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Abstract

DECOHERENCE IN OPEN QUANTUM SYSTEMS: A
REALISTIC APPROACH

Kerim Savran
PhD in Physics
Supervisor: Assoc. Prof. Tugrul Hakioglu
January 2006

Docoherence mechanising of open quantum syvstems in interaction with an
envirommental bath is investigated using the master equation formalism. Widely
used two-level approximation is questioned.

It has been shown that decoherence has different behavior in short and long
time regimes. In short times, decoherence mechanisms, relaxation, dephasing
and leakage show a Gaussian-like behavior, whereas in the long time regime,
they have exponential-like behavior as predicted by the Markov approximation.
The non-negligible effects of the non-resonant transitions in the short time regime
is observed to be more destructive in terms of decoherence, than the long time
resonant transitions, Multilevel effects are also investigated in order to question
the validity of the two-level approximation. It has been ohserved that the higher
levels above the qubit subspace have signilicant elfects in decoherence rates.
Therelore, the assumptions ol the two-level approximation arc proved to be
irrelevant with the validity of the two-level approximation. The reliability analysis
of the Born-Oppenheimer approximation, which is the only approximation used,

is also been explained.
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Finally, the outcome of the driving fields, which are tools for the manip-
nlation of quantum systems, [or a multilevel open quantum system has been
demonstrated. It has been shown that Rabi oscillations cannot be observed in a

multi-leveled system as smoothly as in a two-leveled system.

Keywords: Decoherence, Mastier Equalion Formalism, Non-resonant Tran-
sitions, Multilevel Systems, Two-level Approximation, Born-

Oppenheimer Approximation, Rabi Oscillations.
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ACIK KUVANTUM SISTEMLERDE UYUMSUZLUK:
GERCEKCI BiR YAKLASIM

Kerim Savran
Fizik Doktora
Tez Yoneticisi: Assoc. Prof. Tugrul Hakioglu
Ocak 2006

Cevresel bir rezervuar ile etkilesimde olan agk kuvantum sistemlerindeki
nyumsuzluk mekanizinalarn ana  denklem  formalizmi kullamlarak  incelendi.
Yaygin olarak kullamlan iki-seviye vaklasiklhign sorgulanda,

Uyumsuzlugun kisa ve uzun zaman holgelerinde farkh davramslar gosterdigi
gosterildi. Kisa zamanlarda uyumsuzluk mekanizmalari, durulma, esevre kaybi ve
sizintl, (Gaussal-benzeri bir davranig gdsterirken, uzun zamanlarda Markov
yvaklagikhigimin dngordiigii sckilde tistel davrang gosterivorlar. Kisa zamanlardaki
ihmal edilemeyecck rezonant olmayan geciglerin, uyumsnzlnk konusunda uzun
zamanlardaki rezonant gecislerden daha vikicr oldugu gozlemlendi. 1ki sevive
vaklasikliginin gecerliligini sorgulamak icin cok-seviye etkileri de incelendi. Kubit
alt-uzayinin tistiindeki enerji sevivelerinin uvumsuzluk zamanlar: tizerinde dnemli
etkileri oldugu gozlemlendi. Dolayisiyla, iki-seviye vaklagiklifn i¢in ongoriilen
varsayimlarin, yaklagikhigin gecerliligi ile ileili olmadigr gosterildi. Kullanilan tek
vaklagiklik olan Born-Oppenheimer yaklagikhigimin da giivenilirlik analizi yaplda.

Son olarak, kuvantum sistemlerin manipulasyomnda kullanilan strict alan-

larm c¢ok seviveli aglk kuvantum sistemlerindeki sonuclan gosterildi.  Cok
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seviveli sistemlerde Rabi salimmmlarinin iki seviveli sistemlerdeki kadar kolay elde

edilemeyvecegi gozlendi.

Anahtar
sozciikler: Kuvantum Uyumsuzluk, Ana Denklem Formalizmi, Rezo-
nant Olmayan Gegigler, Cok Seviyeli Sistemler, Tki Seviye

Yaklagikhigi, Born-Oppenheimer Yaklagikhigi, Rabi Salinimlari.
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Chapter 1
Introduction

Quantum computation is one of the hottest fields of research in the recent years,
as theoretically, it promises great computational speed for certain algorithms and
extensive security.! Numerous scientists are working on quantum algorithms,
measurement techniques, state preparations, manipulations and so on. There are
several candidate physical systems for the proposed quantum algorithms, and
their dynamics are investigated in detail. Yet, still there is no certain answer to
the question, whether the long sought quantum computer will be built one day,
since there are still many practical problems on the way.

One of the most important problems is decoherence, i.e. the loss of coherence
in a quantum system that is in interaction with an environment. It is practically
impossible to isolate any quantum mechanical system from the environment, and
the interaction with the environment, which is often called "noise”, destroys the
initially prepared quantum state very quickly. This is a great obstacle for the
quantum algorithms, as they need a certain amount of time to be executed.
Theoretically, any quantum computation algorithm may be expressed in one
and two qubit gate operations. Qubits are indeed the fact behind the power
of quantum computation, as they are the quantum equivalent of bits in digital
computation. But the distinctive property of the qubits is that, apart from the
classical bit values 1 and 0, they can take any value between 0 and 1 as well.

In order to benefit from the quantum computation, a typical algorithm should
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perform about 10° to 10* gate opcrations on the qubits before the decoherence
takes place. Yet, such a task is still [ar from possible with the current techniques
and knowledge.

As qubits are the quantum analogous of digital bits, and as the name suggests,
they consist of systems with two levels. Though, apart from certain systems,
such as organic molecules with certain discrete rotational symmetries, or spin-
1/2 systems, the physical systems consist of many levels, and often infinitely many
levels. But this [act does not constrain the researchers to use such systems as
qubit candidates, as several approximation technics and models help to analyze
the systems of interest as two lovel systems. Apart from the number of levels
in the system, there are still many hardships to face concerning the decoherence
analysis.

The system-environment interaction itself is mainly a problem. Though the
system is olten truncated to finite levels, the environment should be continuous,
and should contain infinitely many levels, for the analysis to produce reasonable
and realistic results. The interaction of the system with these infinitely many
environmental modes is still impossible to trace, still further approximations need
to be used. The system-environment couplings cause the system levels to couple
to each other, in addition to the entanglement between system and environment.
Furthermore the time evolution of the system turns out to he memory dependent,
i.e. the hehavior of the system at any thme depends on the configuration of the
system at all carlior times. After presenting these obstacles, it is clear that a
full analytical and exact solution of decoherence is impossible. Even after many
approximations, only the simplest system-environment models are analytically
solvable.

In this thesis, I worked on the decoherence as well, though, I tried to avoid all
approximations that I could. Eventually, my analysis was a numecrical analysis.
[ also questioned the validity of the well-kuown two level approximation, that
truncates the physical system down to two levels as certain conditions are held.

In Chapter 2, [ will introduce the most frequently used approximations and

interaction models that are used in the studies of decoherence, and present
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an example solution making use ol these approximations. In Chapter 3, I
will briefly introduce superconducting systems, Josephson eflect and SQUID
(Superconducting QUantum Interference Device) systems, as they are the most
widely referred systemns that are being studied, and the model system adopted
for my analysis. ITn Chapter 4, T will be solving the SQUID-EM field interaction
maodel, using the master equation approach, explained briefly in Chapter 2.
Also the dependence of decoherence on the spectral parameters will be observed
qualitatively in this chapter. In Chapter 5, [ will investigate the eflecl of system
parameters in decoherence, make quantitative analysis, and also question the
2LA in detail, by comparing the outcome of multileveled systems and two loveled
systems. In Chapter 6, T will finally be inspecting the outcome of applying
driving fields to systems that are also in interaction with the environment. Tn
this chapter, I will also demonstrate for a simple single-qubit gate, and present

the elfect ol environment and multilevels on the execution.



Chapter 2

Methods and models

Decoherence is the result of interaction of a physical system with the environment,
which is usually considered as a reservoir, i.e. infinitely large. Solution of the
interaction of a finite system with an infinite reservoir is impossible by pure
analytical methods. Even as the reservoir is taken finite, it should have a much
higher dimension of Hilbert space than the system, and even in this case, tracing
every possible process between the environment and the system is practically
impossible. In order to overcome this fundamental problem, several methods and
approximations are used.

For a SQUID system that is used as a qubit, there may be several deco-
herence sources such as electromagnetic environment, phonons, quasiparticles,
background charges, critical current noise, gate voltage fluctuations, etc. In
order to investigate the effects of such decoherence mechanisms there is a widely
used technique called the master equation technique. Basically master equation
technique consists of writing an equation of motion for the reduced density
matrix. In closed quantum systems, i.e. systems that are isolated and not
in interaction with any kind of environment, this method is quite simple and
cffective.  As density matrix can describe anything one may wish to know
about the system, solving the master equation, that is determining the time
behavior of the density matrix enables us to deduce any behavior about the

system at any time. However, for open systems, one cannot obtain exact
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solutions due to the reasons mentioned above. In order to obtain reasonable
answers, one has to use some simpler models and approximations. Among the
simple, solvable models, the well-studied spin-Boson model.? ® spin-bath model,®
Bloch-Redfield™ theory are the most frequently uscd ones. Also as further
simplification is required some approximations such as Markov approximation,

2,15

two-level system approximation.®!® Born-Oppenheimer approximation!® are also

used frequently.

2.1 Master equation formalism

Master cquation, i.c. equation ol motion of the density matrix may be obtained
using hasic quantum mechanical facts.!™ This formalism has been used since
the carly works of Bloch, Redfield and Fano,™ and there have been many

18-20

studies using this formalism. There are three major pictures that are

used in determining the time dependency of quantum mechanical observahles,

Schrodinger picture, Heisenberg picture and the interaction picture.

2.1.1 Schrodinger picture

First, as we consider the basic Schrodinger picture we know that the state vectors

evolve in time with the Hamiltonian as

d , ”

i—[0(8)) = H(H)[¢(t); (2. 1)
where H(t) is the Hamiltonian and for simplicity the Planck’s constant # is set to
¥(tg)) at initial

(t)} at [inal time t, one obtains the relevant cquation of

1. As we define a propagator U{#,¢,) that propagates the state

time f; to the state

motion [or the propagator

g
%U(t,tu) — HOU (L, ). (2. 2)

Integrating the above equation [or a time independent Harniltonian gives us the

well-known propagator form

Ult,ty) = exp[—iH(t — ty)] (2. 3)
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where for an explicitly time dependent Hamiltonian one obtains

Ult,ty) = Texp [—i /tt dsH(s)} (2. 4)

where the symbol T defines a chronological time ordering operator which orders
products of time-dependent operators such that their time-arguments increase
from right to left as indicated by the arrow.

After defining the time evolutions of states, we can now write down the density
matrix and obtain the master equation for Schrodinger picture. As we write down

the density matrix as

p(to) = Zwi|¢i(to)><¢i(to)| (2. 5)

where w; are the weights of the states defining the initial wavefunction, and

propagate the states by the propagator, we find that at a later time ¢,

p(t) =D wilU(t, to) i (to)) (Wi (t)|UT (¢, to). (2. 6)
As we differentitate the above equation, we obtain the master equation
d .
Splt) = i [H(2), () 2. 7)

which is also known as Liouville-von Neumann equation.

2.1.2 Heisenberg picture

As for the Heisenberg and interaction pictures, the master equations are obtained
in a very similar manner. It is known that in the Heisenberg picture, the time
dependence is transferred to the operators defining the observables from the wave
functions. Any operator in the Heisenberg picture (including the Hamiltonian)
is obtained as

Ou(t) = Ul(t, t)OB)U(t, ty) (2. 8)

where the subscript H denotes the Heisenberg picture and the operator without

the subscript is in the Schrodinger picture. Here it is assumed that the operators
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in both pictures coincide at the initial time #;. Differentiating both sides of Eq.

2. 8 we obtain the equation of motion

d iy 00y (1)

(2. 9)

where Hpy is the Hamiltonian in the Heisenberg picture. It can be seen that
if the operator O has no explicit time dependence and the system is isolated,
i.e. OH/Ot = 0, the equation ol motion obtained is same as the Liouwville-von

Neumann equation obtained in Schrodinger picture:
d .

as we put the density matrix p instead of the operator O.

2.1.3 Interaction picture

The interaction picture is however a little bit different from both Schrodinger
picture and Heisenberg picture as it is a more general picture while the other
two are limiting cases for the interaction picture. Interaction picture can be
considered for a case where two different systems interact with each-other as the

name depicts. Let us write the Hamiltonian in two parts as
H(t) = Hy+ H(t) (2. 11)

where H; is the free part of the Hamiltonian, and H; is the interaction
Hamiltonian. Free Hamiltonian defines the systems in the absence of interaction
and usually considered time independent, whereas the interaction Hamiltonian
defining the interaction between the systems, is time dependent. Now we define

two time evolution operators as
Uo(t, tg) = exp[—iHo(t — to)] (2. 12)

and
Ur(t, to) = Ul (t, t)U(t, to) (2. 13)
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where U{t t;) is the time evolution operator ol the total system, the time

evolution ol any operator may be written as
O, (t) = Ul (¢, 1) O(0)Un(t, 1) (2. 14)
and time evolution ol any statc may be written as

[0r(2)) = Ui(#, t0)

B (o). (2. 15)

The relevant density matrix and interaction Hamiltonian in the interaction

picture can be obtained as [ollows:

pa(t) = Us(t,t0)plto)US(t, 1) (2. 16)
Hi(t) = Ul (t, t) Hi (U (8, 10) (2. 17)

and the corresponding Liouville-von Neumann equation is therefore given as

d
dtﬂf

Due to this equation of motion, density matrix may be obtained as

(t) = —i[Hy(t). pr(t)] - (2. 18)

{

pill) = pr(ta) — i / ds [H1(3), pr(5)]. (2. 19)

ta
This form of Liouville-von Newmann equation is frequently used in decoherence
calculations where a system-bath interaction occurs. For the master equation
formalism this may be used as a starting point where the interaction Hamiltonian
in the interaction picture H; may be defined differently tor different systems and

dilferent interaction mechanisms.

2.1.4 Decoherence in master equation approach

While using the master equation formalism the decoherence of the system can
be observed via the reduced density matrix. The reduced density matrix is the
density matrix defining only the systemn, and obtained by tracing the total density
matrix over the environmental degrees of freedom. It thus has the dimensions of

the system’s Hilbert space.
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As we consider a closed system, which is not in interaction with an
enviromment, and work on the density matrix, which also has the dimensionality
ol the Hilbert space, the time dependence of the density matrix clements may be

obtalned as
prs{8) = ex(O)cs (O (i By — E5)0) K] (2. 20)

where ¢x(0), ¢;(0) are the amplitudes of the respective eigenstates for the initial
state, and Ky, E; are the respective eigenenergies. It is obvious that the diagonal
elements are stationary in this Schrédinger picture, and the non-diagonal elements
evolve [reely with the relevant energy dilference as a [requency.

However, for an open system that is in interaction with an cnvironment we
have a totally different evolution for the density matrix. First, deccherence
produces a spontaneous diagonalization of the density matrix. The non-diagonal
elements of the density matrix rapidly reduce to zero as a manifestation of
dephasing. As the non-diagonal elements deline the phase dillerence hetween
the states, losing this phase information is named dephasing. Depending on
the type of coupling with the cnvironment other differences are expected to
occur between the open and closed systems. Rather than staying stationary
the diagonal elements of the density matrix change with time depending on the
interaction, and this process is called relaxation. As a principle property the
trace ol the reduced matrix still sums up to 1 av all times. This means that
the population of cigenstates change, though as the population of one cigenstate
increases, another decreases. For instance, Rabi oscillations in two-level systems
demonstrate this population inversion perfectly.

There is also another process of decoherence called leakage. As the quantum
computation is concerned, the two levels (conveniently the lowest two levels) are
the only important levels in a physical system. DBecause ol this [act most ol the
models that are commonly used, as will be discussed later in this chapter, include
only the lowest two lovels of a systemn. However, the probability of the higher

levels to achieve a finite population is not negligible. This population escape is
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called leakage, and can be expressed as

L(t) =]~ Z pnn(t)' (2 21)

T2

For an exactly two-level system, this expression is zero. However, for the
truncated systems it is critical to choose the truncation limit so that non-

negligible leakage efllects are correctly included in the solutions.

2.2 Approximations

As mentioned before, open quantum systems cannot be dealc with, without any
approximation. As both the system of interest and the environment that it
is interacting with, has infinite degrees of freedom, a direct approach for an
exact result [ails. In order to overcome this situation, some approximations
arc frequently used lor these type ol calculations. The most conumon of these
approximations arc the Born-Oppenheimer approximation (BOA),'® the Two-
2,15 21,22

Level approximation (2LA),*** and the Markov approximation.

2.2.1 Born-Oppenheimer approximation

Born-Oppenheimer approximation (BOA) in the most general sense, suggests that
il the Hamiltonian is separable into two or more terms, the total eigenfunctions
are products ol the eigenlunctions ol the separate parts ol the Hamiltonian. This

can he simply shown as

H = H (‘-11) + H'z(‘?z) — ":”/'(‘11, (12) = ’/3‘1(‘11)?!'»’2(‘12) (2 22)

where ¥1(g1) is an eigenfunction of Hy(¢), ¥=2(g2) is an eigenfunction of Ha(gs),
and (g1, g2) is an eigenlunction of the total Hamiltonian 7.

This approximation was [irst used on nuclear and atomiec physics, considering
the Hamiltonians and wavefunctions of clectrons and miclens. Another aspect of
this approximation also takes place where the movement of the nucleus due to

electronic interaction is so slow that it is negligible compared to the movement of
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the electrons. Finally, the nucleus can be considered stationary while electrons
orbit around it, and their eigenfunctions can he separately solved to [ind the
eigenfunction ol the whole atom.

In our case of open quantum systems, the Hamiltoman can he separated into
the systern Hamiltonian H, and the environmental Hamiltonian H.. Considering
the eigenfunctions of both Hamiltonians separately, and, assuming the total
eigenfunction to be a product of those two, we obtain a separable master equation

solution [or the open system such as
pr(t) = p(t) @ p.(t) (2. 23)

where p(¢) defines the density matrix built with system eigenfunctions and p.(¢)
defines the density matrix built with environmental eigenfunctions. With this
approach, the interaction is treated perturbatively. Here, the entanglement of
the system and the environment is totally neglected. This approximation may
give doubtful results in the long time regime however, it would be impossible
to calculate the behavior of the system, considering the entanglement with an
infinitely large environmental reservoir.

(Golng one step further in the Eq. 2. 23 would be to assume the environment
stationary. This is like neglecting the movement of the nucleus with respect to
the electrons. Althongh the system ol interest may be infinitely large, practically
it may be truncated in the energy spectrum. This truncation will be analyzed
in a later section. The truncated system will have much less degrees of freedom
compared to an infinitely laree environmental reservoir. Therefore the processes
occurring between the system and the reservoir effect the system, however
it may be neglected for the reservoir. Finally, with the Born-Oppenheimer

approximation we are le[l. with an expression like

pr(t) = p(t) ® p.(0). (2. 24)

This expression assumes the system and environment to be seperable and also
the environment is left unchanged throughout the time. Thus Born-Oppenheimer

approximation greatly simplifies the calculation of the open system dynamics.
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The environmental density matrix with this approximation is considered as a

thermal equilibrium or a vacuum most of the time.

2.2.2 Two-level system approximation

While analyzing the interactions of a system with an infinite environment it is
impossible to make analytical calculations with the master equation formalism
if the system under consideration is also considered to have large dimensional
Hilbert space. Therefore a truncation is often done making use of the fact that
the system energy levels that are of concern are mostly affected from the levels
that are in a finite range

The most aggressive truncation procedure is used to obtain a two-level
system. Two-level systems have considerable importance concerning the quantum
computation and qubit operations. Although not essentially required, the qubit
operations and quantum algorithms are executed trivially in two-level systems.
There are some exact two-level physical systems such as spin 1/2 systems where
most of the real physical systems have higher dimensions of Hilbert space.

This truncation scheme has been defined in numerous places,?? although not
rigorously proven. The procedure is rooted, rather intuitively, to the condition
that

kgT

A, T < wy (2 25)

where A is defined as the tunneling matrix element between the double wells
in the potential, and wy is the resonant transition frequency between the lowest
two levels. In this case, the environmental oscillators are separated into two
cases. The oscillator frequencies that are 2 wq are thought to effect the transition
through the barrier between potential wells, therefore renormalizing the tunneling
matrix element. On the other hand, the oscillator frequencies that are < wy
detune the potential wells, and thereby destroy the phase coherence between the
localized states in the two wells. However, throughout this reasoning possible
transitions to higher levels due to higher environmental oscillator frequencies are

totally neglected, as possible non-resonant transitions are not considered.
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The 2LA is one of the most [requently used approximations in studies of
decoherence, though [or most ol the cases its use is not justified. We believe
that this approximation should be handled with care, and the validity conditions
should be checked meticulously. The 2LA will be questioned in detail in Chapter

3, where also the condition of low temperatures, i.e. Eq. 2. 25 will be discussed.

2.2.3 Rotating wave approximation

Even if a system is truncated to two levels, its interaction with an environment
such as a field does not have a closed-form analytical solution. Therefore,
further approximations are essential in order to achieve analytical progress. The
rotating wave approximation?"*? is one approximation widely used to eliminate
the effects ol non-resonant processes. In order to present the complications a
sample calculation will he presented helow.

Consider a two level system which is in interaction with a classical clectric

field. A typical Hamiltonian for this system-environment is
H = Rt |1){1] + Aws |2y (2| — - E()(|1)(2] + |2)(1]) (2. 26)

where the coupling with the electric field is taken to be of the electric dipole form,

coupling the different parity states |1} and |2}. Here for the sake of simplicity, p

is taken to be real. I we examine the evolution ol a generic state
|o(t)) = a1 (8|1} + as(t)|2) (2. 27)

under the Hamiltonian given by Eq. 2. 26, we obtain the coupled amplitude

equations as

(1) = —iwnen (1) + %,u, E(Bay(t) (2. 98)
da(t) = —lwaao(t) + %u - E(t)ay(f). (2. 29)

As a further simplilication, ag we assuime the ficld to be a monochromatic field,
we can express E(t) as Egeos{wt + @) which sirplifies the anplitude equations
to

dr(t) = —iwiai(t) +iVeos(wt + @)as(t) (2. 30)
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ax(t) = —iwaaa(t) +iVeos(wt + ¢)a; (1) (2. 31)

where V = p- Ey/h. Now, as we pass on to the interaction picturc where the [ree
evolution ol the amplitudes are removed [rom Igs. 2. 30 and 2. 31, and the new
aplitudes are defined as aq(8) = by (Hexp(—iwit) and aa(t) = ba(t)eawp(—iwst),

the resulting coupled amplitudes turn out to he
bi(t) = iVeos(wt + @exp [i{wy — w)t] balt) (2. 32)

ba(t) = iV cos{wt + p)erp [i{ws — w)t] b (D). (2. 33)

By this transformation, the only time dependence on the amplitudes is reduced to
the one caused by the coupling. In the next step, as the cosine terms in Egs. 2. 32
and 2. 33 are written as sum of complex exponentials, we obtain two exponential
time dependent terms in both amplitudes in the form ezp [i( —w + w; — w2)] and
exp [i(w + wy —ws)] for the first term, aund the complex conjugate of these torms
for the second. Here lics the essence of the rotating wave approximation, where
the terms exp [i{—w + w1 — we)] and their complex conjugates are neglected and

we are left with the new amplitude equations in the rotating wave approximation

5y() = i%emp(it,o)ea‘.p(—iﬂt)bg(t) (2. 34)
bi(t) = '.ige:cp(—z'c,o)exp(-ié\t)bl(t) (2. 35)

where the term A = wp —w( —w is the detuning between the transition [requency
between the levels and the driving electrie field.  The main idea behind the
rotating wave approximation lies in the choice of the frequency of the ficld. As the
frequency of the driving field is very close to the separation between the energy
levels of the system, we can safely neglect the rapidly oscillating nonresonant
terms given by exp[i{—w + w; — w;)| and its complex conjugate, and only take
the resonant terms given by exp [i(w 4wy — wa)] and its complex conjugate. The
simplicity supplied by the rotating wave approximation becomes clearer in the
next step whoere another transformation is made on the amplitude equations 2.
34 and 2. 35 as bi(t) = ci(t)exp(—idt) and by(f) = co(t)exp[i(A — §)t] where
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(934

& may be chosen arbitrarily. The final amplitude equations, which are stripped

[rom explicit time dependencies turn out to he

éi(t) = 1deq (t) +'i%6:17p(i170)(32(t) (2. 36)
Ga() = (5 — A)eg(t) + 'ige:l:p(—iicp)(fl(t). (2. 37)

Typical choices for the arbitrary frequency & may be zero and A/2. IHere since
the explicit time dependency is taken care of, solving these coupled equations
become much simpler.

The power of the rotating wave approximation can be used salely, when the
driving field [requency is very close to the energy separation of two levels and
also at long times. As the difference between the frequency of the field and the
energy separation becomes greater, the nonresonant terms as well ag the resonant
terms become effective in the dynamics of evolution. Furthermore here, the
driving field is accepted as a monochromatic field. As the field starts to include
a wide [requency range, the rotating wave approximation becomes questionable.
However, for an isolated system that is driven by a resonant field where the
Rabi solutions arc expected to he observed, the rotating wave approximation is

perfectly applicable and transforms the typical Hamiltonian
h .
= 5 [wr |[L3{L] + wo|2){2]] — BV (|1){2| + |2){1]|) cos(wt + ) (2. 38)

into a much simpler form as

= 2 Ll = cal2) 2 - 2

23 (L|exp [—i(wt + )] + |1} 2|ezp [ilwt + )] -
(2. 39)

The monochromatic field approach will not be uselul in the consideration of
the system-environment interaction, as the environment is usually modeled as a
bath having a continuous frequency range, as neglecting the non-resonant effccts
for such a large frequency range will not give dependable results in the short time

regime. So in our calculations, all the non-resonant effects will be considered.
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2.2.4 Markov approximation

Markov approximation®*#* is another popular approximation which simplifies
analytical calculations in the time domain. In analytical calculations, the svstem
behavior has a memory, so that the evolution of the system at any time depends
on the behavior at previous times. This dependence makes analytical calculations
rather hard, and numerical computations costly. In order to present the nature of
the Markov approximations onc should consider a system where a single discrete
state |0} is weakly coupled to higher continuum of levels via a monochromatic

classical field. The Hamiltonian of this system may be written as
II' = hwy|0){0] +h/wh|h)(hdwh -+ (2. 40)

h / i [0} hlep ionlemplit) -+ |Ky(Oleen(— o) dapl—iwh)] dy

with the rotating wave approximation applied, whore the subscript A denotes
the higher levels of the system. The first line represents the free part of the
Hamiltonian and the second line defines the interaction with the monochromatic
field. Here the states are defined orthonormal so that (0|0) =1, (k) = 6wy, —
wi, ) and (0|h} = 0. Also nnexp(ipy) delines the transition matrix element between
the single diserete state |0) and the higher state |R).

The generie wavefunction of the system 1s given as

[9(t)) = epexp(—iwet)|0) + / epexp(—iwpt)|h)duwy, (2. 41)

and inserting this wavelunction into the Schrodinger equation gives the equations

ol motious [or the state amplitudes as
Gy = —'i/'.r;he:&p(igsh)chexp(—iﬂht)dﬂh (2. 42)

¢y = —inpexp(—ipy Jegexp(iApt) (2. 43)
whoere the term Ay, = wy, — wy — w deflines the detuning between the higher state
|h} and discrete state |0) via a one photon resonance. In order to solve these

coupled equations of motions it is best to integrate Fq. 2. 43 and insert the
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result as ¢, (t) in Eq. 2. 42 to obtain an equation for the amplitude of single state

co(t). The resulting equation is an integro-differential equation

Golt) = — /0 t otV K (t — t')dt (2. 44)

where the kernel K (t —t') is given as

Kit—-t)= /nie:vp [—iAp(t — t')] déy. (2. 45)

It is obvious that the value of the amplitude ¢y at any time depends on the
values of ¢y at all previous times. This is usually defined as the amplitudes
(i.e. the system) with memory. Here the kernel function is merely a function.
Nonetheless, similar integro-differential equations are found with the master
equation formalism and density matrices. In that case, however, the kernel
is not a function, but generally a complicated operator, usually called as
the superoperator. It may include projections, commutations etc. But the
dependence on the previous times is inevitable. The Markov approximation comes
into scene at this point. The aim of the approximation is merely to reduce the
integro-differential equation into a simpler differential equation, by erasing the
memory effects on the system.

Consider a special case, where the transition matrix element is flat throughout
the higher frequency range, so that n? = 2. This transforms Eq. 2. 45 into

Kit—t)=mn? /00 exp[—iAL(t — )] dAy, = 27n2(t —t') (2. 46)

— 00

so that the kernel is only contributing at ¢ = #'. This delta function behavior

simplifies the Eq. 2. 44 into
Co(t) = —71'77300@) (2 47)

A less trivial result arises when the continuum of transition matrix elements
are not flat but slowly varying. For that case, the kernel will not have a delta

function behavior, but it will still be sharply peaked at t = t'. As the kernel will
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contribute mostly near t = ¢, its contribution to the amplitude cquation may be

neglected so that

co(t) = —CU(t)/D Kt —t)dt' = —cu(z%)/G K(r)dr (2. 48)

By this equation it is possible to solve the simple differential equation as the
kernel is integrated. Since the kernel is independent of amplitudes, the problem
is reduced to the integration ol the kernel. During these calculations with Markov
approximation, it is assumed that; (1) the kernel is sharply peaked at ¢ = ¢/, i.c.
the transition matrix clements are slowly varying throughout the levels, (2) the
integral is independent of the upper limit 7 = ¢, so that the integral may further
be simplified as taking the upper limit as infinity.

Markov approximation significantly simplifies the analytical solutions for the
integro-differential equations, whether they arise from the amplitude equations
ol motions or the master cquation. llowever, there is a serious assumption:
the kernel is assumed to be sharply peaked. In this case, this means that the
transgition matrix clements are slowly varying, i.c. the transition from the discrete
level to all higher levels is uncarly cqually probable. Tn the master equation

approach, this may lead to different assumptions, which will be depicted later.

2.2.5 A general application

In order to demonstrate the master equation approach and the approximations

M Consider a system

mentioned, it will be helpful to solve a simple problem.
with equally spaced energy levels that is in interaction with a continuum of a
harmonic oscillator bath. The system operators, denoted as 5T and s create
and annihilate a quantum ol cnergy A€2 in the system, as raising and lowering
operators. The environmental raising and lowering operators are denoted as
bi and b,. Tn the interaction picture, Hj, the free Hamiltonian of the system,
introduces a time dependence on the system operators so that st is multiplied by
exp(i€2t) and s is multiplied by exp{—i€¢). In the rotating wave approximation,

svstem and environment operators pair as s'b,, and bl s, and introducing a unitary
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transformation 7 = exp [-iSZt j bwadw} renders these coupled operators time
independent. Finally, the interaction Hamiltonian where the [ree part ol the

svstem is removed 18 given as
I, = & / whl bdw + (2. 49)

h /?}w s1b, exp(—ip,) + bl explip,)] dw

where 17, exp(—ii,, ) is the system-bath coupling. Making a second transformation
to get rid ol the [ree evolving environment part, introduces the time dependencies

on the environment operators b, and &) and the final Hamiltonian is reduced to
Vi(t) = a,fryw [s'heap[—ip,]cep|—iwt] + sblexplip,)explivt]] dw. (2. 50)

Defining a Langevin operator for the envirommental operators in the form of
F(t) = ?'./'r/wc:z;p['écpw](:;fp[iwt]bw(())dw (2. 51)

and using the fact that the Heisenberg operator b,(0) is indeed the interaction

operator b, here, the interaction Hamiltonian is further reduced to
Vi(t) = ih[sTF(t) — F'(#)s). (2. 52)

Remermbering the Eq. 2. 18 we obtain the master equation [or the total density

matrix _
¢
- _ 7 G o
prit) = E[L 1(8), pr(8)]- (2. 53)
In order to observe the system behavior only -not to mention that observing an

infinitely large environment realistically would be impossible- we need to take
the trace of the total density matrix, over the environmental degrees of freedom.
However in order to take this trace we also need to apply the Born-Oppenheimer
approximation given as in Bq. 2. 24. Using the [act that Tr[pQO] = Tr[Op| = (O}
we obtain factors as (F(t)) and {F1{)}from Eq. 2. 53, which results in zcro.
Therefore, we nced to go to a higher order, at least to sccoud one. It is also trivial
to see that all odd orders of the expansion of Eq. 2. 33 give zero contribution,

whereas the even orders give finite results.
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Using the simple relation

7

pr(t) = p2(0) — 3 [ W), ot (2. 54

and inserting this into Eq. 2. 53, we obtain the second order equation

1

5 / Tr. [Vi(t), [Vi(t), pr ()] dU. (2. 55)

A(t) = —%Tre[V](t),PT(O)]

The first term here is also zero as explained above. The second term expands as

0 =2 [ Tre [0~ F(09) [TF(@) — F1)5)0.00) © 6]

(2. 56)
Using the cyclic property of trace Tr.[ABC] = Tr.[CAB| = Tr.[BC.A|, we obtain
the master equation consisting of 16 terms grouped below:

t

pt) = i [sp(t)s! — s Sp(t')] (F(OF') (2. 57)
+ [sp(t))st — p(t')s's] (F(Y')F(¢))
+ [stp(t')s — sstp(t)] (FT () F(Y))
+ [sto(t))s — s*] (FH ()P (1)
- [s*p<t'>s* ’)} (FOF()
— [stp(t)st — p(t)s"2] (F(#) F (1)
~ [splt)s — s p(t )} (FH@)F! (1)
~ [splt)s — plt)s”] (F1(£)FT (1)} dt'

Here, the last four lines may be dropped out since they include the expectation
values for two annihilation or two creation operators, which are zero for most
environment models. The other environmental expectation terms come as a

multiplication, and they are defined as

(FT({"YF(t)) = /niﬁwexp[—iw(t — t")]dw (2. 58)

and

(F()FH(1)) = / 2 [ + Lexp[—iw(t — )] dw. (2. 59)
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As we insert these definitions into Eqn. 2. 58, we obtain

/ dat’ /nwdw sp(t')st — sTsp(t)] [R + Lexp[—iw(t — t)[2. 60)
T [sp()s" - p(t)s s} [+ Ueplic(t — 1)

T stp(t)s — sstp()] mcaplica(t — 1)

F[s'p()s — p(#)s"s] mcapl—iwlt — )]}

The next step in the analytical calculations is introducing the Markov
approximation. As described in the previous section the integro-differential
equation above may be reduced to a differential equation with the help of the
Markov approximation. In the master equation approach we have a kernel of
the form of a superoperator, but we still have a familiar spectral dependency.
Assuming that the continuous transition matrix element 7, is slowly varying, we
can think that the main contribution from the density matrix in the equation is
not from the history, but from the instance the observation is made. Excluding

the density matrix from the integral we obtain
plt) = — idw[ss, p(t)] —idw [[s', 5], p(t)] (2. 61)
+ T[a(0) + 1] [2sp(t)s’ — sTsp(t) — p(t)s's]
+ Ta(0) [2s'p(t)s — ssTp(t) — p(t)ss']

where T' = 7m1?(0) and the integral terms are defined as

- —P/”AdA (2. 62)
and AV
5w = P / %d(s. (2. 63)

These integral equations result in the frequency shifts on the system, and they
should be small compared to the latter two terms in order to produce meaningful
results. The master equation obtained is much simpler to solve than a system
with multilevels which entangles with the environment immediately, and has a
rather sharp transition matrix distribution over the spectrum that would have

an incredibly hard to solve master equation, if not completely impossible.
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2.3 Models

In the previous section the most general approximations are discussed brielly.
Perhaps the most frequently used one is the two-level approximation. There arc
also different models that deseribe system and environment interactions. In this
section the most common models used in this problem will be discussed, including

the famous spin-boson model, central spin model, and the Bloch-Redfield model.

2.3.1 Spin-boson model

Perhaps, the most intensely studicd maodel in the decoherence ficld is the spin-
boson model. Basically it consists of a spin system (a two level system) in
interaction with an environmental bosonic bath (several, if truncated, or infinitely
many harmonic oscillators).>** 2 First, as we are accepting a two-level system,
let us write a simple Hamiltonian describing the system in a two-dimensional
Hilbert space isolated [rom the environment as

1 1
II = —Sha, + Sea. (2. 64)

where o, and o, define the Pauli macrices, A defines the coupling between the

two states and & defines the eigenenergy of the system. This Hamiltonian may

1
2

define a spin 5 system in interaction with a magnetic field. Also a two level
system is commonly thought ol as a system having a double-well potential, and
the truncated two levels are the combinations of the localized ground states in
the wells vvg and ¢op, which is also the case for SQUID systems, that will be
discussed in the next chapter. Tn this case of double-well potential the coupling
between the two states is considered to be the tunneling amplitude between the
two wells. The system having the above Hamiltonian can be diagonalized and a
sct ol new eigenenergies may be delined to govern the time evolution, though it
is not. preferable in this case, since experimentally real obscrvables are needed to
examine the system. In case of a weak tunncling, where A /¢ is very small, the
eigenenegies of the Hamiltonian would be very close to =, However, if the ratio

is high, then there will not be a set of localized states in both wells, but rather
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a superposition ol them. In the special case of £ = (), the eigenstates turn out to

be even-odd parity states as
5 = (s + p) (2. 65)
WEp = —=\Wr T ¥R . D2
V2

1
Py = —{(hy — 1 2. 66
0 \/E(L 1 —¥R) ( )

The dynamics of this isclated two-level system is indeed a rather trivial one.
The real complication occurs when the environmental interaction is introduced.
In almost all cases, the coupling to the environment is taken as .£} type, where
Q is an cnvironmental operator. This kind of coupling commutes with the
cigenenergy part of the Hamiltouian, but it doesn’ commute with the coupling
(tunneling) between the states. As a result it will not effect the diagonal elements
of the density matrix, also called as the population of states, but rather effect
the non-diagonal elements. Another way to explain the effect of this interaction
would be to say that it causes the dephasing ol the system, but doesn’t have a
relaxation ellect. There are still non-neglectable interactions possible with the
envirenmental like o, or o, type couplings. Depending on the type the interaction
may cause relaxation, dephasing, or both. However, as much as the spin-boson
model is concerned the interaction will be taken as ¢, type.

As the environmental coupling is assumed to be weak it is also possible to
assume the environment to be consisted ol harmonic oscillators and the coupling
with the system to be with the oscillator coordinate or momenta.? As the coupling
is taken to be with the environmental coordinate, we rcach to the well-known

spin-boson Hamiltonian

1 1 1 . . 1
Hep = —§E.A(T$ + 5502 + JZ(Em;rwa,ﬁ +pﬁ:/27m.) + EO'Z JZ()‘ka (2. 67)

where A is a bare tunneling matrix element, xj, pp, ws, and m, are respectively

P oscillator in the

coordinate, momentum, [requency, and mass ol the
cnvironinent. The parameter Cy defines the coupling strength of the system with
the & oscillator. The Hamiltonian has a sum over the environmental degree

of freedom &, and the dependence of the coupling on this coupling strength
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may be delined with a [unction which is called the spectral [unction, the spectral
strength of the environment with respect to the [requency ol the environment,
and usually denoted with J{w). By this definition, the dynamics ol the system
are governed by the parameters A, £ and the spectral funceion J{w). The spectral
function is generally accepted to be a smooth function of environmental frequency
w. Under these circumstances, the spin-boson model and the Hamiltonian (2.
67) is extensively used in the literature, whether the system in consideration is a

genuine two-level system or a multi-level system truncated into two levels.

2.3.2 Central spin model

The central spin system®?® is similar to the spin-boson model in most aspects.
The svstem is again truncated to two levels. Ilowever, in this model, the
environment is dillerent, so that the system is not coupled to a sct of hosonic
harmonic oscillators, but instead coupled to a spin bath. So in this case, the
environment consists of two-level systems. The Hamiltonian for this system may

be given as

Hee = < A7_cos |P— Zﬁ, < 0% | + e (2. 68)
N N N
—|—’T~Zw E,:, T} +Zwk 7 - O +ZZV§? kOAf
k=1 k=1 k=1

where 7 is the central spin, and the o, operators define the spin bath degrees of
freedom. There are also some restrictions and assumptions made to achieve this
form of the central-spin Hamiltonian. For instance, the phase of the central spin
is restricted to a cos{®) form while the terms A and & incorporate spin bath
renormalization ellects. There are also assumptions such as that the diagonal
couplings W.!.‘ wik & g, where £ is the ultraviolet cutoll [requency lor the spin
bath, and that the inter-spin coupling Vi, <€ w !,WJ‘ However the ratio of Vi /A
remains arbitrary. In the weak coupling limit, this model can also be reduced to

spin-boson model.
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This model is usually used to solve gystems like nanomagnets ol SQUIDs
coupled to nuclear and paramagnetic spins. Though this model turns out to
be o uselul and simple model, still it assumes a two-level system on top ol an

envirommnental bath consisting of two-level spin systems.

2.3.3 Bloch-Redfield model

The Bloch-Redfield formalism is rooted in the Bloch equations that were derived
by Bloch in 19467 and further development of the Bloch equations by Redfield.®
Bloch equations were first used in the nuclear magnetic resonance problems where
an N-level atom is in interaction with a magnetic field, and the main feature of
these generalized Bloch equations were to describe the relaxation process with
two real time scales, 77 and T3, 77 describes the time scale [or the relaxation,
and Ty describes the time scale for the dephasing processes.

Later it was discovered that these generalized Bloch equations were also
applicable to optical problems related to maser or laser,”® and optical Bloch
equations were generated. Though the generalized Bloch equations were derived
for N-level atoms, the optical Bloch equations were applied to spin systems, i.e.
2-level gystems. In order to obtain these optical Bloch cquations, [irst a fictitious

quantity, a pseudo-spin vector v is defined with the components

a

ve = Trlps(t)o.] = pthz + pt)n (2. 69)
vy, = Trlps(t)o,] =ilp(t)iz + pt)a]
ve = Trlps(t)o.] = plthi — p(t)a

where pg(f) defines the reduced density matrix for the system. Then the optical

Bloch equations are given as

dv, Y

v Y 9 =
— lw x v 7 (2. 70)
du,, Uy
T
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dv, w x v] v,
= |lwXxvVv], ——
dt =T
with the w vector having components
Vie + V&
ww — 12 + 21 (2. 71>
h
L Vu—Vn
v h
W, = _IitE
s A

where the terms Vj; = (i|v|j) are the interaction matrix elements defining the
interaction between the atom and the electromagnetic field. Here, as mentioned
before, T defines the relaxation of the diagonal elements, whereas T, defines the
dephasing of the non-diagonal elements of the reduced density matrix.

Starting from the Bloch equations, the Bloch-Redfield formalism is con-
structed where the reduced density matrix in the eigenbasis of the unperturbed

Hamiltonian has an equation of motion

d

%an = —WnmPrm — ; Rymkiprr (2- 72)

where the Bloch-Redfield tensor is defined as

Rumit = 0im Ui 0u > Tl =Ty =T (2.73)
and the rates T' are found by the Fermi’s Golden Rule!” are

1 o0 .
I — — [ dte ™ n (Hy 1 () Hy ok (0)) 5 (2. 74)

Imnk — h2 0

_ 1 [ :
Fl(mZLk = ﬁ/; dte_zwnkt<HI,lm(0)HI,nk<t)>B (2 75)

where Hj ., (t) are the matrix elements of the interaction Hamiltonian in the
interaction picture, and defined in the eigenbasis of the uncoupled system

Hamiltonian. The averages are taken over the bath degrees of freedom.
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The Bloch-Redfield formalism makes use of the Fermi Golden Rule equations,
and also has the Born-Oppenheimer approximation fused in it. Although it leads
to analytically solvable results for 2LS,%%0 the drawbacks of this formalism have

been explored in the context of spin magnetic resonance and relaxation.!! ™3

2.3.4 Lindblad formalism

The Lindblad formalism!™!* is also one of the widely used techniques for the
solution of the master equation. The popularity of the Lindblad formalism stems
from its simplicity. This formalism has the Markov approximation integrated in

it. In its simplest form, the Lindblad equation is known as

L pult) = L1 (2. 76)

where the £ defines a Liouville super-operator, and p,(t) is the system density
matrix. For a finite dimensional Hilbert space of the environment, where the
dimension is given as N, the corresponding Liouville space is a complex space
of dimension N? and N? orthonormal basis operators are described to span the
basis, as Fj,i = 1,..,N2. For convenience one of these operators is taken as
identity, and the rest of the operators are used to define a new set of operators

as

N2-1

k=1

where the solution for the u matrix and evaluation of the final step as in Fig. 2.
78 is described extensively in.!” The final form of the Lindblad equation Eq. 2.
76 is found to be

N2-1

. 1 1
‘Cps — —Z[H, ps] + Z Yk <AkpsA]T€ - §A2Ak,05 - §psALAk> (2 78)

k=1
where the first part defines the unitary part of the dynamics generated by the

Hamiltonian, and the second part is defined as the dissipator. Operators A and
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41; as described in Ifq. 2. 77 are olten named as the Lindblad operators.

The Lindblad formalism, as seen in Iq. 2. 78 is pretty simple though
there are some drawbacks., First, Markovian dynamics arc assumed [rom the
beginning. Furthermore, finite dimension for the cnvironmental Hilbert space
is used. We basically discard all approximations except the BOA. We have a
cautious treatment of this single approximation used with a proof convincing the
reader of the validity of this approximation in the range of our interest.

As I have introduced the basic models, approximations and formalisms in
this chapter, in the next chapter, T will be investigating the physical systems of
interest for our analysis of decoherence phenomenon, and present a solution for
the adopted system, r=SQUID.



Chapter 3

Superconducting systems and the

Josephson effect

Concerning the quantum computation there are several physical systems that are
considered to be applicable to obtain qubits. NMR systems,**3? SQUIDs,*334
spin or charge based solid state systems are among the most frequently used
systems, although there are many other possibilities. Yet perhaps, both in
theoretical and experimental studies the most popular systems, are the SQUID
systems. In this chapter the theoretical basics of the SQUID systems will be

covered, and some SQUID designs will be discussed.

3.1 Josephson effect

Josephson effect®>?% is one of the most important discoveries in the world
of superconductivity. It plays an important role in many technological
improvements. It is also the phenomenon behind the devices called the SQUIDs
which will be discussed in the next section.

The Josephson effect is named after the B.D. Josephson, who first proposed

that a zero voltage supercurrent

I, = I.sin(Ayp) (3. 1)

29



CHAPTER 3. SUPERCONDUCTING SYSTEMS AND THE JOSEPHSON EFFECT30

should flow through a weak link.>> The weak link is defined as the junction
obtained by two superconducting electrodes separated by a thin insulating
barrier. Here, the term I, is the critical current, the maximum supercurrent
that the junction can let pass through, and Ay is the phase difference in the
Ginzburg-Landau wave-function of the two electrodes. Josephson’s predictions
further included the evolution of this phase difference as a potential difference V'
is applied through the junction as

d%ﬁ = % (3. 2)

where the 2e defines the charge of a Cooper pair. This prediction results in

an alternating current with amplitude 7. and frequency v = 2eV/h. These
predictions, called as the de-Josephson effect and ac-Josephson effect are verified
by numerous experiments.

Although Josephson proposed the weak link to be obtained by
superconductor-insulator-superconductor junction (S-I-S), it turned out to be
valid for other possible junctions, such as superconductor-metal-superconductor
junction (S-N-S) where the metal near the junction turns out to be a weak
superconductor due to proximity effect, or superconductor-constriction-
superconductor junction (S-c-S) where two superconductor electrodes are

separated via a short, narrow constriction.

3.1.1 The RCSJ model

Although the predictions of Josephson about the superconductor electrode
junctions are solid, further investigations are needed to understand the response
of the Josephson junctions to finite voltage applications. In order to deepen
the understanding a simple model named RCSJ?" (resistively and capacitively
shunted junction) is used. In this model the junction will be treated as an ideal
Josephson junction, which is shunted by a resistance and a capacitance as seen
in Fig. 3. 1.

Here, the resistance is defined by the dissipation in the finite voltage regime,

and capacitance is defined between the superconducting electrodes. As a finite
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c R

|

Figure 3. 1: The effective circuit used in the RCSJ model.

bias current is applied to the junction, in order to find the phase v associated
with that, it is appropriate to write a current relation, so that the current from

the tree channels in the model will sum up to bias current as

1% dv
I =1si — —_— .
cosin(y) + 7 + p (3. 3)

where I denotes the original critical current for the ideal junction, which may

be greater than I. for this model. For further simplification, let us define the

2el, 172
wy = ( hcf’) (3. 4)

and a dimensionless time variable 7 as

plasma frequency w, as

T = wyt. (3. 5)

When we eliminate the variable V from Eq. 3. 3, we obtain

d*>y  1dy . I
72 + 65 +sin(y) = I_co (3. 6)

where the term () defines the quality factor and given as
Q = w,RC. (3. 7)

The quality factor defined here is identical to ﬁcl/ ? where 8, is the damping
parameter introduced by Stewart and McCumber.38:39
Often, a model named as the tilted-washboard model is also used to describe

the system defined as the RCSJ model, as they are analogous to each-other. In
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U,

Figure 3. 2: The tilted-washboard potential for I/I., = 0.1.

the tilted-washboard model, a particle of mass (%/2¢)?C' is moving in a potential

U(y) = —E; cos(y) - (?) . (3. 8)

in the v axis, with a dissipative drag force of

AN 1 dy

Here I; is the energy scale used, named as the Josephson coupling energy, and
defined as F; = (h/2e)l. The tilted-washboard potential as can be seen in Fig.
3. 2 comsists of local minima going down with the axis v for I < I4. However
for I > I there are no minima or stable equilibrium points.

As C is chosen small, so that the quality factor @ satisfies the relation @ < 1,
we have an overdamped junction, and the Eq. 3. 6 can be reduced to

dy 2elgR (1 )
Ry - . 1
o - (Ico 5111(7)) (3. 10)

Due to this equation, if I is greater than I, dy/dt always stays positive, but
varies with sine function with frequency ~. In order to obtain the average voltage
we need to take the time average of this equation over one period 7', which
takes v to scan the interval 0 — 27. Using the Josephson frequency relation

2¢V/h =27 /T we find the relation for average voltage as

V = R(I* — I%)"2, (3. 11)
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It can be seen that the voltage V is zero lor I < Iy, and V = TR flor I >3 1.
[Towever [or ¢) > 1 the junction is underdamped, and we observe a hysteretic
[V characteristic. As I is increased [rom zero the potential stays zero, until it
jumips up to a finite value at I = [4, and then it raises continuously with T,
However as T is decreased below I, V does not drop to zero at T = Iy, but

rather drops to zero near [~ 41 /7().

3.1.2 Josephson effect in the presence of magnetic flux

In order to understand the SQUID devices and their principles, it is important
to work out the behavior of Josephson junctions in the presence of a magnetic
field. Although the magnetic field may effect the superconductor electrodes, for
the sake ol simplicity we may just study the ellect on the gauge invariant phase
dillerence, and ignore the cflect on the clectrodes. The gauge invariant phase
difference is given as

= Ap— %/A.ds (3. 12)
Py

where the superconductor flux quanta is denoted with ¢; and A is the relevant
vector potential. The integration here is calenlated from one electrode to the
other. The supercurrent through an ideal Josephson junction, in terms of this

gauge invariant phase + is given as
I, = I.sin{7y) (3. 13)

Let us consider a double junction conliguration as in Fig. 3. 3. It is convenient,
to analyze the syvstem with respect to the magnetic flux through the system as
it is a gange invariant quantity, so that we would avoid the sensitivity of vector
potential due to arbitrary gauge choice. As we choose a specific closed contour
and evaluate the integsral, the result gives us the flux ® through the system as
B =V x A, and the line integral of A on a closed contour gives the enclosed
flux as a result. Lel us choose the contour just inside the electrodes, assuming
that the thickness of the clectrodes are greater than the skin depth A, so that

the supercurrent velocity v, is zero along the contour. Then using the relation
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Figure 3. 3: A circular ring with two Josephson junctions. The dotted lines
indicate the contour for the integration.

m*v, = l(Veo—21A/®y) that can be obtained by the Ginzburg-Landau theory,3’
we obtain the vector potential as A = ($¢/27)Vy. Using this form of the vector

potential we obtain the flux equation as

d
@z%A-ds:—O V(p-ds+/ A - ds (3. 14)
27 electrodes weak—links

It is obvious that the sum of the phase differences across the weak links 1, ©2
and the integral |

since the phase must be a single-valued quantity. Using this fact as we take

lectrodes V@ + ds should be zero or an integer multiple of 27
the integrals over the weak-links in the same direction through the contour, we
obtain the sum of gauge invariant phase differences ¢ 2 to be 27®/®. But in
order to obtain the total supercurrent through the weak-links we should evaluate
the integrals over the weak links, both from electrode A to electrode B. In that

case, the difference of the gauge invariant phase differences turns out to be

=7 = 2= (mod(2m)). (3. 15)

According to this equation, if the supercurrent through both junctions are
maximum due to Eq. 3. 13, both phase differences 7, » should be 7/2, and
this is only possible if the flux through the ring is an integral multiple of the
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ux quanta ®5. For the special case, 1.1 = I = I, the maximum supercurrent

passing through the parallel junctions satis(y the condition
7P
I, = 21| cos(—)|. (3. 16)
P

The sensitivity of these rings having Josephson junctions on them to the magnetic
flux, makes them useful tools for several applications such as magnetometers,
gradiometers, voltmeters, amplifiers, ete. This is also the basic idea behind the
SQUID devices.

3.2 SQUID devices

SQUID devices are based on the interaction of a superconducting loop, including
junction{s), with a magnetic field. The basics of this interaction have been
explained brielly in the previous scction, yet there are two dillerenl basic types
ol SQUIDs that arc being studied both theoretically and experimentally. The
de-SQUIDs (direct current SQUIDs) which has two parallel junctions, and rf-
SQUIDs (radio frequency SQUIDs) that have only one junction. Although de-
SQUID was first to be developed, and has higher sensitivity, since ri-5SQUID was
commercially available before the de-SQUID, it remains popular among scientists.

Yet the popularity ol SQUID systems is due to another [act. I has been
discussed by several researchers, both theoretically and experimentally, that
macroscopic quantum coherence (MQQC) is observable in SQUID systems®19 is
indeed a very unique phencmenon, where the quantuin behavior can be observed
macroscopically. MQC also show itself in laser and superfluidity. Leggett and
Garg!® discuss that two assumptions are made by most physicists at macroscopic

level that

a) Macroscopic systems with two or more macroscopically distinct states

available will at all times will be in one of these states.

b) In principle, it is possible to perform a noninvasive measurement on macro-
scopic systems so that the system will experience small perturbationon its

subsequent dynamics.
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Though they claim that the extrapolation of quantum mechanics at the macro-
scopic level contradicts these assumptions. Consider electronic wavefunctions in
a superconductor. As indistinguishable electrons with identical wavefunctions
come together, with the same phase, the phase state which can be observable
macroscopically can show quantum mechanical behavior, such as tunneling, or
superposition. For example a superposition of current in a superconductor
ring so that the current flows in both directions, or tunneling of a flux state
through a potential barrier are examples of such behavior. Recently, there are
many experimental schemes proposed and applied to observe these superposition
states and macroscopic quantum tunneling phenomena.*?* As SQUIDs are
characterized by the flux and charge states, they exhibit perfect medium to

observe the MQC phenomenon.

3.2.1 dc-SQUID

A basic treatment of the de-SQUID?374% which has two parallel junctions around
a loop, has been made in the previous section. However, as real life applications
have finite voltage values, we will make use of the RCSJ model. Also, to avoid
further complications related with the hysteresis in the I-V characteristic, the
devices are usually operated at a slightly overdamped regime. Therefore, we can

make use of the [-V relation in Eq. 3. 11 and obtain
1/2

b e

where I is obtained from Eq. 3. 16, and R/2 comes from the two parallel
resistively shunted junctions. It is assumed here that the two junctions have the
same critical current and resistance values, for simplicity. Using the double angle
relation with the cosine term in Eq. 3. 17, we see that the potential is periodic
with flux ® with frequency ®,, the flux quanta. This shows that a de-SQUID
can be used as a flux-to-voltage transducer in complex devices.

However, the external bias flux is not considered here. The total current

through the de-SQUID is the sum of currents passing through junctions 1 and 2
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in Fig. 3. 3, and given as
I = I.[sin(y1) + sin{72)] (3. 18)

and the circulating supercurrent through the superconducting ring is given by

the difference of the currents mentioned above, as

1= () BinGrs) = sinton) (3. 19)

yet, both these equations are constrained by Eq. 3. 15. The term ® in Eq. 3.
15 is the total flux, i.e. the sum of the externally supplied bias flux ®, and the
screened flux ®, which is given by ®, = LI, where L is the inductance of the
loop. If the total current through the SQUID I and the total flux ® is known,

one can calculate the screened flux ®, and the external flux ®,.

3.2.2 rf-SQUID

The rf-SQUID3"# is different from the de-SQUID in that, it only contains one
junction, instead of the two parallel junctions. As the SQUID loop is shorted
by a single superconducting electrode, observation on this SQUID is made at
radio frequency, and hence the name rf-SQUID is used. In the rf-SQUID, the
basis states are the flux states, so the flux threading the ring (or equivalently, the
current circulating the ring) is observed. This observation is made by inductively
coupling an rf current to the SQUID loop. This rf circuit is usually, as seen in
Fig. 3. 4, consists of a coil that inductively couples to the rf-SQUID, and driven
by a constant current I;. The voltage Vr is detected in the circuit to observe the
flux from the loop.

As we further study the phase across the weak link, we may obtain a relation
similar to the relation of a de-SQUID obtained in section 3.1.2, Eq. 3. 15, but a

single junction variant, as
21 d
v = 2 [mod(2r)] . (3. 20)
D,
This relation emphasizes that the current circulating in the SQUID loop is

2P
I, = Isin (%) (3. 21)

0
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el ViME L e A2

Figure 3. 4: A rf-=SQUID coupled to a rf circuit with mutual inductance coupling
M.

and the external flux ®,through the loop is given as

2P
O, =& + LI,sin (L> (3. 22)
®q

where @ is the screened flux.

3.2.3 SQUID-EM field model

There are several SQUID designs, making use of the basic properties of dc-
SQUIDs and rf-SQUIDs, and aiming to simulate a qubit system, i.e. a two-level
system. However, for the sake of simplicity, a simple model is adopted, where a
rf-SQUID ring is coupled to an electromagnetic field inductively, in the presence
of an external bias flux as pictured in Fig. 3. 5.6

The Hamiltonian for such a system is written as

H=H,+H+H (3. 23)
where the SQUID Hamiltonian is written as*’
Q? (b, —®,)? 2P,
H, == —h — . .24
5. + 5L, v COS o (3. 24)

Here, the variables ®,, the flux threading the ring, and ¢, the total charge

across the weak link are conjugate variables, and satisfy the commutation relation
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Figure 3. 5: A rf-SQUID coupled to an electromagnetic field with mutual
inductance coupling M. There is also an external flux @, effecting the SQUID
ring.

(D, Qs] = ih. @ defines the the external bias flux, and fir/2 defines the matrix
element for the pair tunneling across the weak link. The electromagnetic field
having the Hamiltonian H, may be modelled using a circuit having capacitance
C. and inductance L., so that the Hamiltonian H, turns out to be

Q2 (I)2

I, =
5C. 9L,

(3. 25)

where, as before, the variables &, and (). define the magnetic flux and the
electric charge associated with the cavity, respectively. Finally, the interaction

Hamiltonian II7 between the circuit and the SQUID loop is given by

where M is the inductive coupling constant as mentioned before.

Next, by making a unitary translation with the operator Y = exp(—i®,Q,/h),
the flux of the SQUID ring in the H, and H; is translated by ®, so that the
SQUID Hamiltonian becomes

2 P2 2m(®, + D,
H =U'HU = ;25 + 25 — hv cos (W(Tj)) (3. 27)

and the interaction Hamiltonian becomes

M
H, =U'HU = L—<I>s<I>e. (3. 28)

s
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Next, we define the dimensionless operators making use of the fact that the

charge and flux are conjugate variables,

C.w,

e = D, 3. 29
. : (3. 29
Pe = hw C Qe

C’sws
T, =
bs = Qs

where the frequencies w; and w. are defined as 1/4/CiLs; and 1/v/C.L.
respectively. Making use of the operators at Eq.3. 30, we can define the raising

and lowering operators as

1

e = —=(Te + 1P, 3. 30
ﬂ( iDe) ( )
1

al = —(z, — ip,

! ﬁ( De)

a —1( +ips)

S IS ZS
/2 b
1

t = —(z, —ip,

al \/5( Ds)

Using these operators, the total translated Hamiltonian becomes

1 1
H = hw, <ala5+ 2) + hw, (a a. + 2) (3. 31)

2
—hVCOS( T L —T +27r<px>
V Cws

M h?
el B % | 1
L, \ 4C,C.wsw, (a5 +a,)(ac + ac)

where the dimensionless phase o, is defined as ®,/®y. Using this form, the

system Hamiltonian may be solved for the eigenvalues and the eigenstates, so
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that they may be used as a basis for the master equation approach, with a
numerical approach, though a truncation will be needed.

In order to solve the system Hamiltonian, one should take the harmonic
oscillator states as the basis. By doing so, the diagonal elements of the
Hamiltonian matrix will have elements H,, = hws(n + 1/2). The second
contribution to the matrix would come from the term with cosine, and have
non-diagonal elements due to the x, term. As we define the parameters fiv as

B and 2=,/ =" as 4/, knowing that the dimensionless operator z, is defined as

dq Clsws
(al + a,)/v/2, the non-diagonal terms of the matrix will arise from the term
7' (al + a,) >
—fcos | —— + 27, . 3. 32
oos (T2 1o 3. 32)

As we further use the trigonometric sum rule cos(A + B) = cos(A) cos(B) —

sin(A) sin(B), we may further simplify the term to

Y Sy PO N LS8

In the next step of evaluating the terms, we can express the cos and sin terms

with the system operators as

<L¢;>) — fe exp <L¢g>>} (3. 34)

sin <L¢;)) — 1 |exp <L¢g>)} . (3. 35)

Further, as we make use of the Baker-Hausdorff Lemma, that states

[4, B]

exp(A) exp(B) = exp(A + B) exp (T) (3. 36)

if the operators A and B commute with the commutator [A, B], which in our
case, holds, since [af,a;] = —1 and a constant commutes with any operator. In

order to find the non-diagonal terms, one needs to evaluate the term

exp(—7%/2)(n| exp(ival) exp(iva,)|m) (3. 37)
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and multiply the real and imaginary parts of this expression by cos(2mp,) and
sin(2my) respectively. Here, v = v/+/2, (n| and |m) are the harmonic oscillator
eigenstates. The term in Eq. 3. 37 further expands as

N . N

i k
7L tnl(al)* 32 L 0 m) (5. 38)

lZO ‘ k:o

exp(—7°/2)

where N is the truncation limit of the system. This equation further turns into

(i w)’“ /
n—l Z oim TR (3.39)
z:o ‘

and the inner product in this term reduces to the delta function 4, ., and

cancels out one of the summations, due to the orthogonality of the eigenstates.
Obtaining the full system Hamiltonian, both diagonal and non-diagonal parts,
and diagonalizing it numerically with the help of a numerical Lapack subroutine,
we may inspect the role of the two main parameters v and § in the eigenvalues
and eigenfunctions. There is also a third parameter, ¢,, which depends on
the external flux. The role of this parameter is to define the symmetry of the
system potential. As we consider the total potential of the system, including the

harmonic oscillator potential and the cosine term, it is in the form

Vi{z,) = % — Bcos(yxs + 2mp,). (3. 40)
Here, as the parameter @, is 0.5, meaning the external flux is half the flux quanta,
the cosine term remains even, as well as the harmonic potential. This results
in a symmetric double-well potential. However, for different values of ¢, in the
range from 0 to 1, the cosine term is no longer even, and the resulting potential is
asymmetric. For the symmetric case, as we inspect the derivative of the potential,
to find the minima of the potential, we see that for two minima, which result in
double-well potential, 8 should remain small compared to 5am/2, where « is
on the order of the harmonic frequency. The higher levels just see a harmonic
potential weakly modulated by a cosine term. The 3 parameter defines the barrier

between the double-wells, and the v parameter defines the width of these wells.
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Figure 3. 6: The potential and low lying energy eigenvalues, for a specific single

Ll v

degenerate case. Here the parameters are 5 ~ 1.616 and ~ ~ 1.753. The axes
are normalized and dimensionless.

For the symmetric potential, which exhibits interesting results, it is possible
to manipulate the parameters 3 and + so that the eigenenergies ol the system
may be conligured [reely. An interesting case would be to choose the parameters
so that the lowest lying two levels, 1.e. ground state energy and first excited state
energy, are degenerate. As a degeneracy parameter 1 for a two level system is
defined as

: Eyv+ FE
2y _ Lo 1 3 41
nsd E] _ EU ( . )
and for a multileveled system as
‘N E,—F
(Ny _ F 1 349
nsd E] _ EU ( . )

it is possible to obtain -nff} and -nii,\r) on the order of 107. Such a set of parameters
and the relevant energy levels are displayed on Fig. 3. 6. Also interesting leatures
arise when the system is configured so that the lowest two levels, and the next
two levels above them are degenerate in each-other. We name such a case as

double-degeneracy. Here, definition of another degeneracy parameter is needed
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as

I Iy — I o
T)EM) = E3 _ EZ- (5 45)

(2)

.
sd

It is also possible to obtain the degeneracy parameters 5.,/ and ng} on the order
of 10° for different sct ol 3 —~ parameters. Again, a sample case with eigenvalues
is displayed in Fig. 3. 7.

In the next chapter, the evolution of these system states will he considered and
calculated in the presence of the non-classical electromagnetic field, as modeled

m FEq. 3. 32



Chapter 4

Noise and decoherence of the

system

In this chapter, we will go one step further from the last chapter, by inserting the
system-environment interaction into the system defined in the previous chapter.
So this will be the final step in reaching the decoherence solution that we have
sought.

In the next section, we will solve the SQUID-EM field model, introduced and
described in the previous chapter, using the methodology described in the second
chapter. During this solution, the important parameters of this system and the
environment, i.e. the spectral properties will be revealed. Next we will investigate
the effect of the environmental spectrum on decoherence, introduce the spectral
models, and try to identify the effect of each spectral parameter, both in short and
long time limits. As there are several parameters concerning the environmental
spectrum, this will be a somewhat tedious work, and the analysis will be mainly
qualitative. Though after the reader gets acquainted with the spectral effects, the
quantitative analysis will take place in the next chapter. The system parameters

will also be discussed in the next chapter, along with the discussion of the 2LA.

45
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4.1 Decoherence in SQUID-EM field model

The solution of the model that is introduced in section 3.2.3 will be very
similar to the one that is goue through in section 2.2.5. llowever we will try
to avoid the approximations as far as we can. Namely, we will not be using
Rotating wave approximation or the Markov approximation. However, in order
to obtain a solvable master equation form, we will be using the Born-Oppenheimer
approximation. As BOA is safe in the short time scales where the back reaction
ol the system on the environment is negligible. The short times are delined as to
be shorter than the envirommental equilibration time. A detailed discussion on
the safety of BOA will be held in the next chapter.

Remembering the most simple master equation in the interaction picture that
is given in Eq. 2. 53, we will need the interaction part of the Hamiltonian in Eq
(3.31) in the interaction picture. There is also another term used in the interaction
Hamiltonian conventionally, [or compensation ol the [requency renormalization
cffects on the system induced by the I, used. Our lormulation does not include
this compensating term, and the reasons are discussed in Appendix A. For the
simplicity in analytical progress, we express the coordinate-coordinate coupling

between environment and system in Fq. 3.31 as®®

N-1
[ 4]

Hipe = 5 > (@)alCysHE e (4. 1)
rs=0

whore o deflines the coupling strength and the symbol ¢ symbolizes the relevant

parameters defining the systemn, such as the height of the potential barrier

between the wells, the bias that tilts the wells, Josephson energy or harmonic

frequency. Here, the outer product of the system states |7} and |s) defines the

transition from state |r) to state |s) where r might be an energetically lower or
higher statc than s. The system coordinate ., which is an x-like coordinate,
also permits transitions to both higher and lower states at the same time. There

is also the noise induced dipole matrix elements (@), that are deseribed as

(‘fo)er — <C~ S|59|Car> (4 2)
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Figure 4. 1: The dipole matrix elements defining the transitions from ground ad
first excited state for a specific single degenerate case. Here the parameters are
&~ 1.616 and ~ ~ 1.753. Here, the potential wells are symmetric with ¢, = 0.5

These noize induced dipole matrix elements are one of the key variables in
the decoherence mechanisin. They describe the weight of the transitions from
one system state to another. As we take the symmetric configuration of the
double well potential, the dipole matrix elements (), turns out to be zero
where r + s = even, i.c. both of the states have even or odd parity, due to the
parity rules. There are finite dipole matrix clements between the even and odd
states, (Fig. 4. 1) However, ag the potential is tilted with an external phase
i, and asyminetric double-well is formed, the system states will have mixed
parities, and as a result, the dipole matrix elements will have finite values for all
possible transitions. (Fig. 4. 2). Eventually [or any case, as the states become
cnergetically highly separated, these dipole matrix clements tend to drop to zero.
These facts become important when considering a multi-level system, and will be
revisited in the next chapter.

In the next step we will he dealing with the environmental part of the
interaction Hamiltonian. The environment may be considered as harmonic
oscillator modes with dillerent. energies. Considering the master cquation

expanded to sccond order asg given in Eq. 2. 55, the next step is modilied as
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Figure 4. 2: The dipole matrix elements defining the transitions from ground and
first excited state for a specific single degenerate case. Here the parameters are
8~ 1.616 and v ~ 1.753. Here, the potential wells are asymmetric with ¢, = 0.6

follows:

o - - I,

N-1

[g D @)l oG alt)@e(t), pe(0) ® p(t')

(% Z_«o)sr@)m,s(t>><c,r<t>|goe<t>) L @)

r,s=0
] i

Here, the density matrix for the system is expressed as p(t) and the environmental

2

p,q=0

density matrix is expressed as p.(t). Whenever the total density matrix will
be used, we will be using the notation pr(t) = p(t) ® pe(t) or rather pr(t) =

p(t) ® p.(0). As we express the environmental coordinate . as

oo =3 nulb) +by) (4. 4

where the operators b, are the environmental raising and lowering operators, and
the factor n; describes the coupling strength of the relevant environmental mode
k. Inserting this form into the Eq. 4. 4, and ignoring the parameter set ¢ for

clarity, we obtain



CHAPTER 4. NOISE AND DECOHERENCE OF THE SYSTEM 49

= [T T a6 4 5)

k.k' p,q,r,s=0

Tr. [Is(e))r (@) (04(2) + be(®)), [ )| (B () + b)), pe(0) @ p(t)] |

which expands as

ot) = E/Z:Z:mw (O)(#)pall)) % (4. 6)

0 k.k" p,q,r,s=0
[15(6)) (r () Ip(#))a () o) T ((O}(2) + balt bL( ')+ bio(#))pe(0)
— [s@O)r(®)lp() «mw4 £) + bu(®)p. (O)(BL (1) + b (1) )
— PN a@)le(@)ls(t rw4@, {)pe(O)(BL(E) + ba(t)))

+ p() () (g()|s(@){r(t)[Tre  p ') + be (1)) (b (£) + br(2)

)]

The trace operations over the environmental spectrum will turn out to be
the averages of the relevant operator products over the initial environmental
collective state, as we are taking the environment to be stationary in time. As we
are taking the expectation over a fixed state, we safely neglect the expectations of
two annihilation or two creation operators. Furthermore, the two environmental
mode indices k& and %’ should be identical to obtain a non-zero contribution. The
inner products of the system states also reduce to Kronecker-delta functions as
we take out their time dependence out. In order to clarify the master equation
further, we can check the time derivative of the individual matrix elements and

obtain their relation to the other matrix elements as

pial) /szw oall) X (4. 7)

k p.,q,r,s=0

(3100 pp0a (1) ({BLOB)) + (et
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— Geprlt)00s (LKD) + (buEDBL(2)) )
O (¢ )0r ((BLOBE) + (Br()L(1)))
()0 (LKD) + (a()BL(E)))

where the dipole matrix elements include the time dependence of the states as

(@)er(t) = (p)arexp(—i(Es — E,)t) (4. 8)
(P)pa(t') = (P)pgexp(—i(E, — E ). (4. 9)

We can also simplify the environmental part of the master equation further
by using an environmental spectral model to define the coupling strength of
the environmental modes to the system. Although the environmental modes are
represented as discrete modes, for the sake of reality, we will treat the environment
to be a continuous bath, so the sum over the environmental mode index k will
turn into an integral over the environmental mode frequency w.

Throughout our calculations, we will be using different environmental models.

Firstly we will use a realistic model as

an = I(w) = w'™ exp(—w?/4A?) coth % (4. 10)
k

This type of spectrum is used widely in the decoherence calculations,* where the
first power term characterizes the low frequency regime of the spectrum, and the
second exponential part characterizes the high frequency regime. The parameter
v defines the spectral character, so that for v = 0 we have an ohmic spectrum, for
v < 0 we have a sub-ohmic and for v > 0 we have a super-ohmic spectrum. These
names are used conventionally to describe how the spectrum is dependent on the
frequency. A Gaussian cut-off frequency A is used to limit the high frequency
regime realistically. The coth term comes as a thermal enhancement, due to the
2n,+1 factor comes from the expectation values of the environmental operators as

we treat the environment as a bosonic bath. In order to understand the behavior
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of this spectral function better, one can examine Fig. 4. 3. The parameter A in
a way defines the width of the spectrum. As for the amplitude of the spectrum,
all parameters A, v, T are effective. T amplifies the amplitude independently,
whereas for higher A as the cut-off is effective at higher frequencies, so for ohmic

and super-ohmic parts, the spectrum amplitude has more room to increase.
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Figure 4. 3: The variation of the spectral function I(w) versus w and v for
—1 < v <1 and parametrized as A/T = 10,50, 100 from the innermost to the
outermost surfaces respectively.

Another widely used spectral model in our calculations is a Lorentzian spectral
model. Although the power-law spectral model is quite realistic and has plenty
of parameters to manipulate, it is not flexible enough. As we try to investigate
the effects of different parts of the spectrum, while isolating and nullifying the
rest, a power-law spectrum is not very suitable. As a result we also used a toy
spectrum model as

A €

Hw) = T (w—wp)? + €2

(4. 11)

where the parameter A defines the total area under the spectrum, wq defines the

center of the spectrum and e defines the width of the spectrum. As a result we
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can manipulate the width, height, and location ol the spectrum independently
with this spectral [unction (Fig.4. 4).

1 T T 1

(a) ”

(b)

0.6

I(w)

Figure 4. 4: The variation ol the spectral function [{w) versus w lor Lorentzian
spectrum. In {(a), ¢ = 0.5 and wy = 4 arc fixed parameters whereas A changes.
In (b), e = 0.5 and A4 = 3 arc fixed parameters and wy changes. In {c), wy = 4
and A = 3 are fixed parameters and ¢ changes.

This Lorentzian spectrum is quite useful in observing the non-resonant effects
of the environment as we can locate the spectrum at a resonant frequency or non-
resonant [tequency quite precisely. The results will be discussed in the following
sections.

In order to caleulate the time dependence of specific reduced density matrix
elements, we will continue from Fq. 4. 8 Due to the two Kronecker-delta
functions for each term, the summation over four indices drop to two indices
and the sum over the environmental mod index & turns into an integral over
environmental frequency « in order to obtain a more realistic continuous model.
The remaining master equation [or the reduced density matrix may be shown

most, simply as

L
prilt) = — / 'y " KF ) pes() (4. 12)
0 T8
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where the kernel K¥!(¢, ') is similar to the Bloch-Redfield tensor as given in Eq. 2.
72, though as it includes both time indices, it is free of the Markov approximation.

The open form of this kernel is written as

Ki(t,t) = {FE=1) (et 0s1 = (0t )iy ()] (4. 13)
+ Fr(t =) [(o(t)p() gy re = (0()) 1 ((E)) arn]}

Here, the function F (¢ —¢t') is the complex noise correlation function, and defined

aSSO

Ft=1)=Tre[pe(t)pe(t)pe(0)] = {(pe(t)pe(t)) (4. 14)
_ /0 dwI (1) coth(w/2T) exp(—iw(t — ')

with the conjugation
Fit=t)=F{ —1). (4. 15)

Note that the noise correlation function has two time indices, which indicates it’s
non-Markovian nature. The non-Markovian reservoirs have also been a point of

51-53

interest recently, and as it gives more realistic results, we avoid the Markov

approximation in our calculations. The terms ¢(t) are defined as

N-1

l(t) = Y (phuexp(—i(E; — E)t)|k) () (4. 16)

k,l=0
where N is the truncation limit and (¢)g are the dipole matrix elements as
defined in Eq. 4. 2.

The calculation of the time evolution of the reduced density matrix is trivial
from this point. We perform a numerical nonadaptive Euler algorithm*® where
we use an infinitesimal time increment dt. The elements of the reduced density

matrix are calculated one by one with the help of simple equation
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pult) = pa(®)+ [ putt) = pufo) /"dtz,,u Noult) (4 17)
0

During the evolution calculation, time is increased discretely from zero by
dt steps. More clearly, [irst pi‘;) (dt) is calculated using the kernel K™(dt,0)
and the reduced density matrix psi)( 0). In the noxt step, péj)( 2dt) is caleulated
using the kernel values K*(2dt, dt) and K¥{(dt,0) and their multiplications with
the reduced density matrices ,oé;)(dt) and ,(,)E;)(U) respectively. The calculation
continues like this, up to a finite time value ¢ = n - dt where n is on the order of

)4, However this numerical calculation becomes costly in terms of time, as the
dimension of the reduced density matrix, i.e. the truncation limit ol the system
is increased and the calculation is carried on up to longer times. The complexity
increases with A1 since the number of elements of which the time evolution to
be calculated increases with N2 and for each element, we need to calculate a suin
with two indices running up to N. For instance the calculation of a 4 leveled
system takes 16 times longer time than the calculation of a 2 leveled system.
The complexity also increases with n?, i.e. the time required to calculate the
evolution up to ¢ = 100/w, takes 100 times more thine to calculate the evolution
up to t = 10/w,, where w, is the harmonic frequency of the system, used to obtain
normalized, dimensionless tune parameter.

Next, we will be calculating the RDM evolution for various parameters

involving the spectrumn and system, and examine the effects of these parameters.

4.2 Spectral dependencies

In this section we will be examining the ellecis ol spectral parameters on the
decoherence mechanism ol gystem. There are several parameters of o typical
spectrum. We have been using two spectrum models throughout the calculations,
so we will be inspecting the parameters of these spectral models. After going

through the spectral parameters, we will focus on the system parameters in the
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next chapter. Throughout this section, the system will be taken as a two level
system, i.e. the truncation limit will be sct to 2. Also the system will be sct to
a degencrate conliguration, so the two levels will have almost the same cnergy.
Finally, the initial state that the system is prepared will be a superposition state
(1)) = al0y + b1} where a + b? = 1. For convenience we choose a = v/0.9 and

b= +0.1e"/2.

4.2.1 Temperature

Temperature is common to all spectral models in thermal equilibrium, so we will
be inspecting temperature first. As we are dealing with a bosonic environmental
bath, we use the bosonic occupation factors at finite temperatures, and due to
the 2n,(T) 4+ 1 [aclor obtained in Lq. 4. 8, we have an ellective hyperbolic
cotangent Nunction with argument w /27, where the constants £ and kg are taken
as 1. The hyperbolic cotangent function gocs to infinity as w /21 approaches zero,
and goes to 1 ag w/27 approaches infinity. So eflectively, temperature brings an
enhancement to the spectral form, and this enhancement is much more dominant
at low frequencies than at high frequencies.

While justilyving the 2LS approximation, low temperature constraint is highly
relicd upon, so that if the thermal energy is low cnough, ic. lower than the
separation of the qubit subspace and higher levels, it is said that the system
cannot have transitions to higher levels. We will be observing the effect of
temperature for both spectral models, power-law type, and Lorentzian tvpe.
As we are also questioning the validity of the 2LS as well as some other
approximations mentioned in Chapter 2, our further calculations will only have
zero temperature. Therelore we will be working with ideal conditions [or 215, and
can check the validity of the approximation in the next chapter, more confidently.

First we will be ingpecting the effects of temperature in the presence of a
power-law spectrum. As we are using a 21.S, there are two main mechanisms
that we can inspect, relaxation and dephasing. In the relaxation graphs, only

p11(t) is plotted, as the reduced density matrix has a trace ol 1, peo(t) is simply
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As [or the dephasing mechanism, |p2(t)] is plotted. As this value

1— pn(t)
goes to zero, the reduced system loses it’s phase information. As we can see
[rom Fig. 4. 5, which shows the relaxation pattern lor dillerent temperature
values, as the temperature increases, the relaxation gains an oscillatory behavior
on the overall, the higher the temperature, the higher the oscillation frequency.
However as we closely observe the short time range, apart from the envelope of
the oscillations which shows an exponential behavior, there is a Gaussian-like
behavior range, and as the temperature increases, the relaxation becomes [aster.
For all temperature values, the diagonal clements of the density matrix goes to
0.5, the maximum entropy-minimum information limit. These data are obtained
for a sub-ohmic spectrumn (# = —1) for which the low frequency range of the

spectrimn is most dominant.
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Figure 4. 5: The relaxation curves for a degenerate two level system, that is
in interaction with a power-law type spectrum with A = 10 and v = —1 for
various temperatures. On the left, we have a broader time range where time is
normalized with an energy scale £2, and on the right we observe closely the short
time range.

As [or the dephasing mechanism, we obtained Fig. 4. 6 [or the same parameter
set. As we are checking [or a modulus, there scems to be a reflection-like behavior

for higher temperatures from the axis |p1a(t)| = 0. The cffect of temperature on
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dephasing mechanism is very similar to the ellect on relaxation mechanism. For
both cases the temperature induces oscillatory behavior which has increasing
[requency with increasing temperature. Moreover, the general behavior is also
very similar, an exponential-like envelope function for oscillatory curves {the
function itself is expounential-like, when there is no oscillation at 77" = 0), and

Gaussian-like drop-off at short time ranges.
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Figure 4. 6: The dephasing curves [or a degenerate two level system, that is
in interaction with a power-law type spectrum with A = 10 and v = —1 [or
various temperatures. On the left, we have a broader tune range where time
is normalized with harmonic frequency, and on the right we observe closcly the
short time range.

As we check the effect of finite temperatures for ohmic power-law spectra, we
observe a similar behavior as shown for in Fig. 4. 7. The increasing temperature
speeds up the decoherence processes both for relaxation and dephasing. However
the oscillatory behavior observed in the sub-ohmic case is non-existent in the
ohmi¢ casc.

Next, we check the siinpler Lorentzian spectrum, just to be safe about the
role of the temperature. The system is again set to be a degenerate two level
system, and the Lorentzian spectrum parameters are chosen as A = 3, ¢ = 3 and

wp = B. The relaxation pattern as shown in Fig. 4. 8 is very similar to the one
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Figure 4. 7: The relaxation and dephasing curves for a degenerate two level
system, that is in interaction with a power-law type spectrum with A = 10 and
v = () for various temperatures.

in sub-ohmic power-law as well as the relaxation pattern as shown in Fig. 4. 9.
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Figure 4. 8 The relaxation curves for a degenerate two level system, that is in
interaction with a Lorentzian type spectrum with A = 3, ¢ = 3 and wy = 5 [or
various temperatures. On the lelt side is the overall behavior where short time
range is magnified on the right hand side.

As seen from the above figures, temperature indeed increases both relaxation
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Figure 4. 9: The dephasing curves for a degenerate two level system, that is in
interaction with a Lorentzian type spectrum with 4 = 3, ¢ = 3 and wy = 5 for
various temperatures. On the left side is the overall behavior where short time
range is magnified on the right hand side.

and dephasing rates. The effect of temperature is not quantitatively investigated,
but only qualitatively demonstrated. But it is observable that the relaxation
and dephasing rates are [inite [or the 2LS even at T = (0. The finite
rclaxation rates also depend on the non-diagonal coupling between the system
and the environment, i.c. the non-diagonal dipole matrix. There are also

other approaches that are taking a diagonal coupling in order to observe just

dephasing, without relaxation.’® But recently there are other claims using

56

realistic models on decoherence effects in mesoscopic systems™® as well as

some experimental conflirmations on the saturations ol the RD rates at low

57

temperatures.”” Also theoretical studics have been made [or zero temperature

decoherence mechanisms.®™ % In order to investigate the zero temperature
decoherence and make a critique of 2LA, we will he using zero temperature
calculations from now on, which is accepted as the ideal temperature for the

two-level system approximation.
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4.2.2 Ohmic dependencies

We will now check the eftect of the character of the spectrum on relaxation and
dephasing mechanisms. The system used, again, will be a degenerate two level
svstem and the temperature will be taken zero. The cut-off frequency is taken
as A = 1. As it is shown in Fig. 4. 10 for all characteristic  values, we have
oscillations over the tiime domain. The symbols in the figures are chosen so that
the envelope function may he visualized casily. As we check the short times, we
see that sub-ohmic spectrum is more slow in relaxation than the ohmic or super-
ohmic spectra. However, the envelopes of the oscillations on the long time range,
show a different behavior, so that the sub-ohmic envelope decavs tastest, whereas
the super-ohmic envelope decays slowest. As we return our attention to [Xq. 4.
10 and Fig. 4. 3, we sce that [or sub-ohmic spectrum [unction with » = —1 the
low frequency part of the spectrum is mch more effective than the low frequency
part in ohmic or super-ohinic gpectra. On the other hand, for the super-ohmic
spectrium with v = 1, the high frequency part of the spectrinn is more pronounced
than the others. Our system is a degenerate system (not exactly degenerate but
the energy dillerence is on the order of 10~%), so the resonant [requency to induce
a transition between the two states is very close to zero. So on the long range, sub-
ohmic spectrum is more effective, whore resonant frequency is more pronounced,
however, on the short range, super-ohmic spectrum (which has a greater total
area) tends to relax the system faster. This behavior will be investigated more
quantitatively in the next chapter.

As we check the relaxation pattern [or the same parameter sct as seen in Fig.
4. 11 we observe the same behavior ag in the relaxation case qualitatively. The

quantitative analysis will be presented in the next chapter.

4.2.3 Cut-off frequency

Next we will be checking the second parameter of the power-law spectrum,
the Gaussian cut-off frequency A. Increasing A has two major cffects on the

spectrum. First, it increases the range of spectrum, as cut-off takes effect at
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Figure 4. 10: The relaxation curves for a degenerate two level system, that is
in interaction with a power-law type spectrum with A = 1, T" = 0 for various v
values. On the left side is the overall behavior where short time range is magnified
on the right hand side.
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Figure 4. 11: The dephasing curves [or a degenerate two lovel system, that is
in interaction with a power-law type spectrum with A = 1, T = — [or various v
values. On the left side is the overall behavior where short time range is magnified
on the right hand side.

higher frequencies, i.e. the spectral width is increases. Second, as the range is
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increased, the spectrum [linds more room to increase with the ellect ol power
term without being majorly suppressed by the Gaussian cut-oll. So increasing A
increases both width and amplitude ol the spectrum, regardless ol the spectral
chiaracteristic, #. As we check the relaxation curves in Fig, 4. 12, we sce that
for smaller A values, relaxation rates are smaller both in the short and long time
ranges. Again the svmbols on the left side are spaced so that the envelope of the

oscillations may be observed easily.
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Figure 4. 12: The relaxation curves for a degenerate two level system, that is
in interaction with a power-law type spectrum with v = 0, 7" = 0 [or various A
values. On the left side is the overall behavior where short time range is magnified
on the right hand side.

As in the previous cases, dephasing shows no dillerent, behavior than the

relaxation qualitatively, as shown in Fig. 4. 13.

4.2.4 Spectral center

We have checked the basic parameters ol the realistic power-law spectrum.
However power-law spectrum is not the best candidate to inspect the spectral
parameters independently as increasing the cut-off frequency A both increases

the width and the amplitude of the spectriim, or changing the characteristic v
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Figure 4. 13: The dephasing curves for a degenerate two level system, that is
in interaction with a power-law tvpe spectrum with » = 0, T = 0 for various A
values. On the lelt side is the overall behavior where short time rauge is magnified
on the right hand side.

value changes the low [requency and low [requency regimes independently. So we
will be using a Lorentzian spectrum to check the effect of width, spectral location
(also noted as spectral center wy) and spectral amplitude independently.

First we will be checking the effect of spectral center, i.e. wy. We will be using
the other two parameters fixed as A = 3 and € = 3. Changing the spectral center
does not change the total area under the spectrum, as the height or the width
ol the spectrum remains unchanged. As we check in the long time range to the
relaxation as shown in Fig. 4. 14, as the spectrum gets further away from the
resonant frequency which is located very close to zero, 1.e. as wy is increased, the
relaxation rates decrease in the long range. However as we check the short time
behavior, we observe a different behavior from the rest of the parameters. For
a short but noticeable time, the rates ol the GGaussian-like relaxation are same,
independent ol the spectral location. So this also shows that there is a parallelism
between the nnehanged spectral arca and unchanged Gaussian regime rates. This
parallelism will also he discussed comprechensively in the next chapter.

Checking for the relaxation curves as presented in Fig. 4. 15 we observe the
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Figure 4. 14: The relaxation curves for a degenerate two level system, that is in
interaction with a Lorentzian type spectrum with A = 3 and € = 3 for various wy
values. On the left side is the overall behavior where short time range is magnified
on the right hand side.

same behavior, i.e. same rates at short times for all spectral locations, however,

smaller rates [or increasing center [requency.

4.2.5 Spectral width

Next we examine the effect of spectral width over the relaxation and dephasing.
As we check the Lorentzian [unction we see that the width is directly proportional
to the spectral arca. As the amplitude is fixed, and the spectral location
is irrelevant, increasing the spectral width does nothing except increasing the
spectral area. As we see the relaxation in Fig. 4. 16 and dephasing in Fig. 4.
17 we see that for greater spectral width, the relaxation and dephasing rates at
both short time and long time regimes are greater. This also gives us the hint

about the role ol total spectral area over the decoherence mechanisms.
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Figure 4. 15: The dephasing curves for a degenerate two level system, that is in
interaction with a Lorentzian type spectrum with A = 3 and € = 3 for various
wp = 5 values. On the left side is the overall behavior where short time range is
magnified on the right hand side.
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Figure 4. 16: The relaxation curves for a degenerate two level system, that is in
interaction with a Lorentzian type spectrum with .4 = 3 and wy = 5 for various €
values. On the left side is the overall behavior where short time range is magnified
on the right hand side.

4.2.6 Spectral amplitude

Speciral amplitude is indced the most trivial parameter ol the three. As the

amplitude comes in front of the Lorentzian form as a factor, it can be taken out
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Figure 4. 17: The dephasing curves for a degenerate two level system, that is in
interaction with a Lorentzian type spectrum with A = 3 and wy = 5 for various ¢
values. On the left side is the overall behavior where short time range is magnified
on the right hand side.

of the integral in Eq. 4. 15, so that it can as well be assumed to he a factor
ol the coupling constant between the system and environment. Trivially, as the
coupling constant increases, the decoherence hecomes more prominent, over all
the time range. As we sce the effect of amplitude on relaxation in Fig. 4. 18 and
on dephasing in Fig. 4. 19, we see that unsurprisingly, for higher A values, the
relaxation and dephasing rates becomes higher.

As we have plenty of spectral parameters for both realistic and model
spectrum [unctions, it is a bit tedious to investigate the eflect ol each parameter
independent ol the other parameters. In this chapter, we have inscrted the
cnviromment into the SQUID-EM ficld model introduced and solved in the
previous chapter, solved the master equation down to coupled integro-differential
equations and observed the effects of the environmental parameters on the
svstem qualitatively., In the next chapter, we will also check the role of svstem
parameters and observe the advantages and disadvantages ol dilferent system
configurations. Also there will be more quantitative analysis and the well-known

2LS approximation will be questioned in detail.
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Figure 4. 18: The relaxation curves for a degenerate two level system, that is in
interaction with a Lorentzian type spectrum with ¢ = 3 and wy = 5 [or various
spectral amplitudes. On the lefl side is the overall behavior where short time
range is magnilied on the right hand side.
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Figure 4. 19: The dephasing curves for a degenerate two level system, that is in
interaction with a Lorentzian tvpe spectrniun with € = 3 and wy, = 5 for various
spectral amplitudes. On the left side is the overall behavior where short time
range is magnilied on the right hand side.



Chapter 5

Effects of Noise Parameters in

Decoherence

While environment plays the most effective role in the decoherence mechanisms,
the system parameters also effect the overall process. As we have explained in the
previous chapter, the crucial variables of the system that enter the decoherence
calculations are the system’s energy eigenvalues, the dipole coupling matrix
elements, and the truncation limit that defines the number of levels of the system
explicitly.

The truncation limit is completely arbitrary, as we can choose any limit for a
system, except for some manilestly N level systems such as spin systems, or some
organic molecule that has certain discrete rotational symmetries. Although our
focus is now on SQUID systems, which are systems with infinitely many states,
so we are inserting a truncation limit. However, our truncation limit will be
regarding the finite coupling range of the system levels as illustrated in Figs. 4.
1 and 4. 2.

We also presented a solution for a SQUID system in chapter 3, where we
mentioned that by the appropriate choice of the potential parameters v and 3,
we may obtain some special energy level configuration. We can even obtain
a singly degenerate (where the ground state energy and the first excited state

energy are same), or a doubly degenerate (where both ground and first excited,

68
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and second-third excited states are degenerate separately) configurations. Of
course the configurations are obtained by numerical search routines, and the
degeneracies are not absolute though the degeneracy parameters as defined in
Egs. 3. 41, 3. 42 and 3. 43 can be as high as 10°. Although we haven’t searched
for every possible configuration, we believe that we have quite a lot of flexibility
on preparing a SQUID system in MQC regime, in terms of energy eigenvalues.
The final crucial parameters are the environmentally induced dipole matrix
elements as given in Eq. 4. 2. The matrix elements may have parity conservation
if the potential is symmetric, so that the eigenstates show even and odd parities
alternatingly, or the matrix may have no zero element in case of asymmetric
potential as shown in Figs. 4. 1 and 4. 2. We also observed in these figures that,
for a real SQUID system, the dipole matrix elements tend to decay to zero as the
two indices are different from each other by an order of 10, i.e. as n —m > 10,
©nm = Pmn tend to approach zero. This means that the direct coupling from

5th excited state or above is negligible.

ground state to ~ 1

In the light of this information, we can as well define a toy system model,
where we can freely manipulate the energy configurations or dipole coupling
matrix elements.®? Of course we are not in pursuit of some marginally configured
systems, but as we know the general behavior of the dipole matrix elements and
that we can obtain eigenvalue configurations quite flexibly, it is simpler to use a
toy system model. Throughout this chapter we will be using such a toy model,
unless otherwise stated, for which the energy levels may be degenerate or simply
non-degenerate. As for the dipole coupling matrix elements, we will be using a

model such as

L T
KRE I n r=—0

0 if n 4+ r=even
where R is the range of dipole couplings and & defines the coupling strength. For

compatibility with the SQUID system, we will be taking this range as R = 10.
Note that this type of dipole coupling is for the symmetric potential wells, where
parity selection rules are valid. For an asymmetric potential configuration, the

condition will be necessary no more, and all the matrix elements will be finite
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within the range.

There will be two main issues that we will probe, in this chapter. First,
we will be comparing the decoherence rates of multileveled systems and 2185,
under the ideal 2LS conditions, and also investigate the leakage phenomenon,
the third mechanism of decoherence. Second, we will be observing the effect of
non-resonant transitions, which are often overlocked as compared to the resonant
transitions. By combining the result of these two sections, we will he questioning

the 2LS approximation, which is widely used since it has been proposcd.®

5.1 Decoherence rates at short and long times

The density matrix usually starts with a Gaussian-like time variation, as shown in
detail in the previous chapter, unless the system-noise kernel is abruptly changing
at short times, i.e. ¢ — t. It should be remarked that those processes in the
solution of Eq. 4. 12 with a finite first derivative surviving in the limit ¢ — 0
are necessarily Markovian with delta-function like correlations, i.e. Fi{t —t') x
&(t —t'). On the other hand, most physical noise sources display non-Markovian
correlations at short times and the usual practice is to represent them hy a

48,50

: 1 2.3.24,18,26,28 27 -
power-Gaussian or power-exponential 2#*1L1826:2827 The zero derivative of

the density matrix elements at £ = 0 is trivial, as from Eq. 4. 12, we have

Pr (0 [ At ZI’U (0,t)p,s(t") = 0. (5. 2)

Therefore the leading tern in the short time limit is the second time derivative

given by

d? ,H
—pnlt =0) = Z} (0,0}p05(t = 0) (5.

[ d
)
—

provided at least one ol the terms in the summation on the right-hand side is non-
zero. It can also be checked by direct caleulation that only the even derivatives
of the reduced density matrix are non-zero at ¢ = 0. Note that the Eq. 5. 3 is

correct only at ¢ = 0 and should not be interpreted as a differential equation at
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vanishingly short times. The decohering density matrix therefore starts with a

time evolution which is Gaussian-like as

£
pra(t) =~ ; [&W(Sls — EKTS(O:O) prs(0). (5. 4)
where the Gaussian decoherence rates (T}(;,%)L)_1 = ASQGI%L enter as a sum over
the square roots of the positive eigenvalues of a characteristic operator K(0,0)
representing the system-noise kernel. In appendix B, the positive definiteness of

K (0,0)and its relation to K*(0,0) are demonstrated.
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Figure 5. 1: The Gaussian decay fit to the RDM element py;(t) at short times,
under the influence of a Lorentzian spectrum with spectral parameters A = 3,
€ = 3 and wy = 5. The system is taken as a degenerate 2LS.

As we fit a Gaussian-like decay to the short time ranges in the diagonal RDM
element pq1(t), so that
p11(t) = 0.9<f3mp(—t/7'](%c))2 (5. 5)

where the term TI(?G) defines the Gaussian relaxation time at short time limit, and

the factor 0.9 comes due to the initial state preparation, we obtain a good fit as
shown in Fig. 5. 1. Only a candidate diagonal element is demonstrated, though
the fit can be applied to all RDM curves, diagonal or non-diagonal, i.e. relaxation

or dephasing, for any spectral parameter set. The relevant Gaussian decay rates
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are obtained [rom these [its at short times. Though it should be noted that [or the
$(0)) = V0.9|0) + /0.1em2|1),

the factor belore the fitting linction should be 0.3 as it is the initial value of the

dephasing curves [or our initial state choice of

non-diagonal clement pqy.

As we have also showed in the previous chapter, for non-Markovian systems
the exponential behavior can be reached after a significant decoherence has
already taken place at short and intermediate times. Here we should also remark
that, although a Lorenizian type noise spectrum has Markovian correlations in
sufliciently long observational times, there are also physical spectra without a
Markovian limit. For instance, the widely used Rubin model which represents
a bosonic environment with Einstein phonons has power law dependence of the
noise correlations at long times.? This indicated that the long time decoherence,
in contrast to the short time decoherence, depends on the type of physical process
generating the spectrum.

Taking the same data as shown in Fig. 5. 1 and [ocusing on the long time

range of it, we can fit the data to an exponential function as

pu(t) = Eexp(—t/757) + 0.5 (5. 6)

where T,E—f} defines the exponential relaxation time at the long time limit, and a
[actor of 0.5 is added as the exponential decay does not approach to 0, but rather
to 0.5 as the informationless limit. The fitting to the data, as shown in Fig. 5.
2 is perfect. Just like the Gaussian decoherence fitting, exponential decoherence
fitting may also be applied to non-diagonal elements in order to obtain dephasing
times, though in that case, the final additive factor 0.5 would be ahsent as the
dephasing curves decay to (.

(G.I)

The decoherence times and rates, i.e. 75p

"1=1 can be obtained

o,
and (Tz(? s
using the above methods, and the values obtained from now on, through-out this

chiapter will be caleulated like this.
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Figure 5. 2: The exponential decay fit to the RDM element p14(¢) at short times,
under the inflluence ol a Lorentzian spectrum with spectral parameters A = 3,
¢ = 3 and wy = H. The system is taken as a degenerate 21S.

5.2 Multilevel effects

The 2LA is the most commonly used approximation in the literature. Iowever
the validity of the approximation is not confirmed in most cascs. As we recall

the facts, the 2LLA has, in its essence, three assumptions:

(a) that the incoherent transitions caused by the environment in the system
are generated by the resonant processes: implicit in the 21.A is the belief
that the spectrum must have non-negligible couplings at the right transition

frequencies at which the system makes transitions to higher levels;

(b) at zero or sulliciently low temperatures there are no available environmental
states to couple with the system. This assumption and the notion of the
right transition frequency is basically tempting one to neglect all parts of
the spectrum AE < w because ol the long standing beliel that at sufliciently
low temperatures the interacting part of the spectrumn is in the low cnergies
w < T « AF of which coupling is believed to be suppressed by the low

temperature;
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(c) negligible leakage ol the qubit subspace occupations to higher levels.

These three fundamental assumptions will be discussed in detail. First we
will attempt to challenge the assumption (b). As we have mentioned earlier, in
order to satisly the low temperature condition for any system conliguration, we
will use zero temperature calculations. As assumed above, the relaxation and
dephasing rates should not be effected by the number of levels, as there won't be
any available environmental modes to assist the transition to higher levels.

In order to check this assumption, we increase the truncation limit N and
calculate the relaxation and dephasing rates as a function of the total number
ol levels in the syvstem. We [ocus our interest in the short time (aussian
rates, as they arc more crucial than the long time exponential rates. The
systemn experiences significant decoherence till the exponential decay governs the
decoherence rates. We use the toy system model defined in this chapter with
coupling strength x = 0.1 and coupling range R = 10 with a singly degenerate
configuration, where the lowest two levels are degenerate and higher levels have
equally spaced energy values with AF, .1 = 1 in terms ol a lixed energy scale,
like the one used for the SQUID model, i.c. the harmonic cnergy scale. The
resulting relaxation and dephasing rates of the RDM clement ppp as shown in
Fig. 5. 3 show an increasing behavior. Also. as expected, the rates reach to a
saturation as the number of levels go over 10. There is also a significant step-
like behavior in the relaxation curve. This is also expected, as with the parity
selection rules, the dipole matrix elements [orbid transitions from odd levels to
odd levels and [rom cven levels to even levels. So adding a third level to the
system does not increase the relaxation rate, since transition from ground state
to this state is forbidden. A similar step-like behavior would bhe seen, if the
relaxation rates of RDM element ps2 were to be calculated, but the steps would

not be between even-odd states but between odd-even states.
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Figure 5. 3: The relaxation and dephasing rates for a degenerate two level system,
that ig in interaction with a Lorentzian type spectrum with € = 0.1, wy = 1 and
A =1. The coupling range is B = 10 and the coupling strength is x = 0.1. The
system is a singly degenerate system.

5.2.1 Leakage

As mentioned before, leakage is defined as the occupation of the states other than
the qubit subspace, i.e. the ground state and the first excited state, as defined
in Eq. 2. 21. It is often assumed to be zero as part of the 2LA, though this
assurnption has not been seriously questioned until recently. Clounter-arguments
against neglecting the leakage effeets in the long time dynamics can be found flor
instance in the recent publications. #6163

In order to examine the importance of leakage, we need to have a multilevel
system by default. So as in the previous section, we calculate the leakage for
different truncation limits, and the results are shown in Fig. 5. 4. As expected,
the short time behavior ol the leakage also shows Gaussian-like behavior and in
the long time, the behavior turns into an exponential. Though the Gaussian and
exponential forms arc invertoed.

As we calculate the Gaussian leakage rates 'T,-EG) for different truncation limits,
we obtain Fig. 5. 5. Note that the calculated rates are on the order of the

relaxation and dephasing rates as presented in Fig. 5. 3. This comparison shows
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Figure 5. 4: The Leakage curves for multileveled systems in interaction with a
Lorentzian spectrum with A = 3, wy = 5 and € = 3. The system has coupling
range B = 10 and coupling strength x = 0.2. On the left side we see the long
time range whereas the short time range is focused on the right hand side.

us that, even at T' = 0, the leakage is not a negligible phenomenon, and may
eflect the overall decoherence significantly. The elfects ol leakage will also be

considered in the next chapter.

5.3 Nonresonant effects

Throughout the transition calculations in the literature and textbooks, the non-
resonant transitions are often ignored. Due to a crucial difference between
the resonant and non-resonant transitions, which is the energy conservation, it
is nsually more convenient to consider only the resonant transitions. In the
non-resonant transitions, as the cnergy ol the transition experienced by the

systemn doces not match the energy of the environmmental process necessarily, these
transitions occur in very short time scales, due to the uncertainty principle. The
higher the energy difference, the shorter is the time to observe the transition.
The rotating wave approximation discussed in Chapter 2 is 1used mainly to avoid

the non-resonant terms. Ilowever, the eflect of these non-resonant transitions are
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Figure 5. 3 The leakage rates for a degenerate two level system, that is in
interaction with a Lorenizian type spectrum with e = 0.1, wy = 1 and A = 1.
The coupling range is B = 10 and the coupling strength is £ = 0.1. The system

is a singly degenerate system.

not discussced extensively.

The final assumption to be discussed for the 2LA is the resonant transitions
assumption. In order to check for the validity of this assumption, we make
use of the Lorentzian spectrum as it can be prepared at any width and at any
frequency location. We prepare a spectrum with a very narrow width, ¢ = 0.1
and by moving this localized spectrum around the resonant and non-resonant
frequencies, we check the relaxation, dephasing and leakage rates. The short-
tune Gaussian rates and the long-time exponential rates will he investigated

respectively.

5.3.1 Short-timne behavior

As we have examined the offeets of the environmental parameters on the
decoherence mechanism qualitatively in the previous chapter we have shown that
for various spectral locations, the short time relaxation and dephasing rates does
not differ. As we calculate the Gaussian rates for various number of levels at

dilferent spectral locations, we verily this observation as demonstrated in Fig. 5.
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Figure 5. 6: The relaxation and dephasiug rates for a multi-level system, that
is in interaction with a Lorentzian type spectrum with € = 0.1 and A = 1 for
various spectral locations. The system is prepared with coupling range R = 10
and coupling strength x = 0.1. Energy levels are equally spaced with AF = 1.

6. These results show that the spectral location, i.e. the resonant or non-resonant
frequencies at the spectrum, have no effect on the Gaussian decoherence rates.

Nexl, we check the eflect of the spectral area on the Gaussian rates. We have
previously observed that increasing the € or A increased the Gaussian rates, while
increasing the total spectral arca. Tn the Lorentzian spectral function given in Eq.
4. 11, the total area is found as Ae. We have checked the Gaussian relaxation,
dephasing and leakage rates for multi-level systems and the results are presented
in Fig. 3. 7. As we can see, rates increase with increasing spectral area, though
not linearly.

As we check the Eq. 5. 4, the kernel in the right hand side, K i“i is proportional
to the squared dipole coupling constants and F(0). Also due to the Eq. 4. 15,
F(0) is proportional to the spectral area under the spectral function. Hence
the short time decoherence rates are expected to have contributions not only
from the resonant terms but from the entire spectrum as a whole. We thus
expect for all the Gaussian rates lor RDM, (_TI(?%)L)*I x (spectral area)’’”.

The Gaussian decoherence rates corresponding to the relaxation, dephasing and
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Figure 5. 7: The Gaussian (a)relaxation, (b)dephasing and (c)leakage rates for
multi-level systems, that is in interaction with a Lorentzian type spectrum with
¢ = 0.1 and wy = 2.4 lor various spectral amplitudes. The system has equal
energy level spacings AE = 1, coupling range B = 10 and coupling strength
v =10.1.

leakage contributions differ only in their dependence on the sum over the allowed
dipole couplings ¢,;. As we plot the rates as in Fig. 3. 7, but this time in
a log-log axes configuration, we obtain Fig. 3. 8. Nole that the log-log plots

arc linear, and the slope confirms the dependence of the rates over the arca as

vspectral area.

The same relation also applies to the power-law spectrum. Although the
spectrum characteristic (sub-chmic, ohmic or super-ohmic) seem to change the
decoherence pattern, as we focus on the short time scales we see that the (Gaussian
rates arc not eflccted by the v parameter. As we change the total arca under the
spectrum by varying the cut-off frequency A, and plot the decoherence rates as a
function of total spectral area we obtain Fig. 5. 9. Note that all the plots have
the same slope on the log-log axes scales, and the v parameter merely changes

the location of data points for the same A on the line.
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Figure 5. 8: The Gaussian (a)relaxation, (b)dephasing and (c)leakage rates for
multi-level systems, that is in interaction with a Lorentzian tvpe spectrum with
e = 0.1 and wy = 2.4 for various spectral amplitudes. The system has equal
energy level spacings AE = 1, coupling range £ = 10 and coupling strength
t = 0.1. The axes have logarithmic seales this time.

5.3.2 Long-time behavior

After verifving the dependence of Gaussian rates on the square root of spectral
area, we now check the same dependence on exponential rates. We have also
observed in the previous chapter that, though spectral location does not eflect
the Gaussian rates, it indeed eflects the exponential rates. Changing the spectral
center, for various numnber of levels, we obtained the relaxation, dephasing and
leakage (RDL) rates of RDM element p1:(¢) as shown in Fig. 5. 10. We have
experienced some numerical instabilities while wy, approaches to the resonant
frequencies. It was possible to overcome the instabilities by decreasing the time
increment dt, though in that casc, the computational times would increase by an
order of 10%. For the 2LS, we have only wy = 1 as the resonant [requency, though
for 3LS we have wy = 2 as well and for 5LS, wy = 3 and wy = 4 are also added.
Though, again, due to parity selection rules, for the 3LS, transition from ground
state to second excited state is forbidden, hence we have no instability at wp = 2

at any plot. Likewise, the transition from ground state to fourth excited state is
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Figure 5. 9: The Gaussian relaxation (first column), dephasing (second column)
and leakage (third column) rates for multi-level systems, that is in interaction
with a realistic power-law spectrum of different characteristics, sub-olunic (first
row), ohmic (second row) and super-ohmic (third row) for various cut-off
[requencies A. Note that the axes have logarithmic scales.

also forbidden. As a result wy = 4 point does not sufler [rom the instabilities [or
the LS.

We have observed that the resonant frequencies do not cause any difference at
short time ranges, whereas at the long time range, they increase the decoherence
rates significantly. This is indeed natural as the non-resonant transitions die
out in the long times, and the resonant transition probabilities approach to 1 at
t — oc. Ilowever, we have demonstrated that the Gaussian rates are more crucial
in determining the decoherence times, since till the exponential rates dominate
in the long times, great deal of decoherence is experienced by the system in short
and intermediate times. As a result, non-resonant transitions cannot be neglected
that easily as in the 2L A.

In the previous sections, we have discussed the validity of the assumptions
that the 2LA is built upon. First we have demonstrated that zero temperature is
not suflicient, to suppress the ellect ol higher levels over the qubit subspace. Then

we also showed that leakage cannot be neglected, even at zero temperature, since
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Figure 3. 10: The exponential (a)relaxation, (b)dephasing and (c)leakage rates
[or multi-level systems, that is in interaction with a Lorenlzian type spectrum
with € = 0.1 and A = 1 for various spectral locations. The system has equal
energy level spacings A = 1, coupling range R = 10 and coupling strength
k =0.1.

transitions [rom qubit subspace to higher levels cannot be suppressed completely
ceven at rzero temperature.  And finally, we have shown that non-resonant
transitions are the main source of decoherence at short times. Throughout the
calenlations, we avoided the Markov and rotating wave approximations (RWA),
and solely used the Born-Oppenheimer approximation. Now we will also question

the validity ol the BOA in the next scction, where the rates (T}%E))_l will he

OXPIECSSCS as ﬂ'\(C’E) [or convenicnce
.. I e P | Wy [y P RDL - o z e

5.4 Limitations of the Born-Oppenheimer ap-

proximation

The essence of the Born-Oppenheimer approximation is in neglecting the back
influence of the quantum svstem on the environment. At sufficiently short
observation times, in contrast with the typical environmental equilibration time,

this approximation holds well and our results within those observational times
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are reliable. The crucial question is whether the BOA holds at intermediate as
well as exponential regimes.

For a rigorous check of the BOA one has to solve the equations without
this approximation. This can be done by using other techniques for instance,
the Nakajima-Zwanzig Projection Operator Method or the Timc Convolutionless
Projection Operator (TCL) formalism.!” Another alternative are the analytic real
time renormalization group calculations.®® However, these analytic calculations
can only be applied, by any practical means, to the two-leveled systems.

There is, nevertheless, an intuitively very simple method for estimating the
range of the BOA. For a multileveled system with a large number of rcsonant
frequencies, the smallest resonance energy sets the onset of the exponential
behavior. In our case, this energy scale is A, ~ AFE = 1 and for times
1 = 1/A, < t exponential behavior should be manifest. The BOA continues to
hold in the exponential regime if the Born-Oppenheimer time (a typical reaction
time scale of the environment which is on the order of the inverse width of the
spectrum 1/¢) is much larger than the transition time 1/A. to the exponential
behavior.

An estimate for the critical region can be made by looking at the crossover
between the short and the long time behavior. Assume that after some crossover
time t., the Gaussian amplitudes are in the same order of magnitude as the

exponential ones. This amounts to

o (A Ht)A® | —(A@)2¢.2 (5. 7)

Solving this equation for the exponents, one obtains for ¢,

AE)
— QA(G)2 [1 + \/1 + 4A(G)2/(A(E)AC)] (’3 8)

as an estimate for the crossover time between the intermediate and the

c

exponential regions. Crudely, for ¢ < t. Gaussian and for ¢, < t exponential
behavior are manifest. However, for the BOA to be accurately valid in the
exponential regime an additional constraint has to be satisfied: the Born

equilibration time 1/¢ has to be much longer than the crossover time ¢. thus
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1
t(‘, << E- (5- 9)

By delining a test parameter g = ¢. ¢ and using g, 5. 9 we [ind that
the Born approximation holds well in the exponential regime if g <€ 1 and it is
unreliable for 1 < . Within the ranges of parameters investigated in this thesis,
we calculated the p parameter by the corresponding R, rates. The results are
tabulated in the Table 5.1 for 21.S, 3LS and 5HLS.

The g parameter is influenced both by the short and the long time scales. Asit
can be scen [rom the table, there are certain regions where the BOA is threatenced.
For instance, close to resonant frequencies g increases towards unity and for
the opposite case of off-resonant ones, g <. 1. The basic relation is that, the
contribution of the long time resonant coupling is to increase the exponential rates
which increases p. In this regime the possibility arises that the environmental
back reaction takes place belore the onsct ol exponential behavior. On the other
hand, and independently [rom the decohering system, the contribution of the
off-resonant parts of the spectrum is to increase the Gaussian rates. This in turn
decreases the parameter g by the relations 5. 8 and 5. 9.

We also examined the BOA as a function of the number of levels. Considering
the behavior of ;& with respect to N, A9 as well as AE) are both monotonically
increasing [unctions of N for N < R. Therelore, using I&q. 3. 8 the overall
dependence is t. ~ 1/N. Since ¢ is independent ol N, g ~ N which explains
why the BOA improves in MLS with larger number of levels. This behavior is
illustrated in Fig. 5. 11 for N < 5 and can be studied for larger N wvalues
provided sufficient computing power.

In the next chapter, we will be examining the realistic outcome of the driving
ields, that are the main manipulation tocls to execute the quantum computation

algorithins, in the presence of the covironmental bath.
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0.123
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0.099
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0.127

0.034

0.514

0.054

0.028

0.070

1.6

0.052

0.011

0.052

0.018

0.203

0.029

0.015

0.030

2.0

0.021

0.005

0.021

0.008

0.055

0.016

0.009

0.018
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0.012

0.003

0.013

0.004

0.023

0.021

0.011
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0.008

0.003
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0.013
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0.316

3.2

0.006
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0.006
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0.008

0.097

0.052

0.301

3.6

0.005
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0.004
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0.022

0.012

0.046
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0.004

0.001

0.004

0.001

0.005

0.010

0.006

0.020
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0.003

0.001

0.003

0.001

0.004

0.007

0.004

0.012
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Table 5.1: The g parameter of the RDL processes [or 2LS, 3LS and 5LS against

varying wy. The other spectral parameters arc € = 0.1 and A = 1.
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Figure 5. 11: upg for 31.S and 51.5 ag a function of spectrum center wy. The figure
is an illustration of the data in the Table 5.1.



Chapter 6

Driving fields in the realistic

system-environment model

Quantum computation makes use of the quantum algorithms, and quantum
algorithms rely on the manipulation of the quantum systems of interest by
external means. Quantum computation, very basically, consists of a series of
external manipulations on a quantum system, and a f(inal read-out. These
manipulations are named as gate operations, referring the logical gate operations,
and an algorithm may consist of gate operations on the order of 103. So, the
ultimate goal nowadays is to obtain a system, for which the destructive effects
of decoherence are not felt before the read-out. As we focus our interest on the
widely used SQUID systems, since we know that SQUID systems interact with
external fields, it is most natural to perform the gate operations via en external
field. In this section, we will try to demonstrate the results of applying an external
field to a multileveled system, in the presence of environmental noise. So we will
have a chance to observe the effects of higher levels and environment on the gate
operations more realistically.

First we will focus on the most simple manipulation, an external field at a
resonant frequency which will result in Rabi oscillations. We will present the
case of ideal Rabi oscillations, and then investigate the effects of higher levels

and the presence of the environment. The modifications on the Rabi oscillations

87
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; ; 2 e :
should give an idea about the outcome of some experiments.®™ =70 Later, we will
simulate the operation of a small and simple gate scrics, and comment on the

success of the outcome.

6.1 Rabi oscillations

Rabi oscillations arc mainly defined for two-level systermns. When an external field
is applied to the system, the populations in the system tend to oscillate. The
oscillations’ frequency depends on the amplitude of the Rabi field applied, not
on the intensity of the field. As the applied field’s frequency is resonant with the
2LS, ie. wy = AE, it is possible to observe the population inversion as shown in
Fig. 6. 1. Though, [or a non-resonant Rabi [requency, full population inversion
is not observable, as also shown in Fig. 6. 1. Rabi oscillations arc named after
the Nobel prize winner physicist Isidor Isaac Rabi (1898-1988). Recently, in the
experimental studies concerning the quantim computation, Rabi oscillations are

commonly measured, as they are the simplest way to make system modifications.
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Figure 6. 1: Rabi oscillations in a 2LS. On the left hand side, we have full
population inversion as the Rabi field is resonant with AF, whereas on the right
hand side, as wy # AFE, we cannot observe a full population inversion.
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The interaction ol the system with the Rabi field may be written as
Hr = p(t)gis {|1)(2]a’ +|2){1]a} (6. 1)

whoere the system is taken as a 2LS and RWA is used. Here g2 defines the real
coupling strength between the two levels due to Rabi field. The operators a and
a' are the operators for the Rabi field. The time dependent function p(#) defines
the shape of the Rabi pulse in time, as the pulse may have any specific shape,
though using a step [unction as a pulse shape would be mich easier.

The Rabi oscillations and [ull population inversions can be observed in 2LS,
though as stated betore, many physical systerns are indecd multileveled and
truncated to two levels explicitly. So, firstly we wish to observe the changes
in Rabi oscillations on a multileveled system first, on the next subsection. Later,

we will also introduce the environment.

6.1.1 The effect of higher levels

Rabi oscillations arc observable in 2LS, though as the number of levels in the
system 1 higher, we cannot observe perfect oscillations. As we have demonstrated
and explained in the previous chapter, although the field that the system interacts
does not include a resonant transition frequency, the system may experience non-
resonant transitions in the short time limit. In order to observe this non-resonant
effect, we prepare a system with four levels, where the energy level spacings are
AE =1, AF; = 1.5, and AFy; = 2 in terms of an arbitrary cnergy scale €.
The dipole conplings in the system arc also chosen so that the couplings between
the higher levels are weaker than the one in the qubit subspace, i.e. 2 = 0.3,
way = 0.2 and w3y = 0.1. We apply a Rabi field with the resonant frequency
wpr = 1 to this system. One could expect that the Rabi field may just generate
transitions in the qubit subspace, so that the occupation of the higher levels may
remain zero throughout the entire tiime range. Though, as it may be scen in Fig.
6. 2, the Rabi ficld also initiates non-resonant transitions to higher levels, and as
a result, the occupations of the higher levels may increase up to ~ 0.4. Naturally,

full population inversion is not observable.



CHAPTER 6. DRIVING FIELDS IN THE REALISTIC SYSTEM-ENVIRONMENT MODEL90

— G R J H ) .
(_.\[nund state - 2" excited state |
- 1 excited state

d - s
3" excited state |

L]
I H
1 ?
08 - ﬂf:q A i : S
. " W 03F. : =
w " ] af "l e : it £
R N P AR Al :
2ot [BEY P B A 2
=) TR IR NIRRT RE AR =
_L it i b RN ". E'_ :
g RERRA AR AR Hooz02 -
d_ H
@ gy l '3 :
=
2 04H 4 =
- 2 1
Zz 1 ] =
= N [ i
o HIER [ :: )| [
db g gl R 0.1
HE N N N (H R
02 1) bl fra ::llr'll’u'— . L
il [ i [1y i 1 i b : ; I
A E Y | | g 5 F gt ar g
I I IR R R 2 . A o oy
wll e g o e f) gy ; \ §° a8 vE o
] uu., [ | i o \_'.‘_; 1
ol WP by eyl JYVE ol 1Y% 1 .7 -
0 20 40 60 80 100 0 20 40 60 80 100
1(1/9Q) 1(1/Q)

Figure 6. 2: Rabi oscillations in a 2L.S. On the left hand side, we have full
population inversion as the Rabi field is resonant with AF, whereas on the right
hand side, as wp # AF, we cannot observe a full population inversion.

The effect of multilevels can even he more crucial, depending on the system
configuration. As we sct the system’s energy level spacings to be equal so that
AE, n11 = 1 and apply the resonant Rabi field, the outcome may even be worse.
As it can be scen in Fig. 6. 3 the occupations of the highor levels may go up
to ~ 0.8 this time, and the oscillations in the qubit subspace becomes more
disordered. Of course it is not very probable to have a svstem with the exactly
same level spacings, though, in order to demonstrate the importance of the higher
levels, it was a proper example.

There is also a recent experimental result®™ obtained on a de-SQUID, where
a strong deviation from the strict lincar law between the Rabi frequency and the
field strength is observed. This deviation is explained by the increasing number
of multilevels participating in the dvnamics by the increasing field strength at

fixed microwave frequency.
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Figure 6. 3: Rabi oscillations in a 2LS. On the left hand side, we have full
population inversion as the Rabi field is resonant with AF, whereas on the right
hand side, as wr £ AFK, we cannot observe a full population inversion.

6.1.2 The effect of the environment

In arder to obscrve the effect of environment on the Rabi oscillations, we need
to include the systems interaction Hamiltonians with both the Rabi field and the

environmental bath. Then the total interaction Hamiltonian would be

N N
Hiy+= Hr+Hp = Z oo (D)) (r[(p(t)a(t)+h.e )+ Z P (E) |72} (| (B(E) + D)

fr=1 nr=Lk

(6. 2)
where the function p(#) defines the pulse shape of the Rabi field, a is the Rabi
field operator and b is the environmental bath operator. Throughout this chapter,
we will use a pulse shape like a step function, like

0 1 ift<t, 6 3
b _{0 if # > ¢, - 3)

where £, is the pulse time. As we put this Hamiltonian in Eq. 2. 55, we obtain the
master equation to solve. However, for the environmental part, we have discussed

that the [irst order commutation would vield zcro, due to the cxpectation of
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single annihilation and creation operators belore. So that we would iterate the
commutation once more and obtain [inite results in the second order. Though, lor
the Rabi part of the interaction, we have inite outeomes at the first commutation,
so there is no need to iterate to second order. As we are supplying the Rabi ficld
at high intensity, with a source like a laser beam, the expectation of a single
creation or annihilation operator is generally assumed unity. As the Rabi field
and environmental bath commute with each other, we can treat them separately.

Finally we obtain the master equation as

& prnlt) = ifm| [Ha(2) p(0)] ) — [ dtZK”"’”tt o) (6. 4)

for the reduced density matrix.

Solving Eq. 6. 4 similarly as in Chapter 4, we obtain the Rabi oscillations in
presence of environment as in Fig. 6. 4. In our calcnlations, we used a Lorentzian
spectrum with wy = 5, ¢ = 3 and A = 3. The system parameters are same as in
the previous section. Iowever, in order to observe the changes [or dillerent Rabi
and cnvironmental coupling strengths, we defined two coupling strengths, ag for
the Rabi coupling and a g for the environmental coupling. In our calculations, ag
seems about 7-20 times greater than o, though as the environmental processes
are calculated at second order, the real ratio of coupling strengths is on the order
of 10%. As the intentionally applied Rabi pulse should be much more stronger
than the environment, which is tried to be avoided, this type ol ratio in the
couplings is expected. In the final section of this chapter. even higher ratios,

which seems to be closer to the ideal case, will be used.

6.1.3 Expected outcome of realistic Rabi oscillations

Finally, as the effects of the multi-level and the environmental interaction arc
combined, we obtain the outcome of the Rabi field applied to a realistic system.
We have presented the oscillations in Fig. 6. 3 for different environmental

coupling strengths. Note that, significant leakage to higher levels takes place
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Figure 6. 4: Rabi oscillations in a 2LS in interaction with an environmental bath,
as the environmental coupling strength is varied.

in addition to the damped oscillations due to the environmental eflects. The

envirommental and system parameters are same as in the previous section.
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Figure 6. 5: Rabi oscillations in a 4LS in interaction with an environmental bath,
for various environmental coupling strengths. On the left hand side, we see the
populations ol the qubit subspace, whereas on the right hand side, we see the
leakage to higher levels.

We have demonstrated the possible results, as a Rabi field is applied to a
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multi-level system that is interacting with an environmental field. These results
may shed some light upon recent experimental results. For instance there is the
experiment by Zrenner ef of®® where single scll-assembled excitonic ¢-dots arc
used to create cxcitons by a strong Rabi field, which arc then tunncled out amd
transformed into a photocurrent. The anomaly appears in the damping of the
TRabi induced oscillations in the pulse averaged photocurrent as the area under
the Rabi pulse is increased. This effect within the fixed time of the short 1
ps pulse (dephasing and relaxation times are reported to be approximately 500
ps) could not be observed in a purely 2LS as it would violate the fundamental
principle of unitarity. The pulse width is shorter than the decoherence time
by three orders of magnitude and it is clear that the observed damping does
not originate from decoherence. The short timescale of the effect indicates the
influence of higher excitonic states. In a simple approach it has been shown that
the damping ol the oscillations as the intensity of the short pulse is increased is
duc to ofl-resonant leakage into biexcitonic levels.® ™ Considering this argument,
we have solved the system-Rabi coupling, while neglecting environmental offects
for a three-leveled system and calculated the average occupation of third level, i.e.
{ogslt tee = Lty fot Y dipss(t), as a function of the pulse area. The frequency of
the Rabi pulse is taken as resonant between the first two levels, for three different
third-level energies. It can be seen [rom Fig.6. 6 that the average occupation
is largely independent [rom the third-level energies. Another point is that the
peak position occurs at ¢, < 1/wg. Using the dipole matrix model Eq.5. 1,
this implies £, < ©,Tx/(27), where Tg is the Rabi oscillation period; therefore
t, 2 0.17TF, concluding that the third level is already occupied maximally before
the completion of a single Rabi period. This short time effect is counterintuitive
[rom the traditional way ol thinking in teris of the long time resonant transitions.
It must be remarked that this is an exact result. It appears that a multileveled
system decides to act like so at very short times in comparison with typical
resonant timescales. Thus, Fig.6. 6, in confirmation of the earlier theoretical

£9,70

calculations, manifests the effect of the strong influence of the non-resonant

processes on leakage.



CHAPTER 6. DRIVING FIELDS IN THE REALISTIC SYSTEM-ENVIRONMENT MODEL95

0.35

T
Ea=2
EE,S‘J.S
.'\‘ 3=10
03k A
f
k=) |
® [
[=2]
g 025 |
g |
<
g j 1 ; , ; ; .
[in 0.2 - Pi
= | eep T
5 g s
3 : ool b
2 o015 2 M
« . -
5 g 0.6
5 A
§ 01 b 5 0.4
] 'g 03 |
O 04K
005 r O AL i 1 1 ]
0 05 1 15 2 25 3
oty
0 A 1
0 0.5 1 1.5 2 25 3

Figure 6. 6: The time average over the Rabi pulse ol the third-level occupancy is
shown as a [unction ol pulse arca, [or dillerent third level energics, where By = 1,
Ey = 2. The Rabi frequency is set as resonant with the first two levels. The inlet,
shows the state occupations for the cqually spaced system levels, resonant with
the Rabi frequency.

6.2 NOT gate simulation

As a final step to check the effect of the multilevels and the environment, we
will demonstrate a quantum logic gate operation on a single qubit. NOT gate
is a very simple gate, which changes the input, i.e. il the input is 1, the output
would be 0, if the input is 0, the output would he 1. Adapting the NOT gate
to the quantum mechanical system, for the qubit subspace, if the excited state
is occupied, i.e. pao = 1, the NOT gate would switch the state to occupy the
ground state. i.e. p1; = 1, or vice versa, As we have explained the effects of the
Rabi field and Rabi oscillations previously, it is clear that we can use Rabi field
to petlortn NOT operation on our system.

The key point ol the demonstration would be that, after how many gate
operations, we will still be able to read-out the expected result. The testing
scheme will be like applying a NOT gate, wait for some time, and applying

another NOT gate, and so on. In order to perform numerous NOT gates in
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our leasible computation limit (t=200), we [urther increase the Rabi strength to
ap = 5. We calibrated the time to switch on and ofl the Rabi field, due to a 2LS
without enviromment, i.c. the ideal situation. Let us call this time as ¢ vop. With
our parameters, we measurced fyor = 2.1 normalized with the arbitrary cnergy
scale  ag the energy levels. First, we will prepare the system as the sround state
is fully occupied, i.e. p1; = 1 and pos = p12 = po1 = 0. So we will apply Rabi
field for a duration of tyo7, then switch of the field. We will wait for another
tnot, then switch on the field [or another txo7. Ideally, the svstem would return
to it’s starting conliguration at this point. Then we will wait [or another ¢ yor
and at the middle of this waiting period, we will measure the occupation of the
ground state. The procedure goes on like that, and after each couple of NOT
operations, there will be a measurement.

As we applied the explained procedure to the 21.S, with the same parameters
as in previous scction, that is in interaction with an cnviromment, which has
again the same parameters as in previous scction, we obtained measurement
results as shown in Fig. 6. 7 for different environmental coupling strengths.
Note that, after about 20 couples of NOT operations, we are no longer able to
deduce any information from the system for ooy, = 0.05, as the system approaches
an equally occupied configuration, i.e. the maximum entropy limit. For an even
weaker environmental coupling ol «, = 0.01, the system does not reach the
maximum entropy situation cven after ~20 couples of NOT operations. Though
an exponential approach to that limit is obvious.

As we further introduce the higher levels of our systems into the calculations,
we obtain dramatically worse results as seen in Fig. 6. 8. To put it into simpler
words, the NOT gate duration fyo7 that is obtained for the 2LS is not valid for
4LS, and as a result, we perform the measurements belore, or alter the maximum
population inversion occurs in the qubit subspace. Of course, as shown belore, full
population inversion is not achicvable in the presence of environment and higher
system levels. As a result, the readings of the measurements may approach to
the desired value, as the expected and real operation frequencies coincide, though

the rest of the measurements are far from the desired values. Note that, as a
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Figure 6. 7: The occupation pq1(¢) versus the number of couples of NOT
operations performed, in a 21.S that is in interaction with the environment, for
various environmental coupling strengths.

measurement of gy is close to 0.5, we say that we cannot obtain any information
as measuring 1 or 0 has about the same probability. Though lor p;; < 0.5, the
measurements give us wrong results, as the probability to obtain 0 as an outcomoe
of a measurement is greater than to obtain 1.

50, as demonstrated above, the environment plays the role that is expected
of it, But the higher levels of the system, above the qubit subspace, which is
often neglected may have drastic effects on the operations, that are to be applied
to the system. Apart [rom trying to get rid ol the enviromment, one also must

precisely adjust the course ol operations on the system.
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Chapter 7
Conclusions

In this thesis, we studied on the decoherence mechanisms in open quantum
systems. There is an increasing number of studies in the literature in the
recent years about decoherence, as it has also been a key problem in quantum
computation.

Decoherence is mainly described as the destruction of quantum coherence in
a system due to an interaction with an environmental bath. The most general
method to analyze the decoherence is using the master equation approach, and it
has also been used in this thesis. Though, as the exact analytical analysis of the
interaction is impossible by any means, there have been numerous approximations
and models used. We have briefly introduced the most commonly used
approximations and models in Chapter 2. We have also presented introductory
information about the SQUID systems, as they are one of the most commonly
used physical systems in quantum computation field, and also introduced the
solution for a rf-SQUID. Later, the interaction of the system and environment is
presented, as coordinate-coordinate coupling introduced by Caldeira and Leggett,
and solved for various environmental spectra. The key point in our solution was
that, apart from the Born-Oppenheimer approximation, for which the validity
region is discussed, we have not used any approximation technics, and obtained
our results by numerical means.

Our main goal was to observe the effects of the system and environmental
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parameters in the decoherence mechanism. In our calculations, we have perceived
that the most commonly used 2LA is not as sale as thought. The decoherence
shows dilferent behaviors at short times and long times. We have shown that
decoherence at short times, is affected by the entire spectrum, rather than the
only resonant parts of the spectruin, therefore it is possible to experience serious
decoherence at short times, even if the resonant frequencies in the spectrum are
avoided. Numerical and analytical analvse have been done to reveal the direct
proportion ol the short time decoherence rates with the square root ol the total
spectral arca. We have also shown that, the highor levels in a physical system
cannot be avolded totally, as the cnergy lovel spacing between the qubit subspace
and higher levels is large, even it the environmental temperature is set to zero.
Because, the key point in the higher level transitions is the environmentally
induced dipole coupling matrix elements, rather than the scle energy level
dilferences. It is also shown that, due to these higher level transitions, leakage
cannot be neglected in [avor of the 2LA that easily.

Finally, we have also demonstrated the possible outcome of the driving ficlds
applied to a system in interaction with the environmental bath., Apart from
the expected result of environmental interaction, which is quite like the effect
of damping on an oscillating system, we have probed the effect of higher levels.
It has been demonstrated that, as the driving fields are adjusted [or the 2LS
approximation, it is possible to obtain dramatically crroncous results due to the
interference of the higher levels. Even without the wide environmental spectrium,
the monochromatic Rabi field may also initiate non-resonant transitions to higher
levels.

In conclusion, it has been discussed that, the validity of the 2LA is not
that straightlorward as thought. The critical parameters [or the salety ol the
system arc shown to be dillerent than the ones commonly believed. The basic

dlecoherence mechanisims have bheen demonstratod.



Appendix A

The analysis of the compensating

term

In the calculations of the system-reservoir models, there is usually a compensating
part of the interaction Hamiltonian which is included in order to compensate

4 This compensating term may

the frequency renormalizations on the system.
contain environmental parameters, though it cannot contain the environmental
dynamical variable, which is in our case the environmental phase. We write down

the compensating term of the Hamiltonian we use as

=5 g2, )] / deon. (1. 1)

The effect of this compensating term is to shift the system basis by a unitary

transformation .
U, = Texp(—i / dt' (') (1. 2)
0

where T is the time ordering operator. With this transformation, the full density
matrix pr(t) is transformed like p¥(¢) = U pr(t)U;. The reduced density matrix
is again found by tracing over the environmental degrees of freedom of which the

matrix elements in the original system are found. Repeating the same algebra as
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in Chapter 4, one linds [or the reduced density matrix that

d

L
4 )= / QRS )0 (L. 3)

where the kernel is now found as

K’f‘;”(t,t') = {}—(t_t’)("ﬁU(t)ﬁou(.t’))ﬂ-vﬁ&m - ((r’?U(t!))rw‘((r’TU(t))SM] (1. 4)
+ f*(f - ‘f‘f)[('nU(t,)L:’QU(t))-'fm(Sr‘n- - (‘ng(t))u.r(pIJT(t’)a"rrl]} -

Ilere, the translormed dipole matrix clements arc

(7 (D) = (7 ()™ PP, (L. 5)

Theretore, the net effect of the transformation due to compensating term is

transforming the original system dipole matrix into

eV(t) = Urp()U]. (1. 6)

The new dipole matrix elements due to this transformation are
Phm(t) = Z U (8275 (8)U L, (8). (1. 7)

At the short times [or the perturbative dipole interaction, the lirst [ew torms are

given as

t L L

() ~ ot —i /U ALY (0]~ ;T /U dt, /U A1) [ (), o (6] +

(1. 8)
It is trivially seen that the renormalization of the initial dipole matrix elements
are contributed by the terms with odd number of time integrals in the above
expansion.The dipole elements that are not presented in the original system, such
as the even transitions pﬁinﬁm( t) are created by the terms with even number of
integrals. For three and four level systems, it can be scen that the corrections to

all dipole matrix clements start with those terms with at least two time integrals.
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In calculation of the short time decoherence rates, the effect of the two small
parameters, i.e. time and the dipole couplings are multiplicative. This proves
that the compensating term does not create an appreciable renormalization of
the system basis in the short time limit. For a system with a small number of
levels the smallness of this effect should persist even at longer times.

There are arguments that at long times, the effect of the compensating term is
also negligible.!” It is also possible to sum up the infinite series of the expansion

to all orders. The general term in the series is given at the operator level by

0 = o)+ 7Y T [t [l )P0 e 19)

where H.(t) = Ag?*(t) is used explicitly. The last term includes an n-fold
commutator and 7T is the time ordering operator. As the short time part is

currently the subject of interest, let £ — 0. Due to the time ordering in the

t t tn
/ dtl.../ dt,1 ~ —. (1. 10)
0 0 n!

Hence for sufficiently short times,

¢U(t) _ eiAw2(0)<p(t)6iAw2(0) (1‘ 11)

expansion, we have

which proves that all corrections to the system dipole transitions occur in powers
of the square of the transition matrix elements. It can be seen easily that Eq. 1.
11 becomes an appreciable renormalization only when sufficiently large number
of levels are involved in the non-resonant transitions.

To examine the effect of compensation at long times, let ¢ — oo so that

) ~ ﬂﬂ—iﬂmﬁWQW%Mw] (L 12)

%T/OOO dtl/0ldt2[Hc(t1),[Hc(tz),w(t)]] + ...

The first term does not include a time ordering and therefore can be calculated

easily as

—iAY [8(Bn — B)9%, (0)¢am(t) = 6(Es — Epn)ns(£)62,)- (1. 13)
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In the limit t — o0, w,s(t) is a sharply peaked [unction [or n = s, rapidly
oscillating otherwise. As this term is approximated as 4, s at ¢ — oc, it vanishes.
Likewise, the nest term includes a time ordering which can also be calculated
exactly. In this term, the non-zero contributions are restricted to oven more
energetic conditions and the second term also vanishes in the limit § — oo.
Moreover, all the terms have, in common, different matrix elements of ¢(¢). Tn
the £ — oo limit, these contributions average out anything slower to zero, making
it possible to ignore them.

The overall result is that it is possible to ignore the renormalizing eflect, of

the compensating term in our calculations.



Appendix B

Proof of the reality and positivity
of A(G)

Let us define a Hermitian dipole transition operator ¢; such that

(9o = (leelk) = e BB o ). (2. 1)

By using the above equation, it is trivially checked that the system-noise kernel

can be written at ¢ =t = 0 as a non-negative real operator
K(0,0) = F(0)lpo @ I~ I® g5 | (2. 2)

where F(0) = A is the spectral area, which is real by definition and T' denotes
transpose. Hence Eq. 2. 2 describes a real non-negative operator in the two-
folded Hilbert space |n) X |m) where n,m = 1, N. By using Eq. 2. 2, it can be

shown easily that the system-noise kernel in Eq. 1. 5 is equivalently written as
K(0,0) = (n| x (m|K(0,0)|r) x |s). (2. 3)
Defining a vector |V') such that
prm(0) = (n[ x (m|V) (2. 4)
we can write Eq. 5. 3 in the implicit operator form as
V) = —K(0,0)|V) (2. 5)
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where the lelt hand side clearly implies the second derivative ol the density matrix
at t = 0. Since K{0,0) is real and non-negative, its eigenvalues are real and non-
negative; hence a real Gaussian like short decoherence timescale exists.

Another analytic exact result is that the Gaussian-like short decoherence
timescales are proportional to the square root of the spectral area. This follows
from the fact that the matrix elements of K(0,0) have, in common, a term
proportional to F(0) which is just the spectral area. The solution of Eq. 2.
o then indicates that the short time decoherence rates scale with the squarce root

ol the spectral area.



Appendix C

Numerical code

The numerical code that is used is presented here in it’s most general form. The

package lgrind is used to create the output from the code. Note that the code

can be used for both toy system model and a SQUID system, after commenting

out relevant lines. Basic information is supplied within the code with comments.
program density_tls

implicit double precision(a—h,0—y)

c ndim defines the dimension of the Hilbert space

parameter(ndim=4)

c ntime defines the time steps to be calculated
parameter(ntime=20000) 10
complex *16 zrho(0:ntime,ndim,ndim),ztr
double precision fi(ndim,ndim),w(ndim)
external initrho,rhot,flush,rabi

intrinsic dfloat,demplx,conjg,dasin,dacos,datan

intrinsic dsqrt
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open(l [ile=’output.file.dat’)

CCCOCCCOCraCrCCCCCECOrCCaCrCCOCCCCCaCOaCrCCCOCOECrCCOCrCratrn
C nhs defines the truncation limit
c alpha defines the Rabi coupling strength 20
C env defines the environmental coupling strength
c wll defines the Rabi field [frequency
C t0 and tpp are lime parameters to define pulse shape
CCCOCCOOCraCrCCOCCECOrCCCCrCCOCCCCCaCCaCrCCCOCeaCrCCCCrCeracrn
nhs=2
alpha=1.d0
env=2.d0
w{1=0.5d0
t0=0.d0
tpp=1.d0 30
CCCCCCCECCCCCEOCCCCCCCCCOCCerCCCCCeCCCCCerCCCCCeCCCCCCrCCeeee
c For a SQUID system, these two subroutines calculate and
c diagonalize the system Hamiltonian

call hamiltonian (A,gammap,beta, xinnt,fi)

CECCECOOCOaCrCCaCCCCCCaCrCCOCrCCCaCOLCrCCCCrCCCaCOCCrCCaCraere
c LAPACK subroutine to calculate the cigenvolues and
& eigenvectors of a real matriz

CCCCCCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCeCeel

call dsyev(’v’,’1’ ndim,A ndim, W, WORK lwork,info) 40
CECCCCOOCCOCECCrCOrCrCCCaCOCCCCCCaCCCCOCCO0CCOCCeCCreCraees
C For the toy model, energy level spacings and dipole matria
c elements are defined here

CCCCCCCCCCCCLCCCCCCCCCCCCCOCCCCCCCCCCCCCOCCCCCOCCOCCCCCCCoCeocel

do i=1,ndim
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e w(i)=(2.5d0%dfloat(i})-3.5d0

do j=1,udim
if (mod(i+j,2).eq.0) then
fi(i,j)=0.d0
else
fi(1,j)=0.3d0*dexp(—dabs(dfloat(i) —dfloat(j})/10.d0)
endif
enddo

enddo

w(4)=9.5d0

w(3)=9.d0

w(2)—1.5d0

w(1)—1.d0

CCCCECCECCECCCCCCCtCCCCCCCCCCCCCOCCCCCCCCCCCCrCCOCCCCCCCCCeCead

dt=1.d-2

& density matriz initialization

call initrho(»rho)

& Density matriz caleulation

call rhot(zrho,fi,dt,w,nhs,t0,tpp,alpha,w0,env)

end

CCCCCOCOCCCCCCCCCCCOCCOCCCCOLCCCCCCCCoCLCCCCCOCCCCCOCCoCloc

109
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C subroutine to caleulote tnitial rho

CCCCCOCECCECCECCCCCeCtCClCCeCCCCCCCCCClOCtCCCCCCCCCCCCroos 80

subroutine initrho(zrho)

implicit double precision (a—h,0—v)
parameter (ndim—4)

parameter (ntime=20000)

complex *16 za,zb,zrho(0:ntime,ndim,ndim)

intrinsic demplx,conjg,dsqrt,dcos,dsin

pi=4.d0*datan(1.d0)
za=dcemplx{0.d0,0.d0) 90
sb=demplx(1.d0,0.d0)
do i=1ndim
do j=1ndim
do k=0 ntime
zrho(k,i,j)=dcmplx(0.d0,0.d0)
enddo
enddo
enddo
zrho(0,1,1)=za*conjg(7s
zrho(0,2,2)=zb*conje(zb) 100
zrho(0,1,2)=za*conjg(zh)
zrho(0,2,1)=zb*conjg(za)
return

end

CCCCCCCCCOCCECCCCCCCCOCCCCECOCCCCCCCCrCCCeCCCCeCCCCeCCrCCiCCiCCeerCere
c subroutine to calculate time evolution of rho

CCCCCCCECCOCCCCCCCCeCCOCOCCOCCCCeClCClCCOCCCCCCClCClCCCCCCCCCCCeCl o
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110
subroutine rhot(zrho,fi,dt,w nhs, t0,tpp,alpha,w0,env)

implicit double precision (a—h,0-v)

parameter (ndim=4)

parameter (ntime=20000)

complex *16 zrho(0:ntime,ndim,ndim),zaux3,zauxs

complex *16 zauxlzaux2,zaux3 zaux4,zenvl, zenv2,zenv3 zenvd, zenv
integer nxy(ntime)

complex*16 ztinf(ntime),zrabi(ndim,ndim)

double precision fi(ndim,ndim),w(ndim)

intrinsic dcos,dsin,dexp,demplx,dfloat 120
intrinsic dreal dimag,datan,dsqrt

cxternal [lush

CCCCCOCECCECCCCCCCCoCtCOCCCeCCCCCCCOCtCCOCCCCCCCCCCCCCCCCCCCCCCCrOCe

C

C

environmental correlation function is a pre-calculated and read

from a file

CCCCCCCECCCCLCCCCCCCCCCCCCCCClCCCCCCCCCCCCCCCCCCCCCCCCCCCCCClCCCCCCiee

33

open (2 file—’lor.eps.3.w0.6°)
do i=1ntime—1

read(2,33) ijk,ztinf(i)

format(i3,1x,12.5,1x,f12.5) 130
enddo

do in=1,ntime
itO=time()

tp=dfloat(in)*dt

do ia=1,nhs
do ib=1,uhs
zauxb=demplx(0.d0,0.d0)

do ik=0,in—1
t==dfloat{ik)*dt 140
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scale=1.d0/(1.d1¥dt)
zenu=1.d-4*scale*ztinf(in-ik)
zenv=env*ztinf(in—ik)
do ir=1nhs
do is=1nhs

saux1=fi(ia,is
raux2=fi(is
(

zaux3=fi(is,ir)*f(ir,ib

al—w(ia)—w(is)
a2=w(is)—w(ir)
a3=w(ir)—w(ib)
ad=a2+a3
ab=al+a2

zenvl=dcmplx(deos(a2*t),dsin(—a2*t)}*
demplx{deos(al*tp).dsin{—al*tp))

zenv2=demplx(dcos(ad*t),dsin(—ab*t))*
demplx(deos(ad*tp),dsin(—ad*tp))

zenv3=dcmplx(deos(a2*t),dsin(—a2*t)}*
demplx{dcos(a3*tp).dsin{—a3*tp))

zenvd=demplx(dcos(ad*tp),dsin(—ads*tp))*
demplx{deos(ad®t),dsin(—ad*t))

yHii
is,ib)*fi(ia,ir)*dt*dt*srho(ik,ir,is)*
ib)

£aUXH=zaux)—zauxs

*fi(is,ir)*dt*de*srho(ik,ir,ib)*zenv1

a,ir Y¥zenv2
*dt*dt*zrho(ik,ia,is)*zenv3
zauxd=fi(ia,ir)*fi(is,ib)*dt*dt*zrho(ik,iris)*zenv4

zauxs=((zauxl—zaux2)*zenv)+((zaux3—zaux4)*conjg(zenv))

160

170
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enddo
enddo
enddo
zrho(in,ia,ib)=zauxb
enddo

enddo

CCCCCCCECCCCCEOCCCCCCOCCCCCerCCCeCCeCCCCCerCCCeCCeCCCCCerCCreCCeeee 180
c In the presence of Rabi field, rabi subroutine is called
& here
CCCCCCCCCOCCCCCCECCCCCOCCCrCOCeiCCCCCOCerCeCCreCCCCrCCrCCCereeeeoe
call rabi(zrabi,dt,w zrho,fi,nhs,t0,tpp,alpha,w0,in—1)
do i=1ndim
do j=1ndim

zrho(in,i,j)=zrho(in,i,j)+zrho(in—1,i,j)+zrabi(i,j)

enddo
enddo
CECCCCCCCCCCECCRTOCOeCCCCCeCertiCCeCCrCCrCCeCeeaeCCeCCrCCreieOreece 190
& The cvotution of the RDM is wwitten to a file here. Any
c element of interest may be written.

CECOECCCCCCCCECCCTECreCeriCCCiClCrCCCCeeritrCCCCeCCCCCrereceeeee
write (1,44)tp,dreal{zrho{in,1,1}),dreal(zrho(in,2,2)),
$edabs(zrho(in,1,2)),dreal(zrho(in,3,3)),dreal(zrho(in,4,4)),
$ 1.d0—(dreal(zrho(in,1,1))-+dreal(zrho(in,2,2)))
call flush(1)
44 format (f8.3,1x,110.5,1x,{10.5,1x,f10.5,1x,110.5,1x,
$ 1£10.5,1x,f10.5)

enddo

return
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end

CCCCCCCCCCCCCCCOCCLCCCCOCCCCeCClClCCeCCCCCCCCCCCCCCCCCCCOCLCCCCleer

C Subrouline to calculate the effect of the driving Rabi field
CCCCCCCCECECOCCCCCCClCeCCCCCiCiilCCCeCCeCeCrCCCieCieCrCCCCreCeCes
subroutine rabi(zrabi,dt,w zrho fi, nhs t0,tpp,alpha, w0,in) 210

implicit double precision (a—h,0—y)
parameter (ndim=4)
parameter (ntime=20000)
complex *16 zrho(0mtime,ndim,ndim)
complex *16 zauxl,zaux2,zaux3,zrabi{ndim,ndim)
complex*16 zrotl,zrot2 41
double precision fi(ndim,ndim),w(ndim),gt
intrinsic dcos,dsin,dexp,demplx,dfloat

intrinsic dreal,dimag,datan,dsqrt

external [lush 220
t=dfloat(in—1)*d¢t
zi=demplx(0.d0,1.d0)
gt=0.d0
CCCCCCCCCCCCCCCCOrCCrCCCCCCCCClCeCCeCCCCCCCCCCCOCeCCeCeCCiCeCeCrecee
C Any pulse shape may be defined here
CCCOCOCCCCCCCCCCCCOCErCOCCCOCCeCCCeCCOrCOrCCOCCeCiCetCerCiCCoCCeCcenee
if ((t.gt.(t0—tpp)).and.(t.1t.(t0-+tpp))) then
gt=dexp(—10.d0/((tpp*tpp)—((t—tpp)*(t—tpp))))
endif
230
do ia—1,nhs
do ib=1,nhs

zaux3=decmplx(0.d0,0.d0)
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do ir=1,nhs

COCCECCECOOCOCCEECCOCrCCaCeECiOrriCaoraCoCrOrreriiroCCCeiClorriracead
c Rotating wave approvimation is used here
CECCECCECCECCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCCClCCCCCCCeCCieriCeeCeeceee

if (ia.gt.ir) then

zrotl=demplx{dcos(w*t),dsin{w0*t))

else 240

arot1=demplx{dcos(w0*t),—dsin(w0*t))

endif

if (ir.gt.ib) then

zrot2=dcmplx{deos(w0*t),dsin(w0*t))

else

zrot2=dcmplx{dcos(w0*t), —dsin(w0*t))

endif
zaux1=fi(ia,ir

) )
$ *demplx(deos({(w(ia)—w(ir))*t), —dsin((w(ia)—w(ir))*t))
) )

*zrho(in,ir,ib)*zrot1

*

zaux2=f1i(ir,ib)*zrho(in,ia,ir)*zrot2 250

$ *demplx(deos({w(ir)—w(ib))*t), —dsin{(w(ir) —w(ib)}*t})
CCCCOCOCCOCCOCCCCCEOCCCCHICOCCOCCCCCCCrCCOCCOCOOCICECCCICCOCOrCOCOrCere

ranx3=zanx3-+(zaux2—zaux1)*x*gt*alpha
enddo
zrabi(ia,ih)=zaux3*dt

enddo

enddo

return

end

260

c Funection that calculates log of a facloriel
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CCCCCCCCCCCCCCCCCCCCCCOCCCCCCCCClCCCCCCCCCCCeCCeo:

real*8 function fac(n)
implicit double precision(a—h,0—y)
intrinsic dfloat,dlog
aux=0.d0 270
if (1.eq.0) then

fac=1.d0

goto 30
else

do i=1n

aux=aux-+dlog{dficat(i))

enddo
endif
fac=aux

30 return

[
G
[

end

CCCCECCCCCCCCCOCCTCCCCCCCCECrCereCCCCrCCCCrCCrCCCCCeCCCCCCCrtCCeCrCeee
C Subrouline to construct the system Hamiltonion

subroutine hamiltonian( A gammap, beta,xinnt, fi) 200
implicit double precision(a—h,o—y)

parameter (ndim=30)

double precision A(ndim,ndim),fi(ndim,ndim)

external dsyev,lac

intrinsic deos,dsin,dexp,dlog,dfloat,conjg
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intrinsic demplx,dimag datan,dreal,dtan,min

complex *16 zizaux,zzz,zix,zalt,zig

pi=4.d0*datan(1.d0)

eta=1.d—1 300
fix=xinnt*1.d—2

zix=demplx(dcos(2.d0*pi*fix),dsin(2.d0*pi*fix))

zi=demplx(0.d0,1.d0)

egamma—dexp(—gammap*gammap/2.d0)

do n=0,ndim-1
do m=0n
szz=dcmplx(0.d0,0.dQ)
j=min{m,n)
do k=0 310
zig=dcmplx(0.d0,gammap)
zalt=zig**dfloat(m+n—2*k)
xfacl=(fac(m—k)+fac(n—k)-+tac(k))
xfac2=0.5%(fac(m)+tac(n))
xfac3=dexp(xfac2—xfacl)
zaux=(beta*zalt*xfac3*egamma)
Z7E=777+7alx
enddo

A(n+1,m+1)=dreal(zzz*zix) 320
fi(n+1,m+1)=dimag(rzz*7ix)
A(m+1n+1)=A(n+1,m+1)
film+1n+1)=fi(n+1,m+1)
enddo
enddo
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do i=1ndim
A(i,1)=A(i,i)+dfloat(i)—0.5d0
enddo

return

end

118

330
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