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Abstract We consider the problem of optimal portfolio choice using the Condi-
tional Value-at-Risk (CVaR) and Value-at-Risk (VaR) measures for a market
consisting of n risky assets and a riskless asset and where short positions are
allowed. When the distribution of returns of risky assets is unknown but the mean
return vector and variance/covariance matrix of the risky assets are fixed, we derive
the distributionally robust portfolio rules. Then, we address uncertainty (ambiguity)
in the mean return vector in addition to distribution ambiguity, and derive the
optimal portfolio rules when the uncertainty in the return vector is modeled via an
ellipsoidal uncertainty set. In the presence of a riskless asset, the robust CVaR and
VaR measures, coupled with a minimum mean return constraint, yield simple,
mean-variance efficient optimal portfolio rules. In a market without the riskless
asset, we obtain a closed-form portfolio rule that generalizes earlier results, without
a minimum mean return restriction.
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1 Introduction

The Value-at-Risk (VaR) is widely used in the financial industry as a downside risk
measure. Since VaR does not take into account the magnitude of potential losses,
the Conditional Value-at-Risk (CVaR), defined as the mean losses in excess of VaR,
was proposed as a remedy and results usually in convex (linear) portfolio

A. B. Pa¢ - M. C. Pmar (X))
Deparment of Industrial Engineering, Bilkent University, 06800 Ankara, Turkey
e-mail: mustafap @bilkent.edu.tr

Published online: 09 January 2014 ) Springer



A. B. Pag, M. C. Pmar

optimization problems (Rockafellar and Uryasev 2000, 2002). The purpose of the
present work is to give an explicit solution to the optimal portfolio choice problem
by minimizing the CVaR and VaR measures under distribution and mean return
ambiguity when short positions are allowed. Distribution ambiguity is understood in
the sense that no knowledge of the return distribution for risky assets is assumed
while the mean and variance/covariance are assumed to be known. The optimal
portfolio choice problem using the aforementioned risk measures under distribution
ambiguity and allowing short positions was studied by Chen et al. (2011) in a recent
paper in the case of 7 risky assets, extending the work of Zhu and Fukushima (2009)
where the authors treat robust portfolio choice under distribution ambiguity. Chen
et al. assumed that the mean return vector x4 and variance—covariance matrix I" of
risky assets are known, and compute portfolios that are robust in the sense that they
minimize the worst-case CVaR risk measure over all distributions with fixed first
and second moment information. They obtained closed-form robust optimal
portfolio rules. The reader is referred to El Ghaoui et al. (2003), Natarajan et al.
(2010) and Popescu (2005) for other related studies on portfolio optimization with
distributional robustness, and to Tong et al. (2010) for a computational study of
scenario-based CVaR in portfolio optimization. A recent reference work on
portfolio optimization (using the mean-variance approach as well as semi-variance
and utility functions) in both single and multi-period frameworks is by Steinbach
(2001). In particular, Natarajan et al. (2010) study expected utility models in
portfolio optimization under distribution ambiguity using a piecewise-linear
concave utility function. They obtain bounds on the worst-case expected utility,
and compute optimal portfolios by solving conic programs. They also relate their
bounds to convex risk measures by defining a worst-case Optimized-Certainty-
Equivalent (OCE) risk measure. It is well known that one of the two risk measures
used in the present paper, namely CVaR, can be obtained using the OCE approach
for a class of utility functions; see Ben-Tal and Teboulle (2007). Thus the results of
the present paper complement the previous work of Natarajan et al. (2010) by
providing closed-form optimal portfolio rules for worst-case CVaR (and worst-case
VaR) under both distribution and mean return ambiguity. In the present paper, we
first extend, in Sect. 2, the results of Chen et al. to the case where a riskless asset is
also included in the asset universe, a case which is usually an integral part of
optimal portfolio choice theory. The inclusion of the riskless asset in the asset
universe leads to extreme positions in the portfolio, which implies that the robust
CVaR and VaR measures as given in the present paper have to be utilized with a
minimum mean return constraint in the presence of a riskless asset to yield closed-
form optimal portfolio rules. The distribution robust portfolios of Chen et al. (2011)
are criticized in Delage and Ye (2010) for their sensitivity to uncertainties or
estimation errors in the mean return data, a case that we refer to as Mean Return
Ambiguity; see also Best and Grauer (1991a, b) and Black and Litterman (1992) for
studies regarding sensitivity of optimal portfolios to estimation errors. To (partially)
address this issue, we analyze in Sect. 3, the problem when the mean return is
subject to ellipsoidal uncertainty (Ben-Tal and Nemirovski 1999, 1998; Garlappi
et al. 2007; Goldfarb and Iyengar 2003; Ling and Xu 2012) in addition to
distribution ambiguity, and derive a closed-form portfolio rule. The ellipsoidal
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uncertainty is regulated by a parameter that can be interpreted as a measure of
confidence in the mean return estimate. In the presence of the riskless asset, a robust
optimal portfolio rule under distribution and mean return ambiguity is obtained if
the quantile parameter of CVaR or VaR measures is above a threshold depending on
the optimal Sharpe ratio of the market and the confidence regulating parameter, or
no such optimal rule exists (the problem is infeasible). The key to obtain optimal
portfolio rules in the presence of a riskless under distribution and mean return
ambiguity asset is again to include a minimum mean return constraint to trace the
efficient robust CVaR (or robust VaR) frontier; Steinbach (2001). The incremental
impact of adding robustness against mean return ambiguity in addition to
distribution ambiguity is to alter the optimal Sharpe ratio of the market viewed
by the investor. The investor views a smaller optimal Sharpe ratio decremented by
the parameter reflecting the confidence of the investor in the mean return estimate.

In the case the riskless asset is not included in the portfolio problem, in Sect. 4,
we derive in closed form the optimal portfolio choice robust against distribution and
ellipsoidal mean return ambiguity without using a minimum mean return constraint,
which generalizes a result of Chen et al. (2011) stated in the case of distribution
ambiguity only, i.e., full confidence in the mean return estimate.

2 Minimizing robust CVaR and VaR in the presence of a riskless asset
under distribution ambiguity

We work in a financial market with a riskless asset with return rate R in addition to
n risky assets. We investigate robust solutions minimizing CVaR and VaR
measures. The unit initial wealth is allocated into the riskless and risky assets so as
to allow short positions, thus we can define the loss function as a function of the
vector x € R" of allocations to n risky assets and the random vector ¢ of return rates
for these assets:

[, &) =—("E+R(1 - xTe)), (1)

where e denotes an n-vector of all ones. For the calculation of CVaR and VaR, we
use the method in Rockafellar and Uryasev (2000), minimizing over y the auxiliary
function:

1
Fo(x,7) =7 10 [(F(x,0) =), (2)
i.e., the 0-CVaR is calculated as follows:
CVaRy(x) = min Fy(x, y), (3)
7R
where 0 is the threshold probability level or the quantile parameter, which is gen-

erally taken to be in the interval [0.95,1). The convex set consisting of y values that
minimize Fy contains the 6-VaR, VaRy(x), which is the minimum value in the set.
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The worst-case CVaR, when ¢ may assume a distribution from the set
D = {n|E;[¢] = u, Covg[¢] =T > 0} [i.e., the set of all distributions with (known
and/or trusted) mean u and covariance I'], is defined as follows:

RCVaRy(x) = max CVaRy(x) 4)
ne
= in Fo(x,7).
max min Fy(x, 7) (5)

For convenience, in the rest of the paper, we replace occurrences of the sup operator
with max since in all cases we consider the sup is attained.

We assume p is not a multiple of e, as usual. Let us define the excess mean return
fi = it — Re, and the highest attainable Sharpe ratio in the market H = i"T"~! ji; see
Best (2010). The following Theorem' gives an explicit solution of the portfolio
choice problem of minimizing worst-case CVaR under a minimum mean return
constraint

min RCVaRy(x), (6)
x€R":(u—Re) x> d—R

where d € R, is a minimum target mean return parameter. We assume the mini-
mum mean target return is larger than the riskless return, i.e., d > R.

Theorem 1 For 0> the problem Eq. (6) admits the optimal portfolio rule

H+1 ’

For 0< 2=, the problem Eq. (6) is unbounded.

H+l7

Proof Since the set of distributions I is convex and the function

+ 25 E[(f(x, &) — 7),] is convex in y for every &, we can interchange supremum
and minimum; see Theorem 2.4 of Shapiro (2011). More precisely, one considers
first the problem min,cg max,ep Fy(x,y) and one finds a unique optimal solution as
we shall do below. Then, using convexity of D and the convexity of the function
74+ 5E[(f(x,&) —y),] in y one invokes Theorem 2.4 of Shapiro (2011) that
allows interchange of min and max. We carry out this sequence of operations below:

1
min max Fy(x,y) = m1ny+—max]E[( x'¢—R+Rx'e—1y),]

yeR neD 1 —0 e

= miny + o max E[(-R—7—2"(¢~Re)).] (7

}’ER - 9@"‘ :u:r)
1
_%Qﬁf@nm%z E[(—R -7y —n),] (8)

! While our proof is similar to the proof in Chen et al. (2011) in essence, their proof is faulty because
their argument for exchanging max and min relies on a result of Zhu and Fukushima (2009) which is valid
for discrete distributions. Our setting here, like that of Chen et al. (2011) is not confined to discrete
distributions. Hence, a different justification is needed for exchanging max and min.
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. 1 —R—V—V+\/“2+(—R—v—v)2 .
SRt g 2 ' ©)

Maximum operators in Eqs. (7) and (8) are equivalent, since by a slight
modification of Lemma 2.4 in Chen et al. (2011) we can state the equivalence of
following sets of univariate random distributions:

Dy ={x"(£ —Re) : &~ (1, T)}
DZ :{’1 B/ (V, 0-2)}5
where v = xT(u — Re), and ¢*> = x"I'x. Equality Eq. (9) follows by Lemma 2.2 of

Chen et al. (2011). Then RCVaRy(x) is the minimization of the following function
over y:

1 —R—V—V+\/02+(R+V+v)2
1-0 2 '

7y minimizing /,(y) can be found by equating the first derivative to zero:

he(y) =7+

1 —1+R+y+V)(E+R+y+v))
1-6 2 '

B(y) =1+

Hence, we have

20— 1= (R+7+v)/\/o?+ (R+7+7),
(recall that 6 > 0.5 so that 260 — 1 > 0) or, equivalently,
(20— DX+ (R+7+v)") = (R+7+)’,
or,
(20— 1)’6* = (R+ 7 +v)*(1 — (20 — 1)?)

whence we obtain

Riqpy= 22l
Va0 — 46°
o R—vt (20— 1)a
Y 2V/0V1 =0’

since h,(y) is a convex function as is verified immediately using the second
derivative test:

1
2(1-0)

The minimum value of ,(y) being known, we can calculate the min max value:

H!(y) = (P +R+y+v)) 32 > 0.
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minmax Fy(x,y) = minh,(y)
yeR

yeR neD
=he(7y)

—(20-1)o (20-1)*
=—R—v+ (20_1)6+ 1 soviot 62+40(179>02
2V/0V1T—60 1-0 2

(20 —1)a 1 U(—20+1+1)
=—R—v+ + e

2WOVT—0 1-02\2/0v/1—0

(20 — 1)o 1 a(l1—0)
=—R—-v+ +

2V0V1T—0 1-02y/0y1-0
——R—v_f_L
- 20T -0
=—R—-v+ Vo o

vV1-10
— _R—(u—ReT Vo VT
=—R—(u Re)x—f—m xTTx.

Hence, by Theorem 2.4 of (Shapiro 2011) we have

Vo
RCVaRy(x) = —R — (u — Re) " x + xTTx.
(x) (1~ Re)'x 2
Minimizing the above expression for worst-case CVaR under the minimum mean
return constraint, the robust optimal portfolio selection can be found”.Using a non-
negative multiplier /, the Lagrange function is

Vo

L(x,2) = —R — (u— Re) x—i—m

VxTTx + A(d — R — (u— Re)"x).

The first-order conditions are:
kl'x

VxTTx

where we defined x = % for convenience. We make the supposition that x # 0

and define 0 = vVxTT'x. We get the candidate solution

A+ 1
Yo = @r—lﬂ.

—i+ Re + — (1t —Re) =0,

Now, using the identity xI'x, = ¢*, we obtain the equation

2 It is a simple exercise to show that in the absence of the minimum mean return constraint the portfolio
position in the ith risky asset tends to oo depending on the sign of the ith component of '~ ji.
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K2

A1) ==
1P ="
which implies that A = \/— — 1. Under the condition — J5 2 >1 we ensure 4 > 0. Now,

utilizing the constraint which we assumed would be tight, the resulting equation
yields (after substituting for x. and 1)

d—R

VH '
which is positive under the assumption d > R (H is positive by positive definiteness
of I' and the assumption that y is not a multiple of e¢). Now, substitute the above

expressions for ¢ and / into x., and the desired expression is obtained after evident
simplification. If \/_ <1 then the problem Eq. (6) is unbounded by the convex

o =

duality theorem since it is always feasible. O
The VaR measure can also be calculated using the auxiliary function Eq. (2):

VaRy(x) = arg min Fy(x, 7).
yeR

The worst-case VaR is now calculated as follows:
RVaRy(x) = max VaRy(x)

= maxargn mm Fo(x,y)
neD

= arg min max Fy(x, )
yER neD

= hx "
arg min f,(y)
= 'yx.

Again, a change of the order of operators makes this calculation possible by The-
orem 2.4 of Shapiro (2011). With a similar approach to that followed for CVaR, we
pose the problem of minimizing the robust VaR:

min —R — x" i + Rx" €+M\/XTFX
xeR” 22/0V/1 =0

subject to
(u—Re)'x>d —R.

We obtain a replica of the previous result in this case. Hence the proof, which is
identical, is omitted.

Theorem 2 For 0> %—l—%\/%, the problem of minimizing robust VaR under

distribution ambiguity and a minimum mean return restriction admits the optimal
portfolio rule
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For 6< %—i— %\/\é%, the problem is unbounded.

In both results stated above, the optimal portfolios are mean-variance efficient.
We plot the critical thresholds for 6 given in Theorems 1 and 2 in Fig. 1 below.
Both thresholds tend to one as H goes to infinity and the threshold curve for robust
VaR dominates that of robust CVaR. Hence, robust VaR leads to aggressive
portfolio behavior in a larger interval for 6 than robust CVaR. In other words, one
has to choose a larger confidence level 0 for robust VaR as compared to robust
CVaR to make an optimal portfolio choice. Thus we can affirm that robust VaR is
more conservative than robust CVaR.

Based on the above results, it is straightforward to derive the equations of the
robust CVaR efficient frontier and the robust VaR efficient frontier. Both robust
frontiers are the straight lines governed by the equation

g—_ % g, VH 1, (11)

k—VvVH  x—+VH

where for f = RCVaR and x = 0 we obtain the efficient frontier for robust

Vi—o
CVaR; and for f = RVaR and x = % we get the robust VaR efficient frontier.
0.9 T
ﬂ'/ll‘l

0.8 (.-“
07/
0.6-!J
0.5
0.4+
0.3
0.2+
0.14

0 T T T T 1

0 2 4 6 8 10
H~
=
—— H+H) 12 +—H
2-JT+H

Fig. 1 The critical thresholds for robust CVaR and robust VaR. The upper curve is the threshold value
curve for robust VaR
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3 Robust CVaR in the presence of riskless asset under distribution and mean
return ambiguity

We consider now the problem of choosing a portfoliox € R” that minimizes the function
RRCVaR() (x) = ne%}%)e(U,; CVaR() (x) (12)

or equivalently

RRCVaR(x) = max max min Fy(x, ) (13)
el ned yeR

where we define the ellipsoidal uncertainty set U, = {f||T~2 (i — u™™) |, < v/e}
for the mean return denoted ji, where p"®™ denotes a nominal mean return vector
which can be considered as the available estimate of mean return. The parameter e
acts as a measure of confidence in the mean return estimate. We consider now the
problem of choosing a portfolio x € R” that minimizes the function

RRCVaR(x) = max max min Fy(x, ) (14)

el neDd yeR
subject to
(i — Re)sz d —R.

As in the previous section we define D = {n|E.[¢] = fi, Cov,[¢] =T > 0}. Con-
sidering the inner max min problem over = € D and y € R, respectively, as in the
proof of Theorem 1 of previous section while we keep i fixed, we arrive at the inner
problem for the objective function (recall Eq. 10) that we can transform immediately:

VxTT'x

Vo
RCVaRy(x) = —R— (ji — Re)T
maxRCVaRy(x) = max ( e)x+\/—1—0

= max —R— (ji—Re)"x \/— \/xTFx
ReUg

=—R— (1) 'x+eVxTTx + \/\/__\/xTFx

where the last equality follows using a well-known transformation result in robust
optimization (see e.g., Ben-Tal and Nemirovski 1999), and u* = u"°™ — Re.

Using the same transformation on the minimum mean return constraint as well,
we obtain the second-order conic problem

m%n —R—x"p + <\/E + > VxTTx
xeR"

Vo
vV1—-20
subject to

(1)'x = VeVxTx>d R,

where d > R.
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Theorem 3
2
1. Under the Slater constraint qualification, if 0 > (\(/—ﬁ%, and € < H then the
problem Eq. (14) admits the optimal portfolio rule
d—R
=T i

(VH - Ve)VH

2. If e = H, the problem is unbounded.
3. If e > H, the problem is infeasible.

Proof Under the Slater constraint qualification the Karush-Kuhn-Tucker opti-
mality conditions are both necessary and sufficient. Using a non-negative multiplier
A we have the Lagrange function

L(x,)) = =R —x"pu* + (\/E + \/;/:if)> VaTTx + A(d — R — (u*)"x
+/eVaTTx).

Going through the usual steps as in the proof of Theorem 1 under the supposition

that ¢ (defined as vxTXx) is a finite non-zero positive number, we have the can-
didate solution:

_ G(/l+1) —1, %
BTV Y

From the identity x!I'x. = 6> we obtain the quadratic equation in /:
(H—€)2* 4+ (2H — 2¢ = 2\/ex)i+ H — € — 2\/ex — k> = 0

with the two roots

k+VH+Ee  —k+VH- /e
VH+ e~ VH—\e

The left root cannot be positive, so it is discarded. The right root is positive if H > ¢

and x>+ H — /€. Now, returning to the conic constraint which is assumed to be
tight we obtain an equation in ¢ after substituting for 4 in the right root, and solving
for o using straightforward algebraic simplification we get

___d-R
=i

which is positive provided H > e. Now, the expression for x* is obtained after
substitution for ¢ and A into x, and evident simplification.

Part 2 is immediate from the result of Part 1.

For part 3, if ¢ > H, our hypothesis of a finite positive non-zero ¢ is false, in
which case the only possible value for ¢ is zero, achieved at the zero risky portfolio
which is infeasible.[]
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The problem of minimizing the robust VaR under distribution and mean return
ambiguity in the presence of a minimum target mean return constraint is posed as

20— 1)
mip R Vet i)

subject to
(1) 'x — /eVxTTx>d — R.

Again, we obtain a result similar to the previous theorem in this case. The proof is a
verbatim repetition of the proof of the previous theorem, hence omitted.

Theorem 4

VH—/¢
2/ 14+(VH-Ve)
then the problem of minimizing the robust VaR under distribution and mean
return ambiguity in the presence of a minimum target mean return constraint
admits the optimal portfolio rule

1. Under the Slater constraint qualification, if 0 > %—i— ,and e<H

* d—R l—*fl ~
Xf=—=I""4
(VH - e)vVH
2. If e = H, the problem is unbounded.
3. If e > H, the problem is infeasible.

Notice that we obtain identical and mean-variance efficient portfolio rules for
both CVaR and VaR under distribution and mean return ambiguity. Furthermore,
the optimal portfolio rules reduce to those of Theorems 1 and 2, respectively, for
e = 0, the case of distribution ambiguity only.

The robust CVaR and VaR efficient frontiers are straight lines given by the
equation:

. Vi
7K—\/ﬁ+\/ER+K—\/I7+\/Ef’

where for f = RRCVaR and x = \/% we obtain the efficient frontier for robust

CVaR; and for f = RRVaR and x = 2%)\;2—9 we get the robust VaR efficient

d

frontier.

Comparing the above results and efficient frontier to the results of the previous
section and to the efficient frontier Eq. (11) for the case of ambiguity distribution
only, we notice that the effect of introducing mean return ambiguity in addition to
distribution ambiguity has the effect of replacing v/H by vVH — /€. More precisely,
the mean return ambiguity decreases the optimal Sharpe ratio of the market viewed
by the investor. The investor can form an optimal portfolio in the risky assets as
long as his/her confidence in the mean return vector is not too low, i.e., his € does
not exceed the optimal Sharpe ratio of the market.
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The efficient frontier line for the case of robust portfolios in the face of both
distribution and mean return ambiguity is less steep than the efficient robust
portfolios for distribution ambiguity only. This simple fact can be verified by direct
computation:

VA-Ve VA Ve

VAt VA (VA VAL
The d-intercept for the former is also smaller than for the latter as can be easily seen.
We provide a numerical illustration in Fig. 2 with H = 0.47222,¢ = 0.4,R = 1.01
and 0 = 0.95. The efficient portfolios robust to distribution ambiguity are repre-
sented by the steeper line. It is clear that the incremental effect of mean return
ambiguity and robustness is to render the investor more risk averse and more
cautious.

4 Without the riskless asset

We consider now the problems of the previous section as treated in Chen et al.
(2011), i.e., without the riskless asset and without the minimum mean return
constraint since we do not need this restriction to obtain an optimal portfolio rule. In
that case we are dealing with the loss function:

’

se000000 P

Fig. 2 The efficient frontier lines for robust CVaR and robust VaR for H = 0.47222,¢ = 0.4,R = 1.01
and 0 = 0.95. The steeper line corresponds to distribution ambiguity case while the point line
corresponds to distribution and mean return ambiguity case
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Robust CVaR under Distribution and Mean Return Ambiguity

: i -

044

0.3

0.2

9=0.95 9=0.99

Fig. 3 The behavior of robust CVaR as a function of € in the case without the riskless asset. The upper
curve is for 0 = 0.99 and the lower curve is for 0 = 0.95

flx, &) = —x¢ (15)

and the auxiliary function

Fox,7) = 7+ 725 El(—x"¢ ~ 7). (16)

In Chen et al. (2011) Theorem 2.9 the authors solve the problem

min  max CVaRy(x)
x€R":eTx=1 neD

in closed form. We shall now attack the problem under the assumption that the mean
returns are subject to errors that we confine to the ellipsoid: U, = {a|||T~"/ (i —
w") ||, < +/€} for the mean return denoted i, where ("™ denotes a nominal mean
return vector as in the previous section. That is, we are interested in solving

min max max CVaRp(x).
x€R":eTx=1 €U, neD

Using partially the proof of Theorem 2.9 in Chen et al. (2011), and Theorem 2.4 of
Shapiro (2011) as in the previous section, we have for arbitrary [

[ 0
max CVaRy(x) = " xTTx — x'fi,
ne -

and the maximum is attained at
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wi_l\/xTrx_xTﬂ
2,/6(1 —0)

which happens to be equal to the robust VaR under distribution ambiguity.
Therefore, we obtain

0
max max CVaRy(x) =/ 1 OVxTFx —xT ™™ 4 \/eVxTTx.

pely nebd

Now, we are ready to process the problem

0
min 4/ - OVxTFx — X" 4 \/eVXTTx.

x€R":eTx=1

From the first-order conditions we obtain

_c
K+

where ¢ = (x"Tx)"/?,k = /0/(1 — 0) and 4 is the Lagrange multiplier. Using the
2 = x'T'x we obtain the quadratic equation:

r—l(unom + /Le)

X

equation ¢
C24+2BI+A—(k+e)? =0

where A = (po™) T yom € = TT"'e, B = T~ "™ We solve for / under the
condition

C(k +/€)* > AC — B
(note that A C — B® > 0 by Cauchy—Schwarz inequality):

) —B+\/BzfAC+C(K+\/E)2
(A C .

We discard the root 2~V BLACC +Cletvo* because it leads to a negative value for o;
see the expression for ¢ below. In this case, the dual problem is infeasible and the
primal is unbounded since it cannot be infeasible. The condition C(k +
Ve)? > AC — B is equivalent to

> (\/A —B2J/C— \/0/(1 - 0))
[we do not allow €= (/A —B?/C — /0/(1 — 0))* since it results in a o that

grows without bound, hence the problem is unbounded]. Using the above expression
for / in the equation ¢ x = 1 we solve for ¢ to get

K+ +/€ ‘
\/32 —AC + C(k + \/e)?

2
)

o=

Substituting 4 and ¢ to the expression for x obtained from the first-order conditions
we obtain the solution
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1 B 1
Y= l—wllunom_’_ _ +E 1—*716’

C(k+ /e — A C\/C(k + /€)= A

where we have defined A = AC — B? for simplicity. The portfolio problem for
robust VaR under distribution and ellipsoidal mean return ambiguity is resolved
similarly. In fact, the only change is in the definition of k. Therefore, we have
proved the following result.

Theorem 5

1. The distribution and mean return ambiguity robust CVaR portfolio choice, i.e.,
the solution to problem

min max max CVaRy(x)
x€R":eTx=1 fteU; neD

is given by

1 B 1
x*: r—lun0m+ _ +E F_le, (17)

C(k+ /) — A C\/C(k+ e — A

where A=AC—B?, A= (,u“"m)Trfl,u“"m, C=¢"Tle, B=e"T 1™ and

Kk = /0/(1 = 0) provided that ¢ > (/A — B>]C — k)*. If e< (y/A — B2/C — k)’

the problem is unbounded.

2. The distribution and mean return ambiguity robust VaR portfolio choice, i.e.,
the solution to problem

20 — 1
min S AR VxTTx — x'fi
ﬂG I3

x€R":eTx=1 24 /0( — 0)

is given by

1 B 1
X = | TR +E e, (18)

\/ Clk+ /) — A C\/C(k+ e — A
where A=AC— B>, A= (,u“om)Tlﬂfl,u“"m, C=e"Tle, B=¢TT 1™ and
K= Z%pmvided that € > (/A — B2JC — k)*. If e<(\/A—B%/C — k)’ the

problem is unbounded.

Notice that the optimal portfolios are mean-variance efficient. Using the data in
Chen et al. (2011) we plot the optimal CVaR function y/+%;v/xTTx — xTpmom +

/eVxTTx evaluated at x~ as a function of ¢ in Fig. 3 for two different values of 0.
As the confidence parameter e increases (i.e., confidence in the mean return estimate
diminishes), the optimal robust CVaR increases, which implies an increase in risk
(Fig. 3). A similar behavior occurs for robust VaR optimal value function.
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Interestingly the optimal robust CVaR and VaR increase for constant ¢ when the
quantile parameter 0 increases (Fig. 3). When the uncertainty set Uj is reduced to a
single point u"™ = p , i.e., for ¢ = 0 we obtain precisely the result of Chen et al.
(2011), namely, Theorem 2.9:

Corollary 1

1. The distribution ambiguity robust CVaR portfolio choice, i.e., the solution to

problem
min max CVaRy(x)
x€R":eTx=1 neD
is given by
1 B 1
X T 4 |- ————+ =T e (19)

Cx2 — A CvCk2—A C ’

where A = AC — B>, A= p'T 'y, C=e"T'e,B=e"T" 'y, and x = \/0/(1 - 0)

provided that 0/(1 — 0) > A — B*C. If 0/(1 — 0) <A — B*/C the problem is

unbounded.

2. The distribution ambiguity robust VaR portfolio choice, i.e., the solution to
problem

20 -1

xeR"eTx 12./60 1—9

VaTTx — x"u
is given by

1
O +{ }r ‘.
Ci? — A K C\/CK2

where AzAC—BZ,A:uTF_lu,C:eTF_le,B:eTF_lu, and K =—201_

2,/0(1-0)

2 2
. 20—1 Y 20-1 Y :
provided that <2 0(10)> >A—-B*/C.If <2m> <A — B*/C the problem is

(20)

unbounded.
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