the cycle has the same expected utility due to symmetry:

p3u (2ω2) +
(
1− p3

)
u (0)

and the agent with degree 0 gets u (0).

1-path: Everyone in the path has the same expected utility due to symmetry:

pu (ω2) + (1− p)u (0)

11



and the vertices with degree 0 gets u (0).

2-path: Agents with degree 1 have the same expected utility due to

symmetry:

p2u (ω2) +
(
1− p2

)
u (0)

and the vertex with degree 2 gets the following:

p2u (2ω2) +
(
1− p2

)
u (0)

and the vertex out of the path gets u (0).

3-path: Vertices with degree 1 have the same expected utility due to

symmetry:

p3u (ω2) +
(
1− p3

)
u (0)

and the vertices with degree 2 get the following:

p3u (2ω2) +
(
1− p3

)
u (0) .

Star network: Vertices with degree 1 have the same expected utility due to

symmetry:

12



p3u (ω2) +
(
1− p3

)
u (0)

and the vertex with degree 3 gets the following:

p3u (3ω2) +
(
1− p3

)
u (0)

Complete network minus an edge: Vertices with degree 3 have the same

expected utility due to symmetry:

p5u (3ω2) +
(
1− p5

)
u (0)

and the vertices with degree 2 get:

p5u (2ω2) +
(
1− p5

)
u (0) .

Other networks: In all other networks with four agents, there is one agent

with degree 1, two agents with degree 2 and one agent with degree 3. In this

network, the vertices with degree 2 get the same expected utility due to

symmetry:

p4u (2ω2) +
(
1− p4

)
u (0)

the vertex with degree 1 gets the following:

p4u (ω2) +
(
1− p4

)
u (0)

13



and the vertex with degree 3 gets:

p4u (3ω2) +
(
1− p4

)
u (0) .

3.1.1.2 Equilibria

Clearly, all expected utilities are convex combinations of u (0) and u (kω2) where

k is the degree of the vertex. Expected utilities of the vertices with the same

degree can easily compared with each other by checking which one has greater

coefficient for u (0). So, the three candidates for maximal expected utility are

any vertex in 1-regular network, the center vertex in the path of length 2 and

the center vertex in the star network. Notice that these are all vertices who do

not inquire any indirect risk, meaning they are adjacent to all edges in their

component. Now, we claim that the 1-regular network gives the highest

possible expected utility under a certain condition on p. In order to check this,

we only need to compare the expected utility of a vertex in 1-regular network

with the expected utilities of other natural candidates mentioned above.

Comparison with the center vertex in the path of length 2 We claim:

p2u (2ω2) +
(
1− p2

)
u (0) < pu (ω2) + (1− p)u (0) .

Equivalently,

p (pu (2ω2)− u (ω2) + (1− p)u (0)) < 0.

Or

14



p (p (u (2ω2)− u (0)) + u (0)− u (ω2)) < 0.

Now, since u is strictly concave, we have:

u (ω2)− u (0) >
u (2ω2)− u (0)

2

From above assumption, we have p < 1/2, so we conclude that our claim is

correct, since we also know 0 < p.

Comparison with the center vertex in the star network: We claim:

p3u (3ω2) +
(
1− p3

)
u (0) < pu (ω2) + (1− p)u (0)

.

Equivalently,

p
(
p2u (3ω2)− u (ω2) +

(
1− p2

)
u (0)

)
< 0

.

Or

p
(
p2 (u (3ω2)− u (0)) + u (0)− u (ω2)

)
< 0

.

Now, since u is strictly concave, we have:

u (ω2)− u (0) >
u (3ω2)− u (0)

3

15



.

Since we assumed p < 1/2 above, we also have p2 < 1
3
, so that we can conclude

that our claim is correct, since we also know 0 < p.

Then, 1-regular network gives the highest possible expected utility for all

vertices when we have p < 1/2. So, it is the only 4-stable or strong-stable

network structure in this context.

3.1.2 A Sufficient Condition for Sparse Strong-Stable Networks

Now, suppose there are arbitrary number of investors, say n. The state space is

Ω = {ω1, ω2} with ω1 < 0 < ω2 and 0 < ω2 < min

{
1

n− 1
,
−ω1

n− 2

}
. Consider a

vertex with k links in a component with m links. His expected utility will be:

EU1 = pmu (kω2) + (1− pm)u (0)

.

However, when m 6= k, clearly this cannot be the maximum achievable expected

utility, since

EU2 = pmu (mω2) + (1− pm)u (0)

.

would be reachable in a network where he has links with everyone in his

component and EU2 will be strictly higher than EU1, since u is a strictly

increasing function. Hence, in order to find the maximum achievable expected

utility for a vertex, we can restrict our attention to vertices who have links with

16



every other vertices in their component. Our claim is again the same: Vertices

in a 1-regular network receive the highest possible expected utility, when

p < 0.5. We refer to expected utility of a vertex in a 1-regular network by EUm.

The comparisons for the case with 4 vertices clearly apply here. Now, let m > 3

and consider.

EU = pmu (mω2) + (1− pm)u (0)

.

Now, our claim is that:

EUm − EU = p
(
pm−1u (mω2)− u (ω2) + (1− pm)u (0)

)
< 0

.

Equivalently,

p
(
pm−1 (u (mω2)− u (0)) + u (0)− u (ω2)

)
< 0

.

From strict concavity of u,

u (ω2)− u (0) >
u (mω2)− u (0)

m

.

So, for our claim to be true, we need

17



pm−1 <
1

m

.

Equivalently,

p < m

−1

m− 1

.

Define g (m) =: m

−1

m− 1 and check the first derivative of g:

g′(m) =

ln(m)

(m−1)2 −
1

(m−1)m

m
1

m−1

> 0,∀m > 3

.

So, g is an increasing function of m on relevant domain.

Now, since p < 0.5 = g (2), we have p < g (2) < g (m) for all m > 3 so that our

claim is proven. Hence, the following theorem.

Theorem 1. Under assumptions 1 and 2, the only strong-stable networks are

the 1-regular networks.

Proposition 1. If everyone has a strictly concave and strictly increasing utility

functions, then, no one sells or buys any insurance at the strong-equilibrium.

Proof. From Theorem 1, we know that in a strong-stable equilibrium, the

network is 1-regular. When the insurer sets the price for insurance of investor i

against j, he finds the price Pij which solves the following problem:

18



pu (ω2) + (1− p)u (0) = pu (ω2 − Pij) + (1− p)u (0− Pij)

.

Now, suppose some Pij > 0 solves above equation. Then, we have

u (ω2) > u (ω2 − Pij) and u (0) > u (0− Pij) since u is strictly increasing.

So, pu (ω2) > pu (ω2 − Pij) and (1− p)u (0) > (1− p)u (0− Pij) contradicting

with Pij being a solution to above equation. Thus, Pij = 0 since offering a

negative price for a service to maximize the profit would be absurd. But then,

the expected profit of the insurer from insuring i is non-positive.

πi = pPij + (1− p) (Pij) = Pij = 0.

But then, he would declare that he is not offering insurance for i against j. So,

there is no agent who buys or sells any insurance in the strong equilibrium.

Remark 1. If p < 0.5, then the strong-stable networks are “efficient” in the

sense that everyone is receiving the maximum possible utility for themselves in

this game.

3.2 Complete Strong Stable Networks

Here we will show that with certain parameter values and preferences, the only

strong-stable network is the complete network and then characterize the

conditions for strong-stability of the complete network.
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3.2.1 Four investors example with p = 0.9

Now, let |N | = 4 and ui (xi) =
√
xi + 6, for any i in N and suppose the

probability of a good shock is 0.9, i.e. p = P (ω2) = 0.9. The reason we add 6 to

the monetary gain in the utility function is to ensure that the discriminant of

the square root is nonnegative, since the price of an insurance cannot exceed 1

and there can be at most 6 edges. Clearly, ui is a strictly increasing and strictly

concave function of xi and it is always well-defined.

Now, we will show that the only strong-stable network is the complete network.

Here, as the reader can check, every network is a Nash-stable so Nash-stability

concept does not eliminate any network. For this reason, we choose

strong-stability as our equilibrium notion which is stronger than Nash-stability.

3.2.1.1 Expected Utilities

First, let us find the expected utilities of an agent in all possible networks and

positions.

3-regular network: Everyone has the same expected utility due to

symmetry:

p6u (3ω2) +
(
1− p6

)
u (0) ∼= 2.5284.

2-regular network: Everyone has the same expected utility due to

symmetry:
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p4u (2ω2) +
(
1− p4

)
u (0) ∼= 2.5151.

1-regular network: Everyone has the same expected utility due to

symmetry:

pu (ω2) + (1− p)u (0) ∼= 2.4949.

3-cycle: Everyone in the cycle has the same expected utility due to symmetry:

p3u (2ω2) +
(
1− p3

)
u (0) ∼= 2.5224

and the person out of the cycle gets u (0) ∼= 2.4494.

1-path: Everyone in the path has the same expected utility due to symmetry:

a

pu (ω2) + (1− p)u (0) ∼= 2.4949

and the vertices out of the path gets u (0) ∼= 2.4494.

2-path: Vertices with degree 1 have the same expected utility due to

symmetry:

p2u (ω2) +
(
1− p2

)
u (0) ∼= 2.4904

the vertex with degree 2 gets the following:
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p2u (2ω2) +
(
1− p2

)
u (0) ∼= 2.5305

and the vertex with degree 0 u (0) ∼= 2.4494.

3-path: Agents with degree 1 have the same expected utility due to

symmetry:

p3u (ω2) +
(
1− p3

)
u (0) ∼= 2.4863

and the vertices with degree 2 get the following:

p3u (2ω2) +
(
1− p3

)
u (0) ∼= 2.5224.

Star network: Vertices with degree 1 have the same expected utility due to

symmetry:

p3u (ω2) +
(
1− p3

)
u (0) ∼= 2.4863

and the vertex with degree 3 get the following:

p3u (3ω2) +
(
1− p3

)
u (0) ∼= 2.5578

Complete network minus an edge: Vertices with degree 3 have the same

expected utility due to symmetry:
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p5u (3ω2) +
(
1− p5

)
u (0) ∼= 2.5085

and the vertices with degree 2:

p5u (2ω2) +
(
1− p5

)
u (0) ∼= 2.5372.

Other networks: In all other networks with four vertices, there is one vertex

with degree 1, two vertices with degree 2 and one vertex with degree 3. In this

network, the vertices with degree 2 get the same expected due to symmetry:

p4u (2ω2) +
(
1− p4

)
u (0) ∼= 2.5151

the vertex with degree 1 gets the following:

p4u (ω2) +
(
1− p4

)
u (0) ∼= 2.4826

and the vertex with degree 3 links gets:

p4u (3ω2) +
(
1− p4

)
u (0) ∼= 2.5469.

3.2.1.2 Equilibria

Now, we will note the profitable deviations in all networks but the complete

network and show that there is no profitable deviation for any coalition in the

complete network.
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2-regular network: Any coalition of 3 agents can deviate to a 3-cycle and

strictly increase their expected utilities. So, it is not 3-stable.

1-regular network: Similar to 2-regular networks, any 3 agents can form a

3-cycle and improve their expected utilities. So, this is also not 3-stable.

3-cycle: This networks are not 4-stable since by moving to the complete

network, everyone strictly improves their expected utility.

1-path: It is not 3-stable since a 3-cycle strictly improves everyone’s expected

utility in the cycle.

2-path: It is not 2-stable since the vertices with degree 1 can improve their

expected utility by creating a new edge and moving to a 3-cycle.

3-path: These networks are also not 2-stable since the vertices with degree 1

can again make a new edge and move to 2-regular network and strictly increase

their expected utilities.

Star network: These networks are not 2-stable since any two vertices with

degree 1 can make a new edge between each other and improve their expected

utilities strictly.

Complete network minus an edge: Since the vertices with degree 2 can

make a new edge and strictly improve their expected utilities, this network is

not 2-stable.
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Other networks: Vertices with degree 1 and 2 can turn these networks in to

the complete network and strictly increase their expected utilities. Hence, these

networks are not 3-stable.

3-regular network: Now, since this network is complete, they can only drop

edges but cannot make any new one. One agent can drop 1, 2 or 3 edge(s) and

all of these moves would strictly decrease his expected utility. Clearly, there is

no other coalition which can drop some of their edges and strictly increase all of

their members’ expected utilities. Hence, this network is 4-stable. So, it is

strong-stable network. Moreover, since all other networks are shown to have

coalitions that have some profitable deviations, the complete network is the

unique strong-stable network.

3.2.2 A Necessary and Sufficient Condition

In this section, we find a necessary and sufficient condition for strong-stability

of the complete network in a four agent setup.

Condition 1.

p3u (3ω2) +
(
1− p3

)
u (0) > u (2ω2)

p5u (3ω2) +
(
1− p5

)
u (0) > u (ω2)

Proposition 2. The complete network is strong-stable if and only if p, u and

ω2 satisfy Condition 1.

Proof. (⇒) Suppose the complete network is strong-stable.
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1. Since the complete network is strong stable, there is no 2-person coalition

with a profitable deviation. So, two agents in the complete network

cannot be better off by cutting edges with all other agents. That is,

p6u (3ω2) +
(
1− p6

)
u (0) > pu (1ω2) + (1− p)u (0) .

Equivalently,

p5u (3ω2) +
(
1− p5

)
u (0) > u (ω2) .

2. Similarly, no 3-person coalition has a profitable deviation. So, three

agents in the complete network would not be better off by cutting their

edges with the forth agent:

p6u (3ω2) +
(
1− p6

)
u (0) > p3u (2ω2) +

(
1− p3

)
u (0) .

Equivalently,

p3u (3ω2) +
(
1− p3

)
u (0) > u (2ω2) .

So, if the complete network is strong-stable, Condition 1 is satisfied.

(⇐) Now, suppose Condition 1 is satisfied. As shown above, it is equivalent to

p6u (3ω2) +
(
1− p6

)
u (0) > pu (1ω2) + (1− p)u (0) .

and
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p6u (3ω2) +
(
1− p6

)
u (0) > p3u (2ω2) +

(
1− p3

)
u (0) .

Consider the complete network.

Now, Condition 1 directly implies that the complete network is better than a

1-regular network or a 3-cycle for everyone. Since expected utilities are convex

combinations of u (kω2) and u (0), and since u is strictly increasing, decreasing

the coefficient of u (1ω2) would decrease the expected utility. Since p < 1, this

means 1-regular network is better than all other networks and vertices with

degree 1 since in all other networks, the power of p is greater. Similarly, 3-cycle

is better than all other networks and vertices with degree 2. So, no one would

deviate to those vertices from the complete network. Then, we should only

consider the deviations to the rest of the vertices which are a degree 3 agent in

star network, complete network minus an edge, or the other networks or the

degree 2 agent in a 2-path. However, deviations to all of these vertices require

that some other vertices cut edges to make the deviation possible and it is not

individually rational for them to do so.

In star network, vertices with degree 1 would be worse off:

p6u (3ω2) +
(
1− p6

)
u (0) > pu (1ω2) + (1− p)u (0) > p3u (1ω2) +

(
1− p3

)
u (0) .

In the complete network minus an edge, vertices with degree 2 would be worse

off:
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p6u (3ω2)+
(
1− p6

)
u (0) > p3u (2ω2)+

(
1− p3

)
u (0) > p5u (2ω2)+

(
1− p5

)
u (0)

In the other network, agent with degree 1 would be worse off:

p6u (3ω2) +
(
1− p6

)
u (0) > pu (1ω2) + (1− p)u (0) > p4u (1ω2) +

(
1− p4

)
u (0) .

Lastly, in 2-path, vertices with degree 2 would be worse off:

p6u (3ω2) +
(
1− p6

)
u (0) > pu (1ω2) + (1− p)u (0) > p2u (1ω2) +

(
1− p2

)
u (0) .

Since, without these agents’ contributions it would not be possible for an agent

to be in one of the possibly profitable positions, we conclude that there is no

profitable deviation for any coalition. So, the complete network is strong-stable.

Proposition 3. Complete network is the unique strong-stable network if and

only if p, u and ω2 satisfies Condition 1.

Proof. (⇐) Now, suppose the Condition 1 is satisfied. Then, the complete

network is strong-stable. Now, we will show that the other networks are not

strong-stable.
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2-regular network: Any coalition of 3 agents can deviate to a 3-cycle and

strictly increase their expected utilities since they would still have degree 2 each

but they would eliminate the extra risk as can be seen below. So, it is not

3-stable.

p3u (2ω2) +
(
1− p3

)
u (0) > p4u (2ω2) +

(
1− p4

)
u (0) .

1-regular network: By the second part of the condition, everyone would

prefer the complete network over this one. So, this is not 4-stable.

3-cycle: These networks are not 4-stable since by moving to the complete

network, everyone strictly improves their expected utility by the first part of the

condition.

1-path: Similar to 1-regular networks, these networks are not 4-stable since

the complete network strictly improves everyone’s expected utility in the cycle.

2-path: It is not 2-stable since the vertices with degree 1 can improve their

expected utility by cutting their existing edges and creating a new edge and

moving to a 1-path.

pu (1ω2) + (1− p)u (0) > p2u (1ω2) +
(
1− p2

)
u (0) .

3-path: These networks are also not 2-stable since the vertices with degree 1

can improve their expected utility by cutting their existing edges and creating a

new edge and moving to a 1-path.

29



pu (1ω2) + (1− p)u (0) > p3u (1ω2) +
(
1− p3

)
u (0) .

Star network: These networks are not 2-stable since any two vertices with

degree 1 can cut their existing edges and create a new edge between each other

and improve their expected utilities strictly.

pu (1ω2) + (1− p)u (0) > p3u (1ω2) +
(
1− p3

)
u (0) .

Complete network minus an edge: Since the vertices with degree 2 can

make a new edge and strictly improve their expected utilities, this network is

not 2-stable.

p6u (3ω2)+
(
1− p6

)
u (0) > p3u (2ω2)+

(
1− p3

)
u (0) > p5u (2ω2)+

(
1− p5

)
u (0)

Other networks: Vertices with degree 1 and 2 can turn these networks into

the complete network and strictly increase their expected utilities. Hence, these

networks are not 3-stable.

p6u (3ω2)+
(
1− p6

)
u (0) > p3u (2ω2)+

(
1− p3

)
u (0) > p4u (2ω2)+

(
1− p4

)
u (0)

p6u (3ω2) +
(
1− p6

)
u (0) > pu (1ω2) + (1− p)u (0) > p4u (1ω2) +

(
1− p4

)
u (0) .
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These exhaust all possible networks with 4 agents. Then, there is no other

strong-stable network.

(⇒) Suppose the complete network is the only strong-stable network. Then,

since the complete network is strong-stable, by Proposition 2, Condition 1 is

satisfied.

3.2.3 A Characterization of Strong-Stable Complete Networks

Lemma 1. Let there be n agents. In any strong-stable network, all components

are complete.

Proof. Let G be a strong-stable network. Suppose there are two non-adjacent

vertices v1, v2 connected via a path in G. Denote the degrees of v1, v2 by d1, d2

respectively and denote the number of edges in their initial component be k.

Now, their expected utilities are as follows:

pku (d1ω2) +
(
1− pk

)
u (0) and pku (d2ω2) +

(
1− pk

)
u (0).

Since they are connected, there is a path from v1 = v1, v2, ..., vm = v2. Consider

their expected utilities when v1 cuts his edge with v2 and v2 cuts his edge with

vm−1 and they make a new edge v1v2:

plu (d1ω2) +
(
1− pl

)
u (0) and plu (d2ω2) +

(
1− pl

)
u (0) where l < k − 1 since

their initial component may not continue to be connected after they cut

aforementioned edges so that their new component may include less edges.

Obviously, both of these investors strictly increase their expected utility,

contradicting that G is a strong-stable network. Hence, in a strong-stable
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network, every component is complete.

Idea of the above proof is very similar to another proof in Erol and Vohra

(2014).

Assumption 3. Let there be n agents.

p
n(n−1)

2 u ((n− 1)ω2) +
(

1− p
n(n−1)

2

)
u (0) >

p
k(k−1)

2 u ((k − 1)ω2) +
(

1− pk
(k−1)

2

)
u (0) , for every k < n.

Assumption 3 is the mathematical expression which communicates that the

expected utility of an agent in the complete network is higher than that of an

agent in any complete component with k agents for 0 < k < n.

Theorem 2. Let there be n agents. Assumption 3 holds if and only if the

complete network is the only strong-stable network.

Proof. (⇒) Let the Assumption 3 hold.

Consider the complete network G. Assume it is not strong-stable. Everyone has

an expected utility of p
n(n−1)

2 u ((n− 1)ω2) +
(

1− p
n(n−1)

2

)
u (0). Since G is not

strong-stable, a coalition can profitably deviate to some other network. This

would mean some agent v1 cuts some edges and decrease his degree to k for

some k < n− 1. Notice that due to Assumption 3, we know that they would

not deviate to a network where they form a complete component. If k = 0, he

would be isolated and be worse off.

Let k 6= 0. Now, his expected utility will be pau (kω2) + (1− pa)u (0) for some

a < (n−1)(n−2)
2

.

Suppose a ≥ k(k+1)
2

. Then
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p
n(n−1)

2 u ((n− 1)ω2) +
(

1− p
n(n−1)

2

)
u (0) >

p
k(k+1)

2 u (kω2) +
(

1− p
k(k+1)

2

)
u (0) ≥ pau (kω2) + (1− pa)u (0) so that v1 would

be worse off and would not deviate to this new network.

Then, we must have a < k(k+1)
2

. But then, there must be some other agent v2

who is also cutting edges and decreasing his degree to some l < k since there

are at least k + 1 vertices in this component and at least one vertex, v1 has

degree higher than maximum average degree in the component. Following the

same logic, we must also have a < l(l+1)
2

. So, there must be another agent v3

with a degree m < l and we must have a < m(m+1)
2

. Continuing in this fashion,

we see that there must be some agent vt with degree 0, a contradiction. Hence,

no deviation is profitable for all of its members. So, the complete network is

strong-stable.

Now, in order to show that the complete network is the only strong-stable

network, we will argue that the other networks are not strong-stable. From

Lemma 1, we know that any network with an incomplete component is not

strong-stable. Now, suppose G is not the complete network but in G, every

component is complete. Then, every agent has a lower expected utility than

they would have in the complete network by Assumption 3. So, they would

deviate to the complete network. Thus, G is not strong-stable. So, no network

other than the complete network is strong stable.

(⇐) Now, suppose the complete network is the only strong-stable network.

Since, it is strong stable, no coalition has a profitable deviation. So, for any size

k < n, a member of a complete component of size k must be worse than a

member of the complete network. Hence, Assumption 3 must be satisfied.
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3.3 General Characterization of Strong-Stable Networks

In the following theorem, we say that the strong-stable networks consist of

complete components of a certain size. However, if the total number of investors

is not divisible by this size, naturally, not all the components can be of this size.

In this case, the number of vertices which cannot form a component of that size

is less than that size and we call them remainders in the following results.

Theorem 3. Let there be n agents. Let U (k) denote the expected utility of an

agent in a complete component with k agents. Suppose κ is the unique

maximizer of U over {1, 2, ..., n}. Then, any strong-stable network consists of

complete components of size κ and the remainders3.

Proof. Suppose G is a strong stable network and it includes components of size

more than κ. We know from Lemma 1 that this component is complete. Then,

by our assumption, its members have an expected utility lower than that of

members of components of size κ. So, κ investors would deviate and form a

component of size κ and all of them would strictly increase their expected

utilities. So, it cannot include a component of size higher than κ. So, suppose

there are components of sizes less than κ such that sum of their sizes are higher

than or equal to κ. Again, by Lemma 1, those components are complete and

hence, they yield an expected utility less than it would be in a complete

component of size κ. So, κ investors would deviate to a complete component of

size κ. So, G cannot include a component of size greater than κ or components

of sizes less than κ with their sum of sizes more than or equal to κ. So, if n is

divisible by κ, G consists of complete components of size κ. If it is not divisible,

then G consists of n
κ

components of size κ and the remainders would form

3What we mean by remainders and what happens to them is explained in great detail in
the proof.
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components of size λ where λ maximizes U over the set {1, 2, ..., κ}. If, κ is not

divisible by λ, the remainder repeats the same procedure recursively.

Theorem 4. Let there be n agents. Let U (k) denote the expected utility of an

agent in a complete component with k agents. Suppose M is the set of all

maximizers of U over {1, 2, ..., n}. A network consists of complete components

of sizes κ1, κ2, ..., κm ∈M and the remainders if and only if it is strong stable.

Proof. Suppose W.L.O.G. κ1, κ2 are the minimum and the maximum in M .

(⇒) From above proof, it is clear that in a strong stable network, there cannot

be components of sizes not in M unless they consist of the remainders, i.e. the

sum of sizes of those components is less than κ1. So, if G consists of complete

components of sizes κ1, κ2, ..., κm ∈M and the remainders, it is strong-stable.

(⇐) Now, suppose G is a strong stable network. Now, suppose the sum of sizes

of components, whose sizes are not members of M is greater than or equal to κ1.

From above lemma, we know that in a strong stable network, all components

are complete. Since, their sizes are not maximizers of U (x), κ1 investors would

be strictly better off by forming a complete component of size κ1. So, the sum

of sizes of components, whose sizes are not members of M is less than κ1. So,

they are the remainders whose strategy was described in the above proof.
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CHAPTER 4

CONCLUSION

In this paper, we analyzed the equilibrium networks where investors are

risk-averse and they are able to buy default insurances. We have one major

result which has two corollaries. However, since these corollaries have been

independently discovered before the more general result, we presented them in

the order of discovery. Our major result is that, the stable network consists of

complete components of a certain size, which maximizes expected utilities of its

members. If the probability of a good shock to a project is less than 0.5, the

strong-stable networks are 1-regular. Moreover, no one buys insurances in these

networks. On the other hand, the complete network gives the highest expected

utility among all k-regular networks if and only if the unique strong stable

network is the complete network. It should also be noted that, in our model,

the default insurance does not change the network structure. Moreover, for a

wide variety of parameters, it turns out that investors choose not to buy any

insurance at the equilibrium. Erol and Vohra (2014) show in their model that

the core networks are k-regular. Here, we also have this feature.

In a future study, we wish to move our framework to a dynamic one where the

shocks are not identically and independently distributed and the agents learn
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these over time. We also wish to relax the assumption that an investor can

either buy insurance for all of his projects or not buy any insurance at all.

The model introduced here can be used in comparison of different insurance

procedures. Many different rules and types of insurance can be implemented,

e.g. the insurance might be contingent to the shocks or the insurance can be

sold separately for projects. However, it is easy to choose the efficient policy,

the policy with the lowest systemic risk or according to any other criteria.
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