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Abstract 

A tree  sti-uctiired E x p e c t a t i o n  M a x i m i z a t i o n  (EM) 
~ l~gorL th l l7~  ‘ i s  p r o p o s e d  a n d  appl ied t o  t h e  w ide -band  a n -  
gle of ur,rzvul e s t inaa t ion .  It naay be s e e n  a s  a g e n -  
r .rul iznt~ion O I L  EM u s i n g  the i d e a s  of C a s c a d e  EM al- 
q o r i t l ~ m  a n d  S p a c e  A l t e r n a t i n g  G e n e r a l i z e d  EM algo- 
i~ithna. Also, for p a s s i v e  d a t a  acqu i s i t i on ,  robus t  a n d  
e f i c z e n t  a l t e r n a t i v e s  for t h e  e s t i m a t i o n  of t h e  source  
.sr,qnals a re  i n  i ies t igated.  

1. Introduction 

Tn many da.ta. acquisition systems, reception da ta  
acquired by a.n array of sensors are processed to  ob- 
t,aiii informa.tion about the source locations. When 
t,he sources are located relatively far away from the 
sensors. only t,he direction of arriva.ls of the acquired 
source signals c,an be reliably obtained. Although the 
Maxiriiuiii likelihood (ML) estimation provides more 
accurate estimates for the direction of arrivals, due to 
t,lie higher computational cost of obtaining the ML esti- 
mates, i t  has not found much use in practice. However, 
by exploiting the superposition property of the da ta  
xquisit ion system, the complexity of the ML estima- 
t,iou ca.n be grea.tly reduced by using the Expectation 
R~Iasimization (EM) algorithm [11 2. 51. In EM for- 
rnalism, the observation, i n c o m p l e t e  d a t a  is obtained 
via a. many-to-one mapping from the c o m p l e t e  d a t a  
spa.ce t,lia.t includes signals which we would obtain as 
the sensor outputs if we were able to observe the effect 
of‘ each source separately. The  EM algorithm iterates 
between estimating the log-likelihood of the complete 
data. using the incomplete da t a  and the current param- 
eter est8iriia,tes (E-step) and maximizing the estimated 
log-likelihood function to obtain the updated parame- 
ter est>iina.tes (R/I-step). Under mild regularity condi- 

tions, the iterations of the EM algorithm converges to  
a stationary point of the observed log-likelihood func- 
tion, where a t  each iteration the likelihood of tlie es- 
timated parameters is increased [ll]. In this study, a 
tree structured hierarchy is used for the description of 
relation between the complete da t a  space and  the ob- 
servations. Within this hierarchy i t  is possible to  com- 
bine in one algorithm the ideas of the Cascade EM and 
Space Alternating Generalized EM algorithms [3 ,  71. 
For the estimation of unknown signals arriving from 
different directions to  a passive array, alternative regu- 
larized estimation schemes to the common least squares 
solution are investigated. For this purpose two differ- 
ent methods are used. The  first one is an adaptive 
Tikhonov type regularized least-squares (RLS) estima- 
tion method, which is coinputationally intensive a.nd 
the second one is an  averaged least-squares estimation 
(LSSET) method over a set of angles in a neighbor- 
hood of the nominal angles. I t  has been demonstrated 
tha t  when RLS or LSSET methods are used in tlie es- 
timation of the received signals, the EM algorithm has 
better convergence behavior. 

2. Signal Model 

For the case of M sources with direction of arrivals 
81, 1 5 1 5 M ,  the measured signal at the i’th sensor 
of an array with P sensors is 

M 

Yi(t) = x a i ( t ,  01) * S i ( t  - Ti(O1)) + % ( t )  
1=1 

1 5 i 5 P , t=O,T,2T ,..., (N-1)T (1) 

where s , ( t )  is the wide-band signal of the I’th source, 
ui( t )  is the 0 mean spatially and temporally white 
Gaussian noise at the i’th sensor, ri(0) is the time delay 
of the source signal from the direction B as it  propa- 
gates to the i’th sensor relative to t8he phase center of 
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thr c?.rray. n i ( t ,  8) is the trime domain function for the 
p i l i  of' the i't81i sensor which is dependent on frequency 
i>nd the directmion of a.rriva.1, 8. The frequency domain 
~~rl)resrnt~ation of (1) is, 

where F is the DFT size which is chosen sufficiently 
la.rge and Y i ( t ) ,  & ( k , 8 ) ,  S l ( k )  ve U i ( k )  are the ti:a.ns- 
Corms of y j ( t ) ,  a i ($ ,  e ) ,  s j ( t )  and u;( t )  respectively. Let 
the following definitions be made (' is the transpose 
0pera.tor) 

rl; ~! 
b ( R : , O )  = [ & ( k , Q ) e - -  T " '  

2-k r P ( @ )  & ( k ,  q e - j F T . ] "  
= \ b I ( k , O ) .  . .bp(k,O)]' 

B(k, 0 )  = [ b ( k : ,  8,) . b ( k ,  en,)] 
S ( k )  = [ S l ( t ) .  ' . S&f(k ) ] '  
Y ( k )  = [Y1(k)" .kp(k)] '  

[Tsing these ckfinit,ions (2) becomes 

Y(X-) = B ( t ,  O ) S ( k )  + U(k) 0 5 k < F ( 3 )  

This final coiiipa.ct forin of the measurement relation, 
whicb is t,lre same as the signal model of the Cramer- 
R.a.o Lower Bound formula in [SI, will be used in our 
deriva.tions. 

3. Wide-Band EM Algorithcn 

Since, the measurement noise if; modeled as nor- 
mally tlistribnt,ed additive noise, the ]probability clen- 
sity of' the observations are Gaussia>n. Hence, the log- 
liltelihood fiinction of tthe observations has the following 
f'aiiiiliar form ( t  is the conjugate trainspose operator) , 

F - 1  

L ( 0 ,  S ; Y )  = - [Y(k) - B(k, @)S(k ) ]+  
k = l l  

[Y(k) - B(k, @)S(k)l  (4) 

hi order t,o fincl the ML estimate, likelihood function 
of' t8he obaerva,tions should be maximiszed with respect 
t.o 0 and S ( k ) .  However, the direct maximization of 
t,liis function is not only computationally demanding 
but, a.lso clue t,o the local inaxima structure of the: I.ike- 
lihood fuiict,ioii it4 ia not guaranteed to converge t o  the 
glohal maxima.. The Especta,t,ion Maximization (EM) 
nietbocl of olit,a.ining the ML estimate overcomes this 

difficulty by a.n iterative search in much lower dimen- 
sional parameter spaces [l]. The EM method requires 
the identiihcation of so ca.lled complete data space. In 
our application the commonly used complete da.ta is 
Xl(k) = [ X 1 l ( k ) . . . X p l ( k ) ] '  which is the signal that  
would be observed a.t the sensors if we were able to see 
the effect of I'th source only. Then the many-to-one 
ma.pping for all sources from the complete data space 
to the incomplete data space can be written as 

A4 

Yl(k) = C X l ( k )  O < k < F  (5) 
f=1 

The mean. of the complete data Xl(k) is b(H, &)Sj (k )  
and it is normally distributed. The log-likelihood func- 
tion of the complete data is 

F-1 IV 
C,(@, S ;  :X) = - C IlXi(k) - b(k, Q5(k)l12 (6) 

k=O I = 1  

Here, the observed signal is decomposed to M con- 
stituents. Therefore to estimate 01 and S i ( k ) ,  only 
X l ( k )  is used besides the observation. At the n'th it- 
eration of the EM algorithm expectation step condi- 
tionally estimates the likelihood of the complete data 
L,(O, S 1 On, Sn,). Maximization step then finds the 
irmximizer of the estimated likelihood a.nd assigns to 
Byt1. To find b ( k , B l ) S [ ( k )  it is sufficient to know 
Xl(k), therefore in expectation step Xr(k )  is estimated. 
It can be shown that ,  ([GI, p. 164), 

X ; ( k )  =: E{Xi(k)l6;2,  S p ( k ) , Y ( k ) }  
1 = b ( k ,  ep)sp(k) + ,,[y(kj - ~ ( k ,  on)sn(k))] 

O < k < F  (7) 

In maximization step complete data likelihood which 
is formed by using Xy(k) is maximized with respect to  
0, and S,(:k). The 01 update is found as 

e;+' = ,argmax 
0 

(8) 

where there is two maximization problems inside one 
another. If S l ( k )  is unkno~711 they must be simnltane- 
ously solved. For a given 0 value, the solution of the 
inner maximization is 

Si(11) = [b(k, e)bt(k,  O)]-'bt(k, Q)Xl(k) 

(9) 
- b t ( k ,  W i ( k )  - 

Ilbik, Q ) I l 2  
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Iiivrtiiig thiq ~spress ion  into (8)  and solving for the 
oiitci iiicixiniizatioii @if+' i> found. For that  maximiza- 
1 1 0 1 1  liiitv~r search may he used Finally, a t  the n ' th  
itei,itioii of tlic EM algorithm the update formulas are 

follow% 

F - l  

of '+i = ai 'g inax 
(r 

b=O 

(10) 
bt( k .  @)Xi" (k)Xltn(k)b(k, 8) 

p ( k ,  @)l12 

If ,SI( k )  is 1;iiown. as in active array applications, (8) is 
lucecl t,o oiie maximization problem and there 

wiiiaiiis no iierd for (1 1). If (10) and (11) are run 
logetlir,r, i.c. .. in the ca.se of unknown source signals, 
o;"'' sliould IW close to  t,rue direction values for s;+' 
t,o c o n ~ w g e  t,o t,rur signa.1 waveforms. 

i\lt,er ( L O ) ,  @"+' is available. If i t  is inserted into 
( 3 ) ,  S"+' ( k )  call he solved for by using a number of al- 
t,clrna.t i\cs. For iiistaiice the least squares (LS) solution 
is ;IS follows, 

S ( k )  = c w y  niin IIY(k) - B(k, 0 ) S ( k ) 1 I 2  
S(kl 

= [Bt(kl @jB(k, 0j]-'Bt(k,0)Y(k)(12) 

Rr.girlariza.t,ion may be applied on the LS solution 
which is called reguhrized least squares, RLS, 

S(X,j = [Bt(k* O)B(k, 0)  + pI]-'Bt(ll-, O)Y(b) (13) 

I t  is iiiiportant. t.o chose p in the regularization and i t  
c m  I>(, clioseii optimally [4, 91. Another alternative in 
sourc(> signal c->st,ima.tsion may be the following which 
\vi11 hi1 referred to a.s LSSET solution, where K is a set 
ol angles iii a. neighborhood of 0 ,  

ISM algorithm starts with n = 0 a t  which time 0' is 
;ivailalilP obtaincd by using a rough estimation. To find 
Xj'(k) in ( 7 ) ,  ,S'p is needed and it is estimated by one 
of (,he niet,hotls iiient,ioiied above. EM shows niono- 
i oiiic increase oC t,he likelihood and it!s convergence is- 
slit 's I i ; \~e 11c:eii investiga.ted [l, 111. 

structured as a binary tree as shown in Figure 1. 
Yi,j (k) is the intermediate incomplete d a t a  between 
the observation Y(k) and the complete d a t a  X t ( k ) ' s .  
In this setting EM a.lgorithm is run for two sources a t  
a time using the intermediate data. a t  the joint node 
of two leaves. This provides an update for the corre- 
sponding DOA and source signals. The  value of the 
intermediate da ta  is found by using, in (3), the  origi- 
nal observation Y(k) and the current source signal es- 
timates other than the ones which are to  he updated 
by the current run. For instance, to  ruii EM algorithm 
for X,(k) and X,(k) we form the required incomplete 
da ta  as 

where Yl,l(k} is found by using Y(k) and the cur- 
rent estimates for the last there source signals in ( 3 ) .  
Yz,a(k) may be found similarly and EM algorithm is 
run for that  branch too. This may be repeated a num- 
ber of times and then by using the updates obtained 
for the first 4 source signals and DOA's, branch of 
Y l , ? ( k )  may be processed. Tile idea of putting inter- 

Y1.I 

i L index 
Yi , j  

level 

Figure 1. An example for the tree structure. 

mediate data  mappings between Y ( k )  and X l ( k ) ' s  can 
be associated with tha t  of the Cascade EM, CEM, al- 
gorithm but here there is more than one intermediate 
da ta  space. Due to  the limited space, the generalization 
of CEM to multiple levels is not presented here. The 
tree structure may also be associated with Space Al- 
ternating Generalized EM algorithm in the sense that  
not all of the parameters are updated at a time. Also 
EM is run on a more noisy data reducing the informa- 
tion content of intermediate observations and this is 
reported to  speed the convergence [3]. 

5 .  Simulations and Conclusions 
4.  Tree-Structured EM 

In tlric. section wcve will use a different mapping from 
the  complete da ta  to the incomplete da ta  which is 

Observation signals are obtained by simulation of a 
linear array of sensors. The  number of signals are as- 
sumed to  be known since there are studies in detection 
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[IO] The source signals are taken as coherent pulse 
modulated chirp signals with band width comparable 
t,o the center frequency. Noise is assumed to be in- 
tlelwndeiit ideiit(ica1 Gaussian distributed. First the 

EM (10-3) E Tree-EM 

DOA estimation BIIW 

I " " " '-7 

5.3 5.5 5.5 5.5 
6.3 6.1 4.6 2.2 

oo121 0 01 1 
E 

I 0.008 - 

E0006- 

a 
0 0.004 - 

0002- 

01 " ' I  

. 
" '  

0 2 4 6 0 10 12 14 16 18 20 
lleralmn number 

The DOA error norms for iterations of original EM and 
tree-structured EM dgorithms are shown in the next 
table. The original EM algorithm, could not converge 
to true DOA values. Furthermore, it diverges from the 
initial angle values. But within t,lie saint. number of 
t80tal i t e d i o n s  the tree-structured EM converges with 
much lower DOA error to 0 = [ 3 5 . 3  -50.0 -20.0 50.71'. 

By this study, an improvement on ER4 algorithm is 
realized not only by using robust signal estimation 
schemes but also by changing the da ta  mapping of the 
original algorithm. 
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