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A B S T R A C T

Schizophrenia (SZ) and bipolar disorder (BD) are highly heritable, share symptomatology, and have a polygenic
architecture. The impact of recent polygenic risk scores (PRS) for psychosis, which combine multiple genome-
wide associated risk variations, should be assessed on heritable brain phenotypes also previously associated with
the illnesses, for a better understanding of the pathways to disease. We have recently reported on the current SZ
PRS's ability to predict 1st episode of psychosis case-control status and general cognition. Herein, we test its
penetrance on white matter microstructure, which is known to be impaired in SZ, in BD and their relatives, using
141 participants (including SZ, BP, relatives of SZ or BP patients, and healthy volunteers), and two white matter
integrity indexes: fractional anisotropy (FA) and mean diffusivity (MD). No significant correlation between the
SZ PRS and FA or MD was found, thus it remains unclear whether white matter changes are primarily associated
with SZ genetic risk profiles.

1. Introduction

Schizophrenia (SZ) and bipolar disorder (BD) overlap in sympto-
matology, are both highly heritable, share genetic susceptibility, and
their etiology is still little understood (Craddock and Owen, 2005). In a
standard genome-wide association approach (GWAs), the SZ Psychiatric
Genomic Consortium-2 (PGC2) meta-analysis found 108 genetic var-
iants to be independently associated with SZ (Ripke et al., 2014), each
showing a 1–2 odds ratio. Complementarily, one can examine disorder
prediction by summarizing variation across all the associated at various
levels of significance loci into a quantitative score, i.e. a polygenic risk
score (PRS) (Ripke et al., 2014). Using this approach, we have recently
reported the PGC2-SZ PRS to explain 9.2% of SZ case-control variance
in a sample of first episode psychosis (Vassos et al., 2017) and 2.7% of
general cognitive ability (Toulopoulou et al., 2019).

Reduced fractional anisotropy (FA) and increased mean diffusivity
(MD) in white matter, with heritability ranging 30–82%, except in the
fornix where it is untypically low (Vuoksimaa et al., 2017), have con-
sistently been reported in SZ and, to a lesser extent, in BD patients, in
studies employing Tract Based Spatial Statistics (TBSS) (Ambrosi et al.,
2013; Hummer et al., 2016; Kanaan et al., 2017; Subramaniam et al.,
2017; Viher et al., 2016; Zhuo et al., 2016). While a unipolar depression
PRS has been negatively associated with FA (a proxy for white matter
microstructure integrity) in depression and health (N = 132) (Whalley
et al., 2013), no association was found between SZ, a BD or a unipolar
SZ PRSs and white matter microstructure, in a study using the UK
Biobank data (N = 816) (Reus et al., 2017). However, the UK Biobank
study, although powerful, has mixed patients of indiscriminate types,
healthy individuals and those without clinical records, which prevented
the examination of diagnosis by PRS interactions on brain structure, or
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a safeguard against noise or confounder effects.
In the present study, we aimed to test the effect of the PGC2-SZ PRS

on white matter microstructure integrity, using FA and MD as proxies,
in healthy individuals, SZ, BD and SZ/BD relatives’ (REL) samples.
Considering that both a high SZ PRS (Ruderfer et al., 2014; Tesli et al.,
2014) a decreased FA (Ambrosi et al., 2013; Hummer et al., 2016;
Kanaan et al., 2017; Subramaniam et al., 2017; Viher et al., 2016; Zhuo
et al., 2016), and an increased MD, (Kanaan et al., 2017; Squarcina
et al., 2017; Zhuo et al., 2016), are associated with SZ and BD, our main
hypothesis was that PGC2-SZ PRS would be negatively associated with
FA, and positively with MD. In addition, we also examined whether the
effects of PGC2-SZ PRS on FA/MD would be different between the
different diagnostic groups, since ours and others' previous work, have
shown significant genotype by diagnosis effects on these brain measures
(Gurung and Prata, 2015; Mallas et al., 2016).

2. Methods

DTI and PRS data were selected from a dataset used in previous
studies (Allin et al., 2011; Chaddock et al., 2009; Kanaan et al., 2017;
Kyriakopoulos et al., 2009; Mallas et al., 2016; Picchioni et al., 2006;
Shergill et al., 2007) at the Institute of Psychiatry, Psychology and
Neuroscience (IoPPN), King's College London. The selected 141 subjects
were divided in four different diagnostic groups: SZ (n = 21), BD
(n = 25), BD/SZ relatives (BD/SZ REL; n = 27) and healthy controls
(n = 68). Demographics statistical tests using IBM SPSS 25 (IBM Corp,
2017) showed BD to be significantly older than healthy individuals
(Mann-Whitney U = 528.500, p-value = 0.005); and REL's IQ z-scores
to be higher than SZ's (U = 145.500; p-value = 0.004), and higher than
healthy individuals (U = 561.000; p-value = 0.003). As expected, PRS
was associated with diagnosis (F = 4.575, p-value = 0.004; see Fig. 1),
with PRS being significantly higher in SZ than HC (Tukey's HSD mean
difference = 0.844, p -value = 0.003; see Fig. 1), but not significantly
correlated with any of the demographic variables. Chlorpromazine
equivalents (CPZ) were also calculated for the patients groups for de-
scriptive reasons, and for its ascertainment as a confounding factor. As
CPZ was not statistically significantly associated with the PRS (Pear-
son's correlation = 0.169, p-value = 0.441, among both patient
groups) in the present sample, nor with white matter microstructure

(namely FA) in a largely overlapping sample (Kanaan et al., 2009)
(which has later been independently reinforced (Wang et al., 2013)),
antipsychotic medication was herein not considered a potential con-
founding, nor a relevant nuisance, factor. For further demographics
statistics, see Supplementary Table 1.

DNA was extracted, processed and genotyped as we previously de-
scribed (Vassos et al., 2017). The PGC2-SZ PRS was calculated for each
participant as the sum of the risk single nucleotide polymorphisms
(SNPs) weighted by the logarithm of odds ratio of their respective as-
sociation with SZ in the PGC2 meta-analysis (Ripke et al., 2014), using
the set of statistically significant SNPs with the highest case-control
explanatory power which we have previously determined in an in-
dependent sample (Vassos et al., 2017).

MRI data was acquired as we previously described (Mallas et al.,
2016). Preprocessing of the diffusion MRI images was made using FSL
version 5.0.8 (Jenkinson et al., 2012), and included eddy currents
distortions correction and brain-extraction with a threshold of 0.2 to
ensure a balance between complete scalp removal and inappropriate
erosion of brain tissue. FA and MD images were created by fitting a
tensor model to the raw diffusion data.

Voxel-wise statistical analysis of FA and MD data was carried out
using TBSS (Smith et al., 2006) (Jenkinson et al., 2012) and then fed
into a general linear model (GLM) (Smith et al., 2006), both in FSL
version 5.0.8. Main effects of PGC2-SZ PRS on FA/MD, followed a re-
gression design (with diagnosis as a covariate of no interest), and PGC2-
SZ PRS x diagnosis interaction an ANCOVA, with a permutation-based
approach (Smith and Nichols, 2009). Age and gender were added to the
models as they showed a predicted significant large effect on FA or MD
(namely, corpus callosum (p = 0.002), cingulum (p = 0.047) and su-
perior longitudinal fasciculus (p = 0.049); and gender on MD in the
anterior thalamic radiation (p = 0.049)).

Statistical significance was considered when effects surpassed the
threshold free cluster enhancement (TFCE)-correction at a p-value <
0.05, while trends were considered so when showing a TFCE-un-

corrected p-value < 0.01, following standard practice (Mallas et al.,
2016; Subramaniam et al., 2017; Viher et al., 2016). The 10 largest
clusters of each contrast are reported in Table 1, for conciseness; with
the extended list in Supplementary Table 3. For each effect, the R2 ef-
fect size was calculated based on the t-statistics value of the peak voxel

Fig. 1. Box plot of the participants' polygenetic risk score (PRS) per diagnostic group: schizophrenia (SZ), bipolar disorder (BD), relatives (REL) of SZ or BD, and
healthy controls (HC).
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which determines, along with cluster size, the TFCE corrected p-va-
lueLastly, to determine the white matter regions/tracts the Johns
Hopkins University ICBM-DTI-81 white-matter label atlas (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/Atlases) was used. If no region was retrieved,
labelling was carried out manually using the MRI Atlas of Human white
matter (Mori et al., 2005). Further detail on methods are presented as
supplementary information.

3. Results

3.1. Main effect of PGC2-SZ PRS on fractional anisotropy and mean
diffusivity

The main effects of PRS on either FA or MD were not statistically
significant. However, negative trends were found whereby PRS was
correlated with FA in five regions, of which the right cingulum showed
the largest cluster, and the only positive trend of PRS on FA was found in
the anterior thalamic radiation (see Table 1 and Fig. 2). On MD, posi-
tive trends were seen in four equality small clusters/regions, and one
negative trend in the inferior cerebellar peduncle (see Table 1 and
Fig. 3).

3.2. PGC2-SZ PRS x diagnosis interaction on fractional anisotropy and
mean diffusivity

No statistically significant PRS x diagnosis interactions on FA or MD
were found. Most interactions trends showed similar (small) cluster and
effects sizes as the above main effects, except two distinguished by their
cluster sizes (albeit their effect sizes explained at maximum of 5% of FA
variance): the PRS had a stronger positive correlation with FA on BD
than on healthy individuals, and than on SZ: cluster sizes were quite
large reaching 3957 voxels in the middle cerebellar peduncle and 1252
in the corticopontine tract, respectively (see Supplementary Table 2).

PRS-FA/MD correlation plots for the peak coordinate of the most
TFCE-significant clusters, for each effect described in Table, can be
found in Supplementary Figs. 1–4.

4. Discussion

No significant main effects of the PGC2-SZ PRS, or PGC2-SZ PRS by
diagnosis interactions, were found on MD or FA. However, both posi-
tive and negative TFCE-uncorrected trends (at p-value < 0.01) were
found. Main effects, either positive or negative, of PRS on FA were small
(in terms of effect size, ranging 0.3–4%). The (expected) negative main
effect trends on FA showed one to two orders of magnitude larger
cluster sizes reaching 140 voxels in the right cingulum, in comparison
with the (unexpected) positive trends (3 voxels). This region's FA shows
high heritability (30–70%) (Vuoksimaa et al., 2017) and its white
matter alterations have been consistently detected in SZ in previous
work (Ellison-Wright and Bullmore, 2009; Knochel et al., 2012; Lener
et al., 2015), suggesting it may be implicated in SZ onset. The largest (in
terms of effect size) PRS trend on FA was for a negative correlation
explaining 4% of variance in the right superior longitudinal fasciculus.
Generally one order of magnitude larger than on FA, but still small,
were the effects on MD (explaining 4–6% of variance): positive trends
were seen in four equally small clusters/regions, and one negative trend
in the inferior cerebellar peduncle within a cluster of 12 voxels (see
Table 1). Regarding diagnosis-dependent effects of PRS, PRS showed a
non-significant higher correlation trend for BD than for healthy in-
dividuals or SZ, the clusters being 2–3 orders of magnitude higher than
those of the main effects but the effect size being equally small (0.5–5%;
see Supplementary Table 2).

To put it in perspective, we found the PGC2-SZ PRS to explain a
smaller proportion of the variance of FA/MD, than of the observed scale
case-control status (9.2%) (Vassos et al., 2017), or than of SZ liability
(7%) (Ripke et al., 2014). However its effect magnitude on these brain
structure phenotypes was closer to what we found on general cognition
(2.7%) (Toulopoulou et al., 2019). This challenges the expectation that
penetrance of genetic factors of these complex illnesses on their white
matter microstructure or cognitive endophenotypes should be larger
than on the illnesses themselves (Iacono, 2018). In the latter cognition
study, we have also found more than a quarter of the genetic influence
on SZ liability to be mediated through cognition-related paths that were
independent of the PRS. Similarly two thirds of the genetic effects on SZ

Table 1
TFCE-uncorrected main effects of PGC2-SZ PRS on fractional anisotropy (FA) and mean diffusivity (MD), proxies of white matter microstructure, characterized in
terms of cluster extent (k) (and in descending order by it), t-statistic, p-value, effect size (R2), MNI coordinates and white matter label (R-right; L-left). PGC2-SZ PRS
by Diagnosis interactions are reported in Supplementary Table 2.

Cluster extent (k) t-statistic p-value R2 Peak MNI coordinates Cluster Label

x{mm} white matter{mm} z{mm}

Main effect of SZ PRS on FA
Positive correlation
3 2.239 0.007 0.035 68 182 79 Anterior thalamic radiation R
Negative correlation
140 0.598 0.003 0.003 65 113 41 Cingulum R
50 1.649 0.004 0.019 44 70 78 Inferior longitudinal fasciculus R
36 1.747 0.006 0.022 79 109 140 Corpus callosum R
23 1.507 0.007 0.016 106 48 81 Cingulum L
23 2.016 0.005 0.029 36 80 58 Stria terminalis R
23 0.71 0.005 0.004 133 60 93 Superior longitudinal fasciculus L
23 1.215 0.006 0.011 53 48 95 Inferior longitudinal fasciculus R
16 1.017 0.005 0.007 73 117 137 Corpus callosum R
15 1.349 0.006 0.013 81 49 93 Cingulum R
12 1.423 0.008 0.015 39 75 68 Superior longitudinal fasciculus R
12 2.377 0.006 0.04 58 122 97 Superior longitudinal fasciculus R
Main effect of SZ PRS on MD
Positive correlation
5 2.982 0.001 0.061 97 109 133 Corticopontine tract L
4 2.735 0.005 0.052 66 80 48 Middle cerebellar peduncle R
1 2.374 0.01 0.04 118 167 65 Inferior fronto-occipital fasciculus L
1 2.873 0.002 0.057 67 84 105 Posterior corona radiata R
Negative correlation
12 2.857 0.002 0.056 90 73 48 Inferior cerebellar peduncle
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were independent of the PRS (Toulopoulou et al., 2019). Indeed, con-
trary to the expectations earlier put on endophenotypes, they do not
seem to be useful for gene discovery. However, they remain useful for
identifying pathways and mechanisms to disease (from gene to brain);
and to validate the statistical and clinical usefulness of genetic markers
(such as the PRS) previously associated to SZ to predict clinical out-
comes (from onset, to diagnosis, prognosis and treatment response). In
particular, genetic markers (more than neuroimaging ones) entail the
potential to be clinically useful biomarkers due to their screening speed,
ease and cost-effectiveness; even though these are still to be found since
our last review on the matter (Prata et al., 2014).

One of the possible reasons for the lack of statistical significance is
that our sample size was insufficient to detected an effect, on brain
structure, of a PRS which, in its present formula, still explains, albeit
robustly and well replicated, a small proportion of SZ risk (7–9%)
(Ripke et al., 2014; Vassos et al., 2017). Notably, the only other study
focusing on the influence of the PGC2-SZ PRS on white matter micro-
structure (FA/MD), simultaneous to ours, has also not found a

significant effect of SZ PRS on FA/MD, even with an approximately 6
times larger (UK Biobank) sample (Reus et al., 2017); even though that
study might have had other limitations given the highly clinically
mixed sample, we did not. However, insufficient power may also arise
from the incomplete predictive power of the PGC2 SZ PRS score (which
~7% of the variance in the liability scale currently explained (Ripke
et al., 2014)), or, rather, of each of the individual genetic variations
reported in the PGC. Given the high heritability of SZ and BD which
suggests that genetic factors pose a major contribution to the inherent
brain alterations, and the high heritability of some of these well-known
brain alterations such as in FA and MD (Vuoksimaa et al., 2017), it is
possible that the genetic risk variants that contribute most to the dis-
orders, and to white matter alterations, are either not the same (i.e.
different genetic variants affect white matter and SZ/BD risk, via se-
parate pathways), or are not common in the population (i.e. have not
been detected by GWAS SNP-based outputs). If the later, alternative
genotyping methods, e.g. sequencing, or statistical methods in-
corporating rare variants such as copy number variants in the PRS, may

Fig. 2. Visual representation of the trend-level main effects of PRS on FA for a TFCE-uncorrected p-value<0.01. The regions that correspond to positive effects are
presented in red and the regions of the negative effects are presented in blue. The color bars represent the different 1-(p-value) in several shades of blue and red. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Visual representation of the trend-level main effects of PRS on MD for a TFCE-uncorrected p-value< 0.01. The regions that correspond to positive effects are
presented in red and the regions of the negative effects are presented in blue. The color bars represent the different 1-(p-value) in several shades of blue and red. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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be necessary.
Lastly, our null hypothesis could also be harder to reject if there is a

higher association of MD/FA white matter changes with positive
symptoms in SZ, and of the PGC2-SZ PRS with negative symptoms.
Indeed, white matter FA reductions have been associated with positive
symptoms' decrease after antipsychotics, at least in fronto-tempor-
olimbic regions (Cho et al., 2018); and the PRS (as herein, based on
PGC2 variants) has been associated specifically with negative symp-
toms as blunted affect and emotional withdrawal (Fanous et al., 2012;
Jones et al., 2016). In conclusion, our findings suggest we cannot ex-
clude the null hypothesis that the PGC2-SZ PRS does not explain brain
FA or MD variability in healthy, SZ, BD or their relatives’ populations.
Although a higher PRS for SZ may lead to impaired white matter in-
tegrity and poorer neural connectivity, the present test would need to
be replicated in a more powerful sample, so the detected trends are
confirmed.
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