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Singularity of the Magnetic-Field Integral
Equation and its Extraction

Levent Giirel, Senior Member, IEEE, and Ozgiir Ergiil, Student Member, IEEE

Abstract—In the solution of the magnetic-field integral equation
(MFIE) by the method of moments (MOM) on planar triangula-
tions, singularities arise both in the inner integrals on the basis
functions and also in the outer integrals on the testing functions.
A singularity-extraction method is introduced for the efficient and
accurate computation of the outer integrals, similar to the way
inner-integral singularities are handled. In addition, various for-
mulations of the MFIE and the electric-field integral equation are
compared, along with their associated restrictions.

Index Terms—Electric-field integral equation, integral equa-
tions, magnetic-field integral equation, moment methods, numer-
ical analysis, singularity extraction.

1. INTRODUCTION

N THIS LETTER, we introduce a novel and efficient tech-
nique to accurately compute the highly singular integrals en-
countered in the method of moments (MOM) solution of the
magnetic-field integral equation (MFIE) discretized on planar
triangulations. This is achieved by applying a new singularity-
extraction method to the outer integrals of the MFIE [1], in ad-
dition to the well-known singularity-extraction operation per-
formed on the inner integrals [2], [3].
For conducting scatterers with closed surfaces, the MFIE can
be written directly from the boundary condition for the tangen-
tial magnetic field on the surface as

J(r) — 7 x /Sd'r’J(r') x V'g(r,r') =ax Hi(r) (1)

by simply expressing the scattered magnetic field in terms of
the induced (unknown) surface current J(r). In (1), the obser-
vation point r approaches the surface from the outside, 7 is the
outwardly directed normal, H 1'(1') is the incident magnetic field,
and

ikR

N _
g(r.r') = 4R

(R=1Ir-11) )

denotes the free-space Green’s function in phasor notation with
the e~*** convention.
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Solution of (1) with the MOM requires the expansion of J(r)
in a series of basis functions (BFs) b, (r), i.e.,

J(r) = Z anbn(r) (3)

and projection of the boundary condition (1) onto IV testing
functions (TFs) t,,, (). Then, the N x N matrix equation is ob-
tained as

N

Z Z 'f\ﬁ[n an = ?)% ’

n=1

m=1,...,N @)

where a,, is the unknown coefficient of the nth BF. Matrix ele-
ments Z can be derived as

Z = / drty (1) - by (r)
S

—/ drtm(r)-'ﬁ,x/ dr'b, (") x V'g(r,7"). (5)
S J S,

Similar to the MFIE, the electric-field integral equation
(EFIE) is based on the boundary condition for the tangential
electric field on the surface, i.e.,

- S VA VA T,

. /5 dr (') - (T= =5 )g(r.r') = Wi EE©
where # denotes any tangential direction at any point  on the
surface. In (1) and (6), J(r) denotes the same induced surface
current density, which can be expanded using (3). Discretization
of (6) is completed with the use of the TFs #,,(r), to obtain

N
> Zhan=vl, m=1,...N (7)
n=1
where
7E, = / it (r) - / b, (g (r, )
J S, JSn
1 J 7 I J
| drt () | drb () - [vv glr,r )] 8)
k% Js, S,

Comparing (6) to (1) and (8) to (5), EFIE is clearly more
singular than MFIE due to the double derivative operators. In
order to facilitate the computation of (8), it is a common practice
[4] to distribute these two differential operators onto the basis
and testing functions (BTFs) to arrive at

Zin = [ drtnr)- [ dr'o(rb(r)
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which is less singular than the MFIE matrix element (5). This re-
duction in the degree of the singularity in EFIE can be obtained
at the cost of placing restrictions on the BTFs. That is, b, (r) and
t,(r) in (9) are restricted to be divergence-conforming func-
tions (whose divergences are defined and nonsingular), whereas
no such restriction is necessary in (8).

II. MFIE FORMULATIONS

Taking a hint from the conversion of (8) to (9) for the EFIE,
we can move the differential operator in (5) from the Green’s
function onto either the BF or the TF. By using standard vector
identities and the

V' =V +—ﬁ’5?7

decomposition, we can manipulate (5) to obtain a second for-
mulation as [5]

ZM / drty (1) - 70 X / dr'V's x [ (r,r')bn(r')]

m

—/ ></ dr'g(r,7")V's X by (1)
Sm Sn
- / i x / dr'b () x #2207
S, an/
/ drton (r) - b (7) (11)

where the V’S operator is transferred onto the BF. Therefore,
in this second formulation the BF is restricted to be a curl-con-
forming function, however, no restriction exists on the TF. Al-
ternatively, (5) can be manipulated to obtain a third formulation
as

zZM /S drVs - {[tm(r) x n] x /S n d’r’bn(r’)g(r,'ﬂ)}

m

_ / dr{vs < [tnr) ﬁ}} 3 /5 e ()g(r. )

7
/ drto (1) - X 7 X / dr'b, () 22T
S JS, 871

/ rton(r) - ba(r)

where the derivative operator is applied to the TF. In this third
formulation, there is no restriction on the BF, however, the TF
is restricted to be a divergence-conforming function since

(10)

(12)

Vs x [tm(r) x n] — iV - b (7). (13)
Since the first formulation given by (5), which is widely used
in the literature [6]-[10], does not place any restrictions on ei-
ther the BF or the TF, it can be used with both divergence-con-
forming and curl-conforming functions.

III. SINGULARITY OF THE MFIE

For both EFIE and MFIE, the order of singularity arising in
computations depends on the formulation. Despite the avail-
ability of different formulations together with various choices
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Fig. 1. Generic configuration of two neighboring triangles.

of BTFs, using (5) for the MFIE [6]-[10] and (9) for the EFIE
with the Rao—Wilton—Glisson (RWG) BTFs [4] on planar trian-
gulations appears to be the most popular in the literature. Both
(5) and (9) have singular inner integrals, which can be accurately
computed by employing the well-known singularity-extraction
techniques [2], [3]. However, since the inner integral of (5) is
more singular than that of (9), the outer integral of the MFIE
contains a logarithmic singularity, which is not encountered in
the EFIE.! Since the logarithmic singularity is quite mild, it may
be possible to compute the outer integral of the MFIE to the
desired accuracy by sampling the integral inside the testing tri-
angle with a sufficiently high number of integration points. Nev-
ertheless, we propose a more efficient way to handle this singu-
larity in order to obtain the same accuracy with fewer number
of integration points.

The singularity in the outer integral of the MFIE is observed
for the interactions between the neighboring triangles and does
not cause problems if the testing and basis triangles are on the
same plane. However, if the neighboring triangles are on dif-
ferent planes as shown in Fig. 1, the singularity becomes sig-
nificant since the singular field on the common edge is required
to be tested. In that case, the computations clearly benefit from
the improved singularity-extraction technique presented in this
paper. For example, the configuration depicted in Fig. 1 involves
interactions between the two triangles that contain such prob-
lematic integrals (in the imaginary part of the matrix element)

as
(w—1v)
a9
f

where the inner integral evaluates to a logarithmic function.
In order to extract the logarithmic singularity, (14) can be re-
arranged as

1

I:/ dr| =
s 2

m T

(14)

1 L
I:/S dr 152 {/s dr’<yR3y>+21n(R0)}
Js.,. - .
1
—/ dr| z |2In(Ry) (15)
S 22

IIndeed, outer integrals of the EFIE contain some R, In (Ry) terms, where
Ry is the perpendicular distance from the observation point to the edge of the
basis triangle. However, these logarithmic terms are not singular as Ry — 0.
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Fig.2. A specific example of two touching triangles, whose mutual interaction
is singular.

where Ry is the distance between the the observation point and
the common edge. The integrals in the second part of (15) can
be evaluated analytically as

/Sm dr2In (Ro) =24, [ln(hm) B g}

/s drz2In (Ro) =04, |:§1n(hm) _ §]

m 9
1 11
lo—z0)Am | zIn(hp) — —
+Hla=20) A | 3 10 () - 1]
' 9 9 1 )
drz2In(Ro)=25Am| = In (hy)— =
s, 2 8
1 25
p— 2 — _—
+(lo—z0) Am[G In (hy,) 72}

where A,,, and h,,, are the area and height of the testing triangle,
respectively, while [y is the length of the common edge and z¢
is the = coordinate of the vertex across from the common edge.
The integrals in the first part of (15) can be evaluated numeri-
cally as usual since the integrands of the outer integrals are not
singular and have finite limits on the common edge.

IV. RESULTS

The improvement obtained by the proposed singularity-ex-
traction technique will be demonstrated by computing the near-
neighbor interaction between the basis and testing triangles de-
picted in Fig. 2, where the coordinate values are specified in
terms of the wavelength (). The testing triangle makes an angle
@ with the z-y plane so that the coordinates of the point P (in
A) are given by

P =(0,-0.1cosp,0.1sinp). (17)

By considering a half RWG function as #,,(r) on the testing
triangle and a half RWG function as b, (r) on the basis triangle,
both associated with the common edge n, the partial matrix el-
ement Z %(1) is computed by employing increasing orders of
numerical quadrature on the testing integral [11]. Since the sin-
gularity-extraction improvements outlined in Section III are re-
lated to the imaginary part of Z %(1)’ Figs. 3 and 4 show the
computed value of Im{Zﬁ/{l(l)} for ¢ = 30° and p = 60°, re-
spectively, with respect to the number of quadrature points [11]
employed for the outer integral on the testing triangle. Since the
inner integrals are computed with an error criterion of 1%, the
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Fig. 3. Values of Im{Z}} )} computed with and without the singularity

extraction for the configuration of Fig. 2 and p = 30°.
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Fig. 4. Values of Im{ Zi‘{l(l)} computed with and without the singularity
extraction for the configuration of Fig. 2 and p = 60°.
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Fig.5. (a)Perfectly conducting cube with edges of 1-A and mesh size of A/10.
(b) Perfectly conducting small octahedron with edges of 0.07- and mesh size
of A/43.

errors in Im{Z % (1)} are mostly due to the outer integrals. Both
Figs. 3 and 4 establish that the singularity extraction in the outer
integrals significantly improves the convergence with respect to
the number of integration points and the matrix elements are
calculated more accurately with fewer integration points.
Finally, two perfectly conducting geometries are displayed in
Fig. 5. To demonstrate the effect of the singularity extraction on
the results of the entire problem, Figs. 6 and 7 present the mono-
static radar cross section (RCS) values for the two perfectly con-
ducting geometries displayed in Fig. 5. The first geometry is a
cube with edges of 1\ and mesh size of about 0.1\, while the
second geometry is a small octahedron with edges of 0.07\ and
mesh size of about 0.023\. In both cases, the excitation is de-
fined as a plane wave illuminating the top of the geometry, and
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Fig. 6. Monostatic RCS values for the cube in Fig. 5(a) computed with and
without the singularity extraction.
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Fig. 7. Monostatic RCS values for the octahedron in Fig. 5(b) computed with
and without the singularity extraction.

the backscattering problem is solved. Monostatic RCS values
presented in Figs. 6 and 7 confirm the findings already inferred
from Figs. 3 and 4, namely, that the singularity extraction im-
proves the accuracy of the results even if the outer testing inte-
grals are computed with a few sampling points.

V. CONCLUSION

In this letter, we first show that various formulations of the
MFIE and the EFIE are possible and that they impose different
restrictions on the BTFs. In principle, the EFIE is considered to
be more singular than the MFIE due to the higher-order deriva-
tive in the EFIE kernel. Nevertheless, we indicate that the most
commonly employed formulation of the MFIE (5) has a more
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singular kernel than the popularly preferred formulation of the
EFIE (9). The highly singular inner integral of (5) can be ex-
tracted and analytically evaluated, only to obtain a logarithmic
function, which in turn renders the outer integral singular.

We propose a novel singularity-extraction technique for the
computation of the singular outer integrals of the MFIE in an
accurate and efficient manner. Benefits of the technique are
demonstrated at the levels of both individual matrix elements
and overall scattering results. It is established that the proposed
singularity-extraction technique improves the accuracy at both
levels without having to increase the number of quadrature
points. Another interpretation of the same results suggests that
the technique improves the efficiency of the numerical compu-
tation of the MFIE integrals without sacrificing accuracy.
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