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Compressibility of a two-dimensional electron gas in a
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Abstract

The thermodynamic compressibility of a two-dimensional electron system in the presence of an in-plane magnetic field is calculated. We use
accurate correlation energy results from quantum Monte Carlo simulations to construct the ground state energy and obtain the critical magnetic
field Bc required to fully spin polarize the system. Inverse compressibility as a function of density shows a kink-like behavior in the presence of an
applied magnetic field, which can be identified as Bc. Our calculations suggest an alternative approach to transport measurements of determining
full spin polarization.
c© 2007 Elsevier Ltd. All rights reserved.
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There has been a large amount of theoretical and
experimental activity on the transport properties of two-
dimensional (2D) electron systems in the last few decades [1].
A good part of the current interest comes from the
metal–insulator transition observed in Si-MOSFETs and
GaAs based structures [2]. In these investigations, mostly
transport measurements are performed on low density, high
quality samples where the electron–electron interaction effects
are dominant. In a complementary way, there are a few
thermodynamic measurements on the ground state properties
of 2D electron systems such as magnetization (or spin
susceptibility) and compressibility. It is of importance to have
a consistent picture emerging from these measurements of a
different nature.

Experiments with in-plane magnetic field have focused on
the spin susceptibility, Landé g-factor, and effective mass of
the 2D electron systems present in Si-MOSFETS and GaAs
quantum-well structures [3–9]. Thermodynamic measurements
of magnetization of a dilute 2D electron system were reported
by Prus et al. [8], Shashkin et al. [9], and Kravchenko et al. [10].
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While the measurements of Prus et al. [8] have not found
any indication toward a ferromagnetic instability, Shashkin
et al. [9] observed diverging behavior in spin susceptibility χs at
a critical density coinciding with the metal–insulator transition
determined from transport measurements.

Another thermodynamic quantity, the isothermal compress-
ibility κ , has also been measured [11–14] using the capaci-
tance technique originated by Eisenstein et al. [15]. The ini-
tial results [11,12] suggested that 1/κ has a minimum at
the metal–insulator transition density. More recent measure-
ments [14] revealed the importance of the role played by
charged impurities in leading to a minimum in 1/κ .

In this work, we consider the compressibility of a clean 2D
electron gas in the presence of an in-plane magnetic field. Based
on our results, we propose that compressibility measurements
may allow us to discern the critical field and density at which
the full spin polarization occurs. Our calculations, making
use of the accurate exchange-correlation energy provided by
quantum Monte Carlo (QMC) simulations, suggest that the
thermodynamic compressibility will exhibit a distinguishing
signature of the full spin polarization. Such experiments
should be amenable to current technology and could offer an
independent way of probing the magnetic properties of 2D
systems.
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We consider a 2D electron gas interacting via the 1/r
Coulomb potential, embedded in a neutralizing background.
At zero temperature, the system is characterized by two

dimensionless quantities, rs and ζ . Here, rs = 1/

√
πna∗

B
2 is the

average distance between electrons in units of effective Bohr
radius a∗

B = h̄2 ε/(m∗e2) (where m∗ is the effective band mass
and ε is the dielectric constant) and n is the 2D electron density.
ζ = |n↑ −n↓|/n is the degree of spin polarization. We envisage
a constant magnetic field B applied parallel to the 2D electron
system. The total energy of the 2D electron gas is given by
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in units of effective Rydbergs (i.e. Ry = h̄2 /(2m∗a∗

B
2) =

EFr2
s /2, where EF is the Fermi energy). In Eq. (1), the

first and second terms are the kinetic and exhange energies,
respectively, which constitute the Hartree–Fock approximation.
The third term is the correlation energy, which has been the
subject of many theoretical calculations. The most accurate
results for Ec(rs, ζ ) are provided by QMC simulations [16,
17]. In this work, we adopt the recent parametrized expression
given by Attaccalite et al. [17]. Finally, the last term is the
Zeeman energy, where g is the Landé g-factor and µB is the
Bohr magneton. In our numerical calculations, we use material
parameters approppriate for GaAs semiconductor structures.

To find the spin polarization of the 2D electron system
ζ ∗(rs, B) at a given magnetic field and density, we minimize
the total energy E(rs, ζ, B) in Eq. (1), with respect to ζ . Setting
ζ ∗

= 1 allows us to determine the critical magnetic field
Bc (rs) necessary to fully spin polarize the system. In Fig. 1,
we show the critical magnetic field Bc in units of Bc0 as a
function of rs . Bc0 = 2EF/gµB is the critical field for a
noninteracting system. For the ground state energy we use as
the result given by Eq. (1); Bc vanishes around rs ≈ 25.5,
indicating the fact that the system spontaneously magnetizes
at this density according to the QMC results [17]. Other
theoretical approaches such as Hartree–Fock (HF) and random-
phase approximation (RPA) yield qualitatively similar, but
quantitatively very different results. For instance, Bc vanishes
around rs ≈ 2 and rs ≈ 5.5 in HF and RPA, respectively [18].

The spin polarization ζ ∗(rs, B) for a given density and
magnetic field can be related to the spin susceptibility.
Another thermodynamic quantity of interest is the isothermal
compressibility, whose magnetic field dependence attracted
less attention. Using the ground state energy in Eq. (1)
we calculate the density dependence of thermodynamic
compressibility

1
κ

= −
nrs

4

[
∂ E

∂rs
− rs

∂2 E

∂r2
s

]
, (2)

which is shown in Fig. 2. More specifically, we plot the
inverse compressibility scaled by the noninteracting value of
the unpolarized system, κ0/κ , as a function of rs , for a
Fig. 1. The critical magnetic field Bc necessary to fully spin polarize a 2D
electron gas as a function of rs .

Fig. 2. The scaled inverse compressibility κ0/κ as a function of rs . The
upper and lower dotted lines indicate unpolarized and fully polarized results,
respectively, in the absence of magnetic field. The upper and lower solid lines
are at Bc (rs = 5) and Bc (rs = 10), respectively.

2D electron system under an in-plane magnetic field. Here,
1/κ0 = 2n/r2

s . We chose two values of the external field,
Bc (rs = 5) and Bc (rs = 10), namely the critical fields
to fully spin polarize the system at rs = 5 and rs = 10.
We observe that the inverse compressibility at a constant
magnetic field switches to its fully polarized system value with
a kink-like behavior. This suggests that in the compressibility
measurements similar to those performed recently [11–
14], the effects of the polarizing magnetic field could be
discerned. Thus, an alternative thermodynamic method to the
transport measurements of determining Bc may be provided by
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Fig. 3. ∂µ/∂ B in units of gµB/2 as a function of rs . The three curves from
left to right are for the magnetic field values, Bc (rs = 5), Bc (rs = 10), and
Bc (rs = 15), respectively.

compressibility measurements with an in-plane magnetic field.
Interestingly, the kink-like behavior in compressibility is more
visible at smaller rs , since the difference between the ground-
state energies of the polarized and unpolarized phases decrease
with increasing rs .

Another quantity of interest indicating the full spin
polarization is provided by the thermodynamic relation
∂ M/∂n = −∂µ/∂ B. We show in Fig. 3 ∂µ/∂ B as a function
of rs at three different magnetic field values. The onset of full
spin polarization is readily identified as a sharp peak in the
critical rs value for the respective magnetic fields. This quantity
has already been measured by Kravchenko et al. [10] for Si-
MOSFETS. Our calculations, which are more appropriate for
single-valley systems such GaAs, suggest that qualitatively
similar results should follow.

We remark that the inverse compressibility exhibits a
minimum and an upturn at a larger rs value due to
electron-impurity interactions [12,14]. Therefore the kink-
like behavior in κ0/κ predicted by our calculations could be
smeared depending on the level of disorder present in the
experimental samples. The experimental samples are of quasi-
two-dimensional character, so that for any realistic comparison
with experiments, the finite width of the quantum wells should
be taken into account.

In conclusion, we have provided a simple calculation for
the in-plane magnetic field dependence of the compressibility
of a strongly interacting 2D electron gas. The inverse
compressibility as a function of rs exhibits a crossover from
the partially polarized to fully polarized state, which should be
identifiable experimentally.
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