DEHLCAYON OF THE CHTHCAL PATH JITHOD TS

 THE PLANNING OP A TECHNOLOGY TRANSHER

- Wat

Wh i

APPLICATION OF THE CRITICAL PATH METHOD TO THE PLANNING OF A TECHNOLOGY TRANSFER PROJECT USING LINEAR PROGRAMMING

A THESIS
SUBMITTED TO THE DEPARTMENT OF MANAGEMENT
AND THE GRADUATE SCHOOL OF BUSINESS ADMINISTRATION OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BUSINESS ADMINISTRATION

By
ELIF EMIRLI
MAY, 1993

$$
\begin{aligned}
& T S \\
& 158 \\
& 1 E 45 \\
& 1993 \\
& c .1
\end{aligned}
$$

B023072

I certify that I have read this thesis and in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Business Administration.

Assoc. Prof. Erdal Ere

I certify that I have read this thesis and in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Business Administration.

I certify that I have read this thesis and in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Business Administration.

Approved for the Graduate School of Business Administration

Prof. Sübidey Togan

Elif EmiRLi
datafinsturd ligestamonsteo

APPLICATION OF THE CRITICAL PATH METHOD TO THE PLANNING OF A TECHNOLOGY TRANSFER PROJECT USING LINEAR PROGRAMMING

ELIF EMIRLI

Master of Business Administration Supervisor: Assoc. Prof. ERDAL EREL

May 1993, 132 pages

The main purpose of this thesis is to utilize the critical path method in the planning of a technology transfer project by using linear programming. LINDO software is practiced in establishing the linear programming formulation and a matrix generator is written in C language to input the formulation into LINDO format. In this way, the schedule of the project is created, the completion time of the project is calculated and the activities forming the critical path are determined. Also by applying a parametric analysis to the right-hand sides of the constraints (activity durations) for the noncitical activities, the times when the critical activities became critical are determined.

Keywords : Critical Path Method, Planning and

Scheduling, Technology Transfer, Parametric Analysis.

BIR TEKNOLOJI TRANSFERI PROJESININ PLANLANMASINDA DOĞRUSAL PROGRAMLAMA KULLANILARAK KRITIK YOL METODUNUN UYGULANMASI

ELIF EMIRLI

Yüksek Lisans Tezi, Işletme Enstitüsü
Tez Yöneticisi: Assoc. Prof. Erdal Erel
Mayıs 1993, 132 sayfa

Bu çalışmanın amacı, bir teknoloji transferi projesinin planlanmasında doğrusal programlama kullanılarak kritik yol metodunun uygulanmasidir. Doğrusal programlama formülasyonunun oluşturulmasinda LINDO yazılımı kullanılmış ve formülasyonu LINDO formatına çevirmek için de C dilinde bir program yazılmıştır. Bu şekilde, projenin aktivite zamanları, proje bitis zamanı hesaplandı ve kritik yolu oluşturan aktiviteler belirlenmiştir. Ayrıca kritik olmayan aktivitelerin zamanlarına parametrik analiz yapılarak bunların kritik yola girme zamanları elde edilmiştir.

Anahtar Kelimeler: Kritik Yol Metodu, Proje Planlama ve Aktivite Zamanlarını Belirleme, Teknoloji Transferi, Parametrik Analiz.

Abstract

I would like to thank to Assoc. Prof. Erdal Erel for his guidance, suggestions and encouragement for the preparation of this thesis. I am also thankful to Assist. Prof. Dilek Önkal and Assist. Prof. Gülnur Şengül for their helpful suggestions during the completion of the thesis.

My thanks are also due to Mrs. Özge Savaş, Mr. Ergun Bora and my colleagues in ASELSAN for their supports and understanding throughout the thesis. I am indebted to ASELSAN Military Electronics Inc. for the facilities provided.

I would also like to express my deepest gratitude to my family; Doğan, Nevin and Mustafa Emirli for their continuous supports not only during the thesis but also throughout my education in Bilkent University.

TABLE OF CONTENTS

PAGE

ABSTRACT ii
סZET iv
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES ix
CHAPTER 1 : INTRODUCTION 1
1.1.Scope of the Study 1
1.2.An Overview of the Technology Transfer Concept 2
1.2.2.Types of Technology Transfer Channels 3
1.2.2.1.Trademark Transfer 4
1.2.2.2.Patent/Patent License Transfer 4
1.2.2.3.Technical Information (know-how) Transfer 5
1.3.An Overview of the Project 8
1.3.1.License and Know-how Transfer Activities 9
1.3.2.Hardware Supply Activities 10
1.3.3.UTTE Supply Activities 14
1.3.4.Sales Contract Activities with the Customer 14
1.3.5.Activities inside the company 15
1.4.Purpose of the Thesis 15
1.5.Outline of the Thesis 16
CHAPTER 2 : PROJECT MANAGEMENT 18
2.1.Historical Background 18
2.2.Overview of Project Management 20
CHAPTER 3 : LITERATURE SURVEY 25
3.1.Project Scheduling Techniques 25
3.2.Bar Charts 25
3.3.Logic-Diagram-Based Schedules 26
3.3.1.Advantages/Drawbacks of CPM over Bar Charts 28
CHAPTER 4 : NETWORK MODELS IN SCHEDULING 30
4.1.Critical Path Identification 30
4.2.Basic Definitions 31
4.3.CPM Scheduling 33
4.3.1.Activity Relationship Methods 33
4.3.1.1.AOA Method 33
4.3.1.2.AON Method 37
4.3.1.3.The Precedence Method 38
4.4.Finding a Critical Path 39
4.4.1.Critical Path Identification with LP 39
4.4.2.Applying Linear Programming to the Schedule 41
4.4.3.Matrix Generators 43
4.5.Parametric Analysis 44
4.5.1.Types of Parametric Analysis 45
CHAPTER 5 : APPLICATION OF CPM TO THE TECHNOLOGY
TRANSFER PROJECT 46
5.1.Identifying Activities/Estimating Their Duration 46
5.2.Preparing the Schedule 48
5.3.Identifying the Critical Path Activities 50
5.4.Applying Parametric Analysis to the Activities 51
5.5.Discussion and Evaluation of the Implementation 53
CHAPTER 6 : CONCLUSION AND RECOMMENDATIONS 55
6.1. Conclusion 55
6.2.Suggestions for Further Research 63
LIST OF REFERENCES 66
APPENDICES
A.LINDO COMPUTER PACKAGE 68
B.MATRIX GENERATOR PROGRAM FOR LINDO FORMULATION 73
C.ACTIVITY LIST 75
D.LINDO FORMULATION 105
E.PARAMETRIC ANALYSIS RESULTS OF THE NONCRITICAL PATH
ACTIVITIES 119
VITA 132

LIST OF FIGURES

PAGE
Figure 1.1. Flow chart of SKD phase production 11
Figure 1.2. Flow chart of PKD phase production 12
Figure 1.3. Flow Chart of Production from Component 13
Figure 4.1. Single activity in AOA format 34
Figure 4.2. Activities with a Dummy Constraint 35
Figure 4.3. Violation of Rule 5 36
Figure 4.4. Use of Dummy Activity 37
Figure 4.5. AON format 37
Figure 4.6. PDM Format 39

CHAPTER I

INTRODUCTION

1.1.Scope of the Study
"Project management is not only a science but also an art. It is a science because it makes use of scientific techniques that have been proven to enhance management processes. It is an art because it relies on the judgment, expertise and personal intuition of the project management people." (Whitehouse,1973,1989)

Leaving the art side of the project management aside, the emphasis is on science part of it in this thesis.

Most of the scientific techniques available to project management people are handled with the help of computer hardware and software. Although project management makes use of computers in many areas such as project planning and organization, project coordination, project control, budget analysis and project communications; activity scheduling and resource allocation are the areas where computers are utilized most.

And the scope of this study is limited to project scheduling with critical path method (CPM) by making use of linear programming software LINDO. The discussions are also applied to a technology transfer project as an illustration.

1.2.An Overview of the Technology Transfer Concept

The fast development of global industrialization has brought a new approach to the concept of ownership in law in the last centuries and consequently besides tangible rights, intangible rights also emerged. Technological knowledge, which is gained either as a result of experience or as a result of systematic research, had become something that is sold in return of money. It has long been a very common behavior to buy the results that some other company developed by paying a suitable fee which is called transfer of technology. The transfer of technical information related with the design, engineering, manufacturing, and production techniques for hardware systems using recorded and/or documented information of a scientific or technical nature is called technology transfer. (the Defense Systems Management College Publications,1987)
With the rapid widening of the technological gap between the developed and developing countries, the

Abstract

transfer of technology has become a matter of decisive importance. This importance is not restricted to the developing countries alone, but to the developed ones as well, since no industrial, trade or cultural relations can be built up and maintained between the two, without bridging, or at any rate reducing this gap. (Bhattasali,1972) Hence, although technology transfers may be among companies from different countries or among companies from the same country, the most common type is the one which includes different countries. In other words, transfer of technology is an integral part of national development.

Technology transfer is indeed an extremely broad subject and it is perceived as an increasingly important ingredient in the development of industrial resources and wealth. Technology transfer enables companies to make better use of their scarce resources of research and development for donor companies in that it provides additional income to be derived from R \& D. On the other hand, it represents a source of new and improved products in an increasingly competitive world for the recipient companies.

1.2.2.Types of Technology Transfer Channels

Although technology transfers vary in their scope, there exists methods such as trademark license
transfer, patent/patent license transfer and technical information (know-how) license transfer for them.

1.2.2.1.Trademark Transfer

Trademark is a sign which is put onto a product or to its package in order to distinguish it from the similar products. Trademarks are registered by the government to hinder unfair competition by counterfeiting. (Milli Prodüktivite Merkezi, 1975) Any other company can obtain the rights to use the registered trademark of a company by paying a suitable fee to the owner of the trademark.

Contracts are made between the companies for the transfer of trademarks. These contracts should also be approved by the government office which registered the trademark. In these contracts there exists issues such as the term of the agreement, the products for which the trademark can be used and whether the trademark is transferable or not.

1.2.2.2.Patent/Patent License Transfer

Patent is a grant of specific monopoly rights given by a government to an inventor for his invention that is valid for a certain period of time and only within the territorial limits of the country in which

Abstract

it is granted. (the Defense Systems Management College Publications,1987) These rights can be transferred in return of a fee which is called patent transfer. If only the rights to use the patent but not the rights to transfer, are transferred then this is called patent license transfer. (Milli Prodưktivite Merkezi Yayınları, 1975)

In patent/patent license transfer contracts , there exists topics such as what portion of the patent is transferred, if the licensee is given the right to transfer and whether the developments, if any, will also be transferred to the licensee.

The monopoly granted to the patentee rules the others out from using the particular invention in the sense that it provides redress by giving the right to bring suit but it cannot prevent the direct violations.
1.2.2.3.Technical Information (know-how) Transfer

Know-how is an American term which is receiving growing acceptance in international contracts. It is a generic term and it includes trade secrets, manufacturing procedures and techniques, specifications, charts, formulae, drawings and graphs, marketing techniques and professional advice and the
like except patents and trademarks. Actually know-how can be anything which is not readily known or available to the public.

The Restatement of Torts defines know-how as "any formula, device or compilation of information which is used in one's business and which gives an opportunity to gain an advantage over competitors who do not know or use it." (the Defense Systems Management College Publications, 1987)

Therefore, know-how can be similar to a patent in the sense that it grants some kind of monopoly by preventing those who do not posses it from using it. But it is also differentiated from patents in the following issues (the Defense Systems Management College Publications,1987) :

- The monopoly is de facto as opposed to de jure.
- The monopoly is maintained indefinitely unless the know-how is made public.
- What is essential to the value of knowhow is some extent of secrecy.

There is a current trend of switching from patent system to know-how rights to protect the unpatented rights and processes among the companies in
recent years. Furthermore, know-how is generally necessary to utilize the patents licensed in an agreement. As a result of this, another common behavior in this area has been to contain only know-how without patents in the licensing agreements.

The companies that are successful in
transferring technologies to other companies have a common belief in general. This belief is that the beginning of a successful local production is not at the time of contract signature between two parties, but it is as early as the time the design goals for a new product or system to be transferred later are being defined. One design goal of such a product is that it must be producible in foreign countries autonomously, free of bottlenecks and hindrances. In order to do this, the product should be designed taking the availability of components in the world market into consideration. Furthermore, the local manufacturing philosophy should be structured in a modular way to enable the company receiving the technology to increase the local manufacturing content step by step thus achieving the implementation of the full know-how transfer to a 100% autonomy in subsequent modules, parts and components at the earliest time possible.

```
1.3.An Overview of the Project
```


Abstract

The Project is mainly a license and know-how transfer of a defense product from a European company and subsequent manufacturing of it in the licensee's facilities and then selling it to a customer in Turkey. The licensee company is a Turkish company and the project duration is 7 years. The overall project involves 3 agreements and a contract, namely License and Know-how Transfer Agreement, Hardware Supply Agreement, Unique to Type Test Equipment (UTTE) Agreement and Sales Contract. While the three agreements are between the licenser which is a multinational company and the licensee ; the contract is between the end customer and the licensee.

In this program, the licenser is selected by the customer from a number of foreign companies which are manufacturing the product the customer desires to buy. The licenser possesses some specific proprietary rights, manufacturing rights and certain engineering and production know-how essential to or helpful in the manufacturing the product. Following the selection of the licenser, the customer has opened a domestic tender for the local production and delivery of the product. It obligated the bidders for the tender to locally manufacture the product under the license of the
product and provide the necessary support.

A contract is signed between the customer and the winner of the domestic tender. The licensee has been nominated by the customer for the local manufacturing of the product and had obtained the rights to use, to manufacture, to sell and to provide maintenance for the product and subassemblies of the product in accordance with the License and Know-how Transfer Agreement.

Although the validity of the agreements in consideration lasts 7 years, only the activities of the first 3 years will be studied in this thesis due to the data available at hand. Besides, activities after the third year will be a repetition of the first 3-year activities.

Since the project is in the defense industry, confidentiality agreements are made between the two parties to protect the proprietary rights. And because of these agreements, the name of the licenser and the licensee, the name of the product any other information about it will not be disclosed within the thesis.
1.3.1.License and Know-how Transfer Activities

These are the activities of the License and Know-how Transfer Agreement signed between the licensee

Abstract

and the licenser company. They mainly consist of training courses at different phases of the project, technical assistance programs and delivery of technical and manufacturing data package activities. This technology transfer is planned be completed by the end of 1997. In order for the licensee to be able to manufacture the product in its own facilities, the timing of the activities in the technology transfer must be closely monitored. Namely, the success of the project depends on the timely and successful progress of technology transfer activities.

1.3.2.Hardware Supply Activities

These are activities of the Hardware Supply Agreement signed between the licensee and the licenser company. While the license and know-how transfer continues between the two parties, the procurement of necessary kits and components from the licenser also continues according to the provisions of the Supply Agreement.

In general, they consist of procurement programs of ready made units (RMU), semi-knocked down kits (SKD), partly knocked down kits (PKD) and components. In the early. phases of the program, a number of RMUs will be procured from the licenser and will be sold to the customer without giving any
additional value to them since necessary technology will not be present in the facilities of the licensee by that time.

In the second phase, a certain amount of equipment will be delivered to the licensee in SKD kit form. Semi-knocked down kits are mainly processed mechanical parts, assembled and tested modules, component set for final-/sub-assembly. SKD kits will be tested, assembled, integrated, final tested in the licensee's facilities. Following these activities is the manufacturing out of SKD phase before selling them to end users. (See figure 1.1.)

Figure 1.1. Flow chart of SKD phase production

In the third phase, a certain amount of equipment will be delivered to the licensee in PKD kit form. PKD kits are parts of the SKD modules in unassembled form. They are mainly prefabricated parts, component set for modules. Modules are assembled, tested and built into subunits, tested and then final assembled and tested. (See figure 1.2.)

Figure 1.2. Flow chart of PKD phase production

In the last phase of the supply program, some must-buy items will be procured from the licenser and other material will be procured from other vendors. Items delivered in this phase are mainly raw material for prefabricated parts and modules and some component kits.

PRODUCT

Figure 1.3. Flow Chart of Production from Component

Component kits delivered in this phase are prefabricated and built into modules. Then the same operations as in PKD phase are performed from this stage onwards. (See figure 1.3)

When the term of the agreements expired, the complete purchasing of materials will be done by the licensee. The received material from the suppliers will be tested in the incoming inspection department of the licensee. But the scope of this thesis covers only the activities during the first 3 years of the agreement. However, the success of this independent local production phase depends on the timely and successful transfer of technology satisfying the requirements of the original product.

1.3.3.UTTE Supply Activities

These are the activities of the Unique to Type Test Equipment Agreement. They mainly consist of the procurement of the special equipment which are not components of the product but are specially used in the manufacturing and testing of the product.
1.3.4.Sales Contract Activities with the Customer

These are the activities of the contract signed
between the licensee and the customer. They mainly consist of the deliveries of the product in batches beginning in 1992, ending in 1994, and operator training, field level maintenance training and depot level maintenance training programs that will be given to the customer.

1.3.5.Activities inside the company

These are the insider activities that will be performed by the licensee in addition to the other agreement and contract activities. They mainly consist of the procurement of standard equipment, procurement from the other vendors, building SKD production set-up, building PKD production set-up, building local production set-up, building UTTE production set-up and local production phase.

1.4.Purpose of the Thesis

Technology transfer projects, like other projects, consists of a number of activities. But the feature that differentiates technology transfer projects from others is the existence of strict deadlines to be satisfied. Therefore, they necessitate close monitoring. For example, in order to complete the technology transfer project subject to this thesis and to perform the subsequent local manufacturing phase
on time and with success, bottlenecks and potential problem areas should be identified before they occur. For this concern CPM is one of the useful and economical methods in scheduling. The purpose of this thesis is to show how CPM using linear programming can be applied to the scheduling of a technology transfer project.

1.5.Outline of the Thesis

In this chapter, first of all, technology transfer concept is explained and then some brief information is given about the particular technology transfer project. Following this chapter, project management concept is explained including its functions. One of these functions which is project scheduling is the subject of the third chapter giving the literature survey on the different scheduling methods such as bar charts, PERT and CPM in a comparative way. In the fourth chapter, network models in scheduling is explained with emphasis on Activity on Arc (AOA) method which is the one used in CPM. These led the discussion in chapter four to finding a critical path by making use of linear programming. In the fifth chapter, the methodology used in the particular application is explained. The critical path for the project is determined and parametric analysis Conclusion and recommendations are given in the sixth chapter.

CHAPTER 2

PROJECT MANAGEMENT

2.1.Historical Background

Although project management has been used in industrial capital projects for more than 50 years, it gained widespread usage in many areas such as construction, banking, manufacturing, marketing, healthcare, sales, transportation, and research and development as well as academic, legal, political and government establishments in the recent 10 years of time due to the successful results obtained in the capital projects field.

Project management applications were initially concentrated on defense-related and construction projects and many of the important developments in project management area occurred during and immediately after the World War II. One of the first publicized successes of the project management was the famous Manhattan project. It started early in the 1940 s to develop the atom bomb under the direction of General Leslie Groves who is qualified as the first project
manager. (Ritz, 1990)

Abstract

Following World War II, substantial improvements on the capital projects side are realized both in size and monetary value. This was nothing but a result of the post-war economical boom which is seen all over the world. As a result of the trials to reconstruct Europe and to meet restrained demand because of wartime restrictions, capital project investment spending is increased substantially. Consequently, project management studies accelerated in order to meet the huge demand for new plants.

The 60s was the period which had taken the most of capital project increases of the post-war era especially with the construction of office buildings, airports, power plants, chemical plants, holiday centers and the like. Whereas in the 70s, the economical expansion continued with runaway inflation added to the trend. Also there was a growth in overseas projects of US. (Project Management Institute, 1981)

This era of super- and mega projects faded with the recession of 1981-82 and industrial plant usage declined to 70% from 85\%. Nevertheless, the most important advantage gained from this era was that the top management people accepted the need for project management. (Cleland, 1983)

In the $80 s$, market expansion is observed in high-tech field which includes electronics, foreign autos, foods, biotechnology and the like. Accordingly, the size of capital markets lessened and the subject of them became much more specialized. Hence they necessitated more detailed project scheduling methods and expertised manpower.

The historical background of project managers indicates that the subject of project management is subject to sudden changes. Thus it requires a continuous awareness toward change and sufficient flexibility in order to adapt to the environment on time.

2.2.Overview of Project Management

Project management is the process of managing, allocating, and timing resources in order to achieve a given objective in a expedient manner. The objective may be in terms of time, monetary or technical results. The term project involves several functions within itself such as project planning, project scheduling, resource management and project control.

Project planning is the first step in a systematical project management study. It involves the identification of the work to be done and establishment
of a baseline plan. (Kerzner, 1984) During the preparation phase, this baseline plan is subject to many changes until it satisfies the overall objectives of the project. Project planning is performed in three organizational levels consecutively which are strategic planning, operational planning and planning by the line and stuff personnel. (Cleland, 1983) Strategic planning involves the high level selection of the project objectives by the top management or whoever the strategic planners in the company. Operational planning involves the detailed planning required to meet the strategic objectives. Finally planning by the line and stuff personnel puts the operational plan on a time scale by the strategic objectives enabling the execution of the project.

Project scheduling is the establishment of a timetable to do work. It puts all the work activities onto a timeline beginning at the project start date and ending at the completion date. (Ritz, 1990; Levine, 1986) In order to achieve this objective, the schedule should contain not only the list and duration of tasks but also the dependency relationship among tasks.

Experienced project management people favors the top down approach in scheduling. In top down approach first of all the list of major activities in the project is determined. Then these macro activities

```
are broken down into sub macro activities and finally
these sub macro activities are split into individual
tasks forming the overall project.
```

Top down approach in scheduling is very advantageous especially when there is a substantial amount of activities in the project because it helps people manage the overall project in a modular way without getting lost in the sea of tasks. Furthermore, it prevents people from missing some details while trying to cope with the whole bunch of activities at the same time.

After the project schedule is created, the sequence of tasks in the project is established taking the planned duration of tasks and their dependency relationships into consideration. Before doing this, it is quite helpful to determine the immediate predecessors and successors of the individual tasks. Following the determination of the immediate predecessor and successor relationships, all these are connected in order to form the overall project schedule.

Upon establishing the project schedule, some milestones are defined on the schedule. Milestones are zero duration tasks showing the beginning or end of some phases in the project schedule. They are powerful
indicators of the achievements in the project and help the project management people evaluate the progress or delay of the overall project. (DOD and NASA Guide, 1972)

Resources are the people and equipment needed to get the tasks of the project done. And resource management is the process of assigning and allocating resources to the individual tasks so as to meet the functional requirements of the project objectives. (Badiru, 1989) While doing this, not only currently available resources but also the resources to be procured must be identified. After that, the timebased availability of resources should be specified so that resources could be allocated in a timely manner with no overloads or deficiencies.

Resource management plays a very important role especially in resource-driven projects and should be closely monitored because in such projects the structure and hence the performance of the project is determined by the resources. (Fleming, 1987; Badiru, 1989)

Ensuing the schedule establishment and resource allocation, the costs of the tasks and resources in the project is determined. Unexpected costs, in case of contingency situations, should also be taken into
consideration while making the budget of the project.

After all these phases are completed, the project plan is reviewed. After this review, the ideas and approvals of the related personnel is taken. Final stage in project management involves the project control activities.

This chapter has given a summary of project management and its functions in order to reveal where this particular study stands in the overall project management subject. Narrowing down the topic, a literature survey on project scheduling techniques is the subject matter of the next chapter.

CHAPTER 3

LITERATURE SURVEY

3.1.Project Scheduling Techniques

Two basic project scheduling techniques are bar charts and logic-diagram-based schedules. Both methods have their own advantages and disadvantages. Therefore, selecting which technique to use is a very important decision since it also affects the success of the controlling phase of the project.

3.2.Bar Charts

Bar charts first came into use on capital projects in the early twenties. The forerunner to the bar chart was developed by an industrial engineer, Henry L. Gannt for scheduling production/operations during World War II. Therefore, bar chart are the oldest and the simplest of the scheduling techniques.

One of the advantages of the bar charts is their being cheap and simple to prepare, easy to read and update. People with a little schedule training can easily understand their reasoning. However, their main

Abstract

disadvantage is their inability to show enough detail to cover all the activities and their interaction on larger, complex projects. That is the reason why they become unmanageable on projects with as few as 100 activities. (Ritz, 1990)

Furthermore, bar charts cannot show clearly the interaction between early start and late finish dates of activities and the resulting float of non critical activities. Hence, there is no clear identification of the critical path through the project.

3.3.Logic-Diagram-Based Schedules

Although bar charts are simple and effective progress reporting tools, they are weak in planning. This, along with the fact that the size and complexity of the projects grew in the late fifties and sixties obliged project management people add logical relationships to Gannt charts. DuPont Company together with Remington Rand (Univac) developed CPM (Critical Path Method) in 1957-1958 for planning and scheduling of plant maintenance and construction programs where the dominant emphasis was on controling cost and having schedule flexible. (Ritz, 1990; Project Mangement Institute, 1981)

At about the same type, a very similar method
of PERT (Program Evaluation and Review Technique) was invented by the Special Projects Office of the US. Navy in 1957-1958, and developed by Booz, Allen and Hamilton in conjunction with Lockheed Missiles Systems Division on the Polaris Fleet Ballistic Missile Program. (Project Mangement Institute, 1981) The dominant emphasis in this program was on meeting closely determined schedules for internationally strategic reasons and taking a rather flexible view of cost control.

Today, the distinction between PERT and CPM had been disappeared and the two became nearly identical methods with slight variations in network format and activity duration estimation. In the PERT, the duration of an activity is calculated by assessing an optimistic and a pessimistic time and then calculating the average of the two. (Moder, 1983) Whereas in CPM, there is only one value for each activity duration and it is the most likely time for the activity duration. Therefore, estimating the activity duration is a very important part in CPM scheduling since it directly affects the critical path and the slack times. This indicates the importance of getting the most sophisticated estimates from the most experienced specialists. Activity duration estimates should neither be all pessimistic nor all optimistic because
this would skew the schedule too far one way or to the other.
3.3.1.Advantages/Drawbacks of CPM over Bar Charts

CPM is capable of handling many work activities on complex projects. However, one should not use more activities than necessary just because it is easy to do so. In such a situation, the scheduler might get lost in the details and use the activities in a less efficient way. (Busch,1991) Actually, this was the trap that almost killed CPM in its early years. One way to get rid of this may be to use bar-charts for less complicated areas in the schedule.

Another advantage of CPM is that it establishes an intangible force on the project team to divide the project into all its working parts and form an early analysis of the individual work activities as early as possible. (Moder,1983)

Disadvantages of CPM are a few in number and can be avoided if proper attention is paid to. One of these disadvantages is the necessity of the project people be trained in CPM techniques which is something costly. All the people in the project team should receive at least a basic understanding of CPM. This
training includes all project management team including people from various functional departments.

On top of this, CPM generates more data than bar charting. That means unit cost of the data in CPM is low. However, if the data are not used or are being improperly used, then the unit cost of the data is not low any more and the project team is not getting the worth from the particular investment on CPM. (Ritz, 1990)

This chapter has given a comparative literature survey on the project scheduling techniques. Next chapter further narrows down the topic to give activity relationships in scheduling. It also introduces how LP can be relevant in a project scheduling study in finding the critical path and performing parametric analysis.

NETWORK MODELS IN SCHEDULING

4.1.Critical Path Identification

Identifying the critical path of a project is actually nothing but an optimization problem because the aim here is to minimize the time project takes to finish. Most of the optimization problems can best be analyzed by making use of a network representation. Among these network models are shortest route problems, maximum flow problems, minimum spanning tree problems, CPM-PERT project scheduling models.

If the duration of each activity is known with certainty, CPM can be used to determine the length of time required to complete a project. CPM can also be used to determine how long each activity in the project can be delayed without delaying the completion of the project. If the duration of the activities is not known with certainty, PERT can be used to estimate the probability that the project will be completed by a given deadline. (Winston,1991)

As the goal in this thesis is to identify the
critical path in a project, CPM-PERT project scheduling methods can be used. Furthermore, as the duration of the activities in this particular project can be estimated quite certainly, CPM is chosen as the more appropriate method to utilize in scheduling the project activities.

Before discussing the CPM project scheduling, some basic terms used in describing network models will be explained.
4.2.Basic Definitions

Activity : A project operation or process that requires resources and consumes some amount of time to complete.

Critical Path : The sequence of activities which determines the total completion time for the project.

Dummy Activity : A logical link or a constraint representing no specific operation. It is an activity which absorbs neither time nor resources.

Duration : The estimated or actual time required to complete an activity.

Event : The completion of an activity, or a series of activities at a particular point in time.

```
    Finish-to-start (F-S) : The condition that the
start of an activity depends on the finish of its
predecessors.
```

Finish-to-finish $(F-F)$: The condition that the finish of an activity depends on the finish of its predecessors.

Float : A time available for an activity or path in addition to its duration. It is the difference between the time necessary and the time available for an activity.

Network : The set of all project activities graphically interrelated through the precedence relationships.

Path : A series of connected activities between two events.

Predecessor : A set of activities that must be completed before an activity begins.

Successor : A set of activities which can only begin after an activity ends.

Start-to-start (S-S) : The condition that the start of an activity depends on the start of its predecessors.

After identifying the list of activities that make up the project and their duration, it is time to begin scheduling part of the baseline plan by establishing activity relationships. Precedence diagrams and precedence matrix are two of the methods used to show these relationships. The activity relationship method affects the schedule times to a great extent. Hence, choosing which activity relationship method to use in scheduling is an important decision.

4.3.1.Activity Relationship Methods

There are three basic activity relationship methods which are AOA (activity on arc), AON (activity on node) and the precedence method. CPM makes use of AOA method in scheduling. Since the objective of this thesis is to utilize CPM in project scheduling, $A O A$ method will be discussed in more detail.

4.3.1.1.AOA Method

In the AOA, activities are represented by directed arcs, and nodes are used to depict the completion of a set of activities. In the arrow process, every activity has a start event and an end
event. The events are numbered sequentially and the activity is identified by the beginning and ending event numbers. These numbers are designated as the i-j number. (Lockyear,1984) With these definitions, a single activity in $A O A$ is as in figure 4.1.

Figure 4.1. Single activity in AOA format

Each activity has an elapsed time necessary to accomplish the work involved. The estimated elapsed time for the activity must consider the scope of the activity and any historical data available from previous similar activities. If there are no historical data on the activity to estimate the activity duration, then scheduling is done by using the estimates of the people experienced in performing the activity.

In the AOA format any activity may either precede, succeed, or be performed concurrently with any other activity. A more complex situation depicted in figure 4.2. specifies that A and B are prerequisites for activity D, but that only A is required to start activity C. A dummy activity is drawn between event 3 and event 4 to establish the specified logic
constraints.

Figure 4.2. Activities with a Dummy Constraint

In figure 4.2. there are four real activities, indicated as 1-3, 2-4, 3-5, and 4-6, plus one dummy activity, designated 3-4. A, B, C, and D are just activity descriptions. Dummy activities are usually indicated by a dotted line on the precedence diagram.

The following rules apply to the construction of a project network or precedence diagram in $A O A$ format :

1. Node 1 represents the start of the project. An arc should lead from node 1 to represent each activity that has no predecessors.
2. A node representing the completion of the project should be included in the network.
3. Number the nodes in the network so that the node representing the completion of an activity has a larger number than the node representing the beginning
of an activity.
4. An activity should not be represented by more than one arc in the network.
5. Two nodes can be connected by at most one arc. (Winston, 1991)

Another use of dummy activities is to avoid the violation of rules 4 and 5. For example, suppose that activities A and B are both predecessors of activity C and can begin at the same time. In the absence of rule 5, activity representation could be as in figure 4.3. However, since nodes 1 and 2 are connected by more than one arc, figure 4.3. violates rule 5.

Figure 4.3. Violation of Rule 5

By using a dummy activity as in figure 4.4., A and B both can be represented as the predecessors of C. Figure 4.4. guarantees that activity C cannot begin until both activities A and B are completed without violating rule 5.

Figure 4.4. Use of Dummy Activity

4.3.1.2.AON Method

In AON method the nodes of the network are used to represent the activities. This method is widely preferred in the recently developed project management programs prepared for microcomputers. (Levine, 1986)

Having activities represented in the nodes in AON format eliminates the need to use dummy activities for unique relationships. Figure 4.5. illustrates the same relationships that were shown in figure 4.2., but this time in AON format without any dummy activities.

Figure 4.5. AON format

4.3.1.3.The Precedence Method

The Precedence method is more complex than the AOA and AON methods. Nevertheless, it permits a more precise description of activity relationships in that it supports two additional types of relationships in addition to the traditional finish-to-start (F-S) relationships. These are start-to-start (S-S) and finish-to-finish (F-F). (Bennett, 1977) Besides this, the precedence method adds an element called " lag ", which is the time duration for the relationship itself. (Moder, 1983) Lag is used either to indicate a delay between the finish of one activity and the start of another, or the delay between two starts or two finishes.

In the precedence diagram shown in figure 4.6., the start of task B is delayed for two weeks after task A is completed. Task C can start after task A is completed, but must be completed one week before task B can be finished. Task D can start one week after task C starts and must be completed before task B is done.

Figure 4.6. PDM Format

4.4.Finding a Critical Path

Now that the list of activities making up the project is identified and AOA is chosen as the activity relationship method as a requirement of CPM, it is time to establish the project schedule and find the critical path.
4.4.1.Critical Path Identification with LP

One of the ways of determining the length of the critical path in a project is by making use of linear programming. Linear programming (LP) is a mathematical decision-making procedure for determining optimal allocation of resources. It has found practical application in many areas of business.

In all LP problems the maximization or minimization of some quantity is the objective and
there are also some restrictions or constraints that limit the degree to which the objective can be pursued. For most of the LP problems, there are two important types of objects. The first type is limited resources which can be time, money or labor and the second type is set of activities. Each activity consumes some amount or contributes additional amounts of resources. The problem in LP formulation is to determine the best combination of activity levels and which does not use more resources than actually available. (Schrage, 1991)

The problem to be solved is defined as the objective function, z in LP formulation and it can be either a minimization or a maximization situation as explained above. The objective function is defined using variables which are called decision variables. These variables are all restricted to nonnegative values. The activities consuming resources and the scarcity of the resources are given as the constraints.

The solutions that satisfy all the constraints are referred to as feasible solutions and the best one among the feasible solutions is the optimal solution. The standard format of $L P$ formulation is as follows :

Min (or Max) $z=o b j e c t i v e ~ f u n c t i o n ~$
subject to (s.t.)
constraint ${ }_{1}$

```
        constraint2
        constraintn
        all variables are nonnegative
    LP applies only to situations in which the
effects of the different activities which are engaged
in are linear. Linearity requirements are as follows :
1. Proportionality : Contribution of each variable in the objective function or its usage of resources are directly proportional to the level of the activity.
2. Additivity : There should be no crossproduct terms in the formulation.
3. Certainty : All the parameters are known constants.
4. Activity units can be divided into any fractional levels. (Schrage , 1991 ; Winston , 1991)
4.4.2.Applying Linear Programming to the Schedule
While applying linear programming, first of all, a variable called \(x_{j}\) is defined where \(X_{j}\) is the time that the event corresponding to node \(j\) occurs. For each activity \((i, j)\), we know that before node \(j\) occurs, node \(i\) must occur and activity (i,j) must be
```

completed. This implies that for each arc (i,j) in the project network ,
$x_{j}>=x_{i}+t_{i j}$ where $t_{i j}$ is the duration of activity (i,j).

Above relationships are defined for each activity and these constitute the constraints in the linear programming model. Since the goal is to minimize the time required to complete the project, the objective function in this linear programming model would be as follows :
$z=x_{f}-x_{1}$ where x_{f} is node that represents the completion of the project.

Hence the complete linear programming model would be in the following form :
$\operatorname{Min} z=x_{f}-x_{1}$
st

$$
x_{j}>=x_{i}+t_{i j}
$$

for $i=1$ to $n, j=1$ to $n \& i$ not equal to j
where $\mathrm{n}=$ number of events (nodes)
All variables integer

After including all of the project activity relationship constraints and the objective function into the linear programming model, it is time to solve the LP model to find the critical path. The process of

Abstract

finding the critical path requires a large number of calculations for projects with hundreds of activities. Therefore, instead of manual calculation the model is run on a computer using a linear programming software. In this thesis, LINDO is utilized as the linear programming software package. (See Appendix A)

After the model is executed on a computer, the results of the model are used to determine the critical path. Dual prices column of constraints is examined to find the critical path. The critical path for a project network consists of a path from the start of the project to the finish in which each arc in the path corresponds to a constraint with a dual price of -1 . As explained in Appendix A, for each constraint with a dual price of -1 , increasing the duration of the activity corresponding to that constraint by X days will increase the duration of the project by X days. Decreasing the activity duration will do the reverse effect as long as the activity remains critical.

4.4.3.Matrix Generators

Many linear programming models contain thousands of decision variables. In such large LPs, it is impractical to manually enter all the coefficients and constraints of the LP. Instead of manual entering, it is very useful to write an auxiliary computer

Abstract

program called a matrix generator to simplify the inputting of the LP. This program reads the problem description in an arbitrary format from either a file or from the terminal and then generates the corresponding LP formulation depending on the given information. There are two approaches in writing a matrix generator program :

a. to use a general purpose programming language such as FORTRAN, PASCAL or C.
b. to use a special purpose language designed for generating LP formulations. These special purpose languages are frequently available from vendors of LP optimization packages.

4.5.Parametric Analysis

After determining the critical path depending upon the solution of the LINDO formulation, performing parametric analysis may be quite helpful during the planning stage since it helps visualize the situation when assumptions upon which the model is based, is changed. Parametric analysis or parametric programming is the term applied to tracing out how the solution changes as a specific coefficient (the parameter) changes over a wide range.(Schrage, 1991) Most of the LP computer packages have special commands for
performing this analysis. In LINDO, PARA command is used for parametric analysis.(See Appendix A)
4.5.1.Types of Parametric Analysis

There may be two kinds of parametric changes in an LP formulation : change in objective function parametrics and change in right-hand side parametrics. These two parametric changes allow three different perspectives from which one might wish to view the effects of a parametric change :

1. How does the objective function change ?
2. How does the optimal value and reduced cost of a specific decision variable change as the parameter changes ?
3. How does the dual price and slack of a specific constraint change as the parameter changes ? (Schrage, 1991)

This chapter has introduced activity relationship methods, and then explained LP formulation methodology to find the critical path and perform parametric analysis. Next chapter is the application of the discussion conducted in this chapter to the technology transfer project subject to this thesis.

CHAPTER 5

APPLICATION OF CPM TO THE TECHNOLOGY TRANSFER PROJECT

5.1.Identifying Activities/Estimating Their Duration

Different methods are used to identify the project activities and to estimate their duration in this project. There are mainly three types of activities in the project. First type is the delivery activities by the licenser company or by other vendors. Among them are license and know-how transfer documentation packages and hardware deliveries. The duration estimations of such deliveries are based on the information given by the licenser company and are bounded by the related contracts made between the two parties.

The second types of activities are the manufacturing and assembly activities of the delivered items. Since the local production will be performed for the first-time, the duration of this class of activities are based on the experience of the licenser company engineers. Thereafter, these estimations are revised by the licensee company engineers taking

```
special situations into consideration. Such revisions
on the manufacturing duration are made during project
management meetings conducted in both licenser and
licensee's facilities.
```

The third type of activities is the delivery of the finished products to the end customer by the licensee during the lifetime of the project. The duration of such activities are estimated by the licensee company regarding the current capabilities of the company. These are also bounded by the contract.

As a result of these efforts, the first 3 years of the total project is broken down to 186 individual activities. Each of these activities represents a task to be accomplished and was identified by an activity name.

After determining the activities and their duration, identification of the immediate predecessor(s) and successor(s) of each activity and the whole precedence relationships of the project should be done. These relationships are determined using the same methods as used in estimating the activities and their duration, i.e. using a combination of know-how received from the licenser company and the experience of the licensee company.

In order to determine immediate predecessor and
successor activities, the following questions were answered for each activity :
-Which activities should be completed in order to start the activity?
-Which activities can be done in parallel to the activity?
-Which activities cannot start before the particular activity is finished?

According to the answers given to these three questions, precedence list including the detailed predecessor and successor activities for 186 individual activities in the project schedule is shown in Appendix C. The activity duration information is also included in the list. Additional to these 186 activities, there are 23 dummy activities and that makes a total of 209 activity relationships.

5.2.Preparing the Schedule

After determining activities, their estimated duration and the precedence relationships among them, the schedule in LP format can be prepared. To do this, first of all, activities should be numbered. In numbering the activities, rules for constructing an AOA project diagram which were explained in section
4.3.1.1. of this study, were taken into consideration. Besides this, since schedule preparation requires repetitive passes on the tentative schedule, gaps should be left in the sequence of activity numbering in order to allow later insertion of activities.

Then these precedence relationships were converted into LP formulation constraints. 186 constraints are formed for the individual activities and 23 constraints were established for the dummy activities. And the objective function is formulated so as to minimize the total project time as explained in the previous chapter.

Since there is a total of 209 logical relationships in the formulation, manual entering is inefficient. Besides, performing some changes in the formulation necessitates too much effort in the LINDO environment. These two reasons led to the result of using a matrix generator for inputting LP formulations. C which is a general purpose programming language is preferred to write the matrix generator. The reason why a general purpose programming language is used is that LINDO formulation in this thesis is too large to execute on a PC, and therefore is executed on SUN computers of Bilkent University that uses UNIX operating system environment. And a special purpose software package designed for generating LP formulation

Abstract

in UNIX environment was not available. Therefore, a simple C program was written to input the objective function and the constraints of the LP formulation. (See Appendix B)

The times when the activities occur and when the project is completed was attained from the solution of the LINDO formulation. The times when activities start was found by looking at the values of the variables representing the begin node of the activities. In the same way, the times when activities finish was found by looking at the variables representing the end node of the activities. (See Appendix D) In this manner, the schedule was prepared.

5.3.Identifying the Critical Path Activities

In this stage, critical path activities were determined by making use of the solution of the LINDO formulation. The critical path consists of the activities which are represented by constraints with a dual price of -1. (See Appendix D) This means that lengthening the duration of such activities will lengthen the total project duration accordingly. And shortening the duration of critical activities will shorten the total project time in the same amount as long as they remain on the critical path.

As a result of these efforts twenty-two activities which constitute the critical path were determined which are respectively "Issuing Letter of Credit for UTTE", "Notification of UTTE Delivery for SKD Production", "Acceptance Tests of UTTE Delivery for SKD Production", "Sign of Acceptance/Rejection of UTTE Delivery for SKD Production", "Delivery of UTTE for SKD Production", "SKD Set-up", "2nd Batch SKD Delivery", "3rd Batch SKD Delivery", "4th Batch SKD Delivery", "5th Batch SKD Delivery", "PKD Delivery", "Delivery of Electrical and Mechanical Parts-I", "Delivery of Electrical and Mechanical Parts-II", "Manufacturing of Electrical and Mechanical Parts-II", "Module and Printed Board Assembly/Test Phase", "Unit Assembly/Test Phase-VI", "Final Assembly-VI", "Final Assembly-VII", "Final Assembly-VIII", "Final Assembly/Test-IX", "Customer Acceptance Tests for the '94 4th Batch Delivery", "'94 4th Batch Delivery".

Since the critical path activities determine the total project time, any delays in one of them will delay the completion time of the project. Therefore, special attention should be paid to monitoring the critical path activities.

5.4.Applying Parametric Analysis to the Activities

After the determination of the critical path
activities of the particular project using LINDO solution, parametric analysis was performed on the results of this solution. The type of the parametric change applied is the change of the right-hand side of the constraints related with non critical activities. The aim here is to see the effects of a change in the duration of a non critical activity on the whole project schedule and to settle when these activities enter into the critical path.

With this idea in mind, right-hand sides of the non critical activity constraints were increased, one at a time, from their current value to a maximum number which depends on the original duration of the activities. (See Appendix E) While giving a new value for the right-hand side, the results of the sensitivity analysis conducted after finding the optimal solution, are used. (See Appendix D) Namely, the values of the right-hand side are increased beyond their allowable increases calculated in right-hand side ranges of the sensitivity analysis. Very large amount of increases may seem irrational at the first glance. But the idea is to see the exact time when a non critical activity becomes critical. Among these changes, the realistic ones will be given more attention during the execution phase of the project to take preemptive action for contingency situations beforehand.

As a result of these efforts in parametric analysis, the non critical activities represented by constraints with a float of less than three days were diagnosed as potential critical path activities.

5.5.Discussion and Evaluation of the Implementation

Abstract

Application has been developed based on the methodology described in Chapter 4 of this study. All of the preset objectives defined in this section have been actualized in that critical path activities are identified and parametric analysis is applied to the right-hand sides of the formulation constraints. It is realized that first part of the critical path are SKD production related activities which is the first type of production to be performed in the licensee's facilities. Other type of critical activities are the delivery of the manufacturing material from the licenser. Lastly, there are also some critical activities related with the manufacturing from component level phase in the licensee's facilities.

After determining the critical path activities, parametric analysis is applied to the non critical activities. By decreasing their duration, the times when the non critical activities become critical were determined in the parametric analysis part. In this way the extent to which these critical activities have
float times was observed from the results of the parametric analysis to take measures accordingly. (See Appendix E) The float time of a non critical activity is the difference between the right-hand side value of the related constraint when the activity just becomes critical and the original value of the right-hand side.

The only problematic situation in this study had been the time-consuming feature of performing parametric analysis. Since the optimal solution should be found by executing 'GO' command prior to each execution of the 'PARA' command, making a parametric analysis for all the project activities necessitates patience and time. But the advantages of performing a parametric analysis in taking preemptive action for contingency situations compensates this drawback a lot.

CHAPTER 6

CONCLUSION AND RECOMMENDATIONS
6.1.Conclusion

In this thesis, CPM is applied to a technology transfer project. The project was broken down to 186 individual activities and 23 dummy activities. An LP constraint is formulated for each relationship and objective function is defined so as to minimize the total time project takes to finish. A matrix generator program is written to input the objective function and the constraints. Then the LINDO formulation is executed to develop the solution and determine the critical path activities accordingly. Critical activities determine the total time project takes to finish. They constitute the longest path in the project which indicates the expected completion time for the project. While activities forming the critical path have all zero floats, non critical activities have positive float, i.e. a flexibility in their starting dates. Therefore, critical activities determined from the LINDO solution should be closely monitored since they affect the timely execution of the project to a
great extent. But that is not sufficient for a comprehensive scheduling study. Namely, not only the critical activities but also the non critical activities must be in the scope of the project control and monitoring. Although these activities do not determine the critical path, lack of progressing in these activities beyond their floats may turn them into critical activities.

Hence, in addition to determining the critical path activities, parametric analysis is applied to right-hand side of the constraints related with non critical activities in the LINDO formulation to be alert for critical activity candidates. Right-hand side of the non critical activities are increased to observe when they become critical, i.e. when they run out of float times. The float of all the non critical activities can be seen from the parametric analysis results in Appendix E. It is the difference between the right-hand side of the related constraint when the activity just enters the critical path and the original right-hand side value. Activities with positive float time can be delayed according to their float times.

In this study, time was the major constraint when compared to other resources like money or labor since penalty should be paid to the end customer for each day of delay in deliveries.

Critical path identification using LINDO software necessitates more theoretical knowledge when compared with most of the traditional project management packages. However, the significance of this study lies in the fact that it is developed with the aim to make both the theoretical and practical world benefit from the study. Therefore, necessary information about LINDO package is given in the appendices part which may be skipped if the user is already literate on the subject. This thesis is developed in a way to make the study comprehensive and clear for the prospective users irrespective of their background whether they are from engineering or management disciplines.

This study offers the following advantages to the real life project management group :
. - It is a realistic application in that LINDO formulation of the schedule is developed by using actual estimations. Therefore, the results found in the LINDO solution about the completion date computations are realistic and can be utilized in the practical world as an alternative to the traditional project management software packages.

- Although this study is utilized in the planning phase of a project, it can also be used in the
implementation phase by entering the actual activity duration for the completed activities and by correcting the scheduled duration for the progressing activities.
- The potential problem situations can be foreseen from the results of the parametric analysis.
- If the project management group wants to carry the completion time of the project developed in the LINDO solution to an earlier date in the planning / contractual phase, then some resource transfer can be realized from the non critical activities to the critical ones according to the type of the resource (time, money or labor) used by the particular activity.
- The scheme above can be utilized not only in the planning but also in the execution phase in possible delay situations. If a delay in a critical activity results in delaying the whole project, this can be corrected by transferring some resources from non critical activities to the critical ones.
- In this study, all the LINDO formulation constraints are related with time because of the existence of the strict delivery times to be met. However, it is also possible to add budget constraints to the formulation in addition to the time constraints during later phases of the project whenever necessary.
- Extra resource constraints can also be added to the formulation if necessary.
- All these expansion opportunities in the developed schedule guarantees that the schedule is not a one-time study, i.e. a snapshot of the critical path at a definite time. On the contrary, it is flexible in that it is suitable to apply any kind of change whether it be a change in the activity duration or addition / deleting of constraints to the schedule. Besides this, using a matrix generator enables this change process to be easy and quick.
- Furthermore, current formulation can be manipulated so as to make a crashing by adding extra resources to the project activities if the time required to complete the project exceeds the time available. In such a situation, the activities on the critical path can be analyzed to determine whether their times can be reduced or whether some of the activities can be performed concurrently.

LINDO formulation can handle this situation by defining a new objective function to minimize the cost of crashing and with the addition of new constraints indicating the range of crashing for each activity as illustrated in the formulation below.

The cost per day of reducing the duration of an
activity, $x_{i j}$ is given as follows :
$\begin{array}{lllll}\text { Event } & x_{12} & x_{13} & x_{35} & \cdots \\ x_{1 n}\end{array}$
Cost $10 \quad 20 \quad 3 \quad \ldots \quad 40$

Let us define :
$d_{12}=$ number of days by which duration of activity x_{12} is reduced
$d_{1 n}=$ number of days by which duration of activity $\mathrm{x}_{1 \mathrm{n}}$ is reduced

Then the new formulation can be in the following form :

$$
\begin{aligned}
& \text { Min } z=10 d_{12}+20 d_{13}+3 d_{35}+40 d_{1 n} \\
& \text { st } \\
& x_{2}>=x_{1}+t_{12}-d_{12} \\
& x_{3}>=x_{1}+t_{13}-d_{13} \\
& x_{5}>=x_{3}+t_{35}-d_{35} \\
& x_{n}>=x_{1}+t_{1 n}-d_{1 n}
\end{aligned}
$$

All variables integer

Furthermore, if there is a limited time, say D in which the project should be completed, then this fact might also be added to the formulation as an extra constraint as shown in the following equality :

Xend node - $\mathrm{X}_{\text {begin }}$ node $<=\mathrm{D}$

When the time required by the critical path is shortened to less than that of a path with non critical activities, then that path becomes critical. In this occasion, the activities of the new critical path can in turn be analyzed to determine how that path can be shortened. This process continues until a schedule is developed to complete the project by the desired or directed date.

- The schedule also provides a solid framework for communication between the people from different functional departments in the project group including engineering, production, procurement and etc. One difficulty to cope with here is the necessity of making a brief training on the logic of critical path method which is given as a summary in the fourth chapter of this thesis. In this occasion, there may be the question whether the motivation to learn the critical path logic will be there or not. However, it would be the responsibility of the project manager and his/her colleagues to create the motivation if it does not exist.

Finally, this study also constitutes an alternative to the traditional project management packages. When CPM using LINDO package is compared
with CPM using traditional project management packages, it is observed that traditional packages have a more widespread usage.

One reason for this is that CPM using linear programming is a mathematical model which consists of some numbers. And these numbers are meaningful only when the user knows the CPM logic so that he/she is able to make comments on them. Otherwise, the model is nothing but a bunch of numbers without an apparent meaning about the activities constituting the critical path. One solution that might help here is to use graphic programs and visual aids to support the LINDO solution. These may help people in the project group from different departments visualize the critical path more clearly. Besides, some supplementary programs can also be written providing logistic support to LINDO. The matrix generator in this thesis is a simple example for this kind of supplementary programs.

Another reason why traditional project management packages are more popular when compared with LINDO is that they are more user friendly. A person who does not know the CPM logic can learn and use them easily. However, their danger also lies in that point. They calculate the critical path depending upon the user inputs regarding the activities and relationships among them. But if the user is completely illiterate
about CPM logic, then he/she may come up with a wrong critical path calculated by the program. Therefore, although these programs have a reputation of being very easy-to-use for the new beginners, they may calculate an incomplete or even wrong critical path as a result of inadequate user inputs.

From these points, this study gives a reason why people should make use of linear programming (particularly the LINDO package) in critical path identification or should not when compared with the other project management programs. In short, critical path method by using linear programming obligates the knowledge of the CPM logic but it guarantees the correctness of the critical path. However, the user friendly traditional project management packages require not much literacy in CPM logic, nevertheless they can not ensure the accuracy of the calculated critical path due to incompetent users. Therefore, which one to use is very much dependent on the particular situation.

6.2.Suggestions for Further Research

In this thesis, the outcomes of changing only one right-hand side coefficient at a time had been observed. Namely, the effects of changing only one of the activity duration, on the critical path of the
whole project was investigated. One further study related with this thesis might be to examine the effects of simultaneously varying several right-hand side coefficients at a time to observe the consequence of changes in more than one activity duration.

But the crucial feature of parametric analysis is the ability to vary a single coefficient. One way to get rid off this restraint can be to introduce a new variable into the constraints whose right-hand side coefficients are to be changed and then define a new constraint for this variable as shown below.

Original Formulation

```
Min z = x1390 - x x 
```

st
$-x_{10}+x_{20}>=5$
$-x_{10}+x_{30}>=30$
$x_{30}+x_{100}>=0$
$-x_{10}+x_{35}>=30$
and etc.
Modified Formulation Which Allows Simultaneous
Change in Right-hand Side of the Constraints
$\operatorname{Min} z=x_{1390}-x_{10}$
st
$-\mathrm{x}_{10}+\mathrm{x}_{20}+2 \mathrm{y}>=5$
$-x_{10}+x_{30}+y>=30$
$-x_{30}+x_{100}+0 y>=0$
$-x_{10}+x_{35}+5 y>=30$
and etc.
$y=f$
Where f is the parameter to be varied.

Therefore, the problem would be reduced to analyzing the effects of changing a single right-hand side coefficient which is equal to the new variable.
Anderson, David R., Sweeney, Dennis J., Williams,
Thomas A., An Introduction to Management Science,
West Publishing Company, 1988.

A Report on a Crown Eagle Conference, Technology Transfer : Putting $\mathrm{R} \& \mathrm{D}$ to Work, Longman, 1987.

Busch, Dennis H., The New Critical Path Method, Probus Publishing Company, 1991.

Badiru Adedeji B. and Whitehouse, Gary E., Computer Tools, Models and Tecniques for Project Management, TAB Books, 1989.

Bennett, F. Lawrence, Critical Path Precedence Networks, Van Nostrand Reinhold Company, 1977.-

Bhattasali, B.N., Transfer of Technology Among the Developing Countries , Asian Productivity Organization, Tokyo, 1972.

Cleland, David I., King William R., Project Management Handbook, Van Nostrand Reinhold Company, 1983.

DOD and NASA Guide, PERT Cost Systems Design , 1962.

The Defense Systems Management College Publications, Management of Multinatinal Programs, Virginia, 1987.

Fleming, Quentin W., Bronn, John W., Humphreys Gary C., Project and Production Scheduling, Probus Publishing Company, 1987.

Kerzner, Harold, A Systems Approach to Planning,

Scheduling and Controlling, Van Nostrand Reinhold Company, 1984.

```
Levine, Harvey A., Project Management Using
    Microcomputers, McGraw-Hill, 1986.
Lockyear, Keith, Critical Path Analysis and Other
    Project Network Techniques, Pitman Publishing
    Company, 1984.
Milli Produktivite Merkezi, Gelismekte Olan Ulkelere
    Teknoloji Transferi Semineri Notları, Milli
    Prodüktivite Merkezi Yayınları:171, Ankara, 1975.
Moder, Joseph J., Phillips, Cecil R., Davis, Edward W.,
    Project Management with CPM, PERT,Precedence Diagramming, Van Nostrand Reinhold, New York, 1983.
Penton/IPC Education Division, Fundamentals of PERT, 1984.
Project Management Institute, The Implementation of Project Management, Addison-Wesley, 1981.
Ritz, George J., Total Engineering Project Management, McGraw-Hill, 1990.
Schrage, Linus, Lindo : An Optimization Modeling System, The Scientific Press, 1991.
Ritz, George J., Total Project Management, McGraw-Hill, 1990.
Winston, Wayne L., Operations Research Applications and Algoritms, PWS-Kent, Boston,1991.
```


APPENDIX A

LINDO COMPUTER PACKAGE

A.1.Introduction

LINDO (Linear, INteractive, Discrete Optimizer) is a software package available both for mainframes and PCs to solve linear, integer and quadratic programming problems. The main purpose of LINDO is to allow a user to input an $L P$ formulation; solve it; assess the correctness or appropriateness of the formulation based on the solution and then if necessary, make modifications to the formulation and repeat the process.

LINDO is an interactive and command-oriented program. Therefore, it asks the user what is to be done next, and waits for the response of the user. There is a wide range of commands for the user to choose and then LINDO checks whether a particular command makes sense in a particular situation. The following is a step-by-step execution of LINDO program.

1. The user command "LINDO" when typed at user prompt, causes the LINDO program to be loaded from the floppy disk, or hard disk of the computer or from a network.
2. LINDO starts by sending the symbol "?" to indicate that it is waiting for an instruction from the user.
3. The user types the objective function as it appears in the mathematical statement of the problem.
4. Then LINDO sends the symbol "?" to show that it is waiting for additional input for the LP problem.
5. The user input "ST" stands for "subject to" notifying the program that information about constraints is to follow.
6. After inputting each of the constraints with the symbol < or $>$, which is interpreted as less than or equal to and greater than or equal to by LINDO, the user inputs "END" to signal that the date input is complete.
7. LINDO again responds with ":" to indicate that it is waiting for an instruction.
8. The user inputs the optional instruction "LOOK ALL" which results in the computer printing the LP formulation that $L I N D O$ is ready to solve.
"LOOK ALL" is not a required instruction, but using it provides an easy check on the accuracy of the input data. (Anderson, 1988)

In the computer package the objective function is identified as row 1. Then comes the "SUBJECT TO"
heading. This row is followed by the constraints identified as row 2, row 3 and etc. LINDO package proceeds to develop the solution of the problem when given the command "GO".

A.2.Interpretation of LINDO Computer Output

In the LINDO output shown in figure, the number under the "OBJECTIVE FUNCTION, COEFFICIENT VALUE" heading shows the solution of LP problem. The information in the column labeled "REDUCED COST" indicates how much the objective function coefficient of each decision variable would have to improve before it would be possible for that variable to assume a positive value in the solution. Improvement here is defined as getting bigger in a max problem and getting smaller in a minimization problem. Therefore, if a decision variable is already positive in the optimal solution, its reduced cost is zero.

The column labeled "DUAL PRICES" contains information about the improvement in the optimal value of the objective function resulting from a one-unit increase in the right hand side value for the constraint. Negative dual price tells us that the objective function will not improve if the value of the right hand side is increased by one unit. Hence, if the dual price is negative, reducing the right hand side of the constraint should be tried to improve the objective function value. The dual price for a $<=$
constraint is always greater than or equal to 0 because increasing the righthand side cannot make the value of the objective function worse. With the same reasoning, the dual price for a $>=$ constraint is always less than or equal to 0 since increasing the righthand side cannot improve the value of the objective function.

A.3.Sensitivity Analysis

After finding the the optimal solution to the original linear programming problem, LINDO program can also conduct sentivity analysis. Because of this, sensitivity analysis is often referred to as postoptimality analysis.

In the first part of sensitivity analysis, LINDO output shows the ALLOWABLE INCREASE AND ALLOWABLE DECREASE for the objective function coefficients. From this data, range of optimality can be calculated by adding the allowable increase and subtracting allowable decrease. It is the range of values over which an objective function coefficient may vary without causing any change in the values of the decision variables in the optimal solution.

In the second part, LINDO output shows ALLOWABLE INCREASE and ALLOWABLE DECREASE for the right hand side ranges. From here range of feasibility can be calculated by adding allowable increase and subtracting allowable decrease from the current righthand side values. Range of feasibility is defined
as the range of values over which a righthand side value may vary without changing the value and interpretation of the dual price.
A.4.Parametric Analysis

The command 'PARA' is executed to perform parametric analysis. Upon execution, LINDO asks for which row the RHS is to be changed. After the row number is typed, LINDO asks for the new RHS value. This is inputted by the user. Then LINDO presents if there occurs a basis change or not, if so, which variable is entering into basis and which variable is departing from the basis and the pivot row. It also shows new RHS, dual price, dual price before pivot, objective function value. One important point about parametric analysis the necessity of finding the optimal solution each time a parametric analysis is conducted. Namely, 'GO' command should be executed prior to execution of 'PARA' command.

APPENDIX B

MATRIX GENERATOR PROGRAM FOR LINDO FORMULATION

```
# include <stdio.h>
# define MAX FILE NAME
main( )
|
    int x, y, z ;
    FILE *fpi, *fpo , *fopen() ;
    char finame (MAX_FILE_NAME) , foname (MAX_FILE_NAME) ;
    printf("Enter file name for input : ");
    scanf("%s",finame);
    if (fpi = fopen(finame,"r")) == NULL )
    l
        printf("Could not find the file \n");
        exit( 1 );
    }
    printf("Enter file name for output : ");
    scanf("%s",foname);
    if (fpo = fopen(finame,"w")) == NULL )
    l
        printf("Could not open the file \n");
        exit( 1 );
}
fscanf(fpi,"%d %d",&x,&y);
fprintf(fpo,"MIN -X%d + X&d\n",x,y);
fprintf(fpo,"st\n");
while ( fscanf(fpi,"%d %d %d",&x,&y,&z) !=EOF )
{
    fprintf(fpo,"- X%d + X%d >= %d\n",x,y,z);
|
fprintf(fpo,"END\n");
fclose(fpi);
fcose(fpo);
}
```

The Execution of the Matrix Generator

The generator program asks for a data file to take inputs. The data file was created by using an editor. For this application, VI editor is used. The first line of the data file contains the subscript numbers of the activities in the objective function. The following lines contain the subscript numbers and duration information for the activity constraints. These numbers should be separated by one or more space characters. After entering this information about the objective function and the constraints, each on a separate line, the creation of the data file is complete.

The generator program is executed by typing "Lin". Upon execution, the generator asks for the name of the input file from the terminal. After this is entered, the program asks for the name of the output file to write the LINDO formulation.

At this stage, the mission of the generator program is over and the LINDO formulation is ready in the prepared output file. When entered the command "LINDO", the formulation can be reached typing "Take <filename>" command.

APPENDIX C

ACTIVITY LIST

The following is a detailed list of activities in the LINDO formulation excluding the dummy relationships. For each activity, the related LINDO constraint number activity name, duration in days, start and finish node numbers in the formulation predecessor and successor activity information is given.

Constraint No/Task Name Duration 2. Notification of the delivery of the lst batch RMUs 5	
Start Node	Finish Node
10	20
Predecessors	
none	
Successors	
Acceptance tests of the lst batch RMUs	
Constraint No/Task Name	Duration
3.Issuing letter of credit for the 1st batch RMUs	30
Start Node Finish Node	
10	30
Predecessors	
none	
Successors	
Delivery of the 1st batch RMUs	
Constraint No/Task Name	Duration
5.Issuing performance bond for the UTTE	30
Start Node	Finish Node
10	35
Predecessors	
none	
Successors	
Notification of the delivery of UTTE to be used in SKD production	
Constraint No/Task Name	Duration
7.Issuing letter of credit for UTTE	30
Start Node	Finish Node
10	40
Predecessors	
none	
Successors	
Notification of the delivery of UTKE to be used in SKD production	
Constraint No/Task Name	Duration
8.Issuing performance bond for the RMUs	30
Start Node	Finish Node
10	50
Predecessors	
none	
Succeasors	
Notification of the delivery of the 2nd batch RMUs	
Constraint No/Task Name	Duration
10.Sending proforma invoice for SKD and PKD	10
Start Node	Finish Node

none
Successors
Issuance of letter of credit for SKD and PKD kits

Constraint No/Task Name	Duration
ll. In-house preparation to the trainings	14
Start Node	Finish Node
10	70
Predecessors	
none	
Successors	
General information on SKD training	Duration
Constraint No/Task Name	30
12. Issuing bank guarantee for license and	
documentation	Finish Node
Start Node	80
10	
Predecessors	
none	
Successor(s)	
Master document list delivery	Duration
Constraint No/Task Name	15
$13 . A c c e p t a n c e ~ t e s t s ~ o f ~ t h e ~ l s t ~ b a t c h ~ R M U s ~$	Finish Node
Start Node	90
20	

Predecessors
Notification of the delivery of the 1st batch RMUs
Successors
Field tests of the 1st batch RMUs

Constraint No/Task Name	Duration
14.Field tests of the 1st batch RMUs	3
Start Node	Finish Node
90	100
Predecessors	
Acceptance tests of the 1st batch RMUs	
Successors	
Delivery of the 1st batch RMUs	
Delivery of the operator's manual by the seller	
Constraint No/Task Name	Duration
15. Delivery of the 1st batch RMUs	30
Start Node	Finish Node
100	110
Predecessors	
Field tests of the 1st batch RMUs	
Successors	
Payment of the 1st batch RMUs	
Notification of the delivery of the lst batch RMUs	

Constraint No/Task Name	Duration
16.Notification of the delivery of the 2nd batch	5
RMUs	
Start Node	Finish Node
110	120
Predecessors	
Delivery of the 2nd batch RMUs	
Successors	
Acceptance tests of the 2nd batch RMUs	
Constraint No/Task Name	
17.Acceptance tests of the 2nd batch RMUs	Duration
Start Node	Finish Node

120	130
Predecessors	
Notification of the delivery of the 2nd batch RMUs	
Successors	
Delivery of the 2nd batch RMUs	
Constraint No/Task Name	Duration
18. Delivery of the 2nd batch RMUs	30
Start Node	Finish Node
130	140
Predecessors	
Acceptance tests of the 2nd batch RMUs	
Successors	
Payment for the 2nd batch RMUs	
Constraint No/Task Name	Duration
19.Operator training-I to the customer	12
Start Node	Finish Node
140	141
Predecessors	
Delivery of the 2nd batch RMUs	
Successors	
Delivery of the field level maintenance manual by	
Constraint No/Task Name	Duration
20. Delivery of the operator's manual by the seller	30
Start Node	Finish Node
100	139
Predecessors	
Field tests of the 1st batch RMUs	
Successors	
Delivery of the operator's manual by the company	
Constraint No/Task Name	Duration
21. Delivery of the operator's manual by the company	30
Start Node	Finish Node
139	140
Predecessors	
Delivery of the operator's manual by the seller	
Successors	
Operator training-I to the customer	
Constraint No/Task Name	Duration
22. Delivery of the field level maintenance manual by 40	
the seller	
Start Node	Finish Node
141	360
Predecessors	
Operator training-I to the customer	
Successors	
Preparations on the field level maintenance manual	
Constraint No/Task Name	Duration
23. Preparations on the field level maintenance manual	180
Start Node	Finish Node
360	370
Predecessors	
Delivery of the field level maintenance manual by	
Successors	
Delivery of the field level maintenance manual to the customer	
Constraint No/Task Name	Duration
24. Delivery of the field level maintenance manual	30

Start Node	Finish Node
370	380
Predecessors	
Delivery of the field level maintenance manual by the seller	
Successors	
Field level maintenance training to the customer	
Constraint No/Task Name	Duration
25. Delivery of the depot level maintenance manual	30
by the seller	
Start Node	Finish Node
360	390
Predecessors	
Delivery of the field level maintenance manual by the	
Successors	
Preparation on the depot level maintenance manual	
Constraint No/Task Name Duration	
26.Preparation on the depot level maintenance manual 180	
Start Node	Finish Node
390	400
Predecessors	
Delivery of the depot level maintenance manual by the seller	
Successora	
Delivery of the depot level maintenance manual to the customer	
Operator's training-II to the customer	
Constraint No/Task Name	Duration
27. Delivery of the depot level maintenance manual to the customer	30
Start Node	Finish Node
400	870
Predecessors	
Preparation on the depot level maintenance manual	
Successors	
93 1st batch delivery	
Constraint No/Task Name	Duration
28.Operator's training-II to the customer	12
Start Node	Finish Node
400	401
Predecessors	
. Preparation on the depot level maintenance manual	
. Delivery of the training simulator	
Successors	
Field level maintenance training to the customer	
Constraint No/Task Name	Duration
30.Field level maintenance training to the customer	15
Start Node	Finish Node
401	870
Predecessors	
Operator's training-II to the customer	
Successors	
93 lst batch delivery	
Constraint No/Task Name	Duration
31. Depot level maintenance training from the	90
licenser	
Start Node	Finish Node
390	391
Predecessors	

Delivery of the depot level maintenance manual by the seller Successors Delivery of the depot level maintenance manual to the customer Operator's training-II to the customer	
Constraint No/Task Name	Duration
33. Notification of the delivery of the UTTE to be used in SKD production	
Start Node	Finish Node
40	150
Predecessors	
Issuance of letter of credit for UTTE to be used	
in SKD production	
Successors	
Acceptance cests of UTTE to be used in SKD production	
Constraint No/Task Name	Duration
34.Acceptance tests of UTTE to be used in SKD production	15
Start Node	Finish Node
150	160
Predecessors	
Notification of the delivery of the UTTE to be used	
Successors	
Signing of acceptance / rejection of the UTTE to be	
Constraint No/Task Name	Duration
35.Signing of acceptance / rejection of the UTTE to	5
be used in SKD production	
Start Node	Finish Node
160	170
Predecessors	
Acceptance tests of UTTE to be used in SKD production	
Successors	
Delivery of UTTE to be used in SKD production	
Constraint No/Task Name	Duration
36. Delivery of UTTE to be used in SKD production	100
Start Node	Finish Node
170	180
Predecessors	
Signing of acceptance / rejection of the UTTE to be used in SKD production	
Successors	
Payment for the UTTE to be used in SKD production	
Constraint No/Task Name	Duration
37.Insider activities-I	40
Start Node	Finish Node
880	890
Predecessors	
' 93 1st batch delivery	
Successors	
Insider activities-II	
Constraint No/Task Name	Duration
38.Notification of the delivery of UTTE to be used	15
in PKD production	
Start Node	Finish Node
40	150
Predecessors	
Issuance of letter of guarantee for UTTE Successora	

Acceptance tests of the UTTE to be used on PKD production

Constraint No/Task Name	Duration
52. Notification of the delivery of the servo drive	15
Start Node	Finish Node
40	280
Predecessors	
Issuance of letter of guarantee for UTTE	
Successors	
Acceptance tests of the servo drive	
Constraint No/Task Name	Duration
53.Acceptance tests of the servo drive	15
Start Node	Finish Node
280	290
Predecessors	
Notification of the delivery of the servo drive	
Successors	
Sign of acceptance / rejection of the servo drive	
Constraint No/Task Name	Duration
54.Sign of acceptance / rejection of the servo drive	5
Start Node	Finish Node
290	300
Predecessors	
Acceptance tests of the servo drive	
Successors	
Delivery of the servo drive	
Constraint No/Task Name	Duration
55.Insider activities-V	100
Start Node	Finish Node
1140	1390
Predecessors	
. '94 3rd batch delivery	
Insider activities-IV	
Successors	
NONE	
Constraint No/Task Name	Duration
56. Delivery of the servo drive	30
Start Node	Finish Node
300	580
Predecessors	
Sign of acceptance / rejection of the servo drive	
Successors	
Payment for the servo drive	
Manufacturing test of the 1st batch SKD kits	
Constraint No/Task Name	Duration
57. Notification of the delivery of the reference units	15
Start Node	Finish Node
40	310
Predecessors	
Issuance of letter of guarantee for UTTE	
Successors	
Acceptance tests of the reference units	
Constraint No/Task Name	Duration
58.Acceptance tests of the reference units	15
Start Node	Finish Node
310	320
Predecessors	
Notification of the delivery of the reference units	
Successors	
Sign of acceptance / rejection of the reference units	

Constraint No/Task Name	Duration
59.Sign of acceptance / rejection of the reference units	5
Start Node	Finish Node
320	330
Predecessors	
Acceptance tests of the servo drive	
Successors	
Delivery of the reference units	
Constraint No/Task Name	Duration
60.PKD training on mechanical and and electrical	35
inspection	
Start Node	Finish Node
770	801
Predecessors	
PKD training - general information	
Successors	
Manufacturing out of PKD	
Constraint No/Task Name	Duration
61. Delivery of the reference units	30
Start Node	Finish Node
330	580
Predecessors	
Sign of acceptance / rejection of the reference units	
Successors	
Payment for the reference units	
Manufacturing test of the 1st batch SKD kits	
Constraint No/Task Name	Duration
62.Issuance letter of credit for SKD and PKD	30
start Node	Finish node
60	340
Predecessors	
Sending proforma invoice for SKD and PKD	
Successors	
1st Batch SKD delivery	
Constraint No/Task Name	Duration
63.1 st Batch SKD delivery	30
Start Node	Finish node
340	550
Predecessors	
Issuance of letter of credit for SKD and PKD	
Successors	
Payment for the 1st batch SKD delivery	
Acceptance tests of the 1st batch RMU delivery	
Manufacturing out of the lst batch SKD	
2nd batch SKD delivery	
Constraint No/Task Name	Duration
65.SKD training - general information	14
Start Node	Finish node
70	420
Predecessors	
In-house preparation to the trainings	
Successors	
SKD training on industrial engineering	
SKD training on purchasing	
SKD training on in-process control and handling	
SKD training on quality control	
Constraint No/Task Name	Duration
66.SKD training on industrial engineering	24
Start Node	Finish Node
420	430

Predecessors	
SKD training - general information	
Successors	
SKD training on manufacturing	
Constraint No/Task Name	Duration
68.SKD training on purchasing	30
Start Node	Finish Node
420	440
PredecessorsSKD training - general information	
Successors	
SKD training on systems and principles	
Constraint No/Task Name	Duration
69.SKD training on in-process control and handling	10
start Node	Finish Node
420	460
Predecessors	
SKD training - general information	
Successors	
SKD training on systems and principles	
Constraint No/Task Name	Duration
70.SKD training on quality control	10
Start Node	Finish Node
420	450
Predecessors	
SKD training - generalk information	
Successors	
SKD training on systems and principles	
Constraint No/Task Name	Duration
72.SKD training on manufacturing	33
start Node	Finish Node
440	500
Predecesaors	
SKD training on purchasing	
SKD training on industrial engineering	
Successors	
SKD training on rework touch-up	
Constraint No/Task Name	Duration
73.SKD training on rework touch-up	7
Start Node	Finish Node
500	560
Predecessors	
SKD training on manufacturing	
Successors	
Manufacturing out of lst batch SKD kit	
Constraint No/Task Name	Duration
74.SKD training on systems and principles	
start Node	Finish Node
460	470
Predecessors	
SKD training on quality control	
SKD training on in-process control and handling	
Successors	
SKD training on maintenance	
Constraint No/Task Name	Duration
75.SKD training on maintenance	7
Start Node	Finish Node
470	480
Predecessors	
SKD training on systems and principles	

Successors

SKD training on test engineeering support
SKD training on production testing

Constraint No/Task Name	Duration
80. Delivery of technical data package by the seller excluding test document	150
Start Node	Finish Node
510	560
Predecessors	
Delivery of master document list by the seller	
Successors	
Manufacturing out of 1st batch SKD kit	
Constraint No/Task Name	Duration
81. Delivery of manufacturing data package by the seller excluding test document	140
Start Node	Finish Node
510	530
Predecessors	
Delivery of master document list by the seller	
Successors	
Manufacturing out of 1st batch SKD kit	
Task Name	Duration
83. Delivery of additional data package by the seller excluding test document	130
Start Node	Finish Node
510	540
Predecessors	
Delivery of master document list by the seller	
Successors	
Manufacturing out of 1st batch SKD kit	

Constraint No/Task Name	Duration
85. Delivery of documentation for UTTE required for	30
final assembly	
Start Node	Finish Node
510	520
Predecessors	
Delivery of master document list by the seller	
Successors	
Preparation on documentation for UTTE required for final assembly	
Constraint No/Task Name	Duration
86.Preparation on documentation for UTTE required	90
for final assembly	
Start Node	Finish Node
520	560
Predecessors	
Delivery of documentation for UTTE required for final assembly	
Successors	
Manufacturing out of 1st batch SKD kit	
Constraint No/Task Name	Duration
87. SKD set-up	60
Start Node	Finish Node
180	560
Predecessors	
Delivery of UTTE to be used in SKD production	
Successors	
Manufacturing out of 1st batch SKD kit	
Constraint No/Task Name	Duration
88.Acceptance tests of the lst batch SKD kit	90
start Node	Finish Node
550	570
Predecessors	
Delivery of the 1st batch SKD kits	
Successors	
Sign of acceptance / rejection for the delivery of the 1st batch SKD kits	
Constraint No/Task Name	Duration
89.Sign of acceptance / rejection for the delivery of the lst batch SKD kits	5
Start Node	Finish Node
570	850
Predecessors	
Acceptance tests of the lst batch SKD kit	
Successors	
Customer acceptance tests of the '93 1st batch delivery	
Constraint No/Task Name	Duration
90.Payment for the 1st batch SKD kits	30
Start Node	Finish Node
550	850
Predecessors	
1st batch SKD delivery	
Successors	
Customer acceptance tests of the' '93 1st batch delivery	
Constraint No/Task Name	Duration
91.Manufacturing out of 1st batch SKD kit	90
Start Node	Finish Node
560	580

Predecessors. SKD set-up	
. SKD training on rework touch-up	
- SKD training on test engineering support	
- Delivery of technical data package by the seller	
- Delivery of manufacturing data package by the seller excluding test document	
- Delivery of additional data package by the seller excluding test document	
- Delivery of documentation for UTTE required for final assembly Successors	
Manufacturing test of 1st batch SKD kit	
Constraint No/Task Name Duration	
92.Manufacturing test of the 1st batch SKD kits 30	
Start Node	Finish Node
580	850
Predecessors	
Manufacturing out of lst batch SKD kits	
Successors	
Customer acceptance tests of the '93 1st batch delivery	
Constraint No/Task Name	Duration
94.2 nd batch SKD deliveryStart Node	30
	Finish Node
560	590
Predecessors	
1st batch SKD delivery	
Successora	
Acceptance tests of the 2nd batch SKD kits	
Constraint No/Task Name	Duration
95.Acceptance tests of the 2nd batch SKD kitsStart Node	90
	Finish Node
590	600
Predecessors	
2nd batch SKD delivery	
Successors	
Sign of acceptance / rejection for the delivery of	
2nd batch SKD kits	
Constraint No/Task Name	Duration
96.Sign of acceptance / rejection for the delivery 5	
of 2nd batch SKD kits	
Start Node	Finish Node
600	850
Predecessors	
Acceptance tests of the 2nd batch SKD kits	
Successors	
Customer acceptance tests for the '93 1st batch	
Constraint No/Task Name	Duration
97. Payment for the 2nd batch SKD kits	30
Start Node	Finish Node
590	850
Predecessors	
2nd batch SKD delivery	
Successors	
Customer acceptance tests for the '93 1st batch delivery	
Constraint No/Task Name	Duration
98.Manufacturing out of 2nd batch SKD kits	90
Start Node	Finish Node

590	610
Predecessors	
2nd batch SKD delivery	
Successoxs	
Manufacturing tests of 2nd batch SKD kits	
Constraint No/Task Name	Duration
99.Manufacturing test of 2nd batch SKD kits	30
Start Node	Finish Node
610	850
Predecessors	
Manufacturing out of 2nd batch SKD kits	
Successors	
Customer acceptance tests for the '93 1st batch delivery	
Constraint No/Task Name	Duration
100.3rd batch SKD delivery	30
Start Node	Finish Node
590	620
Predecessors	
2nd batch SKD delivery	
Successors	
Acceptance test of the 3rd batch SKD kits	
Constraint No/Task Name	Duration
101.Acceptance test of the 3rd batch SKD kits	90
Start Node	Finish Node
620	630
Predecessors	
3rd batch SKD delivery	
Successors	
Sign of acceptance / rejection for the delivery of	
Constraint No/Task Name	Duration
102.Sign of acceptance / rejection for the delivery 5 of 3rd batch SKD kits	
Start Node	Finish Node
630	850
Predecessors	
Acceptance tests of the 3rd batch SKD kits	
Successors	
Customer acceptance tests for the '93 1st batch delivery	
Constraint No/Task Name	Duration
103. Payment for the 3rd batch SKD kits	30
Start Node	Finish Node
620	850
Predecessors	
3rd batch SKD kit delivery	
Successors	
Customer acceptance tests for the '93 1st batch delivery	
Constraint No/Task Name	Duration
104.Manufacturing out of 3rd batch SKD kits	90
Start Node	Finish Node
620	640
Predecessors	
3rd batch SKD delivery	
Successors	
Manufacturing test of 3rd batch SKD kits	
Constraint No/Task Name	Duration
105.Manufacturing test of 3rd batch SKD kits	30
Start Node	Finish Node
640	650
Predecessors	


```Manufacturing out of 3rd batch SKD kits Successors Customer acceptance tests for the '93 1st batch delivery```	
Constraint No/Task Name	Duration
107. Customer acceptance tests for the ' 93 1st batch delivery	
Start Node	Finish Node
850	870
Predecessors	
- Sign of acceptance / rejection for thge delivery of	
1st batch SKD kits	
- Payment for the lst batch SKD kits	
- Manufacturing test of the lst batch SKD kits	
- Sign of acceptance / rejection for thge delivery o	
2nd batch skD kits	
- Payment for the 2nd batch SKD kits	
- Manufacturing test of the 2nd batch SKD kits	
. Sign of acceptance / rejection for thge delivery o	
3rd batch SKD kits	
- Payment for the 3rd batch SKD kits	
. Manufacturing test of the 3rd batch SKD kits	
successors	
93 1st batch delivery	
Constraint No/Task Name	Duration
108.' 93 1st batch delivery	10
start Node	Finish Node
870	880
Predecessors	
Customer acceptance tests for the '93 1st batch	
delivery	
Successors	
Insider activities-I	
Constraint No/Task Name	Duration
109.4th batch delivery	30
Start Node	Finish Node
620	660
Predecessors	
3rd batch SKD delivery	
Successors	
Acceptance tests of the 4th batch SKD kit	
Constraint No/Task Name	Duration
110.Acceptance tests of the 4 th batch SKD kit	90
start Node	Finish Node
660	670
Predecessors	
4 th batch SKD delivery	
Successors	
Sign of acceptance / rejection for the delivery of 4th batch SKD kits	
Constraint No/Task Name	Duration
111.Sign of acceptance / rejection for the delivery	5
of 4 th batch SKD kits	
Start Node	Finish Node
670	690
Predecessors	
Acceptance tests of the 4 th batch SKD kit	
Successors	
Customer acceptance tests for the '93 2nd batch delivery	


Constraint No/Task Name	Duration
112.Payment for the 4 th batch SKD kits	30
Start Node	Finish Node
660	690
Predecessors	
4th batch SKD delivery	
Successors	
Customer acceptance tests for the '93 2nd batch delivery	
Constraint No/Task Name	Duration
113. Manufacturing out of 4 th batch SKD kits	90
Start Node	Finish Node
660	680
Predecessors	
4th batch SKD delivery	
Successors	
Manufacturing test of 4 th batch SKD kits	
Constraint No/Task Name	Duration
114.Manufacturing test of 4th batch SKD kits	30
Start Node	Finish Node
680	690
Predecessors	
Manufacturing out of 4th batch SKD kits	
Successors	
Customer acceptance tests for the '93 2nd batch delivery	
Constraint No/Task Name	Duration
115. Customer acceptance tests for the '93 2nd batch delivery	15
Start Node	Finish Node
690	700
Predecessors	
. Sign of acceptance / rejection for the delivery	
of the 4 th batch SKD kits	
- Payment for the 4th batch SKD kits	
. Manufacturing test of 4th batch SKD kits	
Successors	
93 2nd batch delivery	
Constraint No/Task Name	Duration
116.'93 2nd batch delivery	30
Start Node	Finish Node
700	890
Predecessors	
Customer acceptance tests for the '93 2nd batch deliv	very
Successors	
Insider activities-II	
Constraint No/Task Name	Duration
117.Receiving technical assistance from the licenser	180
start Node	Finish Node
560	740
Predecessors	
Same as manufacturing out of lst batch SKD kits Successors	
Manufacturing test of the 5th batch SKD delivery	
Constraint No/Task Name	Duration
118.5th batch SKD delivery	30
Start Node	Finish Node
660	720
Predecessors	
4th batch SKD delivery	


Constraint No/Task Name	Duration
119.Acceptance tests of the 5th batch SKD kit	90
Start Node	Finish Node
720	730
Predecessors	
5th batch SKD delivery	
Successora	
Sign of acceptance /rejection for the delivery of	
5th batch SKD kits	
Constraint No/Task Name	Duration
120.Sign of acceptance /rejection for the delivery	5
of 5th batch SKD kits	
Start Node	Finish Node
730	750
Predecessors	
Acceptance tests of the 5th batch SKD kits	
Successora	
Customer acceptance tests for the ' 94 1st batch delivery	
Constraint No/Task Name	Duration
121. Payment for the 5th batch SKD kits	30
start Node	Finish Node
720	750
Predecessors	
5th batch SKD delivery	
Successors	
Customer acceptance tests for the '94 1st batch delivery	
Constraint No/Task Name	Duration
122.Manufacturing out of 5th batch SKD kits	90
Start Node	Finish Node
720	740
Predecessors	
5 th batch SKD deliveryu	
Successors	
Manufacturing test of the 5th batch SKD kits	
Constraint No/Task Name	Duration
123. Manufacturing test of the 5th batch SKD kits	30
Start Node	Finish Node
740	750
Predecessors	
Manufacturing out of 3rd batch SKD kits	
Successors	
Customer acceptance tests for the ' 94 1st batch deli	very
Constraint No/Task Name	Duration
124. Customer acceptance tests for the ' 94 1st batch delivery	15
Start Node	Finish Node
750	760
Predecessors	
. Sign of acceptance /rejection for the delivery of	
5th batch SKD kits	
. Manufacturing test of the 5th batch SKD kits   - Payment for the 5th batch SKD kits	
Successors	
'94 1st batch delivery	
Constraint No/Task Name	Duration
125.'94 1st batch delivery	30




Start Node	Finish Node
721	840
Predecessors	
5th batch SKD delivery	
Successors	
Customer acceptance tests for the '94 2nd batch delivery	
Constraint No/Task Name	Duration
142.Manufacturing out of PKD kits	210
Start Node	Finish Node
801	830
Predecessor:	
PKD delivery	
Successors	
Manufacturing test of PKD kits	
Constraint No/Task Name	Duration
143.Manufacturing test of PKD kits	30
Start Node	Finish Node
830	840
Predecessors	
Manufacturing out of PKD kits	
Successors	
Customer acceptance tests for the ' 94 2nd batch delivery	
Constraint No/Task Name	Duration
144. Delivery of electrical and mechanical piece parts-1	30
Start Node	Finish Node
721	940
Predecessors	
PKD delivery	
Successors	
Manufacturing of mechanical and electrical piece parts-1	
Constraint No/Task Name	Duration
145. Delivery of components to be used in module assembly phase-1	30
Start Node	Finish Node
940	950
Predecessors	
Delivery of electrical and mechanical piece parts-1	
Successors	
. Delivery of components to be used in unit assembly	
. Module and printed board assembly / test phase-I	
Constraint No/Task Name	Duration
146. Delivery of must-buy items-B -1	30
Start Node	Finish Node
940	960
Predecessors	
Delivery of electrical and mechanical piece parts-1	
Successors	
. Delivery of must-buy items-A -1	
. Module and printed board assembly / test phase-I	
- Delivery of must-buy items-B -1b	
Constraint No/Task Name	Duration
147.Manufacturing of mechanical and electrical piece parts-1	60
Start Node	Finish Node
940	970
Predecessors	
Delivery of electrical and mechanical piece parts-1	


Constraint No/Task Name	Duration
148.Module and printed board assembly/test phase-I	50
Start Node	Finish Node
970	980
Predecessors	
- Manufacturing of mechanical and electrical piece parts-1	
- Delivery of must-buy items-B -1	
- Delivery of components to be used in module	
assembly phase-1	
Successors	
Unit asssembly/test phase-I	
Constraint No/Task Name	Duration
149. Delivery of must-buy items-A -1	30
Start Node	Finish Node
960	980
Predecessors	
Delivery of must-buy items-B-1	
Successors	
- Unit assembly /test phase-I	
- Delivery of must-buy items-A -1b	
Constraint No/Task Name	Duration
150. Delivery of components to be used in unit assembly phase-1	30
Start Node	Finish Node
950	980
Predecessors	
Delivery of components to be used in module assembly phase-1	
Successors	
Unit assembly / test-I	
Constraint No/Task Name	Duration
151.Unit assembly / test-I	60
Start Node	Finish Node
980	990
Predecessors	
. Module and printed board assembly / test -I	
. Delivery of must-buy items-A -1	
. Delivery of components to be used in unit assembly phase-1	
Successors	
Final assembly-I	
Constraint No/Task Name	Duration
152.Final assembly-I	30
start Node	Finish Node
990	1030
Predecessors	
Unit assembly / test phase-II	
successors	
Final test-I	
Final assembly-II	
Constraint No/Task Name	Duration
153.Final test-I	30
Start Node	Finish Node
1030	1120
Predecessors	
Final assembly-I	
Unit assembly / test phase-II	
Successors	
Customer acceptance tests for the '94 3rd batch deliv	very


Constraint No/Task Name	Duration
156. Delivery of must-buy items-B -1b	30
Start Node	Finish Node
960	1050
Predecessors	
Delivery of must-buy items-B -1	
Successors	
Module and printed board assembly/test phase-III	
Constraint No/Task Name	Duration
157. Delivery of must-buy items-A -1b	30
Start Node	Finish Node
980	1060
Predecessors	
Delivery of must-buy items-A -1	
Successors	
Unit assembly/test phase-III	
Constraint No/Task Name	Duration
158. Preparation to ' 94 2nd batch of manufacturing out of component	10
Start Node	Finish Node
970	1010
Predecessora	
Manufacturing of electrical and mechanical piece	ts-1
Successors   Module and printed assembly / test -II	
Constraint No/Task Name	Duration
159.Module and printed assembly / test phase-II	90
Start Node	Finish Node
1010	1020
Predecessors	
Preparation to ' 94 2nd batch of manufacturing out component	
Successors	
Unit assembly / test phase-II	
Constraint No/Task Name	Duration
160.Unit assembly / test phase-II	60
Start Node	Finish Node
1020	1030
Predecessors	
Module and printed assembly / test phase-II	
Successors	
Final test-II	
Constraint No/Task Name	Duration
161. Final assembly-II	30
start Node	Finish Node
1030	1070
Predecessors	
- Unit assembly / test phase-II	
- Final assembly-I	
Succesaors	
- Final test-II	
- Final assembly-III	
Constraint No/Task Name	Duration
162.Final test-II	30
Start Node	Finish Node
1070	1120
Predecessors	
Final assembly-II	
Unit assembly-III	
Successors	


Constraint No/Task Name	Duration
163. Preparation to ' 94 3rd batch of manufacturing out of component	10
Start Node	Finish Node
1010	1050
Predecessors	
Preparation to ' 94 2nd batch of manufacturing out of component	
Successors	
Module and printed board assembly / test phase-III	
Constraint No/Task Name	Duration
164.Module and printed board assembly / test phase-III	90
Start Node	Finish Node
1050	1060
Predecessors	
Preparation to 3rd batch of manufacturing out of component	
Delivery of must-buy items-B -ib	
Successors	
Unit assembly / test phase-III	
Constraint No/Task Name	Duration
165.Unit assembly / test phase-III	60
Start Node	Finish Node
1060	1070
Predecessors	
Module and printed board assembly / test phase-III	
Delivery of must-buy items-B -1b	
Successors	
Final assembly-III	
Final test-II	
Constraint No/Task Name	Duration
166.Final assembly-III	30
Start Node	Finish Node
1070	1110
Predecessora	
Final assembly-II	
Unit assembly-III	
Successors	
Final assembly / test-IV	
Final test-III	
Constraint No/Task Name	Duration
167.Final assembly / test-IV	30
Start Node	Finish Node
1110	1120
Predecessora	
Unit assembly / test phase-IV	
Final assembly / test phase-III	
Successors	
Customer acceptance tests for the ' 94 3rd batch deliv	very
Constraint No/Task Name	Duration
168. Preparation to ' 944 th batch of manufacturing out of component	10
Start Node	Finish Node
1050	1090
Predecessors	
Preparation to ' 94 3rd batch of manufacturing out of component   Successors	

Module and printed board assembly/test phase-IV

Constraint No/Task Name	Duration
169.Module and printed board assembly/test phase-IV	90
Start Node	Finish Node
1090	1100
Predecessors	
Preparation to 4 th batch of manufacturing out of component	
Successors	
Unit assembly / test phase-IV	
Constraint No/Task Name	Duration
170.Unit assembly / test phase-IV	60
start Node	Finish Node
1100	1110
Predecessors	
Module and printed board assembly / test phase-IV	
Successors	
Final assembly / test-IV	
Final test-III	
Constraint No/Task Name	Duration
171.Final test-III	30
start Node	Finish Node
1110	1119
Predecessors	
Unit assembly / test phase-IV	
Final assembly / test phase-III	
Successors	
Customer acceptance tests for the ' 94 3rd batch deli	very
Constraint No/Task Name	Duration
172. Customer acceptance tests for the ' 943 rd batch delivery	15
Start Node	Finish Node
1120	1130
Predecessors	
Final test-I	
Final test-II	
Final test-III	
Final assembly / test-IV	
Successora	
' 94 3rd batch delivery	
Constraint No/Task Name	Duration
173.'94 3rd batch delivery	30
Start Node	Finish Node
1130	1140
Predecessors	
Customer acceptance tests for the ' 94 3rd batch delivery	
Successora	
Insider activities-V	
Constraint No/Task Name	Duration
174. Delivery of electrical/mechanical piece parts-2	30
Start Node	Finish Node
940	1150
Predecessors	
Delivery of electrical and mechanical piece parts-1	
Successors .	
Manufacturing of mechanical and electrical piece par	-s-2
Constraint No/Task Name	Duration
175.Manufacturing of mechanical and electrical piece parts-2	60


Start Node	Finish Node
1150	1180
Predecessors	
Delivery of electrical and mechanical piece parts-2	
Successors	
Module and printed board assembly / test phase-V	
Constraint No/Task Name	Duration
176.Module and printed board assembly/test phase-V	60
Start Node	Finish Node
1180	1190
Predecessors	
. Manufacturing of mechanical and electrical piece	
parts-2	
- Delivery of must-buy items-B -2	
. Delivery of components to be used in module	
assembly phase-2	
Successors	
Unit asssembly/test phase-V	
Constraint No/Task Name	Duration
177. Delivery of must-buy items(B) -2	30
Start Node	Finish Node
1150	1160
Predecessors	
Delivery of electrical and mechanical piece parts-2	
Successors	
. Delivery of must-buy items (A) -2	
. Module and printed board assembly / test phase-V	
- Delivery of must-buy items (B) -2b	
Constraint No/Task Name	Duration
179. Delivery of must-buy items (A) -2	30
start Node	Finish Node
1160	1190
Predecessors	
Delivery of must-buy items (B) -2	
Successors	
- Unit assembly /test phase-V	
- Delivery of must-buy items (A) -2b	
Constraint No/Task Name	Duration
180. Delivery of components to be used in module assembly phase-2	30
Start Node	Finish Node
1150	1170
Predecessors	
Delivery of electrical and mechanical piece parts-2	
Successors	
. Delivery of components to be used in unit assembly phase-2	
. Module and printed board assembly / test phase-V	
Constraint No/Task Name	Duration
182. Delivery of components to be used in unit	30
assembly phase-2	
Start Node	Finish Node
1170	1190
Predecessors	
Delivery of components to be used in module assembly phase-2	
Successors	
Unit assembly / test phase-V	
Constraint No/Task Name	Duration
183. Unit assembly / test phase-V	45
Start Node	Finish Node

## Predecessors

. Module and printed board assembly / test phase-V

- Delivery of must-buy items (A)-2
- Delivery of components to be used in unit assembly
phase-2
Successors
Final assembly-V

Constraint No/Task Name	Duration
184.Final assembly-V	30
Start Node	Finish Node
1200	1240
Predecessors	
Unit assembly / test phase-V	
Successors	
Final test-V	
Final assembly-VI	
Constraint No/Task Name	Duration
185. Final test-V	30
Start Node	Finish Node
1240	1370
Predecessors	
Final assembly-V	
Unit assembly / test phase-VI	
Successors	
Customer acceptance tests for the '94 4th batch del	very
Constraint No/Task Name	Duration
186. Preparation to ' 94 6th batch of manufacturing out of component	10
Start Node	Finish Node
1180	1220
Predecessors	
Manufacturing of electrical and mechanical piece pa	ts-2
Successors	
Module and printed assembly / test phase-VI	
Constraint No/Task Name	Duration
187. Delivery of must-buy items-B -2b	30
Start Node	Finish Node
1160	1260
Predecessors	
Delivery of must-buy items-B -2	
Successors	
Module and printed assembly / test phase-VII	
Constraint No/Task Name	Duration
146. Delivery of must-buy items-A -2b	30
start Node	Finish Node
1190	1270
Predecessors	
Delivery of must-buy items-B -1	
Successors	
Unit assembly/test phase-VII	
Constraint No/Task Name	Duration
189. Module and printed assembly / test phase-VI	90
Start Node	Finish Node
1220	1230
Predecessors	
Preparation to ' 94 6th batch of manufacturing out o component	
Successors	
Unit assembly / test phase-VI	


Constraint No/Task Name	Duration
190.Unit assembly / test phase-VI	60
Start Node	Finish Node
1230	1240
Predecessors	
Module and printed assembly / test phase-VI	
Successors	
Final test-VI	
Constraint No/Task Name	Duration
191.Final assembly-VI	30
Start Node	Finish Node
1240	1280
Predecessors	
- Unit assembly / test phase-VI	
- Final assembly-V	
Successora	
- Final test-VI	
- Final assembly-VII	
Constraint No/Task Name	Duration
192.Final test-VI	30
Start Node	Finish Node
1280	1370
Predecessors	
Final assembly-VI	
Unit assembly / test phase-VII	
Successors	
Customer acceptance tests for the '94 4th batch delivery	
Constraint No/Task Name	Duration
193. Preparation to ' 947 th batch of manufacturing out of component	
start Node	Finish Node
1220	1260
Predecessors	
Preparation to ' 94 6th batch of manufacturing out of component	
Successors	
Module and printed board assembly / test phase-VII	
Constraint No/Task Name	Duration
194.Module and printed board assembly/test phase-VII 90	
Start Node	Finish Node
1260	1270
Predecessors	
. Preparation to ' 947 th batch of manufacturing out of component	
. Delivery of must-buy items (B) -2 b	
Successors	
Unit assembly / test phase-VII	
Constraint No/Task Name	Duration
195.Unit assembly / test phase-VII	60
Start Node	Finish Node
1270	1280
Predecessors	
. Module and printed board assembly / test phase-VII   - Delivery of must-buy items (A) -2b	
Successora	
Final assembly-VII	
Final test-VI	
Task Name	Duration
196.Final assembly-VII	30
Start Node	Finish Node


1280	1320
Predecessors	
Final assembly-VI	
Unit assembly / test phase-VII	
Succesaora	
Final assembly-VIII	
Final test-VII	
Constraint No/Task Name	Duration
197.Final test-VII	30
Start Node	Finish Node
1320	1370
Predecessors	
Final assembly-VII	
Unit assembly / test phase-VIII	
Successors	
Customer acceptance tests for the '94 4th batch delivery	
Constraint No/Task Name	Duration
198. Preparation to ' 94 8th batch of manufacturing	10
Start Node	Finish Node
1260	1300
Predecessors	
Preparation to ' 947 th batch of manufacturing out of component	
Successors	
Module and printed board assembly / test phase-VIII	
Task Name Dus	Duration
199.Module and printed board assembly/test phase-VIII 90	
Start Node	Finish Node
1300	1310
Predecessors	
Preparation to ' 94 8th batch of manufacturing out of component	
Successors	
Unit assembly / test phase-VIII	
Constraint No/Task Name D	Duration
200.Unit assembly / test phase-VIII	60
start Node Fin	Finish Node
1310	1320
Predecessors	
Module and printed board assembly / test phase-VIII	
Successors	
Final assembly-VIII	
Final test-VII	
Constraint No/Task Name D	Duration
201.Final assembly-VIII 30	30
start Node Fin	Finish Node
1320 l 13	1360
Predecessors	
Unit assembly / test phase-VIII	
Final assembly-VII	
Successors	
Final assembly / test-IX	
Final test-VIII	
Constraint No/Task Name D	Duration
202.Final test-VIII 30	30
Start Node Fin	Finish Node
1360 ( 1	1369
Predecesaors	
Unit assembly / test phase-IX	
Final assembly-VIII	



## APPENDIX D

## LINDO FORMULATION

The constraints associated with the critical activities are marked in bold for the convenience of the reader.

```
MIN - X10 + X1390
 SUBJECT TO
 2) - X10 + X20 >= 5
 3) - X10 + X30 >= 30
 4) - X30 + X100 >= 0
 5) - X10 + X35 >= 30
 6) - X35 + X40 >= 0
 7) - X10 + X40 >= 30
 8) - X10 + X50 >= 30
 9) - X50 + X110 >= 0
 10) - X10 + X60 >= 10
 11) - X10 + X70 >= 14
 12) - X10 + X80 >= 30
 13) - X20 + X90 >= 15
 14) }\times100-X90>=
 15) - X100 + X110 >= 30
 16) - X110 + X120 >= 5
 17) - X120 + X130 >= 15
 18) - X130 + X140 >= 30
 19) - X140 + X141 >= 12
 20) - X100 + X139 >= 30
 21) X140-X139 >= 30
 22) - X141 + X360 >= 40
 23) - X360 + X370 >= 180
 24) - X370 + X380 >= 30
 25) - X360 + X390 >= 30
 26) - X390 + X400 >= 180
 27) - X400 + X870 >= 30
 28) - X400 + X401 >= 12
 29) - X380 + X401 >= 0
 30) X870-X401 >= 15
 31) - X390 + X391 >= 90
 32) }\times400-X391>=
 33) - X40 + X150 >= 5
 34) - X150 + X160 >= 15
 35) - X160 + X170 > 5
 36) - X170 + X180 >= 100
 37) - X880 + X890 >= 49
 38) - X40 + X190 >= 15
 39) - X190 + X200 >= 15
 40) - X200 + X210>= 5
 41) - X890 + X900 >= 29
 42) - X40 + X220 >= 15
 43) - X220 + X230 >= 15
 44) - X230 + X240 >= 5
 45) - X900 + X920 >= 149
 46) X400 - X240 >= 30
```

```
 47) - X40 + X250 >= 15
 48) - X250 + X260 >= 15
 49) - x260 + X270 >= 5
 50) - X920 + X1140 >= 79
 51) - X270 + X331 >= 30
 52) - X40 + X280 >= 15
 53) - X280 + X290 >= 15
 54) - X290 + X300 >= 5
 55) X1390 - X1140 >= 109
 56) X331 - X300 >= 30
 57) - X40 + X310 >= 15
 58) - X310 + X320 >= 15
 59) - X320 + X330 >= 5
 60) - X770 + X801 >= 35
 61) X331-X330 >= 30
 62) - X60 + X340 >= 30
 63) - X340 + X550 >= 30
 64) - X331 + X580 >= 0
 65) - x70 + X420 >= 14
 66) - X420 + X430 >= 24
 67) - X430 + X440 >= 0
 68) - X420 + X440 >= 30
 69) - X420 + X460 >= ' 10
 70) - X420 + X450 >= 10
 71) X460 - X450 >= 0
 72) - X440 + X500 >= 33
 73) - X500 + X560 >= 7
 74) - X460 + X470 >= 21
 75) - X470 + X480 >= 7
 76) }X560-X480>= 30
 77) - X480 + X490 >= 60
 78) X560 - X490 >= 0
 79) - X80 + X510 >= 15
 80) X560-X510 >= 150
 81) - X510 + X530 >= 140
 82) X560-X530 >= 0
 83) - X510 + X540 >= 130
 84) X560 - X540 >= 0
 85) - X510 + X520 >= 30
 86) X560 - X520 >= }9
 87) - X180 + X560 >= 60
 88) - X550 + X570 >= 90
 89) - X570 + X850 >= 5
 90) - X550 + X850 >= 30
 91) X580 - X560 >= 90
 92) - X580 + X850 >= 30
 93) - X550 + X560 >= 0
 94) - X560 + X590 >= 30
 95) - X590 + X600 >= 90
 96) X850 - X600 >= 5
 97) X850-X590 >= 30
 98) - X590 + X610 >= 90
 99) X850 - X610 >= 30
100) - X590 + X620 >= 30
101) - X620 + X630 >= 90
102) X850 - X630 >= 5
103) X850 - X620 >= 30
104) - X620 + X640 >= 90
105) - X640 + X650 >= 30
106) X850 - X650 >= 0
107) X870-X850 >= 15
```

```
108) - X870 + X880 >= 10
109) - X620 + X660 >= 30
110) - X660 + X670 >= 90
111) - X670 + X690 >= 5
112) - X660 + X690 >= 30
113) - X660 + X680 >= 90
114) X690 - X680 >= 30
115) - X690 + X700 >= 15
116) }\times890-\times700>= 3
117) - X560 + X740 >= 180
118) - X660 + X720 >= 30
119) - X720 + X730 >= 90
120)-X730 + X750 >= 5
121) - X720 + X750 >= 30
122) X740-X720 >= 90
123) - X740 + X750 >= 30
124) - X750 + X760 >= 15
125) X900-X760 >= 30
126) X770 - X560 >= 7
127) - X770 + X780 >= 51
128) X801 - X780 >= 0
129) - X770 + X790 >= 35
130) X801 - X790 >= 0
131) - X770 + X800 >= 44
132) X801 - X800 >= 0
133) - X210 + X710 >= 30
134) }\times801-\times710>= 9
135) X801 - X721 >= 0
136) - X720 + X721 >= 30
137) - X721 + X820 >= 90
138) - X820 + X840 >= 5
139) - X840 + X910 >= 15
140) X920 - X910 >= 30
141) - X721 + X840 >= 30
142) - X801 + X830 >= 210
143) X840-X830 >= 30
144) - X721 + X940 >= 30
145) - X940 + X950 >= 30
146) - X940 + X960 >= 30
147) - X940 + X970 >= 60
148) - X970 + X980 >= 50
149) - X960 + X980 >= 30
150) - X950 + X980 >= 30
151) - X980 + X990 >= 60
152) - X990 + X1030 >= 30
153) - X1030 + X1120 >= 30
154) - X960 + X970 >= 0
155) - X950 + X970 >= 0
156) - X960 + X1050 >= 30
157) - X980 + X1060>= 30
158) - X970 + X1010 >= 10
159) - X1010 + X1020 >= 70
160) X1030-X1020 >= 60
161) - X1030 + X1070 >= 30
162) X1120-X1070>= 30
163) X1050-X1010 >= 10
164) - X1050 + X1060 >= 70
165) - X1060 + X1070 >= 60
166) - X1070 + X1110 >= 30
167) X1120- X1110 >= 30
168) - X1050 + X1090 >= 10
```



$\times 70$	14.000000	0.000000
$\times 80$	30.000000	0.000000
X90	27.000000	0.000000
X120	73.000000	0.000000
X130	88.000000	0.000000
X140	118.000000	0.000000
X141	130.000000	0.000000
X139	60.000000	0.000000
X360	170.000000	0.000000
$\times 370$	350.000000	0.000000
$\times 380$	380.000000	0.000000
X390	200.000000	0.000000
X400	380.000000	0.000000
X870	410.000000	0.000000
$\times 401$	395.000000	0.000000
X391	290.000000	0.000000
X150	35.000000	0.000000
X160	50.000000	0.000000
X170	55.000000	0.000000
X180	155.000000	0.000000
X880	425.000000	0.000000
$\times 890$	474.000000	0.000000
X190	45.000000	0.000000
X200	60.000000	0.000000
X210	65.000000	0.000000
X900	503.000000	0.000000
X220	45.000000	0.000000
$\times 230$	60.000000	0.000000
X240	350.000000	0.000000
X920	652.000000	0.000000
X250	45.000000	0.000000
$\times 260$	60.000000	0.000000
X270	65.000000	0.000000
X1140	731.000000	0.000000
X331	365.000000	0.000000
X280	45.000000	0.000000
X290	60.000000	0.000000
X300	65.000000	0.000000
$\times 310$	45.000000	0.000000
X320	60.000000	0.000000
X330	65.000000	0.000000
X770	314.000000	0.000000
X801	365.000000	0.000000
X340	185.000000	0.000000
X550	215.000000	0.000000
X580	365.000000	0.000000
X420	28.000000	0.000000
X430	52.000000	0.000000
X440	58.000000	0.000000
X460	38.000000	0.000000
$\times 450$	38.000000	0.000000
X500	91.000000	0.000000
X560	215.000000	0.000000
X470	59.000000	0.000000
X480	66.000000	0.000000
X490	126.000000	0.000000
X510	65.000000	0.000000
X530	205.000000	0.000000
X540	195.000000	0.000000
X520	95.000000	0.000000
$\times 570$	305.000000	0.000000


X850	395.000000	0.000000
X590	245.000000	0.000000
X600	335.000000	0.000000
$\times 610$	335.000000	0.000000
X620	275.000000	0.000000
X630	365.000000	0.000000
X640	365.000000	0.000000
X650	395.000000	0.000000
X660	305.000000	0.000000
$\times 670$	395.000000	0.000000
$\times 690$	425.000000	0.000000
X680	395.000000	0.000000
$\times 700$	440.000000	0.000000
$\times 740$	428.000000	0.000000
$\times 720$	335.000000	0.000000
$\times 730$	453.000000	0.000000
$\times 750$	458.000000	0.000000
$\times 760$	473.000000	0.000000
$\times 780$	365.000000	0.000000
X790	365.000000	0.000000
$\times 800$	358.000000	0.000000
X710	95.000000	0.000000
X721	365.000000	0.000000
X820	600.000000	0.000000
$\times 840$	605.000000	0.000000
$\times 910$	622.000000	0.000000
X 830	575.000000	0.000000
X940	395.000000	0.000000
X950	455.000000	0.000000
X960	445.000000	0.000000
$\times 970$	455.000000	0.000000
X980	506.000000	0.000000
X990	566.000000	0.000000
X1030	596.000000	0.000000
X1120	686.000000	0.000000
X1050	475.000000	0.000000
X1060	545.000000	0.000000
X1010	465.000000	0.000000
X1020	535.000000	0.000000
$\times 1070$	626.000000	0.000000
$\times 1110$	656.000000	0.000000
X1090	485.000000	0.000000
$\times 1100$	555.000000	0.000000
$\times 1119$	686.000000	0.000000
$\times 1130$	701.000000	0.000000
X1150	425.000000	0.000000
X1180	485.000000	0.000000
X1190	570.000000	0.000000
X1160	480.000000	0.000000
X1170	485.000000	0.000000
X1200	615.000000	0.000000
X1240	645.000000	0.000000
X1370	795.000000	0.000000
X1220	495.000000	0.000000
X1260	510.000000	0.000000
X1270	600.000000	0.000000
X1230	585.000000	0.000000
X1280	675.000000	0.000000
X1320	705.000000	0.000000
$\times 1300$	520.000000	0.000000
X1310	645.000000	0.000000


X 1360	735.000000	0.000000
X 1369	765.000000	0.000000
X 1340	530.000000	0.000000
X 1350	620.000000	0.000000
X 1380	810.000000	0.000000

ROW
$2)$

## SLACK OR SURPLUS

 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 38.000000 0.000000 0.000000 0.000000 0.000000 7.000000 0.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 28.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3.000000 15.000000 0.000000 0.000000 90.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 285.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 270.000000 0.000000 0.000000 0.000000DUAL PRICES
0.000000
0.000000
0.000000
0.000000
0.000000
$-1.000000$
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
$-1.000000$
$-1.000000$
$-1.000000$
$-1.000000$
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

55)	0.000000	0.000000
56)	270.000000	0.000000
57)	0.000000	0.000000
58)	0.000000	0.000000
59)	0.000000	0.000000
60)	16.000000	0.000000
61)	270.000000	0.000000
62)	145.000000	0.000000
63)	0.000000	0.000000
$64)$	0.000000	0.000000
65)	0.000000	0.000000
66)	0.000000	0.000000
67)	6.000000	0.000000
68)	0.000000	0.000000
69)	0.000000	0.000000
70)	0.000000	0.000000
71)	0.000000	0.000000
72)	0.000000	0.000000
73)	117.000000	0.000000
74)	0.000000	0.000000
75)	0.000000	0.000000
76)	119.000000	0.000000
77)	0.000000	0.000000
78)	89.000000	0.000000
79)	20.000000	0.000000
80)	0.000000	0.000000
81)	0.000000	0.000000
82)	10.000000	0.000000
83)	0.000000	0.000000
84)	20.000000	0.000000
85)	0.000000	0.000000
86)	30.000000	0.000000
87)	0.000000	-1.000000
88)	0.000000	0.000000
89)	85.000000	0.000000
90)	150.000000	0.000000
91)	60.000000	0.000000
92)	0.000000	0.000000
93)	0.000000	0.000000
94)	0.000000	-1.000000
95)	0.000000	0.000000
96)	55.000000	0.000000
97)	120.000000	0.000000
98)	0.000000	0.000000
99)	30.000000	0.000000
100)	0.000000	-1.000000
101)	0.000000	0.000000
102)	25.000000	0.000000
103)	90.000000	0.000000
104)	0.000000	0.000000
105)	0.000000	0.000000
106)	0.000000	0.000000
107)	0.000000	0.000000
108)	5.000000	0.000000
109)	0.000000	-1.000000
110)	0.000000	0.000000
111)	25.000000	0.000000
112)	90.000000	0.000000
113)	0.000000	0.000000
114)	0.000000	0.000000
115)	0.000000	0.000000


116)	4.000000	0.000000
117)	33.000000	0.000000
118)	0.000000	-1.000000
119)	28.000000	0.000000
120)	0.000000	0.000000
121)	93.000000	0.000000
122)	3.000000	0.000000
123)	0.000000	0.000000
124)	0.000000	0.000000
125)	0.000000	0.000000
126)	92.000000	0.000000
127)	0.000000	0.000000
128)	0.000000	0.000000
129)	16.000000	0.000000
130)	0.000000	0.000000
131)	0.000000	0.000000
132)	7.000000	0.000000
133)	0.000000	0.000000
134)	180.000000	0.000000
135)	0.000000	0.000000
136)	0.000000	-1.000000
137)	145.000000	0.000000
138)	0.000000	0.000000
139)	2.000000	0.000000
140)	0.000000	0.000000
141)	210.000000	0.000000
142)	0.000000	0.000000
143)	0.000000	0.000000
144)	0.000000	-1.000000
145)	30.000000	0.000000
146)	20.000000	0.000000
147)	0.000000	0.000000
148)	1.000000	0.000000
149)	31.000000	0.000000
150)	21.000000	0.000000
151)	0.000000	0.000000
152)	0.000000	0.000000
153)	60.000000	0.000000
154)	10.000000	0.000000
155)	0.000000	0.000000
156)	0.000000	0.000000
157)	9.000000	0.000000
158)	0.000000	0.000000
159)	0.000000	0.000000
160)	1.000000	0.000000
161)	0.000000	0.000000
162)	30.000000	0.000000
163)	0.000000	0.000000
164)	0.000000	0.000000
165)	21.000000	0.000000
166)	0.000000	0.000000
167)	0.000000	0.000000
168)	0.000000	0.000000
169)	0.000000	0.000000
170)	71.000000	0.000000
171)	0.000000	0.000000
172)	0.000000	0.000000
173)	0.000000	0.000000
174)	0.000000	-1.000000
175)	0.000000	-1.000000
176)	25.000000	0.000000


$177)$	25.000000	0.000000
$178)$	5.000000	0.000000
$179)$	60.000000	0.000000
$180)$	30.000000	0.000000
$181)$	0.000000	0.000000
$182)$	55.000000	0.000000
$183)$	0.000000	0.000000
$184)$	0.000000	0.000000
$185)$	120.000000	0.000000
$186)$	0.000000	-1.000000
$187)$	0.000000	0.000000
$188)$	0.000000	0.000000
$189)$	0.000000	-1.000000
$190)$	0.000000	-1.000000
$191)$	0.000000	-1.000000
1921	90.000000	0.000000
$193)$	5.000000	0.000000
$194)$	0.000000	0.000000
$195)$	15.000000	0.000000
$196)$	0.000000	-1.000000
$197)$	60.000000	0.000000
$198)$	0.000000	0.000000
$199)$	35.000000	0.000000
$200)$	0.000000	0.000000
$201)$	0.000000	-1.000000
2021	0.000000	0.000000
$203)$	0.000000	0.000000
$204)$	0.000000	0.000000
$205)$	55.000000	0.000000
$206)$	0.000000	-1.000000
$207)$	0.000000	-1.000000
$208)$	0.000000	-1.000000
$209)$	0.000000	0.000000
$210)$	30.000000	0.000000

NO. ITERATIONS= 186

## SENSITIVITY ANALYSIS

RANGES IN WHICH THE BASIS IS UNCHANGED:
RIGHTHAND SIDE RANGES

ROW	CURRENT   RHS
2	5.000000
3	30.000000
4	0.000000
5	30.000000
6	0.000000
7	30.000000
8	30.000000
9	0.000000
10	10.000000
11	14.000000
12	30.000000
13	15.000000
14	3.000000
15	30.000000
16	5.000000
17	15.000000
18	30.000000


ALLOWABLE	ALLOWABLE
INCREASE	DECREASE
7.000000	5.000000
8.000000	7.000000
8.000000	7.000000
0.000000	INFINITY
0.000000	INFINITY
INFINITY	0.000000
38.000000	INFINITY
38.000000	INFINITY
145.000000	10.000000
89.000000	14.000000
20.000000	30.000000
7.000000	INFINITY
7.000000	INFINITY
8.000000	INFINITY


19	12.000000	8.000000	INFINITY
20	30.000000	28.000000	60.000000
21	30.000000	28.000000	INFINITY
22	40.000000	8.000000	INFINITY
23	180.000000	15.000000	350.000000
24	30.000000	15.000000	380.000000
25	30.000000	8.000000	15.000000
26	180.000000	8.000000	15.000000
27	30.000000	8.000000	3.000000
28	12.000000	3.000000	INFINITY
29	0.000000	15.000000	INFINITY
30	15.000000	3.000000	INEINITY
31	90.000000	90.000000	290.000000
32	0.000000	90.000000	INFINITY
33	5.000000	INEINITY	8.000000
34	15.000000	INFINITY	8.000000
35	5.000000	INFINITY	8.000000
36	100.000000	INFINITY	8.000000
37	49.000000	5.000000	INEINITY
38	15.000000	180.000000	45.000000
39	15.000000	180.000000	60.000000
40	5.000000	180.000000	65.000000
41	29.000000	4.000000	INEINITY
42	15.000000	285.000000	45.000000
43	15.000000	285.000000	60.000000
44	5.000000	285.000000	INFINITY
45	149.000000	3.000000	INFINITY
46	30.000000	285.000000	INFINITY
47	15.000000	270.000000	45.000000
48	15.000000	270.000000	60.000000
49	5.000000	270.000000	65.000000
50	79.000000	2.000000	INFINITY
51	30.000000	270.000000	INFINITY
52	15.000000	270.000000	45.000000
53	15.000000	270.000000	60.000000
54	5.000000	270.000000	65.000000
55	109.000000	1.000000	9.000000
56	30.000000	270.000000	INFINITY
57	15.000000	270.000000	45.000000
58	15.000000	270.000000	60.000000
59	5.000000	270.000000	65.000000
60	35.000000	16.000000	INFINITY
61	30.000000	270.000000	INFINITY
62	30.000000	145.000000	INFINITY
63	30.000000	145.000000	INFINITY
64	0.000000	270.000000	INFINITY
65	14.000000	89.000000	28.000000
66	24.000000	6.000000	52.000000
67	0.000000	6.000000	INFINITY
68	30.000000	117.000000	6.000000
69	10.000000	0.000000	INFINITY
70	10.000000	89.000000	0.000000
71	0.000000	89.000000	0.000000
72	33.000000	117.000000	91.000000
73	7.000000	117.000000	INFINITY
74	21.000000	89.000000	59.000000
75	7.000000	89.000000	66.000000
76	30.000000	119.000000	INFINITY
77	60.000000	89.000000	126.000000
78	0.000000	89.000000	INFINITY
79	15.000000	20.000000	INFINITY


80	150.000000	20.000000	10.000000
81	140.000000	10.000000	205.000000
82	0.000000	10.000000	INFINITY
83	130.000000	20.000000	195.000000
84	0.000000	20.000000	INFINITY
85	30.000000	30.000000	95.000000
86	90.000000	30.000000	INFINITY
87	60.000000	INFINITY	8.000000
88	90.000000	85.000000	305.000000
89	5.000000	85.000000	INFINITY
90	30.000000	150.000000	INFINITY
91	90.000000	60.000000	INFINITY
92	30.000000	60.000000	INFINITY
93	0.000000	145.000000	85.000000
94	30.000000	INFINITY	8.000000
95	90.000000	55.000000	335.000000
96	5.000000	55.000000	INFINITY
97	30.000000	120.000000	INFINITY
98	90.000000	30.000000	335.000000
99	30.000000	30.000000	INFINITY
100	30.000000	INFINITY	8.000000
101	90.000000	25.000000	365.000000
102	5.000000	25.000000	INFINITY
103	30.000000	90.000000	INFINITY
104	90.000000	5.000000	8.000000
105	30.000000	5.000000	8.000000
106	0.000000	5.000000	8.000000
107	15.000000	5.000000	8.000000
108	10.000000	5.000000	INFINITY
109	30.000000	INFINITY	5.000000
110	90.000000	25.000000	395.000000
111	5.000000	25.000000	INEINITY
112	30.000000	90.000000	INFINITY
113	90.000000	4.000000	25.000000
114	30.000000	4.000000	25.000000
115	15.000000	4.000000	440.000000
116	30.000000	4.000000	INFINITY
117	180.000000	33.000000	INFINITY
118	30.000000	INFINITY	4.000000
119	90.000000	28.000000	INFINITY
120	5.000000	28.000000	INFINITY
121	30.000000	93.000000	INFINITY
122	90.000000	3.000000	INFINITY
123	30.000000	3.000000	INFINITY
124	15.000000	3.000000	INFINITY
125	30.000000	3.000000	INFINITY
126	7.000000	92.000000	INFINITY
127	51.000000	92.000000	7.000000
128	0.000000	92.000000	7.000000
129	35.000000	16.000000	INFINITY
130	0.000000	16.000000	INFINITY
131	44.000000	7.000000	358.000000
132	0.000000	7.000000	INFINITY
133	30.000000	180.000000	95.000000
134	90.000000	180.000000	INFINITY
135	0.000000	2.000000	92.000000
136	30.000000	INFINITY	3.000000
137	90.000000	145.000000	INFINITY
138	5.000000	145.000000	INFINITY
139	15.000000	2.000000	INFINITY
140	30.000000	2.000000	INEINITY


141	30.000000	210.000000	INFINITY
142	210.000000	2.000000	145.000000
143	30.000000	2.000000	145.000000
144	30.000000	INFINITY	2.000000
145	30.000000	30.000000	INFINITY
146	30.000000	20.000000	INFINITY
147	60.000000	1.000000	9.000000
148	50.000000	1.000000	INFINITY
149	30.000000	31.000000	INFINITY
150	30.000000	21.000000	INFINITY
151	60.000000	1.000000	9.000000
152	30.000000	1.000000	9.000000
153	30.000000	60.000000	INFINITY
154	0.000000	10.000000	INFINITY
155	0.000000	30.000000	21.000000
156	30.000000	20.000000	10.000000
157	30.000000	9.000000	INEINITY
158	10.000000	1.000000	9.000000
159	70.000000	1.000000	535.000000
160	60.000000	1.000000	INFINITY
161	30.000000	1.000000	9.000000
162	30.000000	30.000000	INFINITY
163	10.000000	10.000000	9.000000
164	70.000000	21.000000	9.000000
165	60.000000	21.000000	INFINITY
166	30.000000	1.000000	9.000000
167	30.000000	1.000000	0.000000
168	10.000000	71.000000	485.000000
169	70.000000	71.000000	555.000000
170	30.000000	71.000000	INFINITY
171	30.000000	0.000000	INFINITY
172	15.000000	1.000000	9.000000
173	30.000000	1.000000	9.000000
174	30.000000	9.000000	1.000000
175	60.000000	9.000000	1.000000
176	60.000000	25.000000	INFINITY
177	30.000000	25.000000	INFINITY
178	0.000000	5.000000	INFINITY
179	30.000000	60.000000	INFINITY
180	30.000000	30.000000	INFINITY
181	0.000000	30.000000	55.000000
182	30.000000	55.000000	INFINITY
183	45.000000	5.000000	5.000000
184	30.000000	5.000000	5.000000
185	30.000000	120.000000	INFINITY
186	10.000000	5.000000	1.000000
187	30.000000	25.000000	5.000000
188	30.000000	5.000000	5.000000
189	90.000000	5.000000	1.000000
190	60.000000	5.000000	1.000000
191	30.000000	9.000000	1.000000
192	30.000000	90.000000	INFINITY
193	10.000000	5.000000	INEINITY
194	90.000000	5.000000	5.000000
195	60.000000	15.000000	INEINITY
196	30.000000	9.000000	1.000000
197	30.000000	60.000000	INEINITY
198	10.000000	35.000000	520.000000
199	90.000000	35.000000	INFINITY
200	60.000000	35.000000	INFINITY
201	30.000000	9.000000	1.000000


202	30.000000	30.000000	765.000000
203	10.000000	55.000000	530.000000
204	90.000000	55.000000	620.000000
205	60.000000	55.000000	INFINITY
206	60.000000	9.000000	1.000000
207	15.000000	9.000000	1.000000
208	30.000000	9.000000	1.000000
209	0.000000	0.000000	INFINITY
210	0.000000	30.000000	INFINITY
LP OPTIMUM FOUND AT STEP	186		

## APPENDIX E

PARAMETRIC ANALYSIS RESULTS OF THE NONCRITICAL PATH
ACTIVITIES

		VAR OUT			PIVOT ROW	RHS   VAL	DOAL PRICE BEFORE PIVOT	OBJ VAL
CONSTRAINT	2							
						5.00000	0.	840.000
	SLK	13	SLK	3	13	12.0000	0.	840.000
	SLK	15	SLK	104	94	20.0000	0.	840.000
	SLK	108	SLK	7	106	25.0000	0.	840.000
						30.0000	-1.00000	845.000
CONSTRAINT	3							
						30.0000	0.	840.000
	SLK	13	SLK	7	33	43.0000	0.	840.000
						60.0000	-1.00000	857.000
CONSTRAINT	5							
						30.0000	0.	840.000
	SLK	5	SLK	7	5	30.0000	0.	840.000
						60.0000	-1.00000	870.000
CONSTRAINT	8							
						30.0000	0.	840.000
	SLK	8	SLK	3	8	60.0000	0.	840.000
	SLK	9	SLK	7	16	73.0000	0.	840.000
						100.000	-1.00000	867.000
CONSTRAINT	10							
						10.0000	0.	840.000
	SLK	62	SLK	7	62	155.000	0.	840.000
						200.000	-1.00000	885.000
CONSTRAINT	11							
						14.0000	0.	840.000
	SLK	11	SLK	7	11	103.000	$0$	840.000
						200.000	-1.00000	937.000
CONSTRAINT	12							
						30.0000	0.	840.000
	SLK	80	SLK	7	11	50.0000	0.	840.000
						60.0000	$-1.00000$	850.000
CONSTRAINT	13							
						15.0000	0.	840.000
	SLK	13	SLK	3	11	22.0000	0.	840.000
	SLK	26	SLK	104	11	30.0000	0.	840.000
	SLK	108	SLK	7	108	35.0000	0.	$840.000$
						50.000	-1.00000	855.000
CONSTRAINT	14							
						3.00000	0.	840.000
	SLK	13	SLK	3	108	10.0000	0.	840.000
	SLK	16	SLK	7	16	$23.0000$	0.	$840.000$
						30.0000	-1.00000	847.000
CONSTRAINT	15							
						30.0000	0.	840.000
	SLK	19	SLK	135	16	41.0000	0 .	840.000


	SLK	50	SLK	7	122	43.0000	0.	840.000
						60.0000	-1.00000	857.000
CONSTRAINT	16							
						5.00000	0.	840.000
	SLK	19	SLK	122	100	15.0000	0.	840.000
	SLK	45	SLK	7	122	18.0000	0.	840.000
						20.0000	-1.00000	842.000
CONSTRAINT	17							
						15.0000	0.	840.000
	SLK	19	SLK	7	100	28.0000	0.	840.000
						30.0000	-1.00000	842.000
CONSTRAINT	18							
						30.0000	0.	840.000
	SLK	26	SLK	135	100	41.0000	0.	840.000
	SLK	50	SLK	147	17	43.0000	0.	840.000
	SLK	55	SLK	7	21	43.0000	$0$	840.000
						$50.0000$	$-1.00000$	$847.000$
CONSTRAINT	19							
						12.0000	0.	840.000
	SLK	17	SLK	7	17	25.0000	0.	$840.000$
						$30.0000$	-1.00000	$845.000$
CONSTRAINT	20							
						30.0000	0.	840.000
	SLK	21	SLK	15	21	50.0000	0.	840.000
	SLK	19	SLK	113	100	59.0000	0.	840.000
	SLK	41	SLK	135	118	61.0000	0.	840.000
	SLK	50	SLK	7	135	63.0000	0.	840.000
						100.000	$-1.00000$	877.000
CONSTRAINT	21							
						30.0000	0.	840.000
	SLK	21	SLK	15	21	50.0000	0.	840.000
	SLK	25	SLK	7	135	63.0000	0.	840.000
						100.000	$-1.00000$	877.000
CONSTRAINT	22							
						30.0000	0.	840.000
	SLK	19	SLK	7	65	53.0000	0.	840.000
						60.0000	$-1.00000$	847.000
CONSTRAINT	23							
						180.000	0.	840.000
	SLK	23	SLK	25	29	195.000	0.	840.000
	SLK	19	SLK	113	100	204.000	0.	840.000
	SLK	41	SLK	122	41	205.000	0.	840.000
	SLK	45	SLK	147	23	207.000	0.	840.000
	SLK	55	SLK	7	164	$208.000$	$0$	$840.000$
						$240.000$	-1.00000	872.000
CONSTRAINT	24							
						30.0000	0.	840.000
	SLK	24	SLK	28	29	50.0000	0.	840.000
	SLK	30	SLK	104	108	53.0000	0.	840.000
	SLK	108	SLK	7	87	$58.0000$	0.	840.000
						60.0000	$-1.00000$	842.000
CONSTRAINT	25							
					87	30.0000 43.0000	0. 0.	840.000 840.000
	SLK	19	SLK	7	87	43.0000 50.0000	0.	847.000
CONSTRAINT	26							
						180.000	0.	840.000 840.000
	SLK	19	SLK	113	35	189.000	0.	840.000
	SLK	41	SLK	147	41	192.000	0.	840.000
	SLK	55	SLK	7	191	193.000	0.	840.000
						240.000	$-1.00000$	887.000



						300.000	-1.00000	845.000					
CONSTRAINT													
						30.0000	0.	840.000					
	SLK	122	SLK	135	73	150.000	0.	840.000					
	SLK	50	SLK	136	201	152.000	0.	840.000					
						200.000	-1.00000	888.000					
CONSTRAINT 46													
						30.0000	0.	840.000					
	SLK	42	SLK	122	22	317.000	0.	840.000					
	SLK	45	SLK	33	201	320.000	0.	840.000					
						330.000	-1.00000	850.000					
CONSTRAINT 47													
						15.0000	0.	840.000					
	SLK	51	SLK	147	5	289.000	0.	840.000					
	SLK	55	SLK	33	201	290.000	0.	840.000					
						300.000	$-1.00000$	850.000					
CONSTRAINT 48 ( ${ }^{\text {a }}$													
						15.0000	0.	840.000					
	SLK	51	SLK	147	51	289.000	0.	840.000					
	SLK	55	SLK	33	201	290.000	0.	840.000					
						300.000	-1.00000	850.000					
CONSTRAINT 49													
						5.00000	0.	840.000					
	SLK	51	SLK	147	51	279.000	0.	840.000					
	SLK	55	SLK	33	201	$280.000$	0.	$840.000$					
						$300.000$	-1.00000	$860.000$					
CONSTRAINT 50													
						79.0000	0.	840.000					
	SLK	50	SLK	144	201	81.0000	0.	840.000					
						100.000	$-1.00000$	859.000					
CONSTRAINT 51													
						30.0000	0.	840.000					
	SLK	51	SLK	147	51	304.000	0.	840.000					
	SLK	55	SLK	33	201	305.000	0.	840.000					
						310.000	-1.00000	845.000					
CONSTRAINT 52 ( 0 2000													
						15.0000	0.	840.000					
	SLK	56	SLK	147	56	289.000	0 .	840.000					
	SLK	55	SLK	33	201	290.000	0.	840.000					
						300.000	-1.00000	850.000					
CONSTRAINT 53													
						15.0000	0.	840.000					
	SLK	56	SLK	147		289.000	0.	840.000					
	SLK	55	SLK	33	201	290.000	0.	840.000					
						300.000	-1.00000	850.000					
CONSTRAINT 54 ( 8.00000													
						5.00000	0.	840.000					
	SLK	56	SLK	147	56	279.000	0.	840.000					
	SLK	55	SLK	33	201	280.000	0.	840.000					
						300.000	-1.00000	860.000					
CONSTRAINT 55													
						30.0000	0.	840.000					
	SLK	55	SLK	174	201	110.000	0.	840.000					
						150.000	-1.00000	880.000					
CONSTRAINT 56													
						30.0000	0.	840.000					
	SLK	56	SLK	147	56	304.000	0.	840.000					
	SLK	55	SLK	33	201	305.000	0.	$840.000$					
						310.000	$-1.00000$	845.000					
CONSTRAINT 57 15.0000 840.000													


	SLK	61	SLK	147	61	289.000	0.	840.000
	SLK	55	SLK	33	201	290.000	0.	840.000
						320.000	-1.00000	870.000
CONSTRAINT	58							
						15.0000	0.	840.000
	SLK	61	SLK	147	61	289.000	0.	840.000
	SLK	55	SLK	33	201	290.000	0.	840.000
						320.000	-1.00000	870.000
CONSTRAINT	59							
						5.00000	0.	840.000
	SLK	61	SLK	147	61	279.000	0.	840.000
	SLK	55	SLK	33	201	280.000	0.	840.000
						310.000	-1.00000	870.000
CONBSTRAINT								
						30.0000	0.	840.000
	SLK	60	SLK	127	127	51.0000	0.	840.000
	SLK	126	SLK	147	126	144.000	0.	840.000
	SLK	55	SLK	94	201	145.000	0.	840.000
						150.000	-1.00000	845.000
CONSTRAINT	61							
						30.0000	0.	840.000
	SLK	61	SLK	147	61	304.000	0.	840.000
	SLK	55	SLK	33	201	305.000	0.	840.000
						310.000	-1.00000	845.000
CONSTRAINT	62							
						30.0000	0.	840.000
	SLK	10	SLK	7	45	175.000	0.	840.000
						180.000	-1.00000	845.000
CONSTRAINT	63							
						30.0000	0.	840.000
	SLK	93	SLK	7	32	175.000	0.	840.000
						180.000	-1.00000	845.000
CONSTRAINT	65							
						14.0000	0.	840.000
	SLK	11	SLK	7	11	103.000	0.	840.000
						110.000	-1.00000	847.000
CONSTRAINT	66							
						24.0000	0.	840.000
	SLK	66	SLK	7	67	147.000	0.	840.000
						150.000	-1.00000	843.000
CONSTRAINT	68							
						30.0000	0.	840.000
	SLK	68	SLK	7	68	147.000	0.	840.000
						150.000	-1.00000	843.000
CONSTRAINT	69							
						10.0000	0.	840.000
	SLK	69	SLK	70	69	10.0000	0.	840.000
	SLK	11	SLK	7	11	99.0000	0.	840.000
						200.000	-1.00000	941.000
CONSTRAINT	70							
						10.0000	0.	840.000
	SLK	65	SLK	7	68	99.0000	0.	840.000
						100.000	-1.00000	841.000
CONSTRAINT	72							
						33.0000	0.	840.000
	SLK	68	SLK	70	79	61.0000	0.	840.000
	SLK	11	SLK	7	43	150.000	0.	840.000
						160.000	-1.00000	850.000
CONSTRAINT	73							
						7.00000	0.	840.000
	SLK	68	SLK	7	68	124.000	0.	840.000



	SLK	107	SLK	94	107	155.000	0.	840.000
						160.000	-1.00000	845.000
CONSTRAINT	92							
						30.0000	0.	840.000
	SLK	91	SLK	104	91	90.0000	0.	840.000
	SLK	108	SLK	94	32	95.0000	0.	840.000
						100.000	-1.00000	845.000
CONSTRAINT	95							
						90.0000	0.	840.000
	SLK	95	SLK	100	95	150.000	0.	840.000
						160.000	-1.00000	850.000
CONSTRAINT	96							
						5.00000	0.	840.000
	SLK	95	SLK	100	95	65.0000	0.	840.000
						70.0000	-1.00000	845.000
CONSTRAINT	97							
						30.0000	0.	840.000
	SLK	97	SLK	100	97	155.000	$0 .$	840.000
						$180.000$	-1.00000	$865.000$
CONSTRAINT	98							
						90.0000	0.	840.000
	SLK	98	SLK	100	109	125.000	$0 .$	$840.000$
						$150.000$	$-1.00000$	$865.000$
CONSTRAINT	99							
						30.0000	0.	840.000
	SLK	99	SLK	100	132	65.0000	0.	$840.000$
						80.0000	-1.00000	$855.000$
CONSTRAINT	101							
						90.0000	0.	840.000
	SLK	101	SLK	109	108	120.000	0.	$840.000$
						130.000	$-1.00000$	$850.000$
CONSTRAINT	102							
						5.00000	0.	840.000
	SLK	102	SLK	104	29	30.0000	0.	840.000
	SLK	108	SLK	109	108	$35.0000$	$0 .$	$840.000$
						50.0000	-1.00000	855.000
CONSTRAINT	103							
						30.0000	0.	840.000
	SLK	103	SLK	104	103	121.000	0.	840.000
	SLK	210	SLK	109	108	125.000	0.	840.000
						150.000	-1.00000	865.000
CONSTRAINT	104							
						90.0000	0.	840.000
	SLK	108	SLK	109	108			
						$100.000$	-1.00000	$845.000$
CONSTRAINT	105							
						30.0000	0.	840.000
	SLK	108	SLK	109	108	35.0000	0.	840.000
						50.0000	-1.00000	855.000
CONSTRAINT	107							
						15.0000	0.	840.000
	SLK	108	SLK	109	108	$20.0000$	0.	$840.000$
						50.0000	-1.00000	870.000
CONSTRAINT	108							
						10.0000	0.	840.000
	SLK	108	SLK	109	108	15.0000	0.	840.000
						30.0000	-1.00000	855.000
CONSTRAINT	110							
						90.0000	0.	840.000
	SLK	110	SLK	118	142	119.000	0.	840.000
						120.000	-1.00000	841.000


CONSTRAINT 111								
						5.00000	0.	840.000
	SLK	110	SLK	118	142	34.0000	0.	840.000
						40.0000	-1.00000	846.000
CONSTRAINT	112 ( 12							
						30.0000	0.	840.000
	SLK	112	SLK	118	112	124.000	0.	840.000
						150.000	-1.00000	866.000
CONSTRAINT 113								
						90.0000	0.	840.000
	SLK	113	SLK	118	119	94.0000	0.	840.000
						100.000	-1.00000	846.000
CONSTRAINT 114								
						30.0000	0.	840.000
	SLK	115	SLK	135	32	32.0000	0.	840.000
	SLK	50	SLK	118	166	34.0000	0.	840.000
						50.0000	-1.00000	856.000
CONSTRAINT 115								
						15.0000	0.	840.000
	SLK	115	SLK	135	166	17.0000	0.	840.000
	SLK	50	SLK	118	32	19.0000	0.	840.000
						30.0000	-1.00000	851.000
CONSTRAINT 116								
						30.0000	0.	840.000
	SLK	115	SLK	135	32	32.0000	0.	840.000
	SLK	50	SLK	118	166	34.0000	0.	840.000
						50.0000	-1.00000	856.000
CONSTRAINT 117								
						180.000	0.	840.000
	SLK	117	SLK	135	174	211.000	0.	840.000
	SLK	50	SLK	94	132	213.000	0.	840.000
						220.000	-1.00000	847.000
CONSTRAINT 119								
						90.0000	0.	840.000
	SLK	119	SLK	122	119	115.000	0 .	840.000
	SLK	125	SLK	147	159	117.000	0.	840.000
	SLK	213	SLK	136	154	118.000	0.	840.000
						120.000	-1.00000	842.000
CONSTRAINT 120								
						5.00000	0.	840.000
	SLK	119	SLK	122	119	30.0000	0.	840.000
	SLK	125	SLK	147	159	32.0000	0.	840.000
	SLK	55	SLK	136	154	33.0000	0.	840.000
						50.0000	-1.00000	857.000
CONSTRAINT 121								
						30.0000	0.	840.000
	SLK	121	SLK	122	121	120.000	0.	840.000
	SLK	125	SLK	147	159	122.000	0.	840.000
	SLK	55	SLK	136	154	123.000	0.	840.000
						130.000	-1.00000	847.000
CONSTRAINT 122								
						90.0000	0.	840.000
	SLK	125	SLK	147	154	92.0000	0.	840.000
	SLK	55	SLK	136	159	93.0000	0.	840.000
						100.000	-1.00000	847.000
CONSTRAINT 123								
						30.0000	0.	840.000
	SLK	125	SLK	147	154	32.0000	0.	840.000
	SLK	55	SLK	136	159	33.0000	0.	840.000
						40.0000	-1.00000	847.000
CONSTRAINT 124								


						15.0000	0.	840.000
	SLK	125	SLK	147	154	17.0000	0.	840.000
	SLK	55	SLK	136	159	18.0000	0.	840.000
						20.0000	-1.00000	842.000
CONSTRAINT	125							
						30.0000	0.	840.000
	SLK	125	SLK	147	159	32.0000	0.	840.000
	SLK	55	SLK	136	154	33.0000	0.	840.000
						40.0000	-1.00000	847.000
CONSTRAINT	126							
						7.00000	0.	840.000
	SLK	126	SLK	147	126	100.000	0.	840.000
	SLK	55	SLK	94	159	101.000	0.	840.000
						150.000	-1.00000	889.000
CONSTRAINT	127							
						51.0000	0.	840.000
	SLK	127	SLK	147	126	144.000	0.	840.000
	SLK	55	SLK	94	32	145.000	0.	840.000
						$150.000$	-1.00000	845.000
CONSTRAINT	129							
						35.0000	0.	840.000
	SLK	129	SLK	127	129	51.0000	0.	840.000
	SLK	126	SLK	94	126	145.000	0.	840.000
						150.000	-1.00000	845.000
CONSTRAINT	131							
						44.0000	0.	840.000
	SLK	132	SLK	135	132	143.000	0.	840.000
	SLK	142	SLK	94	174	143.000	0.	840.000
						150.000	-1.00000	845.000
CONSTRAINT	133							
						30.0000	0.	840.000
	SLK	40	SLK	135	40	210.000	0.	840.000
	SLK	139	SLK	33	166	212.000	$0 .$	$840.000$
						220.000	-1.00000	$848.000$
CONSTRAINT	134							
						90.0000	0.	840.000
	SLK	40	SLK	135	40	270.000	0.	840.000
	SLK	143	SLK	147	166	271.000	0.	840.000
	SLK	55	SLK	33	79	272.000	0.	840.000
						300.000	-1.00000	868.000
CONSTRAINT	137							
						90.0000	0.	840.000
	SLK	137	SLK	135	137	235.000	0.	840.000
	SLK	139	SLK	144	189	237.000	0.	840.000
						250.000	$-1.00000$	853.000
CONSTRAINT	138							
						5.00000	0.	840.000
	SLK	138	SLK	144	126	152.000	0.	840.000
						160.000	-1.00000	848.000
CONSTRAINT	139							
						15.0000	0.	840.000
	SLK	135	SLK	144	137	$17.0000$	$0$	$840.000$
						50.0000	-1.00000	873.000
CONSTRAINT	140							
						30.0000	0.	840.000
	SLK	143	SLK	147	156	31.0000	0.	840.000
	SLK	55	SLK	144	166	32.0000	0.	$840.000$
						60.0000	-1.00000	868.000
CONSTRAINT	141							
						30.0000	0.	840.000
	SLK	141	SLK	144	141	242.000	0 .	840.000


CONSTRAINT	142					250.000	-1.00000	848.000
						210.000	0.	840.000
	SLK	135	SLK	144	166	212.000	0.	840.000
						250.000	-1.00000	878.000
CONSTAINT 143								
						30.0000	0.	840.000
	SLK	135	SLK	144	166	32.0000	0.	840.000
						50.0000	-1.00000	858.000
CONSTRAINT 145								
						30.0000	0.	840.000
	SLK	145	SLK	174	145	61.0000	0.	840.000
						70.0000	-1.00000	849.000
CONSTRAINT 146								
						30.0000	0.	840.000
	SLK	146	SLK	174	146	61.0000	0.	840.000
						70.0000	-1.00000	849.000
CONSTRAINT 147								
						60.0000	0.	840.000
	SLK	147	SLK	174	156	61.0000	0.	840.000
						70.0000	-1.00000	849.000
CONSTRAINT 148								
						50.0000	0.	840.000
	SLK	148	SLK	158	148	50.0000	0.	840.000
	SLK	173	SLK	174	156	51.0000	0.	840.000
	SLK	163	SLK	156	163	51.0000	0.	840.000
						100.000	-1.00000	889.000
CONSTRAINT 149								
						30.0000	0.	840.000
	SLK	149	SLK	156	149	50.0000	0.	840.000
	SLK	146	SLK	147	146	80.0000	0.	840.000
	SLK	171	SLK	174	171	81.0000	0.	840.000
						100.000	-1.00000	859.000
CONSTRAINT 150								
						30.0000	0.	840.000
	SLK	150	SLK	155	148	50.0000	0.	840.000
	SLK	145	SLK	147	145	80.0000	0.	840.000
	SLK	171	SLK	174	171	81.0000	0.	840.000
						100.000	-1.00000	859.000
CONSTRAINT 151								
						60.0000	0.	840.000
	SLK	148	SLK	158	148	60.0000	0.	840.000
	SLK	173	SLK	174	156	61.0000	0.	840.000
	SLK	163	SLK	156	163	70.0000	$-1.00000$	849.000
CONSTRAINT 152								
						30.0000	0.	840.000
	SLK	148	SLK	158	148	30.0000	0.	840.000
	SLK	173	SLK	174	156	31.0000	0.	840.000
	SLK	163	SLK	156	163	40.0000	-1.00000	849.000
CONSTRAINT 153								
						30.0000	0.	840.000
	SLK	153	SLK	174	153	91.0000	0.	840.000
						100.000	-1.00000	849.000
CONSTRAINT 156								
						30.0000	0.	840.000
	SLK	165	SLK	154	165	40.0000	0.	849.000
	SLK	146	SLK	147	146	70.0000	0.	840.000
	SLK	173	SLK	174	156	71.0000	-1.00000	849.000
						100.000	-1.00000	869.000
CONSTRAINT 157								
						30.0000	0.	840.000


	SLK	157	SLK	151	157	60.0000	0.	840.000
	SLK	148	SLK	158	148	60.0000	-1.00000	849.000
	SLK	171	SLK	174	174	61.0000	-1.00000	849.000
						100.000	-1.00000	869.000
CONSTRAINT	158							
						10.0000	0.	840.000
	SLK	171	SLK	174	171	11.0000	0.	840.000
						50.0000	-1.00000	879.000
CONSTRAINT	159							
						70.0000	0.	840.000
	SLK	171	SLK	174	171	71.0000	0.	840.000
						90.0000	-1.00000	859.000
CONSTRAINT	160							
						60.0000	0.	840.000
	SLK	171	SLK	174	171	61.0000	0.	840.000
						80.0000	-1.00000	859.000
CONSTRAINT	161							
						30.0000	0.	840.000
	SLK	173	SLK	174	156	31.0000	0.	840.000
						50.0000	-1.00000	859.000
CONSTRAINT	162							
						30.0000	0.	840.000
	SLK	162	SLK	166	162	60.0000	0.	840.000
	SLK	173	SLK	174	156	61.0000	$0$	840.000
						$100.000$	$-1.00000$	$879.000$
CONSTRAINT	163							
						10.0000	0.	840.000
	SLK	163	SLK	156	163	20.0000	0.	840.000
	SLK	165	SLK	159	165	30.0000	0.	840.000
	SLK	173	SLK	174	156	31.0000	-1.00000	849.000
						50.0000	-1.00000	859.000
CONSTRAINT	164							
						70.0000	0.	840.000
	SLK	156	SLK	154	154	80.0000	0.	840.000
	SLK	163	SLK	159	163	90.0000	0.	840.000
	SLK	173	SLK	174	165	91.0000	0.	840.000
						100.000	-1.00000	849.000
CONSTRAINT	165							
						60.0000	0.	840.000
	SLK	156	SLK	154	154	71.0000	0.	840.000
	SLK	163	SLK	174	156	81.0000	0.	840.000
	SLK	157	SLK	151	157	90.0000	-1.00000	859.000
CONSTRAINT	166							
						30.0000	0.	840.000
	SLK	159	SLK	174	163	31.0000	0.	840.000
						50.0000	$-1.00000$	859.000
CONSTRAINT	167							
						30.0000	0.	840.000
	SLK	173	SLK	174	156	31.0000	0.	$840.000$
						50.0000	-1.00000	859.000
CONSTRAINT 1	168							
						10.0000	0.	840.000
	SLK	168	SLK	164	165	60.0000	0.	840.000
	SLK	156	SLK	154	154	71.0000	0.	840.000
	SLK	163	SLK	174	156	80.0000	0.	840.000
						100.000	-1.00000	859.000
CONSTRAINT 1	169							
						70.0000	0.	840.000
	SLK	168	SLK	164	165	120.000	0.	840.000
	SLK	156	SLK	154	154	131.000	0.	840.000
	SLK	163	SLK	174	156	141.000	0.	840.000


						150.000	-1.00000	849.000
CONSTRAINT	170							
						30.0000	0.	840.000
	SLK	168	SLK	164	165	80.0000	0.	840.000
	SLK	156	SLK	154	154	91.0000	0.	840.000
	SLK	163	SLK	174	156	101.000	0.	840.000
						150.000	-1.00000	889.000
CONSTRAINT	171							
						30.0000	0.	840.000
	SLK	173	SLK	174	156	31.0000	0.	840.000
						50.0000	-1.00000	859.000
CONSTRAINT	172							
						15.0000	0.	840.000
	SLK	173	SLK	174	156	16.0000	0.	840.000
						50.0000	-1.00000	874.000
CONSTRAINT	173							
						30.0000	0.	840.000
	SLK	173	SLK	174	156	31.0000	0.	840.000
						50.0000	$-1.00000$	859.000
CONSTRAINT	176							
						60.0000	0.	840.000
	SLK	176	SLK	186	191	85.0000	0.	840.000
						100.000	-1.00000	855.000
CONSTRAINT	177							
						30.0000	0.	840.000
	SLK	178	SLK	175	208	60.0000	0.	840.000
						70.0000	-1.00000	850.000
CONSTRAINT	179							
						30.0000	0.	840.000
	SLK	177	SLK	175	179	115.000	0.	840.000
						150.000	-1.00000	875.000
CONSTRAINT	180							
						30.0000	0.	840.000
	SLK	180	SLK	175	180	60.0000	0.	$840.000$
						100.000	-1.00000	$880.000$
CONSTRAINT 182								
						30.0000	0.	840.000
	SLK	182	SLK		184	85.0000	0.	840.000
	SLK	180	SLK	175	180	115.000	0.	840.000
						150.000	-1.00000	875.000
CONSTRAINT 183								
						45.0000	0.	840.000
	SLK	184	SLK	186	154	70.0000	0.	840.000
						100.000	-1.00000	870.000
CONSTRAINT 184								
						30.0000	0.	840.000
	SLK	176	SLK	186	156	55.0000	0.	840.000
						70.0000	-1.00000	855.000
CONSTRAINT 185								
						30.0000	0.	840.000
	SLK	185	SLK	191	185	150.000	0.	840.000
						200.000	-1.00000	890.000
CONSTRAINT 187								
						30.0000	0.	840.000
	SLK	187	SLK	175	196	$70.0000$	$0$	$840.000$
						100.000	$-1.00000$	870.000
CONSTRAINT 188								
						30.0000	0.	840.000
	SLK	188	SLK	183	195	35.0000	0.	840.000
	SLK	176	SLK	187	154	60.0000	0.	840.000
	SLK	195	SLK	186	208	70.0000	0.	840.000


						100.000	-1.00000	870.000
CONSTRAINT	192							
						30.0000	0.	840.000
	SLK	192	SLK	196	192	120.000	0.	840.000
						150.000	-1.00000	870.000
CONSTRAINT	193							
						10.0000	0.	840.000
	SLK	193	SLK	189	200	30.0000	0.	840.000
						50.0000	-1.00000	$860.000$
CONSTRAINT	194							
						90.0000	0.	840.000
	SLK	195	SLK	189	200	110.000	$0 .$	840.000
						150.000	$-1.00000$	$880.000$
CONSTRAINT	195							
						60.0000	0 .	840.000
	SLK	195	SLK	189	56	80.0000	$0$	840.000
						100.000	$-1.00000$	$860.000$
CONSTRAINT	197							
						30.0000	0.	840.000
	SLK	195	SLK	201	197	90.0000	0.	840.000
						100.000	-1.00000	850.000
CONSTRAINT	198							
						10.0000	0.	840.000
	SLK	198	SLK	189	199	50.0000	$0$	840.000
						$100.000$	-1.00000	$890.000$
CONSTRAINT	199							
						90.0000	0.	840.000
	SLK	198	SLK	189	199	$130.000$	$0$	$840.000$
						$150.000$	-1.00000	$860.000$
CONSTRAINT	200							
						60.0000	0.	840.000
	SLK	198	SLK	189	199	100.000	0.	840.000
						150.000	-1.00000	890.000
CONSTRAINT	202							
						30.0000	0.	840.000
	SLK	210	SLK	206	210	60.0000	0.	840.000
						100.000	-1.00000	880.000
CONSTRAINT	203							
						10.0000	0.	840.000
	SLK	203	SLK	199	203	30.0000	0.	840.000
	SLK	198	SLK	189	199	70.0000	0.	840.000
						100.000	-1.00000	870.000
CONSTRAINT	204							
						90.0000	0.	840.000
	SLK	204	SLK	189	199	150.000	0.	840.000
						200.000	-1.00000	890.000
CONSTRAINT	205							
						60.0000	0.	840.000
	SLK	204	SLK	189	199	$120.000$	0.	840.000
						150.000	$-1.00000$	870.000

The author, Elif Emirli, was born on 22 August, 1969 in Samsun. After graduating from Samsun Anadolu Lisesi in 1987, she had a BSc. degree in Electrical and Electronics Engineering Department of Middle East Technical University. She worked as a project engineer in ASELSAN Military Electronics Inc. during her MBA study in Bilkent University.

