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ABSTRACT 

 

A COMPARISON OF THE FORECAST PERFORMANCES OF LINEAR TIME SERIES 

AND ARTIFICIAL NEURAL NETWORK MODELS WITHIN THE CONTEXT OF 

TURKISH INFLATION 

 

 

 

Uçar, Nuri 

M.A., Department of Economics 

Supervisor: Assoc. Prof. Dr. Serdar Sayan 

 

 

October 2001 

 

This thesis compares a variety of linear and nonlinear models to find the one with the best 

inflation forecast performance for the Turkish Economy. These comparisons are performed 

by considering the type of series whether or not stationary. Different combination 

techniques are applied to improve the forecasts. It is observed that the combination 

forecasts based on nonstationary vector autoregressive (VAR) and artificial neural network 

(ANN) models are better than the ones generated by other models. Furthermore, the 

forecast values combined with ANN technique produce lower root mean square errors 

(RMSE) than the other combination techniques.  
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ÖZET 

 

DOĞRUSAL ZAMAN SERİLERİ VE YAPAY SİNİR AĞLARI MODELLERİNİN 

ÖNGÖRÜ PERFORMANSLARININ TÜRKİYE’DEKİ ENFLASYON BAĞLAMINDA 

KARŞILAŞTIRILMASI 

 

 

Uçar, Nuri 

Yüksek Lisans, İktisat Bölümü 

Tez Yöneticisi: Doç.Dr. Serdar Sayan 

 

 

EKİM  2001 

 

  

Bu çalışma, Türk ekonomisi için en iyi öngörü performansına sahip doğrusal ve doğrusal 

olmayan modelleri karşılaştırmaktadır. Bu karşılaştırma serilerin durağan ve durağan 

olmama durumları dikkate alınarak gerçekleştirilmiştir. Durağan olmayan vektör 

otoregresif ve Yapay Sinir Ağları (YSA) modellerinden elde edilen öngörülerin 

birleştirilmesi, diğer modellere göre daha başarılı olmuştur. Ayrıca, YSA tekniği ile 

birleştirilen öngörüler diğer birleştirme tekniklerine göre daha küçük hatalar vermiştir. 

 

Anahtar Sözcükler: Yapay Sinir Ağları, Zaman Serisi, Öngörü, Enflasyon 
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CHAPTER 1  

 

INTRODUCTION 

This thesis aims to compare forecast performances of conventional linear models to non-

linear alternatives including artificial neural networks. The use of forecasting techniques 

employed is illustrated in reference to inflation forecasts for Turkish economy which has 

experienced high levels of inflation over the last two decades.   

 
Although the yearly inflation was over 100 percent in certain years during this period, 

hyperinflationary levels were not reached. Many unsuccessful disinflationary programs have 

been implemented in this period. Average annual inflation rate reached 35-40 percent in the 

early 1980’s, 60-65 percent in the late 1980s and was around 80 percent before the Turkish 

government started another disinflationary program under the guidance of  IMF July 1998. 

The Russian crisis in August 1998, general elections in April 1999 and the two earthquakes in 

August and October 1999 were among  the factors contributing to the governments’ failure to 

curb the inflation rate and eliminate fiscal imbalances (Ertuğrul and Selçuk, 2001). 

 
The new government started implementing its “exchange rate based stabilization program” at 

the beginning of the year 2000. The aim of the program was to achieve a considerable 

reduction in the inflation rate from its current level of 60-70 percent per year to single digits 

by the end of year 2002. The main tool of this program for the achievement of inflation 

targets was a preannounced crawling peg. However, Turkey  faced  another crisis in February 

2001 which led to the collapse of  preannounced crawling peg regime. Turkey then switched 

from crawling peg to the floating exchange rates. Today, the government prepares the 

program to implement a new inflation targeting program under the floating exchange rate 
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regime. Thus, accurate forecasting is important to foresee the future path of inflation. 

 
Specification and estimation of linear time series models are well-established procedures, 

based on ARIMA univariate models or multivariate VAR type models. However, economic 

theory frequently suggests nonlinear relationships between variables and many economists   

believe that the economic system is nonlinear. Moreover, most of the recent work in time 

series analysis has been done on the assumption that the structure of the series can be 

described by linear time series models. However, there are some cases for which theory and 

data suggest that linear models are unsatifactory. To investigate the validity of this argument 

in the context of Turkish inflation, this thesis considered nonlinear models along side linear 

forecasting models. Another objective of the thesis is to analyse both stationary and 

nonstationary approaches in order to examine the importance of  the type of series used for 

the forecasting ability of competing models. Hence,  considerable emphasis has been placed 

on the selection of models and seires to obtain best out-of-sample forecasts. This has been 

done with real data inflation and exchange rate. Different combinations of forecast results are 

considered to improve the forecasts of each model. The following chart summarizes 

alternative models and the types of series considered. 

     MODELS 
 
 

Linear Models     Nonlinear Models 

 
 
 Univariate    Multivariate   Neural Network  ExpTrend 
 
  
 
       Stationary      Stationary    Nonstationary         Stationary   Nonstationary    Nonstationary 
 

Figure 1. Types of Models and Series Used 
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The discussion in the rest of the thesis is organised as follows. Chapter 2 contains a literature 

review. Chapter 3 describes the mathematical properties of the models and forecasting 

methods used. Chapter 4 reports the forecasting results obtained through the application of 

models to Turkish inflation, and discusses their implications. Chapter 5 concludes the thesis 

by comparing the methods in the light of results.  
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CHAPTER 2 

 

LITERATURE  REVIEW 

 

This chapter reviews the literature on the forecasting of time series with Artificial Neural 

Network (ANN) and the statistical time series . We briefly discuss the results of these studies 

by paying particular attention to the forecasting performances of ANN and conventional 

methods (linear and nonlinear time series models) considered in these articles. 

 
Neural networks and traditional time series techniques have been compared in several studies. 

Some of these studies are interested only in the forecasting performances of ANN models in 

comparison  to traditional approaches. Foster, et.al. (1991) and Sharda and Patil (1990, 1992) 

have used a large data set from the well-known “M-competition” in Makridakis, et.al. (1982). 

Foster, et.al. (1991) found neural networks to be inferior to the least squares statistical models 

for time series of yearly data. However, Sharda and Patil (1992) and Tang, et.al. (1991) 

agreed that for a large number of observations, ANN models and Box-Jenkins models 

produce comparable results. Kang (1991) observed using 18 different neural network 

architectures that the forecast errors are lower for the series containing trend and seasonal 

patterns. He also concluded that neural networks often performed better for the long horizon 

forecast periods. On the other hand, Hill, et.al. (1996) produced forecasts by neural networks 

and compared with the forecasts from neural networks to those obtained by Makridakis, et.al. 

(1982). They have arrived at the conclusion that neural networks did significantly better than 

traditional methods for monthly and quarterly series. In additon, they suggested that selecting 
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the best neural network architecture with fewer parameters to be estimated is crucial to 

successful neural network modeling.  

 
Kohzadi, et.al. (1996)  carried out an empirical investigation comparing artificial neural 

network and time series models. They constructed an ARIMA  model and compared it to an 

ANN model in terms of  forecasting performance. They also made a comparison to determine  

which model caught the turning point of the series. They reached the conclusion that neural 

network models were able to capture a significantly more turning points as compared to the 

ARIMA model. Furthermore, they have made a very controversial point by stating that “The 

neural network with only one hidden layer can precisely and satifactorily approximate any 

continuous function” (Kohzadi, et.al., 1996, p.179).  

 
However, Adya and Collopy (1998) have evaluated the effectiveness of forecasting with 

ANN by taking 48 articles published between 1988 and 1994 into consideration. Some of 

these  studies produced contradicting results to the statement by Kohzadi, et.al. (1996) 

indicating that  real-world data may not always be consistent with the theoretical implications. 

Simulation experiments have to be used to verify what the theory says instead of departing 

from real world observations.  

 
Although much of the literature in the emerging field of ANN is focused on modelling time 

series data and making forecast performance comparisons between competing models, Gorr, 

et.al. (1994) have  employed cross section data to predict student grade point averages by 

comparing linear regression and stepwise polynomial regression versus ANN structure. They 

found that mean errors of the model forecasts were not comparable, implying that no model 

was superior to the others. They have explained these results by the neural network structure. 

However, it may be argued that another reason might be their use of qualitative variables in 
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the models. Since the only values these variables take are zeros and ones, ANN learning 

mechanism does not work well due to the large numerical distinction in the observations of 

qualitative and quantitative variables. 

 
A few studies investigate the effect of the stationarity on the forecasting performance of the 

ANN and traditional time series models. Lachtermacher and Fuller (1995) have studied  both 

stationary and nonstationary data and constructed an ARMA model via Box-Jenkins 

methodology to be compared against an ANN model for four annual river flows. They 

observed that neural network models outperformed the ARIMA model and the improvements 

of the forecast values in the nonstationary case were much larger than in the stationary case. 

This is consistent with the study of Tang, et.al. (1991). On the other hand, Nelson, et.al. 

(1999) emphasized  the effect of  seasonality on the forecasting of time series. They have 

compared ANN forecasts with Box-Jenkins forecasts.Their results indicate that when there is 

seasonality in the time series, forecasts from neural networks estimated on deseasonalized 

data get significantly more accurate than the forecasts produced by neural networks that were 

estimated using data which were not deseasonalized. 

 
Accurate prediction of macroeconomic variables is problematic and many of the linear 

models that have been developed perform poorly. In  recent years, it has been widely agreed 

that many macroeconomic relations are nonlinear and neural networks can model linear and 

nonlinear relationships among variables as well as nonlinear econometric modelling. Yet, 

there has been little work on forecasting macroeconomic time series using the ANN models 

and comparing alternative structural and time series econometric models via forecast 

performance criteria. Maasoumi, et.al. (1994) applied an ANN model to forecast some US 

macroeconomic series such as the Consumer Price Index, unemployment, GDP, money and 
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wages. Their work does not include any comparison because they produced only in sample 

forecasts with the ANN model. They  interpret the in sample results which failing to show the 

prediction power of ANN model examined in their study.  

 
On the other hand, Swanson and White (1997) applied an ANN model  to forecast nine US 

macroeconomic series and compared their results with those from traditional econometric 

approaches. The results are mixed, but Swanson and White concluded that ANN models have 

good forecast performance relative to the traditional models even when there is no explicit 

evidence for nonlinearity. Moshiri and Cameron (2000) have used ANN modelling technique 

and compared the results with the traditional econometric approaches to forecast the inflation 

rate. Their results showed that ANN models are able to forecast as well as the traditional 

econometric methods examined and to outperform them in some cases.  

 
The literature suggests several mathematical advantages of neural networks have over 

traditional statistical methods. Neural networks have been shown to be universal 

approximators of functions (Cybenko, 1989; Funahashi, 1989) and their derivatives (White, 

et.al., 1992) . They can also be shown to approximate ordinary least squares regression (White 

and Stinchcombe, 1992) , nonparametric regression (White, et.al., 1992) and Fourier analysis 

(White and Gallant, 1992). Hence, neural networks can approximate whatever functional form 

best characterizes a time series implying that standard asymptotic theory can be appropriately 

applicable to the nonlinear functional structure of ANN.            
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CHAPTER 3 

 

STATISTICAL PROPERTIES OF LINEAR  TIME SERIES 
AND ARTIFICIAL NEURAL NETWORK MODELS 

 

This chapter discusses statistical  properties of time series and ANN techniques used in the 

empirical analysis in the following chapter. This chapter first explains statistical properties of  

univariate and multivariate linear time series models used in the thesis. Then, the 

characteristics of  nonlinear models considered are described. These are exponential trend 

model and artificial neural network model, as shown in Figure 1. 

 

3.1 Linear Models 

 

This section deals with statistical properties of  univariate and multivariate (vector) time 

series models.  

 

3.1.1 Univariate  Time Series Models: Box-Jenkins Approach 

 

A time series is an ordered sequence of observations, and a realization or sample function 

from certain stochastic process. Many economic time series have such characteristics  as a 

trend  which represents the long-run movements in the series, and a seasonal pattern which 

regularly repeats  over a certain time interval. Hence, a model of the series will need to 

capture these characteristics. There are basically two reasons for modelling the time series. 

The first is to provide a description of the series in terms of its components of interest. One 
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may want to examine the trend to see the main movements in the series or be interested in the 

seasonal behaviour of the series. The second is to underlie the construction of a univariate 

time series model is the desire to the predict the future course of the series.  

 
The rest of this section introduces the definitions of basic concepts used within the context of 

forecasting with univariate autoregressive model, and describes the forecasting process itself. 

 
A time series is said to be strictly stationary if the joint distribution of  

ntt XX ,...,
1

has the 

joint distribution .,...,1,t ;   ,..., i1
nipXX

pnp tt =∀∀
++

 More explicitly, the distribution of 

the stationary process remains unchanged when evolved in time by an arbitrary value p. 

Moreover, the n-dimensional distribution function (F ),...,
1 ntt XX is said to be first-order 

stationary in distribution if its one dimensional distribution function is time invariant, i.e, 

)()(
11 ptt XFXF
+

=  for any integers ptt +1,1 and p. This can be extended to the higher 

order stationarity. For instance, the nth order stationary in distribution can be represented as        

(F ),...,
1 ntt XX = (F ),...,

1 pnp tt XX
++

 for any n-tuple ntt ,...,1  and p of integers. 

 
The concept of  stationarity is defined in terms of movements rather than in terms of the 

distribution function. For a given process tX   mean function of the process will be 

)( tt XE=µ , the variance of the process 22 )( ttXE µσ −= and the covariance function 

between 
1tX and 

2tX is such that (Cov
1tX , )

2tX = (Cov ,
1 ptX +

)
2 ptX +

= pγ  where 

ptt =− 21 . The mean and variance of  tX  depend  only on the lag p . Thus, the process tX  

is said to be weak or covariance stationary. For a stationary process tX  , the correlation 

between tX  and ptX +  will be:  
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0)()(

),(
γ
γ

ρ p

ptt

ptt
p XVarXVar

XXCov
==

+

+    (3.1) 

where 0)()( γ== + ptt XVarXVar . pγ  is called the autocovariance function and pρ is 

called the autocorrelation function (ACF) in time series analysis since they represent the 

covariance and correlation between tX  and ptX +  from the same process, seperated only by 

p time lags. In addition, someone may wish to investigate the correlation between tX  and 

ptX +  after mutual linear dependence on the intervening variables 11,..., −++ ptt XX  has 

been removed. This is  known as partial autocorrelation analysis in the time series literature. 

If  tX̂  and ptX +
ˆ  are the best linear estimate of tX  and ptX +  , respectively, then the 

partial autocorrelation can be defined as follows: 

  
[ ]

)()(

ˆ,(),ˆ,(

ptt

ptpttt
p XVarXVar

XXXXCov
P

+

++=    (3.2) 

 

Suppose that tε  is a purely random process with mean zero and variance 2σ . Then, the 

process given  by tptpttt XXXX εφφφ ++++= −−− ...2211  is called an autoregressive 

process of order  p and is denoted by AR(p). Using the lag operator L, AR(p) can be written 

as: ttXL εφ =)(  where p
pLLL φφφ −−−= ...1)( 1 . To be stationary, the roots of 

0)( =Lpφ  must lie outside the unit circle. The first order autoregressive process  can be 

written as: ttXL εφ =− )1( 1  and for it to be stationary, the root of  0)1( 1 =− Lφ  must be 

outside of the unit circle. That is, for a stationary process, we have 11 〈φ . The 

autocovariances are obtained as follows : 
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  )()()( 11 tpttpttpt XEXXEXXE εφ −−−+ +=   (3.3) 

or  1, 11 ≥= − ppp γφγ       (3.4) 

and the autocorrelation function becomes  1, 111 ≥== − pppp φρφρ   where use is made of 

the fact that 10 =ρ . Since 11 〈φ , the ACF exponentially decays depending on the sign of  

1φ . The PACF of the AR(1) process shows a positive or negative spike at lag 1 depending on 

the sign of  1φ , and then cuts off for other lags. 

 
On the other hand, autocovariance of  p-th order autoregressive process can be obtained by 

multiplying both sides of AR(p) process with ktX − : 

 tktptktptkttkt XXXXXXX εφφ −−−−−− +++= ...11   (3.5) 

and taking the expected value yields  0 , ... p11 〉++= −− kpkkk γφγφγ  where 

0).( =− tktXE ε  for 0〉k . So,  0 , ... p11 〉++= −− kpkkk ρφρφρ  is the autocorrelation 

function which has the recursive relationships. 

 
One of the most important issues  in the analysis of a time series is to forecast its future 

values. Since the early 1980s the use of stationary linear autoregressive models has become 

widespread in econometrics for analysing and forecasting  time series data. 

 
Suppose someone needs to forecast  variable τ+tY  based on a set of variables tX  observed at 

date t. Assume that tX  consists of m-past values of τ+tY  such as τ+−− mttt YYY ,...,, 1 .  Let 

1
ˆ
+tY  denote a forecast of 1+tY  based on tX . Then,the quadratic loss function can be used to 

evaluate the forecasts which have the minumum errors. This can be specified as: 

2)ˆ( ττ ++ − tt YYE . This expression is known as the mean square error associated with the 
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forecast τ+tŶ and denoted 2)ˆ()ˆ( τττ +++ −≡ ttt YYEYMSE . Moreover, the smallest mean 

square error achieved for the one step ahead forecast since the forecast of  1+tY  is equivalent 

to the expectation  1+tY  conditional on tX  such that )(ˆ
11 ttt XYEY ++ =  (Hamilton, 1994). 

 

Now, it is convenient to show the derivation of minumum MSE forecast for AR(1) model 

used in the empirical part of this study. Consider the stationary AR(1) model with drift : 

),0( , 2
t11 σεεφ iidNYcY ttt ≈++= − . Since it is stationary , it can be defined in terms of  

moving average (MA) model. Thus , 

  
t

ttt

Lc
cY

εθ
εθε

)(     
..11

+=
+++= −      (3.6) 

where ∑
∞

=

− =−=
0

1
1 )1()(

j

j
j LLL θφθ . For the τ  periods ahead, we have the following: 

  ∑
∞

=
−++ +=

0j
jtjt cY ττ εθ      (3.7) 

The minimum mean square error forecast  τ+tŶ  of τ+tY   can be imposed as:  

  ...ˆˆˆ
11 +++= −++ ttt cY εθεθ τττ     (3.8) 

where τθ̂  are parameters to be determined . Hence, the mean square error of the forecast is : 

 [ ]
2

0

2
1

0

222 ˆ)ˆ( ∑∑
∞

=
++

−

=
++ −+=−

j
jj

j
jtt YYE ττ

τ

ττ θθσθσ   (3.9) 

and by setting ττ θθ ++ = jj
ˆ . More explicitly, mean square τ  period ahead forecast error 

becomes [ ] 2)1(242 ...1 σφφφ τ −++++  . 
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3.1.2 Multivariate Time Series Models 

 

In dealing with economic variables, the value of  the variable is typically related not only to 

its predecessors in time but also depends on past values of other variables. For instance, 

household consumption expenditures may depend on variables such as income, interest rates 

and investment expenditures. If all these variables are related to the consumption expenditures 

it makes sense to use their possible additional information content in forecasting consumption 

expenditures (Lütkepohl, 1993).  

 
Denoting the relevant variables by Kttt YYY ,...,, 21   , the forecast of τ+TY ,1  may be of the 

functional form: ,...),,...,,,...,,( 2,11,1,1,,2,11,1 −−−+ = TtKTTKTTT YYYYYYgY τ . Similarly a 

forecast for the second variable may depend on the past values of all varaiables in the system. 

More generally,  

 ,...),,...,,,...,,(ˆ
2,11,1,1,,2,1, −−−+ = TtKTTKTTKTK YYYYYYgY τ   (3.10) 

A set of time series KkYKT ,...,1, = and Tt ,...,1=  is called a multivariate time series and 

τ+TKY ,
ˆ  indicates the forecast as a function of multivariate or vector time series.  

 
Forecasting is one of the main objectives of  vector time series analysis. The forecaster tries to 

make predictions in a particular period t about the future values of variables . In order to make 

forecasts, he has a model which explains data generation process and an information set 

containing the available information in period t. 

 

Vector generalization of univariate autoregression denoted VAR(p) can be written as follows: 

  tptpttt YYYcY εφφφ +++++= −−− ...2211    (3.11) 
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where ),...,( 1 ′= KTtt YYY  is a (Kx1) random variables vector, iφ  are fixed  (KxK) 

coefficient matrices , ),...,( 1 ′= Kccc  is a fixed (Kx1) vector of intercept terms allowing for 

the possibility of a nonzero mean )( tYE . Finally, ),...,( 1 ′= Kttt εεε  is a K-dimensional 

white noise, that is , Ω=′= )(, 0)( ttt EE εεε and   0)( =′τεε tE for τ≠t . 

 
Let us consider a zero mean VAR(1) process : ttt YY εφ += −11  . This can be written in MA 

form by taking τ - ahead forecast horizon into consideration: 

  ∑
−

=
−++ +=

1

0
11

τ

τ
τ

τ εφφ
i

it
i

tt YY     (3.12) 

Moreover, forecast of τ+tY   is the linear VAR(p) process described: 

  ...110 ++= −+ ttt YAYAY τ        (3.13) 

where the iA  are (KxK) coefficient matrices , we get the following forecast error is given by: 

 ∑∑
∞

=
−

−

=
−+++ −−+=−

1
01

1

0
1 )(ˆ

i
itit

i
it

i
tt YAYAYY τ

τ

τττ φεφ  (3.14) 

MSE is obtained through multiplication of this equation with its transpose and application of 

expectation operator, resulting in the following : 

  111
ˆ

−++ == τ
τ

τ φφ ttt YYY      (3.15) 

This optimal MSE predictor is used for measuring the forecast performance of VAR(p) 

process.  
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3.2 Nonlinear Models 

 

This section explains the nonlinear models used in the empirical part, namely Artificial 

Neural Network Model and Exponential Trend Model. 

 

3.2.1 Exponential Trend Model (ETREND) 

 

This model was first proposed by Gallant (1975) as the type of nonlinear regression model. 

Exponential trend model is convenient to model variables that follow an exponential path 

over time. It has the following form: 

   tt TY εαα += )exp( 21     (3.16) 

where tY  is dependent variable. In order to acquire reliable estimates with that model, 

autocorrelation has to be removed by applying autoregressive transformation. For instance, by 

implementing the AR(1) transformation, we arrive at the following: 

[ ]{ } ttt TYTY εααβαα +−−+= − )1(exp)exp( 211121    (3.17) 

This regression is estimated by nonlinear least squares. Making a forecast with this model 

requires following the same procedure as the linear regression equation.  

 

3.2.2 Artificial Neural Network Approach 

 

Cognitive scientists have proposed a class of  flexible nonlinear models inspired by certain 

features of the way that the brain processes information. Because of their biological 

inspiration, these models are referred to as artificial neural networks (ANN).  
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ANNs are a class of flexible nonlinear regression and discriminant models, data reduction 

models and nonlinear dynamical systems. Many ANN models resemble to popular statistical 

techniques such as generalized linear models, polynomial regression, nonparametric 

regression and discriminant analysis and so forth. ANNs have the ability of learning through a 

process of trial and error that can be resembled to  statistical estimation of model parameters. 

An ANN can  

(i)  automatically transform and represent complex and highly nonlinear relationships         

(ii) automatically detect different states of phenomena through independently variable 

patterns. 

 
Hence, ANNs are appropriate for complex phenomena for which we have good measures but  

a poor understanding of the relationships within these phenomena. Moreover, because of their 

flexibility and simplicity, usefulness in modelling any type of parametric or nonparametric 

process and their capacity to automatically handle nonlinearities, ANNs are ideally suited for 

prediction and forecasting particularly in the cases  where linear models fail to perform well. 

 
The ANN consists of basic units, termed neurons, whose design is suggested by their 

biological counterparts. The neuron combines the inputs, incorporates the effect of bias and 

outputs signals. In artificial neurons, learning occurs and alters the strength of the connections 

between the neurons and biases (Hill, et.al, 1994). 

In an ANN, a neuron input path  i  has a signal, xi , on it, i.e., input variable, and the strength 

of the path is characterized by a weight ,wi. The neuron is modelled by summing each weight 

times the input variable over all paths and adding the node bias )(θ . This can be expressed 

as: 

    ∑ +′= θwx     (3.18) 
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and it is transformed into output Y with the sigmoid shaped logistic function shown as the 

following: 

    )1/(1 Σ−+= eY     (3.19) 

This S-shaped function shrinks the effect of extreme input values on the performance of the 

network. 

 
The ANN literature refers to the estimation of unknown parameters as learning. Learning 

occurs through the adjustment of the path weights and node biases. The most common 

method used for the adjustment is backpropagation. It is a quasi-gradient method where the 

parameters are updated after presentation of each observation. Adjusting or updating the 

parameters after each observation is sometimes called recursive least squares. This technique 

is based on minimizing the squared difference between the model output and the desired 

output for an observation in the data set. The squared error is then propogated backward 

through the network and used to adjust the weigths and biases. The neuron has the following 

functional form: 

    ∑∑ −=
i j

jiji dyE 2
,, )()2/1(   (3.20) 

where j is an index over the data set used for training the network, i is an index over the 

output units of the network, y is the actual output unit and d is the desired output unit for that 

set of inputs.  

 
Back propagation network models may be static or feedforward. In feedforward networks, 

input vectors are fed into the network to generate output vectors, with no feedback to input 

vectors again). Moreover, the learning is supervised ( an input vector and a target output 

vector both are defined and the networks tend to learn the relationship between them through 
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a specified learning rule) (Moshiri and Cameron, 2000 ). 

 
A specific learning rule commonly used in the backpropogation model is the generalized delta 

rule, which updates the weight for each unit as follows: 

   ∇+=+ ηii ww 1       (3.21) 

where iw  is the weight, η  is the learning rate (less than 1) and ∇  is the gradient vector 

associated with the weights. The gradient vector is the set of  derivatives for all weights with 

respect to the output error. 

 
In a general form, the ANN output vector generated by a model or network including p input 

units, q hidden units (neurons) and one output unit can be written in the functional form as: 

   ∑
=

′+′=
q

i
if YwxO

1

β     (3.22) 

where fO  is the final output, Y is the nonlinear transformation function, ),...,( 1 pxxx = is 

the input vector , ),...,( 1 qwww =  and iβ  are the weights vectors. Each term of w  stands 

for a px1 vector of weights relating to the p input variables. iβ  refers to a qx1 vector of  

weights relating each sigmoid function.  

 
Figure 2 gives a sketch of the stages of  typical backpropagation neural network model with p 

inputs, two hidden units and one output unit. 
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 Figure 2. General Architecture of Back Propagation Neural Network 
 
 
 The working mechanism of  backpropagation ANN shown in Figure 2 can be explained in 

the following steps: 

STEP 1. Input and Output vectors are entered into the system. 

STEP 2. Network assigns parameters to the inputs randomly. 

STEP 3. Calculate errors between its predicted outputs and actual outputs. 

STEP 4. Adjust parameters in the direction required to reduce errors. 

STEP 5. Learning process continues until the network reaches a specified error. 
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CHAPTER 4 

 

EMPIRICAL RESULTS 

 

This chapter is organized as follows. In the first section, the data set employed is described. In 

the second section, competing models considered are described. In the third section, we 

compare the forecasting performances of these models via mean errrors (ME) and root mean 

square errors (RMSE). The last section of the chapter discusses possible strategies for 

improving the out of sample forecasts. 

 
4.1 The Data  

 

The data employed are made up of monthly series  covering the period between January 1982 

and June  2001. The variables examined in this study are described as the following: 

 TEFE: Wholesale Price Index 

 USD: Exchange rate (TL/USD) 

The  variable USD is chosen as the only explanatory variable for the inflation in order to 

avoid the negative effect of the over parametrization on the forecasting performances. 

 
The following graphs of the variables depict the behaviour  of each series over time. Figures 3 

and 4 show the level of TEFE and USD having  an exponential trend for the whole period 

under consideration. Figures 5 and 6 display the log level of the series denoted LTEFE and 

LUSD with a strong linear upward trend. The first difference series DLUSD and DLTEFE are 

plotted in Figures 7 and 8. One can observe the spikes in the April of 1994 when , following a 

crisis , Turkish Lira significantly depreciated against the US dollar.  
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The order of integration is investigated for the variables via the Perron-Augmented Dickey 

Fuller (ADF) test (1989) . Accordingly, the following regression equation is estimated : 

  tttt uDycy +++= − δρ 1      (4.1) 

where ),( LTEFELUSDyt =  and tD  is the dummy variable which is defined as:      

   


 =

=
otherwise  ,   0

1994 April t,    1
tD     (4.2) 

The following hypothesis is constructed: 

   
1
1:

1

0

〈=
=

ρ
ρ

H
H

      (4.3) 

This is known as the unit root-test. If H0 is not rejected, the previous regression is repeated for 

the first difference series to  check again whether or not unit root (H0) exists. 

 
 Table 1 reports the results obtained through Perron ADF test. Note that the test was 

performed with Campbell and Perron (1991) approach, which performs a test starting from 

the lag 12, and ending with the minimum Akaike Information Criteria (AIC) value, for 

choosing lag lengths. It is concluded that the integrated order of the series is one. In other 

words, the series are first difference stationary.  

 

Table 1. The Results of Unit Root Test (Perron, 1989) 
Variable Lag Perron-ADF (with trend) 
LTEFE 11 -1.5556 
DLTEFE 10 -5.3733 
LUSD 2 -0.9057 
DLUSD 1 -15.5576 
Asterisk indicates rejection at the %1 critical value 
λ=0.56≅0.6 and Perron critical value is –4.45 for α=0.01 
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4.2 The Forecasting Models: Specification and Estimation 

 

This part examines the estimation and specification of the models applied to Turkish inflation. 

 

4.2.1 Box-Jenkins Modelling 

 

The ARMA class of models remain arguably the most popular set of models for economic 

applications due, possibly, to their relative ease of computation and their ability to produce at 

least reasonable forecasts across a diverse set of data types. 

 
It is well known that post sample forecasting performance of pure AR models usually at least 

matches those of more complex ARMA models. This is the position taken in this study. Time 

series data for inflation is modelled with Box-Jenkins methodology. We have analysed the 

correlograms of the inflation data both in log level and first difference of the log level. A 

diagnostic test known as Q-statistic has been performed to see whether autocorrelation is 

removed. It is found that the appropriate model for the inflation series is AR (1) with drift. 

That is : 

   ttt uDLTEFEcDLTEFE ++= −1β   (4.4) 

 
 This model is estimated and  the results are given in the following table. 
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Table 2. The estimation of AR(1) with drift 
Dependent Variable: DLTEFE 
Method: Least Squares     
Convergence achieved after 2 iterations    
     

Variable Coefficient Std. Error t-Statistic Prob. 
C 0.0386 0.0030 13.0279 0.0000 

AR(1) 0.4619 0.0585 7.8965 0.0000 
 

R-squared 0.2133 Mean dependent var 0.0386 
Adjusted R-squared 0.2099 S.D. dependent var 0.0273 
S.E. of regression 0.0243 Akaike info criterion -4.5912 

Durbin-Watson stat 1.9743 Schwarz criterion -4.5614 
 
The coefficients given in Table 4 are used for the out-of- sample forecasts. 

 

4.2.2 Vector Autoregressive (VAR) Models 

 

One of the important issues in VAR modelling in the context of forecasting literature is 

whether to transform the data into stationary form or to carry out the analysis in levels. In 

dealing with this issue, VAR forecasting is performed with both log-level (nonstationary) and 

first difference (stationary) series. AIC (Akaike Information Criterion) and SC (Schwarz 

Criterion) criteria are used to determine the order of VAR models.  Optimal lag-length is 

acquired by testing down from a maximum 12-lag system until the minumum AIC and SC 

values are achieved. After applying this procedure, the appropriate lag is chosen as 2 for 

nonstationary (NSVAR) model. On the other hand, lag length for stationary VAR (SVAR) 

process is determined as 1. Table 2 and 3 show the results of the order selection procedure. 
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Table 3. Lag Selection For Nonstationary VAR 
Lag AIC SC 

1 -8.5013 -8.4124 
2 -8.8103* -8.6617* 
3 -8.7839 -8.5753 
4 -8.7490 -8.4799 
5 -8.7162 -8.3864 
6 -8.7003 -8.3092 
7 -8.6841 -8.2315 
8 -8.6512 -8.1366 
9 -8.6340 -8.0571 
10 -8.6127 -7.9731 
11 -8.6115 -7.9087 
12 -8.6302 -7.8638 

*Minumum Values 
 
 
 

Table 4. Lag Selection For Stationary VAR 
Lag AIC SC 

1 -8.8052* -8.7161* 
2 -8.7858 -8.6368 
3 -8.7499 -8.5406 
4 -8.7155 -8.4456 
5 -8.7057 -8.3748 
6 -8.6862 -8.2939 
7 -8.6538 -8.1997 
8 -8.6341 -8.1179 
9 -8.6119 -8.0331 
10 -8.6045 -7.9628 
11 -8.6171 -7.9120 
12 -8.6773 -7.9085 

*Minumum Values 
 
Therefore, the following dynamic simultaneous equations have been obtained for NSVAR 

model 

 t
i i

itiitit uLTEFELUSDcLTEFE +++= ∑ ∑
= =

−−

2

1

2

1
0 βα  (4.5) 

t
i i

itiitit uLTEFELUSDcLUSD +++= ∑ ∑
= =

−−

2

1

2

1
1 θγ   (4.6) 
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and SVAR model: 

 

 tttt uDLTEFEDLUSDaDLTEFE +++= −− 11110
~~ βα   (4.7) 

tttt uDLTEFEDLUSDaDLUSD +++= −− 11111
~~ θγ   (4.8) 

 
Both models are estimated by OLS and first equation of each model is used for out-of-sample 

forecasting. 

 

4.2.3 Neural Network Models 

 

Economic theory frequently suggests nonlinear relationships between variables and many 

economists believe that the economic relations are nonlinear. Thus, it is interesting to make 

forecasts by constructing the nonlinear relationship between variables examined in our study. 

 
 Two different  ANN architectures are set up in an attempt to form a class of flexible 

nonlinear models. The architecture for the stationary series is denoted SANN and the second 

one  designed for nonstationary series is named NSANN. Input layers are  formed with 

respect to modelling methodology for VAR models. Moreover, our ANN models have the 

multivariate (vector) structure. 

 
The following figures show the architectures of the ANN models used in our forecasting 

analysis. Note that forecasting with ANNs was performed by updating the sample period for 

each out-of-sample forecasts. Neural Network toolbox in MATLAB 6.0 software was used for 

the application. 
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 Figure 9. Backpropagation Neural Network Architecture for Nonstationary Series 
 
 
The architecture above has the following nonlinear specification: 

))(()(
10

1

10

1
∑ ∑
= =

′′′+′′+′=
j j

tttt XGFXGXLTEFE λγβλγλ  (4.10) 

where 2121 ,,, −−−−= ttttt LUSDLUSDLTEFELTEFEX  is the input matrix. On the 

other hand, for the stationary neural network structure, the following relation is imposed: 

∑ ∑∑
= ==

′′′′+′′+′=
10

1

10

1

5

1

))(()(
j j

t
j

ttt XGFXGXDLTEFE λγβθλγλ   (4.11) 

where 11, −−= ttt DLUSDDLTEFEX  is the input matrix. Note that these nonlinear ANN 

specifications imply that for the nonstationary  ANN , there are two hidden layers, each 

consisting 10 neurons, while for stationary ANN there are three hidden layers, each with 10 

LTEFEt-1 

LTEFEt-2 

LUSDt-1 

LUSDt-2 

 
LUSDt 
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neurons except the last one which has 5 neurons. Moreover, each hidden layer has sigmoid 

transformation function for both stationary and nonstationary ANNs. 

 
 
 

  
 
        
 
  
 
  
 
  
 Output  
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Input Layers Hidden Layers I           Hidden Layers II Hidden Layers III  
  (Ten Units)          (Ten Units)   (Five Units)  
 

Figure 10. Backpropagation  Neural Network Architecture for Stationary Series 
 

4.2.4 The Exponential Trend Model (ETREND) 

 

The  other nonlinear model is chosen by considering the shape of the TEFE  series in the 

level. It is seen that the series have the tendency to exponentially increase in time. Thus, we 

consider the following nonlinear model specification to generate the out of sample forecasts 

for the inflation variable. 

tt TTEFE εαα += )exp( 21     (4.12) 

where T is the time trend. Autocorrelation is removed with AR(2) transformation of the 

model which indicates the following specification : 

DLUSDt-1 

DLTEFEt-1 

 
DLTEFEt 
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   (4.13) 

This equation is estimated by nonlinear least squares. MFIT 4.0 software package was used 

for the estimation. The following table shows the results. 

 

 Table 5. Estimation of  ETREND Model 
  
  
  

  

  

 

 

 

The coefficients given in Table 5 are used for the out-of-sample forecasts. 

 

4.5 Forecasting Performance Evaluation 

 

Out-of-sample forecast period starts at January 1999 and ends at June  2001. The sequential 

estimation strategy is employed to generate out-of-sample forecasts for one to four period 

horizons. All of the models examined in this study were reestimated at each forecast period 

after the forecast value for the latest month were added to the sample back. 

 
Root Mean Square Error (RMSE) criterion is used to compare the models in terms of their 

forecast performances. The RMSE criterion is used because, as noted by Diebold and Lopez 

(1996), it continues to be the forecast accuracy criterion most commonly applied researchers. 

Parameter  Estimation Standard Error T-Ratio 

1α  12.64 0.0134 9.6743 

2α  0.0399 0.0039 10.0354 

1β  1.5893 0.0598 26.5461 

2β  -0.61175 0.06544 -9.3478 
2R  .99983   

DW-statistic 1.9783   

AIC -1278.8   
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Admittedly, however, as indicated by Clements and Hendry (1993), Armstrong and Fildes 

(1995), there are reasons that some researchers may generally prefer other forecast accuracy 

criteria. RMSE is computed for the forecasted value of the wholesale price index  in the 

logarithmic difference form. Moreover, mean errors (MEs) are calculated for the out-of-

sample forecasts and shown in Table 7 with the results of RMSE in Table 6.  

 
The inflation forecasts from the nonstationary ANN model were slightly better than the 

forecast values acquired from the others since one, two and three period ahead predictions are 

taken into account. On the other hand, the stationary ANN model outperforms in the four-step 

forecasts. The SVAR and NSVAR models give the similar forecast values, whereas Box-

Jenkins and ETREND have the largest bias in inflation forecasting. Moreover, SVAR model  

outperforms  the other models in both one and two-period ahead forecasts. On the other hand, 

stationary ANN is the second-best model for three-period ahead forecast. Table 7 shows that 

ME values of all the models except ETREND are  positive, indicating that there are upward 

biases except in the case of ETREND which has a downward bias in one-period ahead  

forecasts. Moreover, three and four period ahead forecasts, all the models possess upward 

biases. 
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Table 6. RMSE Results of the Models 
 FORECASTING PERIODS 

MODELS 1 2 3 4 
NSVAR 0.021965 0.030107 0.031113 0.031571 
SVAR 0.0201582 0.027677 0.028610 0.028814 

BOX-JENKINS 0.028343 0.037011 0.039036 0.040553 
NONSTATIONARY ANN 0.0182111 0.0179851 0.0 201841 0.05156 

STATIONARY ANN 0.033489 0.049699 0.024925 0.0284241 

ETREND 0.042711 0.079028 0.055172 0.043832 
1 First-Best Model 
2 Second-Best Model 
 

Table 7. ME Results for the Models 
 FORECASTING PERIODS 

MODELS 1 2 3 4 
NSVAR 0.025498 0.058336 0.096748 0.137411 
SVAR 0.032821 -0.000570 0.000692 0.000604 

BOX-JENKINS 0.016284 0.044537 0.080042 0.119340 
NONSTATIONARY ANN 0.033333 0.001038 0.000349 0.001775 

STATIONARY ANN 0.008535 -0.003509 0.005081 0.001697 
ETREND -0.000749 -0.010517 0.000956 0.008641 

 
 

4.4 The Combination of Forecasts 

 

It is observed that the nonstationary ANN, stationary ANN and SVAR are superior to other 

model forecasts in one-step prediction. It seems like we can improve our forecasts by 

combining forecast values from these three models. 

 
We first consider the combination of forecasts using fixed weights: 

t,2t,11t f)w1(wfy −+=+      (4.14) 

where t,1f and t,2f are one-step ahead unbiased forecasts of 1ty +  made at time t two using 

competing models. The choice of fixed weight (w) can be determined by  reference to the 

minumum errrors which have zero mean and are uncorrelated. Thus, w is calculated from the 

ratio of the sums of squared errors: 
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where tf ,1
~

and tf ,2
~

 are in-sample forecast values.  

 
Second, given a series of past outcomes and the alternative forecasts, Granger and 

Ramanathan (1984) propose determinig weights for the combination by linear regression of 

the outcomes on the forecasts. The following regression equation is implemented to allow the 

coefficients (weights) to vary as a function of forecast errors: 

1tt,2t24t,1t13t,22t,111t fwfwfwfwy ++ ε+λ+λ++=  (4.16)  

where   


 〈−

=λ +

otherwise         0
0fy  if         1

  t,11t
t1     and    



 〈−

=λ +

otherwise      0
0fy  if       1 t,21t

t2  

are the slope dummy variables reflecting the change in the slope of  the regression equation. 

 
Third, a simple neural network model is introduced to make a forecast combination. This is 

similar to the fixed weight approach. However, the weight is obtained by the following ANN 

specification: 

  )(
10

1
1 ∑

=
+ ′+′=

i
it xFxDLTEFE λβλ   (4.17) 

where x′  is the input vector referring to out-of-sample forecasts of NSANN, SVAR and 

NSVAR models. 1+tDLTEFE  is the actual values for the period between 1999.01 and 

2001.06. The relevant architecture is given in the following figure. 
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Figure 11. Backpropagation Network for Forecast Combination 

 
When combined forecasts are computed as described above, the resulting RMSEs for the out-

of-sample period turn out to be as in Table 8. 

 

 
Table 8. Forecasts for One-Period Ahead Forecasts 

MODELS FIXED WEIGHT CHANGING WEIGHT ANN WEIGHT 

NSANN and SVAR 0.019098* 0.015158 0.0006945 

NSANN and NSVAR 0.021036 0.014734* 0.000396* 

NSVAR and SVAR 0.021903 0.022389 0.0007123 

*Minimum values 

 

The results presented in Table 8 provide evidence that the regression approach with changing 

weights is relatively superior to the ratio approach with fixed weights for the combined 
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MODEL 
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forecasts. Furthermore,  encouraging results are obtained by combining nonstationary ANN 

and the NSVAR, indicating that combining  these models generates better forecast values than 

the other possible model combinations. Although combination of the nonstationary ANN 

model and the NSVAR forecasts based on the regression approach produce  almost 19% 

reduction relative to the best single model (i.e., nonstationary ANN) forecasts, combination 

performed with ANN weights provides 98 % decline in out-of-sample RMSE. 
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CHAPTER 5 

 

CONCLUSIONS 

 

In this thesis, inflation forecast performances of alternative models were examined for 

Turkish economy. Despite a lack of theoretical studies, many researchers believe that  

forecasts obtained through nonlinear models are superior to those from linear models, when 

the underlying relationship between variables is nonlinear. For this reason, a variety of linear 

and nonlinear models was considered using stationary and nonstationary data  in search of the 

best model in terms of the forecast performance.  

 
Three types of time series were used by expressing values  in levels, logarithmic levels and 

first differences. The series in logarithmic levels (nonstationary) and first  logarithmic 

differences (stationary) were used in Box-Jenkins Model, NSVAR, SVAR, NSANN, and 

SANN models, whereas the series in levels  was only used for ETREND. The use of different 

types of time series data  allowed for observation of  their effects on the forecasting 

performances of the models. It was observed, based on the results, that combination of models 

including nonstationary series improved inflation forecast performance in terms of the  RMSE 

criterion. 

 
Nonlinear neural network models considered in the thesis showed a generally better 

performance than the others. However, when the combination of  forecasts from alternative 

models were considered,  linear (NSVAR) and nonlinear (NSANN) model forecast 

combinations turned out to be more accurate than other combinations.  
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A simple combination technique to be performed with ANN was also proposed in the thesis, 

and it was shown that a considerable decline in RMSEs of the combined models could be 

achieved using this technique. Hence, it was argued that the proposed technique may be 

preferred to the well known techniques involving fixed and changing weigths. 

 
It is concluded that the combination of  NSANN and NSVAR forecasts based on regression 

approach and the ANN approach produce better out-of-sample forecasts than the other 

models. 
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