
acta physica slovaca vol. 48 No. 3, 409 { 415 June 1998RADIATION PHASE OF A DIPOLE FIELD 1A. S. Shumovsky2Physics Department, Bilkent University, Bilkent, 06533 Ankara, TurkeyReceived 15 May 1998, accepted 26 May 1998In the case of a dipole electromagnetic radiation, the operator of the "radiationphase" is de�ned. It is shown that this operator has a discrete spectrum witheigenvalues, lying in the segment [0; 2�]. Some properties of the radiation phaseand polarization are discussed.1. IntroductionSeventy years of investigation of the problem of quantum phase led to the conclusionthat there is no unique quantum variable, determining universally the measured phaseproperties of electromagnetic radiation [1,2]. The operator constructions, describingcosine and sine of the phase, could be di�erent for di�erent schemes of measurement[2]. This fact has accurately been con�rmed by a number of recent experiments (see [2{4] and references therein). Thus, it seems to be quite plausible that the quantum phaseproperties of an electromagnetic radiation are determined by interaction of photonswith a macroscopic detecting device.It is pertinent to ask the following question. Are the quantum phase propertiesof radiation completely determined by such an interaction or the photons have theirown inherent phase properties which might be measured even if they are modi�ed byinteraction with a detecting device?The universally recognized fact is that the vacuum state of �eld is degenerated withrespect to phase. If a quantum radiation has its inherent phase properties, it meansthat the degeneration is taken o� in the process of generation which is an interactionof the vacuum �eld with excited states of atoms or molecules. By virtue of this pictureproposed in [5], what all one can expect is that the inherent quantum phase propertiesof radiation are completely determined by a source via the conservation laws, describingthe generation process.Even in this way, it seems to be impossible to determine a unique quantum phase ofradiation. As a matter of fact, there are two conservation laws, admitting a nontrivialangular dependence. These are the linear momentum conservation and the angular1Special Issue on Quantum Optics and Quantum Information2E-mail address: shumo@fen.bilkent.edu.tr0323-0465/96 c
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410 A.S. Shumovskymomentum conservation. The former might be related to a geometrical phase provided,for example, by measurement of a phase di�erence between two plane waves with oneand the same frequency and polarization, but traveling in di�erent directions. Thelatter is directly connected with the spin of photons, forming the radiation. Actually, itis the azimuthal phase of angular momentum of radiation. Precisely this object seemsto be a proper candidate to gain the position of the inherent quantum phase [5].This so-called radiation phase has been introduced in [5] and then examined inour papers [6,7]. It was shown that the "quantum phase information" is coherentlytransmitted from the atom or molecule to radiation and vice versa [6]. In the Ref.[7],we traced connection between the cosine and sine of the radiation phase operators andgeneralized Stokes operators had been introduced in [8], and showed a striking di�erencein the behavior of quantum 
uctuations, calculated within our method and within Pegg-Barnett approach [9{11]. Further investigation has led to prediction of a qualitativelynew behavior of quantum 
uctuations which looks like the quantum "phase bunching"[12].Our consideration so far have applied to the cosine and sine of the radiation phaseoperators [5{7,12]. In this paper we report some new results relating to the radiationphase operator per se and its eigenstates.2. Generalized Stokes operatorsAccording to the assumption has made in [5], the radiation phase is connected withthe azimuthal phase of spin of photons. Let us remind that the spin of a photonis determined as the minimum value of its angular momentum because the angularmomentum of photon cannot be decomposed into the spin and orbital parts [13,14]. Therepresentation of photons with given angular momentum is provided by the multipoleexpansion of the radiation �eld. The Cartesian components of the angular momentumare well de�ned operators in this representation [13,14]. They form a representation ofthe SU(2) sub-algebra in the Weyl-Heisenberg algebra.To determine the azimuthal phase operator or corresponding cosine and sine op-erators, one have to use the polar decomposition of the above mentioned SU(2) sub-algebra. Unfortunately, it is impossible because the enveloping algebra does not containa uniquely de�ned scalar [5].To avoid this di�culty, one can take into account that, within the quantum domain,the polarization of electromagnetic radiation is de�ned as a given spin state of photons,forming the radiation. Therefore, it seems to be reasonable �rst to determine the Stokesparameters of a classical multipole �eld and then to quantize them to �nd the Stokesoperators [6,7]. The components of multipole �eld are speci�ed by the wave numberk, "quantum numbers" j and m, (�j � m � j), and index �, describing the type ofmultipole [15] (the parity, within the quantum picture). There is no loss in generalityin choosing �xed j and �. Actually, these quantum numbers are determined by theselection rules for radiation of a given quantum source. Suppose, for simplicity, thatthe source under consideration is a localized system of dipole atoms (two-level atomswith the dipole-allowed transitions). On making the further assumption that j = 1 andk is �xed, we have dealings with the radiation, which consists of only three modes with



Radiation phase of a dipole radiation 411di�erent polarization. Precisely, m = �1 describes two circularly polarized modes andm = 0 speci�es the linearly polarized mode which always exists in the dipole radiation[15].The classical tensor of polarization for such a dipole radiation has the components�mm0 = ~Em � ~E�m0 . These components can be speci�ed by �ve real parameters, formingthe set of generalized Stokes parameters (GSP) [7,8]. Unlike the case of conventionalStokes parameters, we have now dealings with considering in arbitrary space-time pointsthe polarization of theradiation which can posses any direction of polarization or can be located in anyplane in case of elliptical polarization.The quantum counterpart of � determines a representation of the SU(3) sub-algebrain the Weyl-Heisenberg algebra with the following generators [16]12(â+mâm0 + hc); 12i (â+mâm0 � hc); â+mâm � â+m0 âm0 :Here the operators âm describe the dipole photons with j = 1 and given projection m[14]. The generalized Stokes are operators [6]Ŝ0 = Xm n̂m;Ŝ1 = (Ê + Ê+)=2;Ŝ2 = (Ê � Ê+)=2i;Ŝ3 = n̂+ � n̂�;Ŝ4 = n̂+ + n̂� � 2n̂0; (1)where Ê � â++â0 + â+0 â� + â+�â+; [Ê ; Ê+] = 0; (2)and n̂m � â+mâm. Clearly, the operators (1) are some combinations of the above gener-ators of SU(3) sub-algebra.Let us concentrate on the operators Ŝ1;2 in (1). It was shown in the Refs.[5,8] that,in the case of a single-atom radiation, these operators correspond to the cosine andsine of the azimuthal phase of spin of a photon. The classical counterpart of theseoperators coincides with two of four conventional Stokes parameters, determined inthe circular polarization basis under the assumption that the longitudinal componentvanishes. These two conventional Stokes parameters determine the cosine and sine ofthe classical phase di�erence between two circularly polarized components.In view of these facts, it seems to be plausible that the operators Ŝ1;2 in (1) determinesome quantum phase properties of the dipole radiation. Being normalized in a specialway, they de�ne the cosine and sine of the radiation phase operators [7,12].As can be seen from the de�nitions (1), (2), the operators Ŝ1;2 would be just thecosine and sine operators if Ê were not the normal operator but the unitary one. Nev-ertheless, if there is a complete orthonormal set of eigenstates of Ê in the Hilbert space



412 A.S. Shumovskywith base vectors jn+; n0; n�i � 
mjnmi, these eigenstates can be used to de�ne theradiation phase operator per se in terms of projections. In the next section we look inmore detail at the problem of eigenstates and eigenvalues for Ê .3. Eigenvalues of radiation phaseSince the operator Ê commutes with the total number of photons Ŝ0, the eigenstatesof Ê can be speci�ed by the quantum number n = Pm nm. Thus, they look like thethree-mode number states. Let us use the following notationsÊ j�(n)i = �(n)j�(n)i; �(n) = j�(n)j e�i�(n) : (3)With the assumption that the expansionj�(n)i = nXn+=0 n�n+Xn0=0 �(n)(n+; n0)jn+;n0;n� n+ � n0i (4)exists, the equation (3) can be written as the following recursion relations�(n)�(n)(n+; n0) =pn+(n0 + 1)�(n)(n+ � 1; n0 + 1)+ (5)pn0(n� n+ � n0 + 1)�(n)(n+; n0 � 1) +p(n+ + 1)(n� n+ � n0)�(n)(n+ + 1; n0):It yields, at any n, the k-th degree equation for �(n) wherek = 12(n+ 2)(n+ 1):The arguments of these roots determine the eigenvalues of the radiation phase. It isclear that the choice n = 0 leads to the solution �(0) = 0 with an arbitrary phase�(0). Thus, there is no contradiction with the conventional idea that the phase has theuniform distribution in the vacuum state. The structure of solutions of the equations(5) for a few �rst n is shown in Fig. 1. As usually, the coe�cients �(n)k are determinedby the equations (5) at given �(n)k together with the normalization condition. In generalcase of an arbitrary n, it is possible to prove that the set of roots �(n)k is represented bythe sites of a right triangular lattice in the complex plane [16]. Moreover, it can be alsoproven that the functions j�(n)k i form a complete orthonormal system [16]. Therefore,the radiation phase operator under consideration is represented as follows�̂ =Xn;k �(n)k j�(n)k ih�(n)k j: (6)Let us stress that the radiation phase operator (6) has a discrete spectrum at any n.At the same time, the eigenvalues �(n)k lie between 0 and 2�. Thus, we obtained awell-behaved quantum phase, describing a dipole radiation.
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Fig. 1. The eigenvalues of Ê in the complex plane. (a) corresponds to n = 1, j�(1)j = 1,�(1)k = 2k�=3. (b) corresponds to n = 1 with j�(2) = 2, �(2)k = 2k�=3 and with j�(2) = 1, �(2)k0 =(2k0 + 1)�=3. (c) corresponds to n = 3 with j�(3)j = 3, �(3)k = 2k�=3 and j�(3)j = (3p3)1=3,�(3)k0 = �(1 + 4k0)=6.4. Some properties of radiation phase and polarizationBy de�nition, the operators �̂, Ê , and Ŝ1;2 should have similar properties. Actually,the latter three of them can be considered as the "weighted" phase operators. All thesefour operators commute with the total number of photons Ŝ0. So, all of them can bemeasured at once. At the same time, they do not commute neither with either Ŝ3;4 norwith any of n̂m. For example[Ŝ1; n̂m] = 12(�â+m Xm0 6=m âm0 + hc);which yields the following uncertainty relationV (Ŝ1)V (n̂m) � 14 jh�â+m Xm0 6=m âm0 + hcij2: (7)In important case of two circularly polarized modes in the coherent states and linearlypolarized mode in the vacuum state, corresponding to the radiation �eld considered inthe far zone, the averaging with respect to the state j�+i 
 j00i 
 j��i givesV (Ŝ1;2)V (n̂m) = �nm2 (�n+ + �n� �p�n+�n� cos��+);where �nm � j�mj2, m = �1, and ��+ � arg�� � arg�+. As can be seen, theuncertainty of the polarization parameter s1;2 � hŜ1;2i strongly depends on the phase



414 A.S. Shumovskydi�erence between two coherent modes. In this case, the generalized Stokes parameterss1;2 describe the cosine and sine of the phase di�erence ��+ respectively. In specialcase of equal intensities �n+ = �n� = �n and ��+ = (2k+1)� the uncertainty of Ŝ1 takesthe minimum value �n=2 while V (Ŝ2) attains the maximum value 3�n=2.The uncertainty relation (7) and that for Ŝ2 should be taken into account in theoperational measurement of polarization within the eight-port detecting scheme [2,17].To measure s1;2, the di�erent inputs of the eight-port scheme should consist of mix-ture of the linearly polarized component (which could contain a very few photons)with di�erent circularly polarized components such that each output includes all threecomponents [12].The states (6) can be generated by a localized atomic system. It is clear that asingle two-level atom with a dipole transition in a cavity can generate the �eld in thestate j�(1)k i if it is prepared initially in the eigenstate of its own "phase" [6]. A point-like system of two two-level dipole atoms in a cavity can generate the state j�(2)k i ifboth of them are prepared in corresponding atomic "phase states". At the same time,this two-atom system can be prepared in the state where the total angular momentumis 2. The eigenvalues of the azimuthal phase of this angular momentum form a rightpentagon. Such an atomic state cannot generate the photons in one of the eigenstatesof the radiation phase. The multi-atom case needs more detailed analysis.5. SummaryLet us brie
y discuss the results. It is shown that the extension of traditionaldescription of polarization in terms of Stokes parameters and corresponding Stokesoperators, taking into account the presence of longitudinal component [6,7], leads tode�nition of a quantum phase operator determined in the whole Hilbert space with adiscrete spectrum, lying in the segment [0; 2�]. In the far zone where one can considerthe longitudinal component in the vacuum state, this spectrum determines the possiblevalues of the phase di�erence between two circularly polarized modes. The physicalmeaning of this operator in general case needs further discussion.De�nitely, a combination of three coherent states of the form 
mj�mi is not aneigenstate of the radiation phase. De�nition of coherence of the radiation �eld with allthree components also needs further consideration. Investigation of interference in thesystem of two dipole atoms separated by a distance might be an important step in thisdirection.Let us also note that the states (4) can be used to �nd the radiation phase dis-tribution for di�erent states of the radiation �eld and then compare them with thousobtained by the appropriate integration of Wigner or Q functions [18{20].AcknowledgementsThe author would like to thank Dr. A Klyachko, Dr. V. Rupasov,and a student �O. M�ustecapl�o�glu for fruitful collaboration.
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