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Abstract 

Most of the electromagnetic problems can be reduced down to either inte- 
grating oscillatory integrals or summing up complex series. However, limits of 
the integrals and the series usually extend to infinity. In addition, they may 
be slowly convergent. Therefore, numerically efficient techniques for evaluating 
the integrals or for calculating the sum of infinite series have to be used to 
make the numerical solution feasible and attractive. In the literature, there 
are a wide range of applications of such methods to various EM problems. In 
this paper, our main aim is to critically examine the popular series transfor- 
mation (acceleration) methods which are used in electromagnetic problems and 
compare them by numerical examples. 

I. Introduction Numerical techniques used in the solution of electromagnetic 
problems require, in general, either evaluating oscillatory integrals over infinite do- 
main or calculating the sums of infinite complex series. For example, the Method 
of Moments (MOM) in the spectral domain for two-dimensional geometry requires 
double-infinite integration of complex highly oscillatory functions; the MOM in the 
spatial domain employs the spatial domain Green’s functions which are defined as 
the Hankel transform of the spectral domain Green’s function; in the analysis of 
a periodic structure one needs to employ periodic Green’s function which are dou- 
ble infinite summations; or in the analysis of a microstrip patch antenna via cavity 
model, the input impedance or field distribution are written in terms of a infinite 
sum of modes in the cavity. If these summations and integrals given in the ex- 
amples above are evaluated by brute force as they appear in the problems, the 
corresponding methods could be computationally very inefficient rendering these 
problems impractical. To overcome this computational burden, special acceleration 
techniques, also called transformation techniques, for both integrals and summa- 
tions have been proposed and successfully employed. Since these techniques have 
been studied for specific problems and compared to only few other techniques, the 
potentials of these techniques with their advantages and disadvantages have not 
been examined entirely for electromagnetic problems. 

11. The Transformation Methods The principle of a series acceleration method 
is to transform the original slowly convergent or asymptotic sequence, by using a 
linear or non-linear mapping, to a new sequence which is assumed to have faster 
convergence than the original one. The acceleration methods used in this processes 
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can be divided into two main groups: the general methods and the specific meth- 
ods. A general transformation method can be applied to  any sequence which can be 
obtained from an infinite series or an infinite oscillatory integral. Examples of such 
methods are Euler Transformation, Shanks’ Transformation, Wynn’s &-algorithm, 
Chebyshev- Toeplitz Algorithm and @-algorithm. On the other hand, specific meth- 
ods axe derived by making analytical work on the kernel of a series or an integration. 
Therefore, they can be applied only on their own types but they usually work better 
than the general methods. Method of averages, Poisson Transformution, Ewald’s 
Transformation, Method of Expnentials and Kummer’s Transformation are the ex- 
amples. The transformation methods can be summarized as follows: 
2.1 Euler’s Transformation: Euler’s transformation is a transformation method 
which can only be used for alternating series [l]. In Euler’s transformation some of 
the previous terms are added directly to  improve the accuracy. 
2.2 Shanks’ Transformation: The idea behind the Shanks’ transformation is that 
the partial sums of a sequence can be treated as a mathematical transient, and it 
gives an approximation to  the base of the transient which is the result of the infinite 
summation [2]. Wynn’s &-algorithm is an alternate way to  evaluate the Shanks’ 
transformation [3]. 
2.3 Method of Averages: This technique is especially suitable in evaluating the inte- 
grals which have a special form [4]. This method can also be used in the integration 
of suitable Bessel functions whose asymptotic forms can be expressed as a sinusoidal 
function. 
2.4 The @-algorithm: The @-algorithm was derived from the Wynn’s &-algorithm 

2.5 The Chebyshev-Toeplitz Algorithm: The Chebyshev-Toepliiz algorithm uses 
Toeplitz arrays to  accelerate a series [5]. 
2.6 The Poisson Transformation: The main idea behind the Poisson transformation 
is the reciprocal spreading property of the Fourier transformation. That is, if a 
function has a narrower support in one domain, then it would have a wider support 
in the other domain and vice versa. 
2.7 Ewald’s Transformation: This is a very powerful transformation method utiliz- 
ing the complementary error function [6]. It is especially useful for double infinite 
summations. 
2.8 Kummer’s transformation: Kummer’s transformation is based on extracting the 
asymptotic behavior of slowly converging series. When the asymptotic form is ex- 
tracted, the series converges faster. 
2.9 Method of Expnentials: This method is primarily used in evaluating the inte- 
grals which results from the Green’s function evaluation of the planarly stratified 
media [7]. Although the numerical integration is possible utilizing the appropriate 
acceleration techniques discussed so far, the end result will be independent of r which 
means that for each different T one need to re-integrate the function. Therefore, it 
will be better if we can take the integral analytically approximating the spectral 
domain Green’s function by complex exponentials. Then, the resultant integral can 
be evaluated using the Sommerfeld identity. The method is based on approximating 
a decaying function by complex exponentials by the GPOF method [7]. 

111. Results and Discussion In this section, some numerical examples on the 
transformations are going to  be given. For all kind of transformations, relative error 
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is defined in the following form 

3 - S  
ET = 

where S and 3 are the exact (or calculated up to  sufficient precision) and approxi- 
mated results respectively. 
3.1 Integration of Bessel Functions: Here, acceleration of the integration of Bessel 
functions will be investigated. Now, consider the following integral [4] 

lm z J l ( z ) d z  = 1 (2) 

The oscillatory integral is transformed into a sequence by considering each cycle, 
then the series transformation methods are used to  find the result. Results are given 
in Figure 4. Here, the weighted averages seems the best transformation for this kind 
of integral. However, the weighted averages has the disadvantage that it needs the 
asymptotic behavior of the integrand to determine the optimum weights. 
3.2 Free-Space Periodic Green’s Functions: In this part, acceleration of the infinite 
summations appear in free-space Greens’ functions are going to  be investigated. At 
first, one-dimensional case will be demonstrated. Consider the following Green’s 

This equation appears in Green’s function evaluation of one-dimensional line sources 
spaced d and located at (z’,y‘). The series in (3) converges rapidly when y # y‘. 
Figures 1 and 2 show the results. 

Next, the free-space periodic Green’s function for the two-dimensional case will be 
demonstrated for this part. 

This equation appears in the Green’s function evaluation of two dimensional periodic 
structures [8]. Results are given in Figure 3. In the plots, the numbers near the 
graphics are the relative errors at the given convergence rate. 

As a conclusion, the Euler transformation has a limitation that it needs steadily 
alternating sequences. For that reason, its application areas are limited. Even 
in the applicable cases, other transformation methods may work better than the 
Euler transformation. The &-algorithm is advised instead of direct application of 
higher order Shanks’ transformations. The &algorithm, &-algorithm and Chebyshev- 
Toeplitz transformation work satisfactorily on most of the examples. For doubly 
infinite sums, the Ewald’s transformation seems the best one. 
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Figure 1: Relative errors for the sum- 
mation in (3). 
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Figure 3: Relative errors and conver- 
gence times for the summation in (4). 
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Figure 2: Relative errors for the sum- 
mationjn (3). 
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Figure 4: Relative errors for the inte- 
gral in (2). 
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