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Abstract

A tree structured Ezpectation Mazimization (EM)
algorithm s proposed and applied to the wide-band an-
gle of arrival estimation. It may be seen as a gen-
eralization on EM using the ideas of Cascade EM al-
gorithm and Space Alternating Generalized EM algo-
rithm. Also, for passive dala acquisition, robust and
efficient alternatives for the estimation of the source
signals are tnvestigated.

1. Introduction

In many data acquisition systems, reception data
acquired by an array of sensors are processed to ob-
tain information about the source locations. When
the sources are located relatively far away from the
sensors, only the direction of arrivals of the acquired
source signals can be reliably obtained. Although the
Maximum likelihood (ML) estimation provides more
accurate estimates for the direction of arrivals, due to
the higher computational cost of obtaining the ML esti-
mates, it has not found much use in practice. However,
by exploiting the superposition property of the data
acquisition system, the complexity of the ML estima-
tion can be greatly reduced by using the Expectation
Maximization (EM) algorithm [1, 2, 5]. In EM for-
malism, the observation, incomplete data is obtained
via a many-to-one mapping from the complete data
space that includes signals which we would obtain as
the sensor outputs if we were able to observe the effect
of each source separately. The EM algorithm iterates
between estimating the log-likelihood of the complete
data using the incomplete data and the current param-
eter estimates (E-step) and maximizing the estimated
log-likelihood function to obtain the updated parame-
ter estimates (M-step). Under mild regularity condi-
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tions, the iterations of the EM algorithm converges to
a stationary point of the observed log-likelihood func-
tion, where at each iteration the likelihood of the es-
timated parameters is increased [11]. In this study, a
tree structured hierarchy is used for the description of
relation between the complete data space and the ob-
servations. Within this hierarchy it is possible to com-
bine in one algorithm the ideas of the Cascade EM and
Space Alternating Generalized EM algorithms {3, 7].
For the estimation of unknown signals arriving from
different directions to a passive array, alternative regu-
larized estimation schemes to the common least squares
solution are investigated. For this purpose two differ-
ent methods are used. The first one is an adaptive
Tikhonov type regularized least-squares (RLS) estima-
tion method, which is computationally intensive and
the second one is an averaged least-squares estimation
(LSSET) method over a set of angles in a neighbor-
hood of the nominal angles. It has been demonstrated
that when RLS or LSSET methods are used in the es-
timation of the received signals, the EM algorithm has
better convergence behavior.

2. Signal Model

For the case of M sources with direction of arrivals
6;, 1 <1 < M, the measured signal at the ¢’th sensor
of an array with P sensors is

M
wilt) = D ailt,0) + si(t — 7(00) + wilt)
=1
1<i<P, t=0T2T, (N-D)T (1)
where s;(t) is the wide-band signal of the I’th source,
u;(t) is the 0 mean spatially and temporally white
Gaussian noise at the 7’th sensor, 7;(6) is the time delay
of the source signal from the direction 6 as it propa-
gates to the 7’th sensor relative to the phase center of



the array, a;(t,6) is the time domain function for the
gain of the 7’th sensor which is dependent on frequency
and the direction of arrival, §. The frequency domain
representation of (1) is,

M
Yitk) = 3 ik, 0T B S (k) + Uik)
=1
1<i<P, 0<k<F (2)

where F' is the DFT size which is chosen sufficiently
large and Y;(k), 4;(k,8), Si(k) ve U;(k) are the trans-
forms of y; (t), a;(t,8), si(t) and u;(t) respectively. Let
the following definitions be made (' is the transpose
operator)

b(k,0) = [Ay(k,0)e~7 F20
AP(L 8)6__3 2zk ’P(e)]
= [bi(k, 6) bp(k,0))
B(k,®) = [b(k,0,) --b(k,0nm)]
S(k)y = [% (L) - Su (k)
Y (k) [Yi(k) - Ye(k)]
Using these definitions (2) becomes
Y(k)=B(k,®)S(k)+U(k) 0<k<F (3)

This final compact form of the measurement relation,
which is the same as the signal model of the Cramer-
Rao Lower Bound formula in [8], will be used in our
derivations.

3. Wide-Band EM Algorithm

Since, the measurement noise is modeled as nor-
mally distributed additive noise, the probability den-
sity of the observations are Gaussian. Hence, the log-
likelihood function of the chservations has the following
familiar form (T is the conjugate transpose operator),

£(©,8;Y) i [Y (k) — B(k, ®)S(k)]'

[Y(k)—B(k,©)8(k)] (4
In order to find the ML estimate, likelihood function
of the observations should be maximized with respect
to ® and S(k). However, the direct maximization of
this function is not only computationally demanding
but also due to the local maxima structure of the like-
lihood function it is not guaranteed to converge to the
global maxima. The Expectation Maximization (EM)
method of obtaining the ML estimate overcomes this
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difficulty by an iterative search in much lower dimen-
sional parameter spaces [1]. The EM method requires
the identification of so called complete data space. In
our application the commonly used complete data is
Xi(k) = [Xy(k)---Xpi(k)]" which is the signal that
would be observed at the sensors if we were able to see
the effect of I’th source only. Then the many-to-one
mapping for all sources from the complete data space
to the incomplete data space can be written as

M
> Xi(k)
I=1

The mean of the complete data X,(k) is b(k, 6;)S:(k)
and it is normally distributed. The log-likelihood func-
tion of the complete data is

Y (k) = 0<k<F (5)

F-1 M

= 57> IXuk) = bk, SR (6)

k=0 1=1

£.(©,8;X) =

Here, the observed signal is decomposed to M con-
stituents. Therefore to estimate 6; and S;(k), only
X, (k) is used besides the observation. At the n’th it-
eration of the EM algorithm expectation step condi-
tionally estimates the likelihood of the complete data
L£.(©,8 | ©*,8"). Maximization step then finds the
maximizer of the estimated likelihood and assigns to
0Pt To find b(k,0)Si(k) it is sufficient to know
X, (k), therefore in expectation step X;(k) is estimated.
It can be shown that, ([6], p. 164),

X7 (k) = EXUROT 57 (1), Y (8))
= bk, 67)S7 (k) + - [Y (F) -
0<k<F

B(k, ©")S"(k))]
(M

In maximization step complete data likelihood which
is formed by using X} (k) is maximized with respect to
6 and S;(k). The 6; update is found as

0}1“ = argmax
F-1 M
{max{ Z Z [1X7 (k) — b(k, H)Sl(k)W}}
k=0 I=1

(8)

where there i1s two maximization problems inside one
another. If S;(k) is unknown they must be simultane-
ously solved. For a given 6 value, the solution of the
inner maximization is

Si(k) [b(k, )bl (k, )]~ bl (k,0)X;(k)
bl (k, )X, (k)

DOGIE ®)



Inserting this expression into (8) and solving for the
outer maximization 6 *! is found. For that maximiza-
tion linear search may be used. Finally, at the n’th
iteration of the LM algorithm the update formulas are
as follows,

F-1
(J;”l = (n'ymgaxz
k=0
bk, 0)X1" (B) X, (k)b(k, 0) (10)
[I1b(k, B)[°
Sptt k) bI(k, 07X} (k) (11)

[[b(k, 67 )12

If Sy(k) is known, as in active array applications, (8) is
simply reduced to one maximization problem and there
remains no need for (11). If (10) and (11) are run
together, 1.e.. in the case of unknown source signals,
();’"H should be close to true direction values for 5,“'1
to converge to true signal waveforms.

After (10), ®"*+! is available. If it is inserted into
(3), S"*1(k) can be solved for by using a number of al-
ternatives. For instance the least squares (LS) solution
is as follows,

S(k) 2

arg min||Y (k) — B(k, ©)S(k)|
Sk

I

[BY(k, ©)B(k, ®)]7 B (k, @)Y (k) (12)

Regularization may be applied on the LS solution
which is called regularized least squares, RLS,

S(k) = [BI(k, ®)B(k, @) + pI] !B (k, @)Y (k) (13)

[t is bnportant to chose p in the regularization and it
can be chosen optimally [4, 9]. Another alternative in
source signal estimation may be the following which
will be referred to as LSSET solution, where K is a set
of angles in a neighborhood of ®,

S(k) = arg min/ Y (k) — B(k, ®)S(k)||?dO (14)
StkyJx

EM algorithm starts with n = 0 at which time ®9 is
available obtained by using a rough estimation. To find
X(k) in (7), SY is needed and it is estimated by one
of the methods mentioned above. EM shows mono-
tonic increase of the likelihood and its convergence is-
sues have been investigated [1, 11].

4. Tree-Structured EM

In this section we will use a different mapping from
the complete data to the incomplete data which is
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structured as a binary tree as shown in Figure 1.
Y; ;(k) is the intermediate incomplete data between
the observation Y (k) and the complete data X;(k)’s.
In this setting EM algorithm is run for two sources at
a time using the intermediate data at the joint node
of two leaves. This provides an update for the corre-
sponding DOA and source signals. The value of the
intermediate data is found by using, in (3), the origi-
nal observation Y (k) and the current source signal es-
timates other than the ones which are to be updated
by the current run. For instance, to run EM algorithm
for X;(k) and Xo(k) we form the required incomplete
data as

Y2,:1(k) = Yy 1(k) - B(k, [ zi ]) [ Sa(k)

Sa(k) ] (15)

where Y 1(k) is found by using Y (k) and the cur-
rent estimates for the last there source signals in (3).
Y5 2(k) may be found similarly and EM algorithm is
run for that branch too. This may be repeated a num-
ber of times and then by using the updates obtained
for the first 4 source signals and DOA’s, branch of
Y1 2(k) may be processed. The idea of putting inter-

X,
Y]J
— X(]
— X,
Y YZJ L— X 5 Y.
- 2
2 X,
Y1.| — X,
Y
{ L— index Yo X
i
level

Figure 1. An example for the tree structure.

mediate data mappings between Y (k) and X;(k)’s can
be associated with that of the Cascade EM, CEM, al-
gorithm but here there is more than one intermediate
data space. Due to the limited space, the generalization
of CEM to multiple levels is not presented here. The
tree structure may also be associated with Space Al-
ternating Generalized EM algorithm in the sense that
not all of the parameters are updated at a time. Also
EM is run on a more noisy data reducing the informa-
tion content of intermediate observations and this is
reported to speed the convergence [3].

5. Simulations and Conclusions
Observation signals are obtained by simulation of a

linear array of sensors. The number of signals are as-
sumed to be known since there are studies in detection



[10]. The source signals are taken as coherent pulse
modulated chirp signals with bandwidth comparable
to the center frequency. Noise is assumed to be in-
dependent identical Gaussian distributed. First the
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signal estimation alternatives are inserted in the EM al-
gorithm and their relative performances are compared.
EM algorithm is run for two sources impinging from 35°
and —50° at an SNR level of 0dB. The averaged traces
of error norm of DOA estimation, which describes the
convergence behaviours, can be seen in Figure 2 where
EM, LS, RLS, LSSET refers to (11), (12), (13), (14) re-
spectively. The DOA error variance together with the
CRLB for each alternative is plotted in Figure 3. For
LSSET, K consists of 5 angles in a 1° neighborhood of
the current DOA. This figures out to be computation-
ally less complex than RLS.

To compare the tree-structured EM algorithm with
the original EM algorithm four sources from directions
O = [35° - 50° — 20° 50°] are used at SNR=10dB.
Initial DOA’s are given as ®g = [33° —-48° —18° 48°].
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The DOA error norms for iterations of original EM and
tree-structured EM algorithms are shown in the next
table. The original EM algorithm, could not converge
to true DOA values. Furthermore, it diverges from the
initial angle values. But within the same number of
total iterations the tree-structured EM converges with
much lower DOA error to @ = [35.3 —~50.0 —20.0 50.7}.

iteration no. — 10 | 20 § 50 | 100
EM (1073) 53 55|55 | 55
Tree-EM (10~%) |1 6.3 [ 6.1 | 4.6 | 2.2

By this study, an improvement on EM algorithm is
realized not only by using robust signal estimation
schemes but also by changing the data mapping of the
original algorithm.
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