
A CHANCE CONSTRAINED APPROACH
TO OPTIMAL SIZING OF RENEWABLE
ENERGY SYSTEMS WITH PUMPED

HYDRO ENERGY STORAGE

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

industrial engineering

By

Nazlı Kalkan

August 2022



A CHANCE CONSTRAINED APPROACH TO OPTIMAL SIZING 

OF RENEWABLE ENERGY SYSTEMS WITH PUMPED HYDRO 

ENERGY STORAGE 

By Nazlı Kalkan 
August 2022 

We certify that we have read this thesis and that in our opinion it is fully adequatc, 
in scope and in quaJity, as a thcsis for the degree of Master of Science. 

Ayşe Se 

Approved for the Graduate School of Engineering and Science: 

Orhan Arıkan  · 
Director of the Graduate School 

Ü 

;tP- ı ~ Oz]em Çavuş i gün(Advisor) 

(ı/Ko~{Co-Advjsor) 

Fehmi Tan rısever 

Vedat Bayram ' 



ABSTRACT

A CHANCE CONSTRAINED APPROACH TO
OPTIMAL SIZING OF RENEWABLE ENERGY
SYSTEMS WITH PUMPED HYDRO ENERGY

STORAGE

Nazlı Kalkan

M.S. in Industrial Engineering

Advisor: Özlem Çavuş İyigün

Co-Advisor: Ayşe Selin Kocaman

August 2022

Burning fossil fuels is responsible for a large portion of the greenhouse gases

released into the atmosphere. In addition to their negative impacts on the envi-

ronment, fossil fuels are limited, which makes the integration of renewable energy

sources into the grid inevitable. However, the intermittent nature of renewable

energy sources makes it challenging to regulate energy output, resulting in low

system flexibility. Adoption of an energy storage system, such as pumped hydro

energy storage (PHES) and batteries, is necessary to fully utilize and integrate a

larger proportion of variable renewable energy sources into the grid. On the other

hand, in investment planning problems, satisfying the demand for certainty for

even infrequently occurring events can lead to considerable cost increases. In this

study, we propose a chance constrained two-stage stochastic program for design-

ing a hybrid renewable energy system where the intermittent solar energy output

is supported by a closed-loop PHES system. The aim of this study is to minimize

the total investment cost while meeting the energy demand at a predetermined

service level. For our computational study, we generate scenarios for solar radi-

ation by using an Auto-Regressive Integrated Moving Average (ARIMA) based

algorithm. In order to exactly solve our large scale problem, we utilize a Benders

based branch and cut decomposition algorithm. We analize the efficiency of our

proposed solution method by comparing the CPU times provided by the proposed

algorithm and CPLEX. The findings indicate that the proposed algorithm solves

the problem faster than CPLEX.

Keywords: Pumped hydro energy storage, Solar energy, Chance constraint, Two-

stage stochastic programming, Scenario decomposition.
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ÖZET

POMPAJ DEPOLAMALI HİBRİT ENERJİ SİSTEMİ
BOYUTLANDIRMA PROBLEMİNE ŞANS KISITLI

OPTİMİZASYON YAKLAŞIMI

Nazlı Kalkan

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Özlem Çavuş İyigün

İkinci Tez Danışmanı: Ayşe Selin Kocaman

Ağustos 2022

Atmosfere salınan sera gazlarının büyük bir kısmından fosil yakıtların yanması

sorumludur. Fosil yakıtların çevre üzerindeki olumsuz etkilerinin yanı sıra sınırlı

kaynaklar olmaları, yenilenebilir enerji kaynaklarının şebekeye entegrasyonunu

kaçınılmaz kılmaktadır. Ancak, yenilenebilir enerji kaynaklarının aralıklı doğası,

enerji çıktısını düzenlemeyi zorlaştırarak düşük sistem esnekliğine neden olur.

Pompaj depolamalı hidroelektrik santraller (PHES) ve piller gibi bir enerji depo-

lama sisteminin benimsenmesi, değişken yenilenebilir enerji kaynaklarının daha

büyük bir oranını tam olarak kullanmak ve şebekeye entegre etmek için gerek-

lidir. Öte yandan, yatırım planlama problemlerinde, nadiren meydana gelen olay-

lar için bile talebinin kesinlikle karşılanabilmesi koşulu ciddi maliyet artışlarına

yol açabilmektedir. Bu çalışmada, aralıklı güneş enerjisi üretiminin kapalı döngü

pompaj depolamalı hidroelektrik santral sistemi tarafından desteklendiği bir hib-

rit yenilenebilir enerji sistemi tasarlamak için şans kısıtlı iki aşamalı stokastik

bir program öneriyoruz. Bu çalışmanın amacı, enerji talebini önceden belir-

lenmiş bir hizmet seviyesinde karşılarken toplam yatırım maliyetini minimize

etmektir. Sayısal çalışmamız için, Birleştirilmiş Otoregresiv-Hareketli Ortala-

malar (ARIMA) tabanlı bir algoritma kullanarak güneş ışınımı için senaryolar

üretiyoruz. Büyük ölçekli problemimizi olarak çözmek için Benders tabanlı dal-

sınır ayrıştırma algoritması kullanıyoruz. Kapsamlı formülasyonu CPLEX ile

çözerek çözüm yöntemimizin performansını değerlendiriyoruz. Bulgular, önerilen

algoritmanın problemi CPLEX’ten daha hızlı çözdüğünü göstermektedir.

Anahtar sözcükler : Pompaj depolamalı hidroelektrik santraller, Güneş enerjisi,

Şans kısıtı, İki aşamalı stokastik programlama, Senaryo ayrıştırma.
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Chapter 1

Introduction

Electricity is vital for survival since the reliance on electricity for communication,

transportation, water, healthcare, and other fundamental functions continues to

constantly grow. On the other hand, fossil fuels play a significant role in elec-

tricity generation. The International Energy Agency (IEA) reports that 63.1%

of global electricity generation is derived from fossil fuels in 2019, with coal ac-

counting for 36.7%, natural gas accounting for 23.6%; and oil accounting for 2.8%

[1]. However, the use of fossil fuels for energy has devastating impacts on human-

ity and the environment because of greenhouse gas emissions. CO2 emissions

resulting from the use of fossil fuels show a rising tendency throughout the years,

especially after the mid-20th century. In 2020, over 34 billion tonnes of CO2 are

emitted as a result of burning fossil fuels [2]. In addition to their detrimental

environmental consequences, the finite supply of fossil fuels is a constraint which

necessitates the adoption of alternative renewable sources such as wind, solar,

hydropower, biomass, tidal, and geothermal to meet the energy demand. The

intermittent nature of renewable energy sources, however, makes it challenging

to control the energy output, causing low system flexibility. In order to incorpo-

rate a greater proportion of variable renewable energy sources into the grid and

maximize their use, the adoption of an energy storage system such as PHES and

batteries is essential. In 2020, the global installed capacity of PHES, utility-scale

batteries, and concentrated solar power (CSP) was 159.5 GW, 9.6 GW, and 6.4

1



GW, respectively. The installed capacity is expected to increase by 56% by 2026

as a result of the rapid expansion in storage system utilization [3].

The intermittent nature of renewable energy resources must be considered

while designing a renewable energy system since their availability is not always

guaranteed when there is a need for energy. As an example, solar radiation at

a given site relies on the hour of day and the clarity of the sky. Likewise, the

wind speed at a particular site depends on the geographical and meteorological

variables of that region. Hence, it is uncertain when renewable energy sources

will be available and to what extent they may be utilized. Therefore, in order to

mitigate the intermittent nature of renewable energy sources, hybrid renewable

energy systems usually incorporate a storage component. [4]. In this context, the

planning and sizing problem for hybrid renewable energy systems with storage

should be studied by means of stochastic optimization. Depending on the sorts

of renewable sources used in the system as well as the scope of the problem,

demand, wind speed, stream flow and solar radiation are typically the causes of

uncertainty in these problems.

It is important to take uncertainty related to different design variables into

consideration while designing a hybrid energy system since many industries such

as healthcare, telecommunication, and banking, are obliged to comply with strict

requirements for power supply reliability. An approach based on reliability will

increase consumer satisfaction and ultimately contribute to the acceptance of

renewable energy technologies. Moreover, in investment planning problems, sat-

isfying the demand under certainty even for rarely occuring events may result

in significant cost increases. To address these concerns, a chance constrained

optimization method is needed to prevent the undesirable results of randomness

inherent in hybrid renewable energy systems and meet the demand requirements

at a specified level of reliability. By employing chance constrained programming

(CCP), the requirement of satisfying the demand for all random occurrences may

be relaxed to prevent significant investment expenses. To the best of our knowl-

edge, a planning problem for a renewable energy system involving PHES has not

been considered from a chance constraint approach in the literature. The aim

of our study is to fill this gap in the literature and provide a chance constrained
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planning strategy for designing a hybrid energy system where solar generation is

supported by a closed-loop PHES facility.

In this thesis, we employ Value at Risk (VaR) in the constraint set of our

two-stage stochastic programming (TSSP) formulation, which is also known as

a chance-constraint, in order to restrict the risk of unsatisfied demand by a pre-

determined threshold to ensure system reliability. For our computational study,

we generate scenarios for solar radiation by using an ARIMA-based algorithm as

in Yang et al. [5]. We propose a Benders based branch and cut decomposition

algorithm developed by Luedtke [6] for exactly solving our problem.

The organization of this thesis is as follows: Chapter 2 is devoted to the

literature review on the planning of energy storage systems under uncertainty,

risk-averse approaches for hybrid energy systems, and planning of renewable en-

ergy systems supported by PHES. In Chapter 3, we give our problem definition,

introduce the chance-constrained two-stage stochastic programming framework,

and present our problem formulation. We propose a Benders based branch and

cut decomposition algorithm as an exact solution methodology in Chapter 4. In

Chapter 5, we describe an ARIMA-based algorithm for generating solar radiation

scenarios, provide the data that is used to apply our proposed solution method,

and then present the results. We present a summary of our findings and discuss

potential directions for further research in Chapter 6.
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Chapter 2

Literature Review

The main focus of most of the studies considering the optimization of energy sys-

tems involving PHES under uncertainty is on the operational planning problems

([7], [8], [9], [10], [11], [12]). Despite a vast literature on the operational planning

of PHES systems, the studies considering uncertainty for infrastructure planning

are rather limited. Hence, we first present the literature on the stochastic in-

vestment planning of energy storage systems (ESS) in general in Section 2.1, and

in Section 2.2, we address the studies that specifically involve stochastic plan-

ning problems employing PHES as an energy storage unit. Table 2.1 provides a

classification of the studies mentioned in this chapter.

2.1 Planning of Energy Storage Systems under

Uncertainty

Hybrid energy systems are regularly discussed in the literature as a cost-effective

means of generating electricity. In most hybrid energy systems described in the

literature, renewable energy sources such as solar hydro, and wind are used to-

gether and supported with a backup dispatchable source such as diesel or a storage

unit.
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Kocaman et al. [13] consider a sizing problem for a hybrid energy system

located in Himalaya Mountains. The hybrid system involves a solar system, hy-

dropower stations, diesel generators, and a transmission system. In the system,

uncertainty of the sources is mitigated by utilising the water storage. They pro-

pose a two-stage stochastic programming formulation where the uncertainty in

the system which is arised from stream flow, solar radiation, and demand is mod-

eled by the scenario approach. The objective is to optimally design the system

components to meet the demand with minimum overall investment and penalty

costs. The problem is solved using CPLEX. They show that if curtailing is al-

lowed, running the solar power stations at less than their maximum energy output

can lower the system’s per-unit price.

Kocaman et al. [14] propose stochastic programming models for investigating

the effects of demand response programs on the investment decisions for renewable

energy systems to meet agricultural demand. They formulate the problem as a

two-stage stochastic program for wind and solar cases separately. Solar radiation,

wind speed, and the amount of energy used for irrigation introduce uncertainty

into the problem. They also propose a model where energy storage is involved as

a subsitute of demand response programs. They solve the models with CPLEX

and conclude that energy storage is a key method for controlling the renewable

energy integration; however, demand response programs are more cost-effective

for agricultural demand.

Aghamohamadi et al. [15] consider a residential hybrid renewable energy sys-

tem planning problem with the objective of determining the optimal component

sizes. They utilize a solar/battery system to meet the demand. In that study,

solar generation and demand are uncertain. A two-stage adaptive robust opti-

mization (ARO) is presented as a tri-level min–max–min problem. They employ

the column-and-constraint technique to build an iterative decomposition method-

ology to restructure the min–max–min problem. Following that, the bi-level sub-

problem is linearized using the Big-M method. A post-event analysis is also

conducted to find the optimal robustness level of the ARO model for preventing

conservative solutions.
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Ekren et al. [16] address a hybrid energy system design problem where solar

panels and wind turbines are used to generate energy and a battery storage is

utilized to store excess energy for later usage. The amount of electricity gener-

ated and consumed are assumed to be uncertain, and a simulation approach is

employed in order to perform simulations for specified probability distributions

of these variables. In order to find optimum sizes of the components, response

surface methodology (RSM) is proposed. A break-even analysis is also performed

to find the optimum distance at which the hybrid energy system is more cost-

effective than the transmission line extension.

Ekren and Ekren [17], different from [16], apply a heuristic solution approach

named Simulated Annealing (SA), where a stochastic gradient search is used to

obtain an acceptable solution for the sizing problem of a solar and wind integrated

hybrid energy system with battery storage. They compare the findings of the

two studies, [16] and [17], and discover that the SA algorithm outperforms the

Response Surface Methodology.

Kuznia et al. [18] address the planning problem for a hybrid energy system

where the components of the system are wind turbines, thermal generators, a

storage device, and transmission lines, and propose a two-stage stochastic MIP

model for the problem. The sources of uncertainty in that study are wind speed

and demand. In the objective function, total investment cost and expected op-

erating cost are minimized. They construct a Benders based algorithm with two

additional cutting planes: pareto-optimal cuts generated by a modified Magnanti-

Wong (MMW) approach and cuts generated by a maximum feasible subsystem

(MFS) to solve the problem exactly. They come up with that, compared to

standard Benders’ decomposition, utilizing MMW and MFS simultaneously can

considerably decrease the solution time.

Prior research has mostly focused on the sizing problem of hybrid energy sys-

tems in a cost-effective manner. The primary objective of these studies is the

expected cost minimization. However, they disregard the volatile nature of re-

newable energy sources.The ability of hybrid energy systems to satisfy demand
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can be seriously hindered by the intermittency of renewable sources, leading to de-

creased system reliability and, consequently, financial losses. Hence, risk-aversion

should be included in the problems for planning hybrid energy systems reliably.

The following studies, which are more similar to ours, consider risk in the design

of hybrid systems.

Roy et al. [19] study the sizing problem for an isolated wind-battery system

where the battery capacity is minimized subject to wind speed uncertainty. They

propose a chance constrained programming approach for meeting the demand

with a predefined degree of confidence and provide high system reliability. They

reconstruct the equation that provide the energy balance in a deterministic way

based on the chance constraint. They applied Monte Carlo simulation technique

to obtain an approximation of the solution. Similarly, Arun et al. [20] propose

a method by utilizing design space methodology involving a simulation of an

isolated solar-battery system where the battery capacity is minimized subject to

solar radiation uncertainty.

Kamjoo et al. [21] present a problem where the sum of the investment costs,

replacement costs, and maintenance costs is minimized and system reliability is

maximized. The system is comprised of wind turbines, solar panels, and storage

units where the amount of generated energy is uncertain. To address the renew-

ables’ uncertainties, they employ chance constrained programming. In order to

solve the problem, they propose a method that uses the Non-dominated Sorting

Genetic Algorithm (NSGA-II) and chance constrained programming to find the

Pareto solutions. The obtained results are compared with those produced by

NSGA-II combined with Monte Carlo simulation to assess the performance of

the proposed method.

Copp et al. [22] study a sizing problem for a storage system within a hybrid

energy system that consists of a generator and a solar system for an islanded

operation. Demand and solar generation are the sources of uncertainties. They

minimize the size of the storage unit the demand is satisfied with a high ser-

vice level by proposing a stochastic optimization approach based on chance con-

strained programming. They derive a linear inequality constraint from the chance

7



constraint and solve the optimization problem as a linear program.

Xie et al. [23] propose a two-stage method for the sizing problem of a stand-

alone renewable powered charging station considering uncertain solar power gen-

eration and demand distribution forecast errors. Charging stations consist of

a battery and solar panels. The goal is to reduce the overall investment cost;

while using robust chance constraints to establish reliability under uncertainty.

Two risk-based formulations, a MILP model derived from VaR and an LP model

constructed on CVaR (Conditional Value at Risk), are suggested to solve the

proposed distributionally robust optimization planning model. They recommend

using the LP model built on CVaR.

Sadeghian et al. [24] consider a siting and sizing problem for energy storage

systems within virtual power plants (VPPs) under market price uncertainty. The

VPP, which exchanges power with the upstream grid, is composed of wind tur-

bines, solar systems, ESS, curtailable loads, and diesel as backup. In order to

mitigate the uncertainty, a risk management technique based on CVaR is imple-

mented. They also evaluate two reliability indices, the loss of load expectation

(LOLE) and energy expected not served (ENNS), at different investment levels

to determine the effect of ESS on VPP reliability. They formulate the problem

as a mixed integer nonlinear program (MINLP) and solve it with the General

Algebraic Modeling System commercial software package. They conclude that

increasing the investment in ESS is not always the most cost-effective method for

reducing the total cost of VPP. In addition, they discover that VPP’s reliabil-

ity indices (EENS and LOLE) are drastically reduced by the proper sizing and

location of ESS in the case of limited investment.

Dolatabadi et al. [25] study a sizing problem for a hybrid energy system of a

ship. Energy required to satisfy the demand is provided by a solar system, while

diesel and storage units are used as backup. The objective is minimizing the total

cost of the power system of the ship. The source of uncertainty in the problem is

the solar radiation. A scenario reduction method is employed in order to lower the

amount of computation. They suggest a two-stage stochastic optimization model

based on risk to optimally design systems and employ MINLP for the solution of
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the problem. The CVaR methodology has been used to formulate the trade-off

between minimizing the expected cost and the possibility of experiencing high

costs in worse-case scenario. The obtained results demonstrate the effectiveness

of the suggested risk-based stochastic method for the design of the hybrid energy

system for ships.

Merzifonolu and Uzgören [26] investigate a sizing problem for a hybrid re-

newable energy system in a campus area that includes a solar system, a battery

storage system, and a power grid. There are three sources of uncertainties in this

problem: demand, solar radiation, and system performance. They first suggest

two-stage stochastic programming to formulate their problem where the com-

ponent sizes that satisfy the demand are determined and expected total cost is

minimized. Then, they propose a risk-averse model by using CVaR in the objec-

tive function. After incorporating a payback period as a constraint, both models

are rewritten as MIP problems. A sample average approximation (SAA) tech-

nique is used to approximate the expected total cost and the a heuristic and an

exact solution method is employed to solve the problems. They conclude that

the presented methods outperform CPLEX.

Cavus et al. [27] study a sizing problem for a hybrid energy system consisting

of transmission lines, hydropower stations, solar panels and diesel generators.

The stochasticity of the system arises from the stream flow, solar output, and

demand. The water in the upper reservoir is used to mitigate the randomness of

the resources. They propose a two-stage stochastic LP model in which CVaR is

used as the risk measure. In order to solve the problem, they employ a scenario

decomposition algorithm based on the L-shaped method. The problem is solved

with both CPLEX and the proposed algorithm. They show that the suggested

algorithm is more efficient than CPLEX.
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2.2 Planning of Renewable Energy Systems

supported by PHES

Nazari and Keypour [28] consider a hybrid energy storage planning problem

for a microgrid that includes dispatchable sources (micro-turbines) and non-

dispatchable sources (solar system and wind turbines), as well as an energy stor-

age system. Candidates for ESS include PHES, flywheels, and lead acid batteries.

The uncertainties in the system are modeled by two-stage stochastic program-

ming in which ESS sizes are optimized. They apply the moment matching method

and employ a scenario reduction technique. The objective function minimizes the

total yearly cost, which is the sum of annual storage cost, cost of bilateral con-

tracts per year, and unit commitment costs. Additionally, the demand response

program is utilized as a load shifting service. They find that PHES gives the best

solution.

Al-Masri et al. [29] consider a hybrid renewable energy system in order to

evaluate the effect of different solar system models on the optimal system size.

The system consists of a solar system and a PHES facility. They solve the problem

with particle swarm optimization (PSO) and the whale optimization algorithm

(WOA). Uncertainties in some of the system parameters are formulated by PSO

alone, since solutions of both WOA and PSO are close to each other. They obtain

the most reliable and most ecological solution by using a two-diod solar system,

while the number of solar panels is the lowest when the ideal single-diode solar

system is employed.

Reuter et al. [30] study a hybrid renewable energy system that combines

wind power and PHES and compare the hybrid system to the one without a

PHES. In the study, there are two sources of uncertainty: electricity prices and

the variability of wind speed. They investigate the profitability of wind power

coupled with PHES in comparison with traditional wind farms with no storage.

During the planning period, the investor wants to maximize his expected profit.

They solve the resulting stochastic optimization problem by recursive dynamic

programming.
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Amusat et al. [31] present a method for the problem of designing a hybrid

renewable energy system combining different generation and storage techniques

to satisfy the demand. In the system, electricity generation is provided via solar

and wind generation. The goal of the study is to find the system designs that

balance performance and cost while incorporating renewable variability. They

solve the bi-objective problem using NSGA-II.

Liu et al. [32] consider an integrated generation system including a hydro

power station, solar panels, and PHES. The sources of uncertainty in the system

are solar radiation, spot price, and load. Following an analysis of the effects of the

complementary index, cost of unused water, and Pearson correlation coefficient

on system complementarity and economics, a method for sizing an integrated

generation system is presented.

Brown et al. [33] address an optimization problem including dynamic security

criteria to determine the optimal PHES capacity integrated into a small island

system with an abundance of renewable energy. Hydro power and wind output

data is uncertain. They employ fuzzy clustering techniques to model the un-

certainties in the system such as energy output and demand. They model the

problem as a linear program where the size of the system components are the

primary variables. The operation and investment costs are minimized in the ob-

jective function. They conclude that using pumped storage can be a useful way

to utilize the renewable energy sources.

Al-Masri et al. [34] investigate a renewable energy system that includes solar

panels and PHES in consideration of the solar and PHES losses. The uncertainty

in the system is caused by solar radiation, flow rate parameters and the demand,

which are modeled by particle swarm optimization. The goal of the study is

determining the optimum sizes of the solar system and PHES that maximize the

system reliability. They discover that the investment on the solar system and

PHES increases with the inclusion of the solar and PHES losses.

Anagnostopoulos and Papantonis [35] study the sizing problem of a PHES

system to store the excess energy curtailed by the wind system in an isolated
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grid. The goal of the study is determining the optimum reservoir capacity and

water pump diameter to maximize the utilized wind energy of the system. They

employ an automated optimization method to solve the problem. They conclude

that the financial outlook of the investment improves as the water turbine power

increases; however, negative results may occur under a particular threshold. An-

other important result of the study is that additional energy is required to buy

from the grid to maintain guaranteed energy. Thus, the recovered energy only

compensates for the technical losses.

Hemmati [36] examines an isolated hybrid renewable energy system with wind,

solar, and hydropower as energy sources and a PHES and hydrogen storage sys-

tem (HSS) as backups. In that study, wind and solar outputs are uncertain

parameters and modelled by discrete Gaussian probability distribution functions

(PDF). The goal of the study is considering the optimum sizes of the reservoirs,

pumps, and generators where the investment and operational costs are minimum.

The problem is formulated as a stochastic MILP. Four different cases are consid-

ered according to the flow-in states of the reservoirs, and each case is examined

by the change of capacity in the system components.

Islam et al. [37] address a hybrid renewable energy system that consists of

solar, wind, hydro, and PHES. The uncertainties in the system arise from solar

radiation, wind speed, solar capital costs, water flow rates, demand, and pipe

flow losses. The aim of that study is to examine the techno-economic evaluation

of hybrid systems to meet the energy demand on a community scale. They use

a simulation-based optimization tool, HOMER, to find the optimal design of the

solar/wind/hydro hybrid system, then compare it with a battery storage system

that meets the similar load requirement. They apply a sensitivity analysis to

determine the effects of uncertainty on optimum pipe design. They discover that

when compared to a battery-powered system, the PHES system has a lower COE

and NPC. In addition, the battery system generates an excessive amount of extra

energy compared to the PHES.

Abdalla et al. [38] propose a robust long-term generation expansion plan-

ning (GEP) model considering the uncertainty of wind energy. They build a
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polyhedral uncertainty set for integrating the uncertainty impact into the robust

model. They control the robustness of the findings by an adjustable robustness

parameter. They also propose PHES and fast gas turbines for mitigating the

short-term wind energy uncertainty. Size of the PHES and fast gas turbines are

found and evaluated with an economic objective function for usage in centralized

or distributed units. They find that using the fast gas turbines provides the most

cost-effective way.

Kapsali et al. [39] consider the sizing problem of a wind/PHES system to

satisfy the demand in Lesbos. They analyze the feasibility of the system working

under the concurrent operation of new and existing wind systems and PHES

based on an extensive sensitivity analysis. The system performance simulation

is applied, and localization of the optimal solution is performed by finding a

number of financial parameters like net present value. They conclude that in the

most financially feasible arrangement, the renewable energy contribution rises by

around 15%.

Kocaman [40] presents a two-stage stochastic model for the problem of de-

signing a hybrid renewable energy system to satisfy the demand of the Mediter-

ranean region in Turkey. The hybrid system includes a solar system supported

by closed-loop and open-loop PHES systems separately. Moreover, in order to

maintain system feasibility, diesel is used as an expensive resource. Uncertainty

in the system arises from solar radiation and the amount of water inflow into the

reservoirs, as well as electricity demand. The objective is to optimally determine

the system components, minimizing the total investment and operation costs.

The problems are solved by the CPLEX solver. The results indicate that 88% of

demand is fulfilled by renewables when a closed-loop PHES system is employed,

whereas 96% of demand is met by renewables when an open-loop PHES system is

employed. Hence, the cost of produced electricity is lower when the solar system

is supported by an open-loop PHES.

Kocaman and Modi [41] consider a hybrid energy system to satisfy the demand.

The goal of that study is to obtain the optimum hybrid system size, which include

hydro and solar energy generation as well as transmission lines, where the hydro
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power station is also used as a PHES and diesel is used as a backup. They

propose a two-stage stochastic program to solve the problem and represent the

randomness of the inflow to the upper reservoir and the solar radiation by a

scenario approach. The proposed model is applied in several case studies for

India. They demonstrate that PHES can reduce the diesel amount to fulfill

demand to around 10% , whereas for conventional systems this percentage can

exceed 50%.

In our study, we consider a similar model to that of Kocaman and Modi [41],

and instead of using diesel as an expensive backup source, we develop a chance-

constrained two-stage stochastic programming model and restrict the risk of un-

met demand by a specified threshold to ensure system reliability. Most of the

studies in the literature use diesel to ensure that the demand is satisfied for sure

or incur a penalty cost for the amount of unsatisfied demand. To the best of our

knowledge, our study is the first to reliably size a PHES system using a chance

constraint. We employ a Benders decomposition based solution approach pro-

posed by Luedtke [6] to exactly solve our problem. We demonstrate that our

proposed algorithm is capable of solving instances that CPLEX can not solve.
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Table 2.1: A classification of studies on planning of energy storage systems.

Study Source of Uncertainty Risk Measure Modelling Technique ESS Type

Demand Energy Supply Other CVaR VaR TSSP CCP Other PHES Other
Kocaman et al. [13] ✓ ✓ ✓ ✓

Kocaman et al. [14] ✓ ✓ ✓ ✓

Kuznia et al. [18] ✓ ✓ ✓ ✓

Aghamohamadi et al. [15] ✓ ✓ ✓ ✓

Ekren et al. [16] ✓ ✓ ✓ ✓

Ekren and Ekren [17] ✓ ✓ ✓ ✓

Roy et al. [19] ✓ ✓ ✓ ✓

Kamjoo et al. [21] ✓ ✓ ✓ ✓

Copp et al. [22] ✓ ✓ ✓ ✓ ✓

Xie et al. [23] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sadeghian et al. [24] ✓ ✓ ✓ ✓

Dolatabadi et al. [25] ✓ ✓ ✓ ✓

Merzifonolu and Uzgören [26] ✓ ✓ ✓ ✓ ✓ ✓

Cavus et al. [27] ✓ ✓ ✓ ✓

Nazari and Keypour [28] ✓ ✓ ✓ ✓ ✓ ✓

Al-Masri [29] ✓ ✓ ✓

Reuter et al. [30] ✓ ✓ ✓ ✓

Amusat et al. [31] ✓ ✓ ✓ ✓

Liu et al. [32] ✓ ✓ ✓ ✓ ✓

Brown et al. [33] ✓ ✓ ✓

Al-Masri et al. [34] ✓ ✓ ✓ ✓

Anagnostopoulos and Papantonis [35] ✓ ✓ ✓

Hemmati [36] ✓ ✓ ✓ ✓

Islam et al. [37] ✓ ✓ ✓ ✓ ✓

Abdalla et al. [38] ✓ ✓ ✓ ✓

Kapsali et al. [39] ✓ ✓

Kocaman [40] ✓ ✓ ✓ ✓

Kocaman and Modi [41] ✓ ✓ ✓ ✓

This Study ✓ ✓ ✓ ✓ ✓
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Chapter 3

Problem Definition and

Formulation

Chapter 3 is divided into three sections. We define the problem in Section 3.1, and

provide an introduction to two-stage chance constrained stochastic programming

in Section 3.2. In Section 3.3, we present the formulation of the problem.

3.1 Problem Definition

Energy is a critical element for human life since it is practically impossible to

manufacture, transport, or consume things without energy. However, fossil fuels,

which make up the great bulk of conventional energy sources, have detrimental

environmental consequences, contributing to air pollution and climate change.

Moreover, fossil fuels are exhaustible. As a result, interest in renewable en-

ergy sources such as wind, solar, biomass, tidal and geothermal has grown. The

intermittent nature of renewable energy sources, on the other hand, makes it

difficult to govern energy production. Therefore, storing excess energy is an ef-

ficient method for preventing the negative consequences of the intermittency of

renewables. According to Rehman et al. [42], PHES is the most ideal type for
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massive energy storage among all existing storage technologies, in terms of both

technological maturity and economic compatibility. However, renewable energy

generation systems including PHES, require substantial investments, which can

be significantly affected by the decision makers with different risk profiles.

Kocaman and Modi [41] proposed a hybrid energy generation and allocation

system for meeting the demand. The aim of their study is to determine the op-

timal size of the hybrid system components which include hydro and solar power

stations, diesel generators as well as transmission lines connecting generation and

demand points. They use the reservoirs to store water in a PHES system in which

excess solar energy is stored in the form of gravitational potential energy in order

to mitigate the uncertainty in the supply and demand. In the case of storage,

water from the lower reservoir is pumped to the upper reservoir and released back

when the energy is needed. The PHES system in [41] is an open one (i.e. there is

a natural water flow into the reservoirs). Due to the high expense of producing

energy with diesel generators, diesel is only employed as a backup source. Since

solar panels are installed at demand points, transmission lines are used solely for

the purpose of transforming energy between solar power stations and PHES.

The hybrid renewable energy generation and allocation problem in [41] is mod-

eled as a two-stage stochastic program and a scenario approach is employed to

represent the uncertainty of the water flow into the upper reservoir and the so-

lar radiance. In the first stage, decisions are made on the size of the system

components, as well as the transmission lines capacities before the realization of

uncertainties. After the uncertainty has been realized, managerial decisions such

as the amount of transmitted energy, the mismatch between supply and demand,

and the water levels in reservoirs are made.

In the traditional two-stage stochastic programming, the objective function in-

volves the expected value, such as maximizing the expected revenue or minimizing

the expected cost as in [41]. However, in this conservative approach, meeting the

entire demand in each scenario might result in substantial investment amounts.

When there is uncertainty in the system, setting up different service levels for
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Figure 3.1: A schematic representation for hybrid energy system.

demand satisfaction (i.e. risk levels), however, can help avoiding undesirable siz-

ing of system components. In our study, we consider a similar hybrid system

to the one in [41], and build a two-stage chance constrained stochastic linear

optimization model. In the first-stage, sizes of the hybrid system components

such as reservoirs, hydropower generator and solar panels are determined. After

the uncertainty has been realized, operational decisions such as water levels in

the reservoirs, amount of generated and stored energy are decided. A chance

constraint allows us to investigate the decision makers’ behaviours with varying

risk-aversion levels. This will enable us to determine how various risk attitudes

influence investment decisions in the planning problem for hybrid renewable en-

ergy systems. Different than Kocaman and Modi [41], in our study, there is no

backup source like diesel and solar generation is supported by a closed-loop PHES

system i.e. there is no water inflow to the reservoirs. Hence, in our problem set-

ting, the only uncertainty considered is solar radiation. In addition, we assume

that there is already a transmission line between the generation and demand

points in the system. As in [41], reservoirs are utilized to store water in a PHES

system in which excess solar energy is stored in the form of gravitational poten-

tial energy. The PHES mechanism works as follows: The water that is released

from the upper reservoir rotates the turbine and the power generator connected

to the turbine converts the kinetic energy to electricity when there is need for

energy. In the case of storage, the extra solar energy drives the power generator,
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which in turn spins the turbine in the opposite direction to pump water from

the lower reservoir to the upper reservoir. Figure 3.1 is a representation of our

hybrid energy system. In the following sections, we briefly introduce the chance-

constrained two-stage (CCTS) stochastic programming framework and then give

our problem formulation.

3.2 Two-Stage Chance Constrained Stochastic

Programming Framework

We formulate our problem as a chance-constrained two-stage stochastic program.

A chance constraint stipulates that the decision variable that is selected must fall

within a region which is characterized by random variables with a high probability.

([6]). The following is a description of the generic chance-constrained stochastic

problem ([43]):

min
y∈X

g(y) s.t. Pr{H(y, ξ) ≤ 0} ≥ 1− ϵ (3.1)

where y ∈ Rn represents the vector of decisions, g(y) is the objective value subject

to the deterministic set of contraintsX ⊂ Rn, ξ is a random vector, H : Rn×Rd →
Rm is the mapping of constraints, and ϵ ∈ (0, 1) is a the risk tolerance, which is

usually small. The interpretation is that the objective function g(y) is minimized

over a deterministic set X where the likelihood of H(y, ξ) ≥ 0 is limited by the

risk tolerance ϵ.

Chance constrained problems were first introduced to the stochastic program-

ming literature by Charnes et al. [44]. Prékopa [45] developed the version that is

considered in our study where a set of constraints are enforced with high probabil-

ity. A theoretical background and a comprehensive list of references are provided

in Prékopa [46]. Chance constrained problems as in (3.1) are known as difficult to

solve because the feasible region of problem (3.1) can be non-convex even if both

the set X and the function H(y, ξ) are convex in y for all possible realizations of

ξ ([43], [47]).
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The two-stage stochastic program is also extensively used to deal with uncer-

tainty. For details, see Birdge and Louveaux [48]. The following is the generic

form of a two-stage stochastic program with fixed recourse:

min cTx+ Eξ[Q(x, ξ)] s.t. Ax = b, x ≥ 0 (3.2)

where

Q(x, ξ) = min
y

{qTy|Wy = h− Tx, y ≥ 0} (3.3)

Here, ξ is the random vector consisting of the components of qT , hT and T and

Eξ represents mathematical expectation with respect to ξ.

In this study, we concurrently employed chance constrained program and two-

stage stochastic program in the formulation of our problem to address the un-

certain solar radiation output. Wang et al. [49] refer to these formulations as a

chance constrained two-stage program. Our aim is to optimally size the hybrid

system while ensuring that the demand is satisfied with a certain threshold in

order to limit the risk of unmet demand.
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3.3 Mathematical Model

The following are the suggested model’s sets, parameters, and decision variables:

Sets

T : set of time periods T = {1, 2, . . . , T},

Ω : set of scenarios.

Parameters

ℓ : length of a time period,

h : height of the upper reservoir at PHES,

g : gravitational acceleration rate,

ϵ : risk tolerance for demand satisfaction, ϵ ∈ [0, 1],

β : efficiency of PHES in one direction, β ∈ [0, 1],

γ : efficiency of solar panels, γ ∈ [0, 1],

dhydro : annualization factor for PHES,

dsolar : annualization factor for solar power station,

cR : unit cost of reservoir capacity at PHES,

cG : unit cost of generator capacity at PHES,

cS : unit cost of solar panel,

pω : probability of scenario ω∈Ω,

stω : amount of solar radiation at period t∈T in scenario ω∈Ω,

dt : amount of demand at period t∈T.

First-Stage Decision Variables

Rmax : size of upper reservoir at PHES,

Pmax : size of lower reservoir at PHES,

Smax : size of solar panels at demand point,

Gmax : size of the generator in PHES.
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Second-Stage Decision Variables

RU
tω : amount of water stored in the upper reservoir at PHES

in scenario ω∈Ω at period t ∈ T,

RL
tω : amount of water stored in the lower reservoir at PHES

in scenario ω∈Ω at period t ∈ T,

NU
tω : amount of water released from the upper reservoir at PHES

at period t∈T in scenario ω∈Ω,

Otω : amount of water pumped from lower reservoir to upper reservoir

at period t∈T in scenario ω∈Ω,

ES
tω : amount of electricity sent to PHES from solar power generation station

at period t∈T in scenario ω∈Ω,

V S
tω : solar energy directly used in demand point at period t∈T in scenario ω∈Ω,

KS
tω : solar energy curtailed at period t∈T in scenario ω∈Ω.
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We give our two-stage stochastic programming formulation below.

min (Rmax + Pmax)cRdhydro +GmaxcGdhydro + SmaxcSdsolar (3.4)

s.t.

V S
tω +NU

tωghβ − dt ⩾ 0, ∀t ∈ T, ω ∈ Ω (3.5)

RU
tω ⩽ Rmax, ∀t ∈ T, ω ∈ Ω (3.6)

RL
tω ⩽ Pmax, ∀t ∈ T, ω ∈ Ω (3.7)

RU
tω = RU

(t−1)ω +Otω −NU
tω, ∀t ∈ T\{1}, ω ∈ Ω (3.8)

RU
1ω = Rmax/2 +O1ω −NU

1ω, ∀ω ∈ Ω (3.9)

RU
Tω = Rmax/2, ∀ω ∈ Ω (3.10)

RL
1ω = Pmax/2 +NU

1ω −O1ω, ∀ω ∈ Ω (3.11)

RL
tω = RL

(t−1)ω +NU
tω −Otω, ∀t ∈ T\{1}, ω ∈ Ω (3.12)

NU
tωghβ ⩽ Gmaxℓ, ∀t ∈ T, ω ∈ Ω (3.13)

Otωg
h

β
⩽ Gmaxℓ, ∀t ∈ T, ω ∈ Ω (3.14)

ES
tω = Otωg

h

β
, ∀t ∈ T, ω ∈ Ω (3.15)

V S
tω + ES

tω +KS = Smaxstωγℓ, ∀t ∈ T, ω ∈ Ω (3.16)

RU
tω, R

L
tω, N

U
tω, K

S
tω, E

S
tω, V

S
tω, Otω ⩾ 0, ∀t ∈ T, ω ∈ Ω (3.17)

Rmax, Pmax, Gmax, Smax ⩾ 0 (3.18)

The objective function of the model in (3.4) is minimizing the total annualized

investment cost. It includes the annualized costs of construction of reservoirs,

solar panels, and power generator used in the PHES. Constraint (3.5) ensures

that the amount of energy sent to the demand point is greater than or equal to

demand at all time periods and under all scenarios. Constraints (3.6) and (3.7)

ensure that the amount of water in the reservoirs is restricted by the reservoir size

at all time periods and under all scenarios. Constraints in (3.8)–(3.10) balance

the upper reservoir level. The constraint in (3.8) connects the water levels of

the upper across time periods. We define the initial and final water levels in

the reservoirs based on the assumption that the reservoirs are half full at the

beginning and finish in (3.9)-(3.11). Constraint (3.12) links lower reservoir levels

between time periods. Constraints (3.13) and (3.14) ensure that the amount
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of energy generated and pumped is restricted by the generation and pumping

capacity at all times and under all scenarios. Constraint (3.15) states that the

amount of energy pumped must be equal to the amount that is sent from the solar

power station located at the demand point at all times and under all scenarios.

Constraint in (3.16) states that the summation of solar energy directly used,

energy sent from the demand point to the PHES, and curtailed solar energy equals

the total generated solar energy at all times and under all scenarios. Constraints

(3.17) and (3.18) are added to ensure that the variables are non-negative.

24



In our probabilistic renewable energy system sizing problem, solar irradiance

is an appropriately sized nonnegative random vector denoted by s̃. The sizing

decisions Rmax, Pmax, Gmax, Smax are made prior to the realization of the solar

irradiance amount, whereas the operational decisions consider these realizations.

The demand must be met with a predetermined probability, resulting in the

following chance constrained model:

min (Rmax + Pmax)cRdhydro +GmaxcGdhydro + SmaxcSdsolar

s.t.

P
{
(Rmax, Pmax, Gmax, Pmax) ∈ P (s̃)

}
≥ 1− ϵ (3.19a)

Rmax, Pmax, Gmax, Smax ⩾ 0 (3.19b)

where

P (s) =

{
(Rmax, Pmax, Gmax, Smax) | V S

t +NU
t ghβ −Dt ≥ 0, ∀t ∈ T,

RU
t ⩽ Rmax, ∀t ∈ T,

RL
t ⩽ Pmax, ∀t ∈ T,

RU
t = RU

(t−1) +Ot −NU
t , ∀t ∈ T\{1},

RU
1 = Rmax/2 +O1 −NU

1 ,

RU
T = Rmax/2,

RL
1 = Pmax/2 +NU

1 −O1,

RL
t = RL

(t−1) +NU
t −Ot, ∀t ∈ T\{1},

NU
t ghβ ⩽ Gmaxℓ, ∀t ∈ T,

Otg
h

β
⩽ Gmaxℓ, ∀t ∈ T,

ES
t = Otg

h

β
, ∀t ∈ T,

V S
t + ES

t +KS
t = Smaxstγℓ, ∀t ∈ T,

RU
t , R

L
t , N

U
t , Ot, E

S
t , K

S
t , V

S
t ⩾ 0, ∀t ∈ T

}
.
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The joint chance constraint given in (3.19a) can be linearized as follows with

scenario index set Ω where M1,M2, ...,M19 are very big numbers :

−RU
tω +Rmax + L1

tωM
1 ⩾ 0, ∀t ∈ T, ω ∈ Ω (3.20)

−RL
tω + Pmax + L2

tωM
2 ⩾ 0, ∀t ∈ T, ω ∈ Ω (3.21)

RU
tω −RU

(t−1)ω −Otω +NU
tω + L3

tωM
3 − L4

tωM
4 = 0, ∀t ∈ T\{1}, ω ∈ Ω (3.22)

RU
1ω −Rmax/2−O1ω +NU

1ω + L5
tωM

5 − L6
tωM

6 = 0, ∀ω ∈ Ω (3.23)

RU
Tω −Rmax/2 + L7

tωM
7 − L8

tωM
8 = 0, ∀ω ∈ Ω (3.24)

RL
tω −RL

(t−1)ω −NU
tω +Otω + L9

tωM
9 − L10

tωM
10 = 0, ∀t ∈ T\{1}, ω ∈ Ω (3.25)

RL
1ω − Pmax/2−NU

1ω +O1ω + L11
tωM

11 − L12
tωM

12 = 0, ∀ω ∈ Ω (3.26)

−NU
tωghβ +Gmaxℓ+ L13

tωM
13 ⩾ 0, ∀t ∈ T, ω ∈ Ω (3.27)

−Otωg
h

β
+Gmaxℓ+ L14

tωM
14 ⩾ 0, ∀t ∈ T, ω ∈ Ω (3.28)

ES
tw −Otωg

h

β
+ L15

tωM
15 − L16

tωM
16 = 0, ∀t ∈ T, ω ∈ Ω (3.29)

V S
tω + ES

tw +KS − Smaxstωγℓ+ L17
tωM

17 − L18
tωM

18 = 0, ∀t ∈ T, ω ∈ Ω (3.30)

V S
tω +NU

t ghβ −Dtω + L19
tωM

19 ⩾ 0, ∀t ∈ T, ω ∈ Ω (3.31)

RU
tω, R

L
tω, N

U
tω, N

L
tω, E

S
tω, V

S
tω, Otω ⩾ 0, ∀t ∈ T, ω ∈ Ω (3.32)∑

ω∈Ω

pωTω ≤ ϵ, (3.33)

Tω ≥ Li
tω, ∀i ∈ {1 . . . 19},∀t ∈ T, ω ∈ Ω (3.34)

Li
tω ∈ {0, 1}, ∀i ∈ {1 . . . 19},∀t ∈ T, ω ∈ Ω (3.35)

Tω ∈ {0, 1}, ∀ω ∈ Ω (3.36)

Hence, mixed integer linear programming equivalent form of our chance con-

strained model (i.e. extensive formulation) is in the following form:

min (Rmax + Pmax)cRdhydro +GmaxcGdhydro + SmaxcSdsolar

s.t.

(3.20)− (3.36)

Rmax, Pmax, Gmax, Smax ⩾ 0 (3.37)
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Chapter 4

Solution Methodology

Solution of scenario-based stochastic programming models is a difficult task espe-

cially when there is a large number of scenarios. Adding a joint chance constraint

makes harder solving these formulations due to the non-convexity of the proba-

bilistic constraints in general. A chance constrained problem with finite support

can be reformulated as a deterministic MIP by the big-M method, as can be

seen in section 3 (3.37). However, this big-M formulation is computationally

challenging because of the weak LP relaxation and its large size. The majority

of studies on chance constrained programs concentrate on single-stage problems

([50], [51], [52], [53], [54], [55], [56], [57]). Despite the extensive literature on

solving single-stage chance constrained mathematical programs, the studies ad-

dressing two-stage chance constrained stochastic programs are rather limited.

Zhang et al. [58] study multi-stage chance constrained mathematical programs

and they conclude that solving large-scale instances requires employing decom-

position algorithms. Decomposition algorithms have been developed and used

extensively for solving two-stage stochastic programming problems (see [48] and

[59]). Van Slyke and Wet [60] suggest the use of well-known L-shaped decomposi-

tion technique by adapting the Benders decomposition ([61]) for these stochastic

programming models. However, the feasibility cuts of Benders decomposition

algorithm works assuming that second stage problems are feasible; hence, these

methods can not be applied to two-stage chance constrained programs. Wang
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et al. [49] study a two-stage chance constrained programming problem and pro-

pose a combined sample average approximation method by integrating Benders

decomposition. However, optimality cuts defined in this study include big-M

coefficients, which causes weak lower bounds in the solution of a continuous re-

laxation. Zeng et al. [62] consider a two-stage chance constrained problem and

suggest a decomposition algorithm which involves bilinear feasibility and opti-

mality cuts. However, in the linearization of these cuts, big-M coefficients are

introduced with additional variables, which makes the solution of the problem

difficult. Luedtke [6] proposes a Benders decomposition based branch and cut

decomposition algorithm for exactly solving a special case of two-stage chance

constrained problems where the cost of second-stage solutions is not considered.

Liu et al. [63] consider two-stage chance constrained problems with the additional

cost incurred by the second stage decisions and develop strong optimality cuts

in addition to the strong feasibility cuts proposed by Luedtke [6]. In our study,

we utilize the strong valid inequalities suggested by Luedtke [6] for our two-stage

chance constrained problem, which also does not involve additional costs for the

second stage variables.

4.1 Solving Two-Stage CCMP with Branch and

Cut Decomposition Algorithm

Recall the two-stage CCMP given in (3.19). To be able to apply the algorithm

proposed by Luedtke [6], all problems must be well-defined. Hence, we set upper

bounds for the decisions on the size of the hybrid energy system components by

calculating the maximum capacities that would be needed if the demand for the

whole planning horizon is met at once. Therefore, we can rewrite the problem
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(3.19) as follows:

min (Rmax + Pmax)cRdhydro +GmaxcRdhydro + SmaxcSdsolar

s.t.

P
{
(Rmax, Pmax, Gmax, Pmax) ∈ P (s̃)

}
≥ 1− ϵ, (4.1a)

0 ≤ Rmax ≤ Rmax
bound, (4.1b)

0 ≤ Pmax ≤ Pmax
bound, (4.1c)

0 ≤ Gmax ≤ Gmax
bound, (4.1d)

0 ≤ Smax ≤ Smax
bound, (4.1e)

where

P (s) =

{
(Rmax, Pmax, Gmax, Smax) | V S

t +NU
t ghβ −Dt ≥ 0, ∀t ∈ T,

RU
t ⩽ Rmax, ∀t ∈ T,

RL
t ⩽ Pmax, ∀t ∈ T,

RU
t = RU

(t−1) +Ot −NU
t , ∀t ∈ T\{1},

RU
1 = Rmax/2 +O1 −NU

1 ,

RU
T = Rmax/2,

RL
1 = Pmax/2 +NU

1 −O1,

RL
t = RL

(t−1) +NU
t −Ot, ∀t ∈ T\{1},

NU
t ghβ ⩽ Gmaxℓ, ∀t ∈ T,

Otg
h

β
⩽ Gmaxℓ, ∀t ∈ T,

ES
t = Otg

h

β
, ∀t ∈ T,

V S
t + ES

t +KS
t = Smaxstγℓ, ∀t ∈ T,

RU
t , R

L
t , N

U
t , Ot, E

S
t , K

S
t , V

S
t ⩾ 0, ∀t ∈ T

}
.
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By introducing binary variables ur for each r ∈ N = {1, . . . , N}, problem (4.1)

can be reformulated as follows:

min (Rmax + Pmax)cRdhydro +GmaxcRdhydro + SmaxcSdsolar

s.t.

ur = 0 ⇒ (Rmax, Pmax, Gmax, Pmax) ∈ Pr, r ∈ N , (4.2a)

N∑
r=1

ur ≤ h, (4.2b)

(Rmax, Pmax, Gmax, Pmax) ∈ X, (4.2c)

ur ∈ {0, 1}, r ∈ N (4.2d)

Here, h = ⌊ϵN⌋, X = {(Rmax, Pmax, Gmax, Pmax) | (4.1b)−(4.1e)} and Pr = P (sr)

for r ∈ N where possible outcomes of s, sr for r ∈ N are denoted as scenarios.

The feasible region of (4.2) is F = {(Rmax, Pmax, Gmax, Pmax, u) | (4.2a)−(4.2d)}.
The single scenario optimization problem for two-stage CCMP for scenario sr,

r ∈ N is given as:

hr(η) := min η1R
max + η2P

max + η3G
max + η4S

max

s.t.

(Rmax, Pmax, Gmax, Pmax) ∈ Pr ∩ X̄ (4.3)

Here, we choose X̄ = X since X is a compact set and require Pr ∩ X̄ ̸= ∅. Thus,
problem (4.3) is well-defined. Secondly, the single scenario separation problem,

is solved to detect if the obtained solution ( ˆRmax, ˆPmax, ˆGmax, ˆPmax) violates any

scenarios i.e. ∃r ∈ N where ( ˆRmax, ˆPmax, ˆGmax, ˆPmax) /∈ Pr and get (notin, η, υ)

to create the cut in the case of violation. If ( ˆRmax, ˆPmax, ˆGmax, ˆPmax) /∈ Pr, notin

returns TRUE, otherwise it returns FALSE. Note that each Pr is defined by more

than one inequality. Hence, all the inequalities must be checked to find if notin

returns TRUE or FALSE.
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The main subproblem of the algorithm is the master problem ML(Y0, Y1,W ):

ML(Y0, Y1,W ) := min (Rmax + Pmax)cRdhydro +GmaxcRdhydro + SmaxcSdsolar

s.t.

N∑
r=1

ur ≤ h,

(x, u) ∈ W, u ∈ [0, 1]N ,

(Rmax, Pmax, Gmax, Pmax) ∈ X,

ur = 0, r ∈ Y0, ur = 1, k ∈ Y1, (4.4)

where W is a polyhedron characterized by the generated valid inequalities and

includes the feasible region of (4.2), represented by F and Y0, Y1 ⊆ N are defined

such that Y0 ∩ Y1 = ∅.
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Chapter 5

Computational Study

There are three sections in this chapter. We provide the technique for scenario

generation in Section 5.1, and we describe the data used in our study in Section

5.2. We present our numerical results in Section 5.3.

5.1 Scenario Generation for Solar Radiation

In stochastic programming framework, it is important to consider the uncertainty

accurately. We use a scenario-based approach, that is commonly utilized in the

literature [64], to model the uncertainty in our problem. We employ a scenario

generation method for hourly solar radiation data because of our uncertainty

assumption on the solar radiation (SR). In this section, we present this method.

The vast literature on solar radiation forecasting has various models and

methodologies. Among statistical methods, the Auto-Regressive Integrated Mov-

ing Average (ARIMA) time series models have been proposed numerous times for

modelling and forecasting solar radiation ([65], [66], [67]). ARIMA models are

popular for modelling and predicting time series in a variety of contexts. These

models belong to a broad class of linear models. See Box et al. [68] for more

details.
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Figure 5.1: The decomposition of solar radiation data in June 2017.

As a result of the fact that the times of sunrise and sunset shift during the

course of the year, Yang et al. [5] perform the data decomposition for each month.

Moreno-Muñoz et al. [65] demonstrate that ARIMA is able to predict hourly

solar radiation levels using the data from only a limited number of preceding

hours. However, due to the existence of zero-valued night hours, solar radiation

at sunrise and sunset hours cannot be accurately predicted. To overcome this

problem, Yang et al. [5] propose fitting an ARIMA model for each data point in

the data set by updating the training set iteratively. In this study, we employ

an ARIMA based model which is adopted from Yang et al. [5]. In [5], the solar

radiation data for a three-week period in each month is predicted by using the

proposed method. Since the first set of training data comes from the first week of

the corresponding month, the prediction for the first week’s solar radiation data

is not performed. Different than [5], we employ the last week of the preceding

month as the first training set in order to provide a complete prediction for each

month, including the first week.
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Figure 5.2: Scenario generation flow diagram.

First, the solar radiation data is decomposed into seasonal, trend, and irregular

components for each month. Figure 5.1 illustrates the decomposed components of

solar radiation data that belongs to June of 2017. Then, the seasonal component

is eliminated from the solar radiation measurement. By using the remainder,

next hour’s residual is forecasted the using ARIMA. The residuals from previous

month’s last week are used as training data for ARIMA model, which is then used

to forecast the next hour’s residual, that is added to the training set. The training

set’s data window is then expanded by one, and an ARIMA model is fitted once

more to forecast the next hour’s residual. This procedure is repeated until all

of the residuals for the month have been processed. After that, the seasonal
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component is added to provide a solar radiation forecast. For each month of the

year, this procedure is repeated. Figure 5.2 shows the flow diagram of scenario

generation process.

Table 5.1: Forecast RMSE and MAE for hourly SR data

Time Period Mean observed SR RMSE MAE

January 0.105085 0.050224 0.025805
February 0.142500 0.065517 0.034884
March 0.191549 0.083138 0.044695
April 0.237064 0.087646 0.050133
May 0.282644 0.088071 0.052589
June 0.318079 0.087896 0.054113
July 0.317602 0.086150 0.050413

August 0.286959 0.079453 0.0473286
September 0.243383 0.074763 0.040329
October 0.178096 0.059745 0.030497
November 0.117692 0.061573 0.031496
December 0.094537 0.046990 0.024097

The accuracy of the solar radiation estimates is determined by calculating the

root mean square error (RMSE) and the mean absolute error (MAE). These terms

are defined as follows:

RMSE =

√√√√ 1

n
.

n∑
i=1

(xpred,i − xobs,i)2 (5.1)

MAE =
1

n
.

n∑
i=1

|xpred,i − xobs,i| (5.2)

where n is the number of evaluated data pairs, and xpred,i and xobs,i are the ith

valid forecast and observation values, respectively. Table 5.1 shows RMSE and

MAE values for the procedure that we followed in our study.
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5.2 Experimental Setup

In this study, we use the same efficiency and cost parameters as in Kocaman

and Modi [41]. Table 5.2 shows the adapted parameters from [41]. We set the

planning horizon to one year, and each time period is one hour long. The lifespans

of the PHES and the solar power plant are considered to be 60 and 30 years,

respectively. Considering that each system has a different usable lifetime, we

derive a cost parameter representing the annual cost of building for each system.

This parameter is calculated using the formula d = e/(1− (e+1)−j, where e and

j refer to the discount rate and the component’s lifespan, respectively.

Figure 5.3: Hourly demand data.

Figure 5.4: Hourly solar radiation data.
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Table 5.2: Problem parameters

Parameter Value

cR 3 $/m3

cG 500 $/kW
cS 200 $/m2

β 0.88
γ 0.12

jhydro 60 years
jsolar 30 years
e 0.05
g 9.8
h 100

The same demand and solar data used in [27] is employed here, which comes

from the Energy Market Regulatory Authority of Turkey [69] and Homer Energy

[70], respectively. The hourly solar radiation and demand data are shown in

Figure 5.3 and Figure 5.4. Solar radiation is assumed to be uncertain while

demand is considered to be deterministic.

5.3 Numerical Results

This section is devoted to the results of our computational study. All computa-

tional experiments are conducted on a server with 64GB RAM and a 2.4 GHz

Intel Xeon E5-2630 v3 CPU. We solve the extensive formulation of our model

with CPLEX version 20.1.0.0. The proposed Benders based branch and cut de-

composition algorithm is coded in Python 3.8 and the optimization problems that

are developed in Python are solved by CPLEX 20.1.0.0 in parallel mode using

up to 16 threads. We utilize the lazy constraint callback feature of CPLEX.

We evaluate the CPU time-based performances of the extensive formulation and

branch and cut decomposition algorithm. Different risk tolerance (ϵ) values are

considered to detect the effects of the diverse risk attitudes of the decision maker.

Hence, we can detect the changes in the results as decision maker becomes more

risk-averse. We work with a variety of scenarios ranging from 20 to 65 to see
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the effects of number of scenarios on the results. To compare the performance of

the proposed decomposition algorithm, the problem is solved using the proposed

algorithm and the CPU timings are computed. Then, we solve the extensive for-

mulation using CPLEX by setting the algorithm’s solution time as the CPLEX

time limit. We solve the problem with 20, 50, and 65 scenarios and different

risk tolerances. We receive an internal CPLEX callback error when we use 100

scenarios in the algorithm. Here, the risk tolerance is determined by the parame-

ter ϵ. For example, as ϵ decreases, the decision maker becomes more risk-averse.

Later in this section, the impact of this parameter on the optimal solution will be

discussed. We calculate the gap in the objective function and share the results

in Table 5.3.

Table 5.3: Comparison of performances of the scenario decomposition algorithm
and CPLEX

|Ω| ϵ Total Cost % Gap CPU time (s)

Scenario Decomp.
Algorithm

CPLEX

20 0.05 193,637,822 193,637,822 0 82,026
20 0.1 193,418,698 4,256,886,085,899 2,200,766 137,555
50 0.05 194,354,738 195,102,696 0.3848 417,439
50 0.1 193,979,174 - - 188,749
65 0.05 194,394,177 - - 513,765
65 0.1 194,093,782 - - 433,456

Table 5.4: CPU times of the scenario decomposition algorithm and CPLEX.

ϵ CPLEX CPU time (s) Scenario Decomp. Al-
gorithm CPU time (s)

0.05 192,541 81,990
0.1 - 137,555

Table 5.3 displays the CPU times and the total costs that are provided by the

proposed algorithm and CPLEX under the time limit. It is seen that CPLEX

could not find an incumbent solution within the time limit for three instances.

When the problem is solved with 20 scenarios and 10% risk tolerance, the gap in

total cost is 2,200,766% which is a significant amount. With the same number

of scenarios but 5% risk tolerance, CPLEX solves the problem with 0% gap.
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However, the solution that CPLEX provides is not guaranteed as the optimal

solution. There were still open nodes in the search tree when the time limit

was reached. With 50 scenarios at 5% risk tolerance, the gap is relatively small.

In addition, Table 5.4 shows the CPU times in seconds for 20 scenarios and

for ϵ ∈ {0.05, 0.1} provided by both CPLEX and the proposed algorithm. The

proposed algorithm solves the problem almost 2.4 times faster than CPLEX for

ϵ = 0.05. Moreover, CPLEX is unable to solve the problem when ϵ is increased

to 0.1 after 100+ hours (wallclock time). The results show that the proposed

decomposition algorithm is able to solve instances that can not be solved by

CPLEX.

Table 5.5: Total costs of the system in annual basis for 20 and 50 scenarios.

ϵ Total Cost for 20
scenarios ($)

Total Cost for 50
scenarios ($)

Difference % Deviation

0.1 193,418,698 193,979,174 560,475 0.2889
0.05 193,637,822 194,354,738 716,916 0.3689

Table 5.6: Total costs of the system in annual basis for 50 and 65 scenarios.

ϵ Total Cost for 50
scenarios ($)

Total Cost for 65
scenarios ($)

Difference % Deviation

0.1 193,979,174 194,093,782 114,609 0.0591
0.05 194,354,738 194,394,177 39,439 0.0203

We compare the optimal overall cost for 20 and 50 scenarios, as well as for

50 and 65 scenarios. As it is seen in Table 5.6, the deviation is too small when

the number of scenarios is increased from 50 to 65 which suggests that increasing

the number of scenarios further may not significantly chance the solution of the

problem.

We consider different ϵ values to examine the effect of risk levels in the first

stage decision variables for 50 scenarios. Figures 5.5a, 5.5b and 5.5c display the

optimal sizes for solar panels, reservoirs, and power generators for various risk

levels, respectively. Figure 5.5a demonstrates that as ϵ increases, the size of the

solar panel decreases. To put it differently, when the decision maker becomes less

risk-averse, less investment is made in solar energy. The decision maker’s aversion

to risk related to unmet demand decreases as the value of ϵ increases. As a result,
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(a) Solar Panel Area (b) Reservoir Size

(c) Power Generator Size

Figure 5.5: Size of hybrid system components

less money is invested in energy generation to meet demand. In Figures 5.5b and

5.5c, it is seen that there is a reverse relationship between reservoir capacity

and the power generator capacity. The reservoir size decreases initially when ϵ

changes from 0 to 0.05 , then increases slightly as ϵ increases. When the value of

ϵ increases from 0 to 0.1, on the other hand, the power generator’s capacity first

goes up at ϵ = 0.05, then goes down.

Table 5.7: Annualized costs ($) for solar and storage systems for 50 scenarios for
ϵ ∈ {0, 0.05, 0.1}. % Deviation (3rd and 5th columns) represents the difference
with no-risk case.

ϵ Annualized Cost
of Storage ($)

% Deviation Annualized Cost
of Solar System
($)

% Deviation

0.1 34,705,565 -1.85 159,273,609 -0.29
0.05 34,840,671 -1.46 159,514,067 -0.14
0 35,358,216 - 159,744,480 -

In Table 5.7, we show the deviation in the system cost for the two resource

types that are employed in the system for 50 scenarios. It is clearly seen in Table
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5.7 that the cost of solar and PHES systems increases with decreasing risk level.

Because the decision maker wants to meet demand more likely, she increases the

investment in both the storage and solar systems. Table 5.7 also shows that the

percentage deviation of the storage cost from no-risk solution (i.e. ϵ = 0) is more

than solar for both risk levels 0.05 and 0.1. Solar is system’s primary energy

source, thus the decision maker decreases the investment in storage more.

Figure 5.6: Amount of energy stored in the upper reservoir for a typical scenario.

Figure 5.6 illustrates the stored energy in the upper reservoir for each hour of

one year. It is clear that there is a daily cycle in the stored energy, similar to

solar radiation. The system supplies the energy need by releasing water from the

upper reservoir when solar radiation is low. Also, the system pumps water from

the lower reservoir to the upper reservoir when the solar radiation is high. Figure

5.6 also shows that in the first two months, the energy storage is utilized a lot,

mostly because the radiation in these motnhs is too low compared to the next

months. Between March and October, the amount of energy stored in the upper

reservoir shows a stable trend. Since the amount of solar radiation is relatively

high in these months, there is a balance in the system. Starting from October,

solar radiation levels again decrease, causing the stored energy to fluctuate as in

the first two months. Moreover, although there is a daily cycle in the operation

of PHES, it is clear that the PHES supports the system for seasonal changes,

which shows the necessity of annual planning horizon [71].
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Chapter 6

Conclusion

In this thesis, we study an investment planning problem for a hybrid energy

system that combines a PHES system with a solar system under solar radiation

uncertainty. We formulate the sizing problem of this hybrid energy system as a

chance constrained two-stage stochastic program where the system’s reliability in

satisfying demand is modeled by a joint chance constraint. The aim of this study

is to minimize the total annualized investment cost while meeting the energy

demand with a predefined service level.

In investment planning problems, supplying the demand for certainty for even

infrequently occurring events can lead to considerable cost increases. A chance

constrained optimization strategy can be used to relax the necessity of satisfying

the demand for all random events in order to tackle this issue. In this way,

the undesirable consequences of the inherent randomness in hybrid renewable

energy systems are avoided. In this context, we develop a chance constrained

approach for designing a hybrid renewable energy system where solar generation

is supported by a PHES system.

Stochastic programming is a scenario-driven method; hence, a sufficient num-

ber of scenarios must be used to ensure the quality of the solution. However,

adopting a large number of scenarios significantly enlarges the problem. In this
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context, the decomposition algorithm that we suggested enables us to use a large

scenario set while reducing the solution time by a significant amount. We propose

a branch and cut decomposition algorithm based on the Benders decomposition

technique in order to exactly solve our large scale problem. By decomposing

a large problem into multiple smaller problems, the solution method that we

present decreases the solution time by an important amount.

We generate scenarios for solar radiation by using an ARIMA based algorithm

of Yang et al. [5]. We investigate the variations in decision-making process based

on a variety of persfectives. Our findings demonstrate that, as expected, as the

decision maker increases the reliability of the system, storage and solar component

investments increase as well. We solve our chance constrained two-stage problem

for several instances by considering different number of scenarios. We solve the

extensive formulation with CPLEX by setting the algorithm’s solution time as

the CPLEX time limit to evaluate the performance of our solution method. The

results indicate that compared to CPLEX, the algorithm that we present needs

less CPU time to solve the problem.

For potential future work, we can consider an open-loop PHES system in order

to incorporate the uncertainties relevant to the water flow into the reservoirs. In

this way, we can analyze the effects of different types of uncertainties on the

decisions. We can design systems with different renewable energy sources such as

wind, biomass and geothermal. Considering wind, for example, requires different

scenario generation techniques and may require higher number of scenarios to

accurately take uncertainty into account. Resulting large-scale problems may

need alternative decomposition techniques.
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