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Abstract
O B JE C T -B A SE D  3-D  M O T IO N  A N D  STR U C TU R E ANALYSIS  

FO R  V ID E O  CO D IN G  APPLICATIO N S

A. Aydın Alatan
Ph. D. in Electrical and Electronics Engineering

Supervisor:
Prof. Levent Oniiral 

24 February 1997

Novel 3-D motion analysis tools, which can be used in object-based video codecs, are proposed. 
In these tools, the movements of the objects, which are observed through 2-D video frames, are 
modeled in 3-D space. Segmentation of 2-D frames into objects and 2-D dense motion vectors 
for each object are necessary as inputs for the proposed 3-D analysis. 2-D motion-based object 
segmentation is obtained by Gibbs formulation; the initialization is achieved by using a fast 
graph-theory based region segmentation algorithm which is further improved to utilize the 
motion information. Moreover, the same Gibbs formulation gives the needed dense 2-D motion 
vector field. The formulations for the 3-D motion models are given for both rigid and non- 
rigid moving objects. Deformable motion is modeled by a Markov random field which permits 
elastic relations between neighbors, whereas, rigid 3-D motion parameters are estimated using 
the E-matrix method. Some improvements on the E-matrix method are proposed to make 
this algorithm more robust to gross errors like the consequence of incorrect segmentation of 
2-D correspondences between frames. Two algorithms are proposed to obtain dense depth 
estimates, which are robust to input errors and suitable for encoding, respectively. While the 
former of these two algorithms gives simply a MAP estimate, the latter uses rate-distortion 
theory. Finally, 3-D motion models are further utilized for occlusion detection and motion 
compensated temporal interpolation, and it is observed that for both applications 3-D motion 
models have superiority over their 2-D counterparts. Simulation results on artificial and real 
data show the advantages of the 3-D motion models in object-based video coding algorithms.

Keywords: Very low bit-rate video compression, object-based coding, 3-D motion
estimation, 3-D structure estimation, Markov random fields, segmentation, 
2-D motion estimation, MAP estimation, rate distortion theory, temporal 

interpolation, occlusion detection.



özet
V ID E O  K O D L A M A  U Y G U L A M L A R I İÇİN N E SN E YE  DAYALI ÜÇ  

B O Y U T L U  H A R E K E T  V E  DERİNLİK AN ALİZİ

A . Aydın Alatan
Elektrik ve Elektronik Mühendisliği Doktora

Tez Yöneticisi:
Prof. Levent Onural 

28 Ocak 1997

Nesneye dayalı kodlama uygulamaları için 2-B görüntü kareleri ile izlenen nesnelerin yer 
değiştirmeleri 3-B uzayda modellenmektedir. Önerilen 3-B hareket analizi için 2-B hareket 
vektörlerinin kestirimi ile birlikte imge karelerinin nesnelere bölütlenmesi de gereklidir. 
Bölütleme için Gibbs formülasyonu kullanılmaktadır. Çizge kuramına dayalı bir bölütleme 
metodunun hareket bilgisi kullanabilecek biçimde geliştirilmiş bir uyarlaması ise Gibbs 
formülasyonu kullanan metoda ön kestirimleri sağlamaktadır. Ayrıca Gibbs formülasyonu 
3-B hareket kestirimi için kullanılan 2-B hareket vektörlerinin elde edilmesine de olanak 
tanımaktadır. 3-B hareket modeli formülasyonu ise hem katı hem de katı olmayan nesneler 
için ayrı ayrı yapılmıştır. Biçim değiştirebilir nesneler için modelleme komşuluklar arasında 
esnek ilişkilere izin veren Markov rasgele alanları yardımıyla yapıhrken, katı 3-B hareket E- 
matrisi yöntemi kullanarak bulunmaktadır. E-matrisi metodu, yanlış bölütlemenin sebep 
olduğu nesneye ait olmayan hareket vektörlerine bağh hatalara karşı gürbüzleştirilmiştir. 
Derinlik kestirimi için iki ayrı metod önerilmiştir. Bu metodlarda derinlik alanlarının gürültüye 
dayanıkh ve verimli kodlanmaya elverişli kestirimi sırasıyla MAP ve hız bozulma kuramı 
kullanarak başarılmıştır. 3-B hareket modellerinin video kodlama uygulamalarında diğer 
kullanım alanları olarak zamanda hareket dayah aradeğerleme ve açılan-örtülen bölge tespiti de 
sayılabilir. Yapay ve gerçek veriler ile yapılan deneylerde önerilen tüm metodların 2-B harekete 
dayah benzer modellere karşı üstünlük sağladığı gözlenmiştir.

Anahtar Çok düşük bit hızlarında video sıkıştırma, nesneye dayah kodlama, 3-B hareket
Sözcükler: kestirimi, 3-B derinhk kestirimi, Markov rasgele alanları, bölütleme, 2-B

hareket kestirimi, hız-bozulma kuramı, zamanda aradeğerleme, açılan-örtülen 

bölge tespiti
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Chapter 1

Introduction

Over the last 20 years, many scientists from image processing and computer vision 

community have been trying to match image points, i.e., pixels, correctly between 

consecutive video frames for different reasons. In this dissertation, a different motion 

model is examined for pixel matching. Moreover, the results are used in a different 

application area, called object-based video compression.

Loss}'̂  video compression is a process similar to “orange juice extraction” ; squeeze the 

orange and take the most necessary part out of it. However, there is more about this 

analogy : after taking the glass of orange juice from the kitchen to the customer’s table, 

we also have to obtain the orange back at the table from the juice itself! During the last 

decade, a significant amount of research was devoted to extracting the juice in the most 

efficient way, so that with minimum amount of juice, the “best” orange can be obtained 

back in the table. In practice, by sending only the most necessary information about a 

frame sequence from the transmitter and reconstructing the frames at the receiver side 

with minimum distortion, significant amount of gain is obtained for both transmission 

and storage of video data.

Ongoing research on video compression has proven that most of the redundancy in 

video data is in between frames, i.e., in the temporal domain. Hence, the common trick



is analyzing the motion of pixels between frames and predicting the intensities of the 

encoded frame from the previous available frames using the obtained motion information, 

i.e., the “juice” .

As a preliminary step and for motivation, some other terms and concepts associated 

with this dissertation are explained in Sections 1.1 and 1.2

1.1 Motion Analysis using Video Sequences

Chapter 1. Introduction 2

Motion analysis can be divided into two main classes: motion estimation and utilization 

of the estimated motion. This dissertation is concerned with both estimation and 

utilization. Motion estimation is a process which can be simply explained as “image 

frames in, motion information out” . More formally, the determination of the movement 

of image pixels by observing two or more consecutive frames is called motion estimation. 

The movement of not only 2-D image pixels, but also the 3-D object points, which 

generate the corresponding image points after projection from 3-D world, are also within 

the scope of motion analysis. After the analysis step, the obtained motion information 

can be utilized in video coding as well as in some others areas, such as robot navigation, 

obstacle avoidance, target tracking, traffic monitoring, motion of biological cells and 

weather systems (cloud) tracking [1].

All the application areas mentioned above require a successful estimate of the motion 

field which is indeed difficult to obtain in general. Currently, there is no method which 

estimates the motion correctly from visual data in a complex scene without making 

assumptions. Moreover, it can be predicted that it will be very difficult to obtain an 

“ideal” motion estimator in the near future, realizing the difficulty even for an intelligent 

human (who might be confused with the motion of the “barbers pole” in the scene!). 

The complexity of the problem results from a number of reasons. First of all, the visual 

data can be perceived different compared to the “real” motion, as in the case of barbers 

pole. Moreover, by projecting a 3-D scene onto a 2-D image plane, some information is
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also lost. As a simple example, the 3-D motion of an object will look exactly the same 

in the image plane, when a second object moves twice as fast as the first object at a 

distance twice the distance of the first. Obviously, this is true when the projection of 

the 3-D world into the image plane is perspective. Without knowing anything about the 

environment and the object, such a problem is impossible to solve. In order to observe 

and estimate motion, the moving object should have some discriminatory features, such 

as texture or simply a spatial gradient information on itself. Motion of a mat white 

ball, which is rotating around an axis or translating in front of a background with the 

same mat texture while there is constant illumination in the environment, can not be 

detected. The estimation of such a motion using only visual data is impossible. Finally, 

noise, which is always present in the real world, makes motion estimation methods fragile 

in many cases. Apart from these problems, there might be many other difficulties when 

the problem is tried to be solved by using a computer.

Realizing that most of the problems occur due to observation of the scene through 

video frames, the insistence on using video as the observation data for motion analysis 

can be cjuite questionable. Although, lasers or acoustic sensors can be more precise and 

successful for analyzing the motion, when the aim (or utilization) is video coding, the 

observation data becomes completely determined. Even stereo video frames, which can 

be quite helpful to tackle problems, can not be utilized due to the same reason. It is 

obvious that many difficult problems, which are tried to be solved in this thesis, can be 

handled very easily if the stereo views of the scene are available. Hence this dissertation 

is devoted to analyze motion which is always observed through monocular video frames.

Analysis is possible by the help of a model. In motion analysis, motion models can be 

examined in two classes. A method, which tries to find the 3-D dynamics and structure 

of the objects in a scene by the help of video data, should utilize a 3-D motion model. 

The rest of the methods is assumed to be 2-D motion-based methods. All the 2-D motion 

models in the literature can be simply summarized with the assumptions of smoothness 

between neighboring 2-D motion vectors and intensity matching between frames. On the 

other hand, the models for 3-D motions are obtained-using the theorems of kinematics.



However, for video coding purposes 2-D motion models have always been more popular, 

due to their simplicity in both modeling and computation. On the other hand, 3-D 

motion models have been more utilized in computer and robotic vision applications.

In this dissertation, 3-D motion models will be examined from a video coding 

point of view. Since the performance of the coding algorithms utilizing 2-D motion 

models has been almost saturated, new approaches should be explored. The strong 

theory behind 3-D models, huge amount of related work by computer vision researchers 

and the description (i.e. encoding) simplicity of 3-D motion put this approach as a 

strong candidate for an alternative to the current motion models. Due to some specific 

requirements in video coding, the previous research on 3-D motion analysis needs some 

adjustments and as well as some improvements which are achieved in the third, fourth 

and fifth chapters of this dissertation.

1.2 Object-based Video Coding

Chapter 1. Introduction 4

In video coding applications, it is sometimes necessary to divide the observed scene into 

a number of regions with semantic meanings. Such regions are called objects in video 

coding. In order to define (segment) objects, a possible approach is to utilize motion 

and intensity information in the image frames. In such an approach, a 2-D region with 

intensity and motion coherence defines an object. Although this region is supposed to 

be a projection of a moving body in 3-D world, this situation can not be guaranteed in 

each case. Moreover, if recognition of the objects is not the principal aim, then it is also 

not strictly necessary to obtain one region for the projection of the 3-D object. Since the 

main purpose of video coding is efficient compression, a region with maximum texture 

and intensity coherence should be preferable. While the motion coherence is expected to 

be more effective for locating the objects in the image, intensity information is usually 

necessary for obtaining finer boundaries. In order to understand the reason for defining 

objects in video coding applications, the history of vi^eo coding must be examined.
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First compression algorithms were aimed to encode still images rather than sequences. 

Discrete Cosine Transform (DCT) has become the winner of still image coding problem 

and this transform has initiated a still image coding standard, called Joint Photographic 

Expert Group (JPEG) standard. Extensions of DCT-based algorithms were developed 

for video sequence compression by compensating the motion information between frames 

and these approaches turned into a number of standards (e.g., Moving Picture Expert 

Group (MPEG) 1,2 or ITU’s H.261, H.263) for video coding applications, such as 

teleconferencing or videophony [2]. Afterwards, the blurring effect of DCT has initiated 

a new approach in still image coding, called second generation linage compression 

which is basically a region-based coding [3]. Region-based coders usually work with 

the principal of encoding the boundaries and texture of the regions within those 

boundaries separately, and hence, they eliminate the blurring effect of DCT considerably. 

Second generation approaches have been able to reach similar (for some bit-rates better, 

especially subjectively) performances compared with DCT, but there were no significant 

improvements, especially when computational complexity of the algorithms are also 

taken into account [4]. Hence a still image coding standcird, which uses region-based 

algorithms, was not achieved. In the second half of 1980’s, when the performance of 

DCT-based video compression algorithms were found out to be saturated for low bit- 

rates, a new generation has emerged for video coding algorithms [5]. Similar to region- 

based coding, moving objects were defined, segmented and encoded separately, in order 

to achieve maximum coding efficiency for each separate object. Some demands from the 

market for object-based video transmission and storage have also supported the ongoing 

research for this type of approach and currently the standardization issues continue 

(expected to end up around 1998) for MPEG-4 which will be an object-based video 

encoding standard.

Obviously, it will not be fair to compare object and DCT-based algorithms, since the 

research on object-based methods currently continues, while DCT-based algorithms are 

very mature. In the early days of object-based coding, the DCT-based approaches had
V

a superiority over these immature algorithms, even at low bit-rates. In the preliminary 

subjective tests of MPEG-4, the anchor algorithm H.263, which is DCT-based, has



surpassed all the other proposed object-based algorithms. However, currently new 

object-based algorithms are challenging the H.263 with better results. This result might 

be expected, because in very low bit-rates, object-based algorithms do not have blurring 

effects in contrast to their DCT-based counterparts. By handling each motion and 

intensity coherent entity separately, the coding efficiency improves. However, some 

increase in computational complexity is inevitable for object-based approaches and this 

problem is expected to be solved by the increased processing power.

In this dissertation, a promising, market-demanded and “hot” object-based approach 

is selected to search for new horizons in video compression. However, the aim of this 

dissertation is to create some tools which can be utilized in some different parts of a full 

object-based video coder, rather than constructing this full codec. It should be noted 

that currently there are only a few full object-based coders which are the outcome of 

joint research of some video coding groups around the world and the research on these 

codecs still continue. Hence, obtaining a full object-based codec is beyond the scope of 

this dissertation.

Another important concept worth to mention is the relation between objects and 

3-D motion models. Obviously, it is not suitable to apply 3-D motion models in a 

block-based manner as it is usually done in many video coding algorithms. Since 3-D 

motion belongs to an object, the analysis should be conducted on the projection of this 

object in the image plane. If the image is segmented (correctly) into some regions, which 

represent the projections of 3-D objects, the 3-D motion analysis will be more effective 

and meaningful. Hence, compared to block-based schemes, 3-D motion analysis is more 

suitable for region-based approaches.

1.3 structure of the Dissertation

Chapter 1. Introduction 6

After this preliminary introductory chapter, the next chapters explain some new tools 

that can be utilized in a 3-D motion modeled object-based video coder.



Chapter 1. Introduction

The second chapter of this dissertation is devoted to object-based segmentation. 

After a brief overview on current segmentation approaches, three new algorithms are 

explained. All three methods take two video frames (the data) as inputs and generate 

the segmentation masks and 2-D motion information as outputs. Simulations show that 

the algorithms have different performances, and the best object segmentation method is 

chosen among three according to the simulation results.

3-D motion is estimated in the third chapter, using the segmentation masks and 2-D 

correspondences which are obtained in the second chapter. Initially, some 3-D motion 

estimation methods in computer vision literature are examined and compared in order 

to choose the one which is more appropriate for video coding applications. Rigid and 

non-rigid motions are analyzed separately and an algorithm for each is proposed. After 

some simulations, the performances of the algorithms are examined and discussed.

The fourth chapter examines the structure of the 3-D objects. Since noise immune 

estimation and efficient encoding is strictly necessary for a successful video coder, the 

depth analysis, which tries to find the 3-D structure of the moving objects in the scene, 

is one of the most dominating factors in the performance of a video coder with a 3-D 

motion model. The estimated 3-D motion information in the previous chapter is used 

in two different algorithms : one of the algorithms yields a robust depth field estimate 

and the other one encodes this field. Some similarities in the formulation of these two 

algorithms and some simulation results are discussed at the end of fourth chapter.

The fifth chapter is devoted to further utilization of 3-D motion in video coding 

applications, apart from motion compensated prediction. Two main subjects, occlusion 

detection and motion compensated interpolation, are examined together with the 

available 2-D motion-based methods. New methods are proposed to solve these problems. 

Some simulation results are given in order to compare both methods with the current 

2-D motion modeled approaches.

The last chapter concludes this dissertation by summarizing the contributions and
/

giving some possible future research topics.



Chapter 2

Object-based 2-D Motion Analysis

Object-based motion analysis deals with both segmentation of the scene into the objects 

and estimation of the motion of these objects by the help of the input frames. Before this 

analysis, a short look on current motion estimation methods can be quite helpful. All the 

methods mentioned below estimate 2-D motion and they can be applied for object-based 

motion analysis.

In the 70’s, the first algorithms to calculate the motion of an object from television 

signals were proposed [6]. Later, the segmentation of moving objects were also taken into 

account in some algorithms [7]. However, these methods are far from achieving successful 

motion estimates in natural complex scenes. Afterwards, an important contribution 

for the estimation of 2-D motion came from Horn and Shunck [8] as the concept of 

optic flow which relates the 2-D motion vectors to spatio-temporal gradients of the 

image with the assumption that intensity of a moving point does not change along 

its motion trajectory. Since the ill-posedness of this problem has been overcome by 

imposing smoothness on 2-D motion vectors, the obtained motion boundaries are usually 

blurred. Afterwards, based on optic flow concept many different algorithms were devised 

[9]. Later, motion estimation methods began to find direct applications in the field of 

video compression. In these methods, the “correct” motion vector is the one which 

minimizes the intensity difference between frames and these methods can be classified



into two classes according to the transmission of motion information. In the first class 

both receiver and transmitter estimate motion. Hence the motion is not sent as an 

extra information and pel-recursive [10] algorithm is the most well-known example of 

this class. If the motion is estimated only at the transmitter, as in block-matching 

[11] algorithm, which belongs to the second class, this motion information has to be 

sent to the receiver side as an overhead. The experimental results show that block­

matching type of algorithms have better performance compared to their pel-recursive 

counterparts. However both types have limited performance, since their motion estimates 

do not represent the “true” projected 3-D motion which is very difficult to estimate 

without good models [12].

Powerful 2-D motion modeling is achieved by using Markov Random Fields (MRF). 

These approaches model 2-D motion in such a way that the 2-D projection of 3-D rigid, or 

even non-rigid, motion can be represented by the help of some local interactions between 

neighboring motion vectors [13, 14, 15, 16]. MRF-based methods have high performance 

in modeling and estimating the 2-D motion, but they have also high computational 

complexity. There are also 2-D parametric motion models which try to fit usually a 

quadratic function to the motion field of each object [17, 18, 19]. In order for these 

models to be valid, such methods make some assumptions for the motion and structure 

of the moving objects. Their performances usually degrade for large displacements.

After this short overview on current 2-D motion estimation methods, a closer look is 

presented for the segmentation problem in the next section.

Chapter 2. Object-based 2-D Motion Analysis 9

2.1 Segmentation of Moving Objects

Current object segmentation approaches can be divided into three classes as direct 

intensity based, motion vector based and simultaneous motion estimation and segmen­

tation methods [2]. The direct intensity based methods use spatio-temporal intensity 

information, instead of motion estimates and they usually find a change detection mask
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which separate moving and stationary regions as a segmentation output [20]. In case of 

noise and illumination changes, these methods need powerful post-processing algorithms 

to eliminate the small irrelevant regions. Moreover, the intersected moving multiple 

objects can not be detected, either. Motion vector based segmentation is similar to image 

segmentation, except motion information is being used instead of intensities. Given the 

motion vectors, the scene can be segmented into a pre-determined number of regions 

using K-means algorithm, modified Hough transform [21] or Bayesian segmentation [22]. 

There are also some methods based on simultaneous estimation of both motion and 

segmentation fields from the intensity information of the consecutive frames [23]. Such 

methods usually utilize MRF to model both motion and segmentation fields together.

The principal difficulty of object segmentation can be explained as follows : In 

order to segment objects, successful motion estimates are necessary, especially at the 

motion/object borders. Since most of the motion estimation methods use smoothing 

(regularization) functions, it is difficult to obtain sharp boundaries using such algorithms. 

On the hand, the object borders, i.e., successful segmentation, are required for obtaining 

sharp motion boundaries and good motion estimates. Ironically, both segmentation 

and motion estimation need a successful estimate of each other to obtain good results. 

Therefore, among three object segmentation classes, methods based on the first two 

classes have limited performance, whereas simultaneous estimation and segmentation 

method looks as the only possible solution for better results. Hence, in this dissertation, 

an algorithm, which simultaneously estimates 2-D motion and segmentation fields, is 

proposed in Section 2.3. Some drawbacks of this algorithm is also tried to be minimized 

by an improved version in Section 2.4.

Before examining the proposed segmentation methods, the reason for choosing 2- 

D motion models in the segmentation step can be explained as follows : In order to 

analyze the 3-D motion of objects, the initial step is to segment the moving objects 

in the scene using a motion model. On the other hand, rigid 3-D motion estimation 

algorithms usually (and also in this dissertation) require 2-D correspondences between
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consecutive image frames. Hence, the best way is to make segmentation using a 2- 

D motion model, since the required 2-D correspondences can also be obtained at the 

same time. Furthermore, better pixel correspondences for the segmented objects will 

be achieved by simultaneously segmenting the scene and estimating 2-D motion of the 

objects.

In the next sections, three object segmentation algorithms will be examined. The first 

method belongs to the class of motion vector based segmentation and it is an extension 

of a powerful image segmentation algorithm. Second algorithm simultaneously segments 

and estimates motion and it is based on Gibbs formulation. The last one is a hybrid 

method which utilizes both of the first two algorithms in an appropriate way.

2.2 Object Segmentation using Recursive Shortest 

Spanning Tree (RSST)

As it is discussed previously, the simultaneous approaches are expected to achieve better 

results for segmentation and motion estimation with a significant increase in computation 

time. However, it might be necessary to obtain fast and acceptable estimates for 

segmentation and 2-D motion in some applications. Moreover, such results can also 

be utilized as initial estimates to any computationally demanding algorithm. In the 

following sections, a novel approach to obtain such estimates is explained.

2.2.1 RSST based Image Segmentation

Graph theory can be applied to image segmentation by Recursive Shortest Spanning 

Tree (RSST) method [24]. This method is also used in still-image compression [4]. The 

RSST algorithm maps the original image into a graph so each node (region) initially 

contains only one pixel. Sorted link weights, which are associated with the links between 

neighboring regions in the image, are used to decide which link should be eliminated
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and therefore which regions are merged. The link weights are usually chosen as the 

difference between neighboring region intensities. After each merge, the link weights are 

recalculated and resorted. Thus, the number of regions is progressively reduced from 

N X  M  (for an image size N  by M ) down to, if desired just one [4]. The removed links 

define a spanning tree of the original graph [24]. By noting the order in which the links 

are eliminated, the image can be segmented into K  regions by using the last removed 

K  — 1 links.

RSST has the advantage of not imposing any external constraints on the image. 

Some other methods, such as split-merge algorithm, which requires segments consisting 

of nodes of a quadtree, can produce artificial region boundaries. Furthermore, RSST 

segmentation permits simple control over the number of regions and therefore amount 

of detail in the segmentation image. The simulation results on still images support the 

superior image segmentation performance of this method [24, 4].

2.2.2 Improved-RSST for Object Segmentation from Video

Object segmentation has similar properties to image segmentation and these similarities 

can be used to develop new algorithms. While only intensity information is used for 

image segmentation, object segmentation should be achieved by using both motion 

and intensity information. Hence, a pre-determined motion data is needed for object 

segmentation.

Since the aim is to devise a fast algorithm among different 2-D motion estimation 

methods, which are shortly examined in the previous section, block-based algorithms 

are most preferable due to their lower computational load. The hierarchical application 

of the block-based algorithms also give better results for large displacements, as in the 

method called Hierarchical Block Matching (HBM) [25]. It should also be noted that in 

order to obtain a dense 2-D motion field with a block-based motion estimation algorithm, 

the locations between block-motion vector positions are interpolated bilinearly.

The object segmentation can be achieved by using RSST with a proper selection
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of “link weights” between regions, i.e., objects. Since every point on the image has a 

corresponding motion vector as well as an intensity, the new link weights can be selected 

as the norm of a difference vector between objects. This difference vector will consist of 

three elements which are the intensity, and, the horizontal and vertical components of the 

2-D motion vector at that region. However, there should be a “weighting parameter” 

which adjusts the relation between intensity and motion information. This weighting 

parameter and the number of regions to segment are important factors which determine 

the performance of such an algorithm. Since there is no quick way to find a weighting 

parameter if no extra constraint or information is available, an ad-hoc, but feasible 

solution is to give equal weights to intensity and motion, after a proper normalization 

is achieved for motion information. There is also no drawback to select the number of 

objects higher than the true value if there is a global object-merge mechanism afterwards.

The method described above is expected to be fast, but not optimal due to the 

consecutive application of motion estimation and motion segmentation steps. Since 

the motion estimation step is achieved without any segmentation information, motion 

boundaries are expected to be inexact. Although, the intensity term in the link weight 

vector might compensate for this loss by obtaining better object contours, this can not 

be guaranteed for each case. The simultaneous approach in the next section is expected 

to overcome all these drawbacks if sufficient amount of computation can be devoted.

2.3 Gibbs Formulated Object Segmentation

Over the last 20 years, many researchers have been using Markov Random Field (MRF) 

models, i.e. Gibbs energies, for developing robust algorithms to solve different image 

processing problems. The basic definitions about MRF and Gibbs modeling can be 

found in [26]. There are various applications of Markov Random Field modeling, such as 

image restoration [27], stereo vision and disparity measurement [28, 29], modeling and 

segmentation of textured and noisy still images [30], texture generation [31], sequence 

restoration [32, 33], object recognition [34], shape from texture [35], scene segmentation
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using motion data [22], partial shape completion [36], image deblurring [37], edge 

modeling [38] and finally 2-D motion estimation [13, 14, 39, 40, 41, 15, 42, 23, 43, 16]. 

The advantage of using MRF models comes from developing systematic algorithms based 

on mathematical principles. A simple cost function (Gibbs energy) might take all the 

a-priori knowledge into account as constraints and model the problem successfully as 

a maximum entropy problem. The Gibbs formulation for 2-D motion estimation has 

an important contribution in 2-D motion modeling by imposing smoothness among 

neighboring motion vectors and intensity matching between intensities.

Since Gibbs formulation allows incorporating prior contextual information or 

constraints into the problem easily, object segmentation could also be inserted into Gibbs 

formulated 2-D motion estimation by the help some extra variables. Line [27, 14, 15] and 

region [44, 23] fields are used to segment objects after these variables are appropriately 

inserted into the original Gibbs energy which is used to estimate 2-D motion. While 

line field only detects the motion discontinuities, region field gives an object tag to every 

motion vector accordingly. Hence, the region field is more appropriate for object-based 

motion analysis. Apart from object segmentation, detection of temporally unpredictable 

(TU) areas, which are newly exposed or covered by the moving object, is also possible 

using the MRF models [45, 43, 44]. More emphasis is given for TU areas in Chapter 5. 

However, all these fields modify the original Gibbs energy in such a way that the resulting 

function becomes non-convex and difficult to minimize.

The aim is to generate a sophisticated Gibbs energy, which not only estimates 2- 

D motion, but also segments objects both using motion and intensity information, 

and detects TU areas. 2-D motion estimation, segmentation and TU detection are all 

necessary to obtain the robust 3-D motion estimates for the objects.

2.3.1 Formulation of Gibbs Energy

The Gibbs energy function ¿7, which is the negative exponent of the exponential 

joint probability density function of 2-D motion T>, segmentation 'R and temporally
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unpredictable S fields, can be written as follows

¿/(D , TZ, S I — Un -l· Idm +  \r Ur +  Aj Us (2.1)

in which
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In the above equation, A is a 2-D grid on which the intensity fields, J  are defined. /i(x ) 

is an intensity value of the frame It G 1  at time t for the location x G A, where x  ̂

is a neighbor of x. r/x is the neighborhood of x, defined on A. P  is the unknown 2-D 

motion vector field, which consists of D (x ) vectors which are also defined at each point 

on A (similar relations are also valid between TZ and i?(x), and <5 and ^ (x)). D (x ) is 

defined for each x  on frame It and it shows the displacement from the corresponding 

point on frame It~i to x  on /<. If needed, a subscript as in D 2d (^) is used to denote 

that the vector field is 2-D (D 2d (x ) vector is shown in Figure 2.1). The true 2-D motion 

vectors are expected to match intensities between It and It-i {Un term in U) and have 

similar values between neighbors except at object boundaries {Um term in U). IZ field is 

used to segment objects in the scene and prevents Um. getting a high penalty at motion 

boundaries. U r  term supports objects which have projected broad regions on 2-D image 

plane with textural coherence. Textural coherence is supported by giving a penalty to 

neighboring pixels with similar intensity values if they do not belong to the same region. 

Additionally some taboo patterns, such as single-point or cross-shaped patterns which are 

defined on an 8-neighborhood system are rejected by giving a high penalty, using 0{R{x)) 

term. <S is a binary field and shows the temporally unpredictable regions, in which the 

motion compensation error is expected to be gi'eatef than a threshold, Tg. Lastly, Ug 

term supports S field to consist of regions, instead of individual points. Similar energy 

functions can be found in [44, 46, 23, 47].
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y-axis

Figure 2.1: 3-D coordinate system

By minimizing the energy function, U, a Maximum A Posteriori {MAP) estimate of 

the unknown 2-D motion field, segmentation field and temporally unpredictable (TU) 

regions can be obtained simultaneously. Hence, the scene is segmented into moving 

objects whose 2-D motion vectors are determined. There are different approaches for 

the minimization of this non-convex energy function. The algorithm which gives the best 

result within the shortest time should be selected.

2.3.2 Minimization of Gibbs Energy

The number of unknowns in a Markov-modeled 2-D estimation, segmentation and 

occlusion detection problem is extensively high : 4 unknowns per pixel. Moreover, 

the energy function is non-convex due to segmentation and TU fields. Therefore, 

the minimization of the energy function turns out to be much more difficult. The 

approaches, which try to minimize such energy functions, can be divided into two 

groups as deterministic and stochastic. Deterministic approaches assign the values in 

the minimization process in a “hard decision” nature. They find and apply a value
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which always decreases the cost function. On the other hand, stochastic approaches have 

“soft decision” nature, i.e. the method finds a value which decreases or increases the 

energy function with some probability, and hence there will always be some possibility 

for the algorithm to escape from a local minima. Some of the methods, which have 

stochastic nature, are Simulated Annealing (SA) [48, 49], Gibbs Sampler (GS) [27] and 

Tree Annealing (TA) [50]. Iterated Conditional Modes (ICM) [51], Highest Confidence 

First (HCF) [52], Mean Field Theory (MFT) [53, 54], Graduated Non Convexity (GNC) 

[55] and Deterministic Annealing (DA) [56], are completely deterministic methods. 

Comparisons between the performance of deterministic and stochastic methods can be 

found in [57]. Some of the above methods also have multiresolution versions for better 

convergence rate [58, 59, 60, 61, 62, 63, 41]. One of the most powerful and fast algorithm 

of this kind is the Multiscale Constrained Relaxation (MCR) [64] method.

MCR method uses ICM at each level and the unknown variables are defined for 

different lattices at each scale (Figure 2.2). While the input data is defined at the finest 

level of lattice and does not change between resolutions, the minimization is propagated 

from the coarsest to the finest scale.

All the deterministic methods suffer from being trapped into local minima. Although 

they are computationally more efficient than stochastic methods, the experimental results 

on GS and ICM showed that the stochastic methods performs better from a convergence 

point of view [57]. On the other hand, the deterministic MCR algorithm obtains good 

convergence, comparable to stochastic methods, if acceptable initial estimates are used 

as inputs [64]. Hence, the utilization of MCR with some initial estimates looks as the 

most feasible choice if good and fast convergence are both necessary.

2.4 A Hybrid Object Segmentation Method

Two different algorithms are presented in the previous sections. The first method, which 

basically segments the motion field, has the obvious drawback of separate segmentation
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Figure 2.2: Different levels and propagation of minimization for Multiscale Constrained 
Relaxation algorithm, when it is applied to 2-D motion estimation problem.

and motion estimation phases. While the first method is considerably fast, the MRF- 

based algorithm should have better results for both motion estimation and segmentation 

with more computation. Obviously, both of these methods have drawbacks.

The drawbacks of these two methods can be partially eliminated by properly utilizing 

them in one algorithm. Since it is possible to decrease the computation time in MRF- 

based methods by using “greedy” minimization algorithms, the overall performance can 

also be conserved by using good initial estimates which can be obtained from RSST- 

based object segmentation algorithm. On the other hand, the RSST-based algorithm 

can also be improved by using the motion estimates of MRF-based approach as inputs. 

Taking these ideas into account, an improved algorithm is proposed in the next section.

2.4.1 The Algorithm

The hybrid algorithm can be summarized as :
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1. Find coarse and fast segmentation and motion estimates using RSST-based 

segmentation.

(a) Apply Hierarchical Block Matching (HBM) algorithm and bilinear interpola­

tion to find coarse and dense 2-D motion estimates.

(b) Choose the number of objects to segment. This parameter can be higher than 

the unknown true value without causing any significant problems.

(c) Segment motion and intensity by the help of RSST-based method with 

less emphasize on the untrustable motion information by adjusting weights 

appropriately.

2. Using the obtained motion and segmentation results as initial estimates, minimize 

Equation 2.1 using the deterministic Multiscale Constrained Relaxation (MCR) 

algorithm.

3. Refine segmentation :

(a) Use RSST-based method again, this time with more emphasize on motion 

data, which is obtained in the MRF-based algorithm at the previous step,

(b) Choose the number of objects much smaller than the previous step. If 

available, use some a priori knowledge about the number of moving objects.

4. Minimize Equation 2.1 again using ICM (single scale MCR) algorithm by the help 

of improved segmentation estimates of the previous step.

2.4.2 Simulations

In order to test the performance of the algorithms, a number of simulations are 

conducted. Consecutive frames from some standard video sequences are arbitrarily 

selected in order to perform these experiments.

In the first phase of experiments, RSST-based object segmentation algorithm is 

examined. Two frames (Frame 10 and 16), which are shown in Figure 2.3 (a)-(b), from
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the sequence Salesman are selected. Significant amount of textural detail ¿md motion 

are present in these frames. The amount of motion can be observed using the difference 

image (for better visualization, the intensity differences are augmented by tangent inverse 

function which is followed by a normalization) in Figure 2..3 (c).

Figure 2.3: Original (a)lOth and (b)16th frames of Salesman sequence, (c) The 
difference image

If the algorithm explained in Section 2.2.2 is applied to these frames, the results 

shown in h'ignre 2.4 are obtained for different weighting parameters. For each case, 

the segmentation is fixed to six regions. Figure 2.4 (a) shows the result for intensity 

segmentation. In Figure 2.4 (b), the regions are obtciined by utilizing only motion 

information which is estimated using the ИВМ algorithm. Pdgure 2.4 (c) shows the result 

of the segmentation in which both motion and intensity information (equally weighted) 

are used. The experimental data shows the improved iDerformance of using both motion 

and intensity over the other two, but the overall performance is still not quite acceptable.

In the second i^hase of the algorithms, the hybrid method, which is explained in 

Section 2.4.1, will be ¿ipplied to the frames above as well cis to some other inputs. In 

the hybrid algorithm, for part l.c, the weighting parameter is chosen such that intensity 

information is three times more dominant than tlmt of motion. The number of regions 

in pcU’t l.b is selected as 250. On the other hand, for part .3.a, the weighting parameter 

is selected to support motion information with the same ratio as before. The final 

number of regions are selected as six in order to make compiirison with the previous 

method. The MCR method is applied in three scales, for which only two iterations of
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(a)

Figure 2.4: RSST-based segmentation using (a) only intensity (b) only motion (c) both 
intensity and motion information

iCM is used. The results, which are obtained after minimizing Equcition 2.1, are shown in 

Figures 2.5 (a),(b) and (c). In Figure 2.5 (a) the result of 2-D motion estimation is shown 

by using “needlegram” representation. Figure 2.5 (b) shows the final segmentation which 

contains six objects : one of the regions is the stationary background, objects 2 and 5 are 

the occlusion regions and objects 1, 3 and 4 are the moving bodies in the scene. Frame 

16 is reconstructed in Figure 2.5 (c) using the estimated motion data, white Temporally 

Unpredictable (TU) regions are also detected as a result of minimizing Equation 2.1. 

The reconstructed image has thé SNRp of 33.2 dB excluding the TU regions. As it can 

be clearly observed, compared to the segmentation estimates in Figure 2.4, the results 

of hybrid method are better and acceptable from a semantic point of view.

Object 0

(b)

Figure 2.5: The results for Hybrid Method : (a) 2-D motion estimation, (b) object 
segmentation, (c) reconstruction of frame 16 (Temporally Unpredictcible regions cire 
shown with white regions) using motion data.
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The results of the hybrid method are shown in Figures 2.6 and 2.7 for the sequences 

Foreman cind Mother and Daughter^ respectively. The moving heads are successfully 

loccited in both fi'cime pairs.

\ W ^

(c)

Figure 2.6: Original (a)lOOth and (b)103th frames of Foreman sequence, (c) The 
segmentation result using hybrid algorithm.

Figure 2.7: Original (a)38th and (b)41th frames of Mother and Daughter sequence, (c) 
The segmentation result using hybrid algorithm.

2.4.3 Discussion on Object-based Motion Analysis

Object segmentation from video is still one of the most challenging issues in image 

processing. There is currently no powerful segmentation routine which can handle any 

arbitrary complex scene. Even in the standardization issues of MPEG-4, the resecirch 

still continues in order to find a good segmentatioil method which help to analyze and 

encode frames lor object-based applications.
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In most of the motion estimation and segmentation algorithms, the estimated motion 

data is used for intensity prediction between frames. Hence they are not necessarily to 

represent the projected true motion. If the estimated 2-D motion is used for the analysis 

of 3-D motion of the objects, then the segmentation performance becomes very critical. 

A motion vector, which is assigned incorrectly to another object, causes serious problems 

during the estimation of the 3-D motion of this object. Moreover, motion boundaries 

are also very important since a misclassified background motion vector near the moving 

object boundary with a value equal to zero might lead to inconsistency in the estimation 

of the 3-D motion of the moving object. In summary, simultaneous motion estimation 

and segmentation should be achieved if the obtained data is to be used in 3-D motion 

analysis.

The hybrid method has the best performance among the proposed three algorithms 

since it simply utilizes the advantages of the first two. If there is no time constraint while 

minimizing the energy function, the second algorithm based on Gibbs formulation leads 

to acceptably good results using a stochastic optimization algorithm. Hence, the hybrid 

algorithm will not be beneficial in such a situation. The experimental results show the 

superior performance of the hybrid algorithm for correct segmentation of the moving 

objects. Moreover, the needlegrams and SNRp's of the reconstructed frames support 

the validity of the estimated 2-D motion vectors. Hence, at the end of object-based 

motion analysis, it can be stated that the obtained results can be used at the next step 

of the dissertation to find the 3-D motion estimates of the objects.



Chapter 3

3-D Motion Estimation

3-D motion estimation refers to finding the actual motion of an object in a 3-D scene 

which is observed through consecutive 2-D video frames. Some applications of 3-D 

motion analysis are robotic vision, passive navigation, surveillance imaging, intelligent 

vehicle highway systems, harbor traffic control and object-based video compression [2]. 

This dissertation is only concerned with the latter application.

The 2-D projection of the actual motion of an object not only depends on the 

3-D motion parameters, but also the object depth information (structure) which is 

simply defined as the distance of the object surface points from the camera. Hence 

for some applications (e.g. motion compensated prediction in video compression) in 

which 2-D projections are utilized, the depth information should also be estimated as 

well as 3-D motion. However, there are different ways to approach 3-D motion and 

structure estimation problems. In contreist to motion estimation and segmentation, 

in this problem the estimation process can be divided into two stages without any 

complications. Although, there are some methods, which estimate the depth first [65], 

the usual approach is to find 3-D motion parameters of the object before estimating the 

depth information [66, 67, 68].

In this chapter, 3-D motion estimation using consecutive video frames is examined

24
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and depth analysis is left to the next chapter. In the first section, a brief overview of the 

current 3-D motion estimation methods is given. Afterwards, two different (rigid and 

non-rigid) motion estimation methods are proposed and supported by some simulations. 

At the end of this chapter, the advantages and also drawbacks of the proposed methods 

and 3-D motion analysis in general are discussed.

3.1 Current Methods on Estimating 3-D Motion

Before scanning through the current methods on 3-D motion estimation, the projection 

between 3-D world to 2-D image plane should be defined. 3-D environment can be 

projected into the image plane by many different mappings; the most popular projections 

are orthographic and perspective [2]. Orthographic (parallel) projection is the mapping 

of the 3-D coordinates, {X ,Y ,Z ) ,  onto the image plane coordinates, (x, y), simply by 

the relations x =  X  and y — Y. On the other hand, the relation between 3-D and 2-D 

coordinates for perspective pi'ojection is given by

X — F , y =  FZ {X ,Y )  ’  ̂ Z {X ,Y )  

where F  is the focal length of the image sensor (Figure 2.1).

(3.1)

The selection between these two projections depends on the view angle of the 

recording device. Since the recording device is usually modeled as a pin-hole camera, 

the perspective projection becomes the most appropriate model to be utilized. However, 

if the view angle of the scene is narrow, which corresponds to a high focal length, then 

the perspective projection can be simplified in order to obtain orthographic projection. 

Nevertheless, a typical videophone scene is usually mapped onto the image plane more 

realistically by using the perspective projection.

According to kinematics, 3-D motions of objects can be classified into two main 

groups as rigid and non-rigid motions [69]. The motion of an object with a non-deforming 

surface in time is accepted as rigid. Any change in the structure of the moving object 

makes the analysis difficult and this kind of motion is called non-rigid. Moreover, for some
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cases, a non-rigid motion consists of a number of rigid motions of some connected parts 

and this situation is known as articulated motion. In order to clarify these definitions, 

some examples can be given. While the rotation of an human head is rigid, the lips of 

the talking person make non-rigid motion. On the other hand, opening or closing of 

fingers is an example of an articulated motion; while the overall motion of the hand is 

non rigid, each bone segment of the fingers makes rigid motion.

After these basic definitions, a brief overview of current rigid and non-rigid 3-D 

motion estimation methods is given in the next two subsections.

3.1.1 Rigid Motion

In most of the 3-D motion estimation methods in the literature, 3-D motion is usually 

modeled for rigid objects [70, 67, 68, 66, 71]. In kinematics, according to Chasles 

Theorem^ 3-D motion of a rigid body can be expressed in a linear form using a rotation 

and a translation as [72],

X ( f - f  At) =  R  X ( f ) - f  T  (3.2)

where R  is a 3x3 rotation matrix, T  is a 3x1 translation vector and X  is the vector 

showing the 3-D coordinates at time instants t and f -f At, before and after the 3- 

D motion, respectively. A rotation of an object can be defined using different 3x3 

rotation matrix representations. There are two popular representations for the rotation 

matrices : rotations around (x, y, z) coordinate axes and rotation around an axis passing 

through the origin [73]. Any motion in real world can be analyzed using one of these 

representations and conversion from one to other is also possible [73]. For rotations 

around (x ,t/,z ) coordinate axes, the corresponding rotation matrix can be written as

1 0 0 c o s ( u ; j , ) 0 — sin (iVy) cos ( tv .) s i l l  (tv 2) 0

R x , J /,2 — 0 cos(w r) s in (W x) • 0 1 0 — s i7l( tu .) cos (tv z) 0

0 — s in (w x ) cos(wx) s in (w ¡,) 0 cos(wy) 0 0 1

(3.3)
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where Wx, xuy and are the rotation angles around x, y and z axes, respectively. While 

this representation does not commute, for rotations with small angles, the corresponding 
matrix commutes and it can be simplified into

R small —

1 Wz - w ,

- W z 1

Wy - W x 1

(3.4)

For the other representation, the movement is modeled as a rotation around an 

arbitrary axis passing through the origin whose direction is given by the unit vector 

(nx,ny,nz) with angle of Wn and the corresponding rotation matrix can be written as

Rn = (3.5)

{Ux'̂  -  l ) c 1 nxUyC-TlxS UxU^C-j-UyS

n x U y C - i - n x S  ( n y ^ - l ) c + l  U y l l ^ C — l l x S

r ixT l zC —  ny S  U y U z C  —  UxS  ( n z ^  —  l ) c + l

where c =  1 — cos{wn) and s =  sin(wn)· The advantage of this model is the simple 

conversion from 9 dependent rotation matrix parameters to 3 independent rotation 

motion parameters. However, as it is stated previously, any of the above rotation 

representations can be used for any application without any complications.

The coordinates of a 3-D object can also be represented using homogeneous 

coordinates [74]. In this representation, rigid 3-D motion is formulated using only one 

matrix, rather than one rotation matrix and one translation vector. This matrix is 

usually called as a transformation [75]. It is very easy to represent consecutive motions 

by transformations. Another advantage of homogeneous coordinates is their ability to 

model scalings or zooming of the camera [2].

It should be stressed that while estimating the 3-D motion parameters by observing 

monocular frame sequences using perspective projection, the depth field and the

translation vector can only be determined up to a scale constant. In other words, it
/

is impossible to determine the absolute depth (translation), but rather a relative depth 

(translation) can be found. The reason of this phenomena is tried to be explained in the 

first chapter by the help of an example in which the motion and the distance of a moving
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object can not be estimated without additional information. Mathematically, the same 

situation can also be observed in Equation 3.8 which gives the 2-D projection of 3-D 

motion and structure. In that equation, the depth and the translation parameters are 

always found as pairs, dividing each other. Hence, multiplication of both by using an 

arbitrary constant will not change the projected 2-D motion which is the observed data.

The methods which estimate 3-D rigid motion from consecutive monocular frames can 

be divided into two major classes, as direct and correspondence based methods. Direct 

methods use spatio-temporal gradients in the image to find a solution to the 3-D motion 

estimation problem [76, 77, 78, 79]. The rigid 3-D motion relation (Equation 3.2) is 

inserted into the famous optic flow equation [8] after perspective projection. Therefore, 

the unknown 3-D motion parameters become related to the spatio-temporal image 

gradients. Currently, there is no general solution to direct methods; only by making some 

simplifying assumptions about motion and/or structure, a solution can be obtained [80]. 

Since the performance of the results depends on the accuracy of the gradients on the 

discrete image, some improvements are also proposed on how to estimate the differentials 

[77]. However, the difficulty with robust gradient calculation, the requirement of small 

displacements for better linearization and susceptibility to noise, make not only the direct 

methods, but also their 2-D counterparts (any algorithm that use optic flow concept with 

spatio-temporal gradients, e.g. pel-recursive algorithms [10]), less attractive compared 

to other approaches.

On the other hand, any 3-D motion estimation method which requires some dense 

or sparse set of 2-D motion vectors for finding the 3-D motion parameters is said to 

be correspondence based. These methods require some point matches, which can be 

obtained by one of 2-D motion estimation methods and these methods are explained 

in the preceding chapter. Since incorrect matches may lead to unstable solutions, 

the performance of any correspondence based method mainly depends on this initial 

matching step. Therefore, in order to obtain immunity to errors, matches between 

some features, like corners or edges, are usually preferred [81]. There are also some other 

approaches which estimate 3-D motion vectors from line matches [82, 83]. Although most
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of the work in the literature is directed to find the minimum number of correspondences 

to obtain a unique 3-D motion and structure [70, 67, 68, 66, 71], it is shown that even 

with infinite number of correspondences, the motion of some special hyperboloid surfaces 

will definitely have more than one solution for their motion [84]. It should also be noted 

that correspondence based methods with linear solutions have the advantage of yielding 

fast solutions compared to the nonlinear counterparts, but they are less immune to errors 

and noise.

Estimation of 3-D motion for a planar patch [70] and any curved surface [66] can 

be both solved linearly. The concept of “pure” parameters, which relates the 2-D 

coordinates of the points on a rigid planar patch in two consecutive frames by eight 

parameters, is proposed in [70]. The pure parameters are very popular since these 

parameters can easily model the motion of a small planar patch and objects can be 

assumed to be made of small planar patches [21, 20, 23].

A solution to 3-D motion estimation problem without any planarity constraint is 

proposed in [66]. By modeling the motion as in Equation 3.2, an “Essential” matrix, E, 

which relates the 3-D motion parameters with 2-D image plane coordinates before and 

after the motion linearly, is defined. This formulation yields a least-squares solution of 

the 3-D motion parameters. The E-matrix method is still one of the most popular 3-D 

motion estimation method. Afterwards, the noise susceptibility of this algorithm is tried 

to be improved by nonlinear robust versions [85, 86, 87, 88].

More detailed surveys on rigid 3-D motion and structure estimation methods and 

comparisons in between can be found in [89, 1, 90, 91, 92, 93, 65, 94, 2].

During the last decade, some 3-D motion tools have been used in video coding 

applications [20, 95, 96, 83, 94]. Most of these methods have the assumption of rigidity, 

except those which have a generic wireframe model for human head [96]. The non-rigid 

facial actions are also modeled in that wireframe-based method. However, methods based 

on rigidity are usually far from representing the general solutions. They either perform 

only object segmentation with 3-D motion data [20, 17] or estimate the global (camera)
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motion and depth field using an initial estimate of the dense depth field [83]. In [20], the 

segmentation of the scene is achieved for the stationary and moving parts by the help 

of frame differences and pure parameters [70, 97], and different regions are coded in an 

appropriate way. For some other methods [95], no segmentation is performed and long 

sequences are used to estimate incremental 3-D motion and sparse depth fields which 

are interpolated afterwards. Recently, a 3-D object-based motion and depth estimation 

method without any significant constraints, except rigidity, is also proposed [47].

3.1.2 Non-rigid Motion

Although joint motion-and-structure analysis of a deformable object is quite difficult, 

non-rigid motion can still be examined from a kinematic point of view. According to 

the fundamental theorem of kinematics [69], the most general motion of a sufficienthj 

small element of a continuously deformable body can be approximated as the sum 

of a translation, a rotation and an extension (contraction) in 3 mutually orthogonal 

directions. In matrix form, the theorem above can be written as [69]

■ A'p(i -  1) ■

n .( i  -  1) =

Zp{t — 1) _

i'll i*12 ri3 

i'21 2̂2 i’23

T31 3̂2 3̂3

■ A p(i) ■ ' T , '

Y^(t) + Ty +

Zp(i)

•Sll 5i2 5i3

¿21 "S22 -523

■S3I 532 533

' A'p(i) ’

yp(i)
Zp(i)

(3.6)
In Equation 3.6, the matrix which consists of elements r ,j is a rotation matrix, 

orthonormal with only 3 degrees of freedom. The matrix with elements is the linear 

deformation matrix which is symmetric [69]. A point, p, which has the coordinates 

[A'̂ p(t) Zp{t)]^, moves to another location [A^p(i — 1) Yp{t — 1) Zp(t — 1)]^ after

a global rigid motion consisting of rotation and translation and a deformation, which is 

tried to be approximated by a global deformation matrix. In fact, this is a “reverse” 

motion in time from t to t — 1 although the “real” motion is from time t — 1 to t. It 

should also be noted that Equation 3.6 is simply the'first few terms of the Taylor series 

expansion of the 3-D coordinate vector X p(i — 1) around X p(i). The higher order terms 

of the expansion are neglected for simplicity. Although this assumption is valid when rq
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and Sij terms are larger compared to higher order terms, Equation 3.6 is still a highly 

constrained model for locally deformed motions.

Three classes of non-rigid bodies are usually of major interest : articulated objects, 

elastic bodies and fluids. The application areas of non-rigid motion analysis are medical 

imaging (heart-wall motion tracking), fluid dynamics (interpretation of complex fluid 

motions), computer graphics and video coding (face analysis/synthesis, wireframes) [98]. 

In the earlier research on deformable motion analysis, non-rigidness, which is simply 

elasticity in that case, is modeled by springs which are assumed to exist between object 

points [99]. When the initial object structure and correspondences between views are 

given, the new structure is tried to be obtained by consistency to correspondence data 

and by maximizing the rigidity. The structure after motion should be as similar as 

possible to the initial one and the deviations between two structures should be obtained 

according to the tensions on the springs. Afterwards, two new approaches emerged to 

analyze non-rigid motion; one of these methods tries to find a basis for deformation 

modes to analyze and even recognize deformed bodies [100, 101], whereas the other uses 

physical phenomena behind the deformable motion [102, 103]. In the former method, 

the non-rigid motion is parameterized in terms of the eigenvalues of the finite-element 

model of the deformed object using a known or measured (by sensors) geometry of the 

undeformed object. However, in the latter one, some physical features, such as damping 

and mass, are included in the structural models in order to simulate the dynamics of 

deformable objects in response to intrinsic and extrinsic forces [2]. This latter method 

has the advantage of utilizing dynamics of motion compared to the former one [104]. This 

method relates the structural and motion parameters with mass, damping and stiffness 

matrices. Inertial and external forces are also taken into account in its formulation [104]. 

Simulation results show that physics-based modeling of non-rigid objects gives the best 

results among all non-rigid methods [102, 103, 104].

In most of these methods, the structural models are usually chosen from 

superquadrics [105, 106], hyperquadrics [107] and deformable balloon models [108]. 

However, in all of these approaches, the initial (undeformed) shape is either known
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or obtained from sensor data. There are some application specific approaches which are 

also used in analyzing the non-rigid motion. In [109], only the extraction and contraction 

of bodies are examined. In an other application, the heart-wall motion is analyzed using 

hierarchical motion decomposition [110] and afterwards, it is solved using artificial neural 

nets [111]. It should be noted that almost all the methods require an initial structure 

to be able to track the non-rigid deformations and 3-D (sometimes 2-D [112]) motion. 

There is currently no generic method which estimates 3-D motion and structure of a 

deformable body by only observing video sequences.

The non-rigid 3-D motion analysis methods, which are explained in the previous 

paragraph, do not have applications in video compression. However, in knowledge-based 

coding there are some other approaches which use non-rigid motion for video compression 

purposes. In knowledge-based coding, it is assumed that a generic wireframe for some 

objects (usually head and shoulders of humans) is available at both transmitter and 

receiver. This wireframe might make some local deformations as well as some global 

3-D motion. There are some generic wireframes, which are constructed by different 

laboratories [113, 96, 114]. Apart from some different approaches for estimating the 

motion on triangular patches of the wireframe [115, 116, 117, 94], all these methods have 

comparable performances. In addition to global head motion of the wireframe, the local 

movements of the triangular patches can model the non-rigid deformations on the face. 

However, the performance of these highly constrained wireframe models considerably 

degrades whenever the speaker has an unexpected simple feature, like a hat or eyeglass, 

which is not included in the model. Apart from this, the initial reconstruction of the 

wireframe on an irregularly oriented face also generates problems.
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3.2 Proposed Object-based Rigid 3-D Motion 

Estimation Method

In this section, an object-based 3-D motion estimation method, which takes the pre­

viously estimated 2-D motion vectors and segmentation mask between two consecutive 

frames as input and creates the rigid 3-D motion parameters for the output, is proposed. 

The 3-D motion estimation is carried out for each object, as defined by the segmentation 

mask, separately. The formulation of the method is as follows :

Let P  define an object in the 3-D object space and let p € P be an object point whose 

3-D coordinates at time t are given by Xp(t) =  [Xp(0 ^ ( 0  The perspective

projection of X p(t) onto the image plane, which is shown in Figure 2.1, is written as 

^p(0 =  [^p(0 î/p(0]^· rigid motion from time i — 1 to t, the 3-D coordinates of
object point p at time i — 1 can be written in terms of Xp(t) as

X p ( i - l )  =  R X p ( t ) - f T (3.7)

where R  is a 3x3 rotation matrix, T  is a 3x1 translation vector. It should be noted that 

R  and T  do not reflect the “real” motion from time i — 1 to i, but rather an “inverse” 

motion from time t to t —  1 . After perspective projection of the 3-D object points onto 

2-D image plane, the equations below are obtained [66]

n i  · x p j t )  - f  r i 2 · r jp j t )  +  r i3  · /  -b 

^31 · x p ( t )  +  ^32 · y p { t )  +  T33 · /  +

V21 · X pj t )  +  T22 · y p ( t )  -f  T23 · /  +

X p { t - 1 )  =  f

Vp{t — 1) =  /  ■ (3.8)
rai · Xp( t )  -t- T32 · y p ( t )  - l · r з з ^ f +  z j{x p ,t )

where /  is the focal length of the camera, r,j is an element of the rotation matrix and 

{Tx, Ty, Tz) are the elements of translation vector. Xp(i — 1) =  [•'Cp(t — 1) j/p(i — 1)]^ are 

the projected 2-D coordinates of the object point p at time t — 1. Notice that Z p (x p ,i)  

is the third component of the vector Xp(t) whose perspective projection gives Xp(i) and 

simply called as “depth value” . However, it should be noted that “depth field” term is 

being used as the set of depth values defined on the 2-D lattice, A. Hence the depth field
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reflect only the Z values of the projected 3-D object points. After some manipulations 

[66], the relation

U 'EU  =  0 (3.9)

is obtained for the E matrix where U =  [a;p(i) ¡/p(t) 1]^, U ' =  [xp{t — 1) yp(t —

1) 1]. For notational simplicity, p subscript will not be used to label the object point 

coordinates in the rest of this section. The unknown E matrix is equal to

E =
0 T, - T rn ri2 ri3

- T , 0 T i’21 T22 1'23

- T , 0 3̂2 i’33

(3.10)

where are the elements of translation vector T  and r ,/s  are the elements of R .

By using all (at least 8) the correspondences. Equation 3.9 can be solved in the least 

squares sense and afterwards E-matrix can be decomposed into R  and T  analytically 

[66]. A depth field for each correspondence point can also be found by utilizing the 

estimated 3-D motion parameters, the correspondence vector and Equation 3.8.

3.2.1 Description of the Algorithm

Before application of the E-matrix method to 3-D object-based coding, a few points 

should be emphasized. It should be first remembered that only 8 feature correspondences 

are sufficient to estimate the matrix E  in Equation 3.9 and, consequently, the 3-D motion 

parameters of an object. In order to define the objects, a segmentation step is necessary 

prior to 3-D motion estimation. Usually, the segmentation is based on 2-D dense motion 

vectors. This dense set of 2-D motion vectors for each object usually contains correct 

2-D correspondences as well as some outliers, i.e., incorrect matches. Moreover, some 

irrelevant motion vectors of the neighboring objects might also be included in the object 

motion vector set due to incorrect segmentation. Hence, rather than finding, using 

another algorithm, robust 2-D correspondences b'etween frames, which are needed for 

the E-matrix computation, a robust selection mechanism over the existing 2-D dense 

motion vectors is proposed. Although there are some statistical methods, which might
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find and reject the outliers [44], an iterative selection mechanism, in which a performance 

indicator is tried to be maximized through the iterations, is proposed. On the other hand, 

if the E-matrix method is solved directly in least-squares sense using all the data, even if 

there are excessive number of correspondences, the performance of the algorithm might 

degrade considerably as a consequence of a few incorrect segmented motion vectors or 
wrong matches.

Since there are some error sources which affects the performance of the E-matrix 

method, some parameters can be defined to test whether the estimated 3-D motion 

parameters are valid or not. First of all, the error between the original (input) and 

projected 2-D motion vectors must approach to zero for a correct 3-D motion estimate 

set. The projected motion vectors are obtained utilizing the estimated 3-D motion 

parameters and depth field. It is also shown that the eigenvectors of E^E  must be 

equal to [ 1 1 0 ], in order to have the matrix E  implicitly contain a valid rotation 

(orthonormal of 1st kind) matrix and a translation vector [92]. Hence, the eigenvalues 

of E^E  matrix contain valuable information to measure the performance of the 3-D 

motion estimation. Moreover, using the E-matrix method, a depth value for each point 

can be determined by the help of the 2-D motion vector at the corresponding point 

and the estimated 3-D motion parameters [93]. The validity of this estimated depth, 

consequently the 3-D motion parameters, can also be tested as follows : since all the 

objects are assumed to move in front of the image plane, they should all have positive 

depths [118]. Taking the above ideas into account, five parameters are defined to test 

the accuracy of 3-D motion estimates :

• Ti =
d d̂ W - d ’ ŵ , where is the horizontal component for the 2-D

projection of the estimated 3-D motion and is the horizontal component for 

the input 2-D motion estimates for the Object i.

X̂€«, , where is the vertical component for the 2-D

projection of the estimated 3-D motion and is the vertical component for the 

input 2-D motion estimates for the Object i.
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• 2a =  Ae3, where Â ;3 is the smallest eigenvalue (usually have zero value) of E^E  
matrix.

• T^=  where A£;i and \e2 are the non-zero eigenvalues of E^E  matrix.

• T5 =  ^  ■ where n< and nt-i are the number of negative depth values for N  

tested points at time t and i — 1 respectively.

It should be noted that there are also diiferent error criteria [9] for comparing 2-D motion 

vectors other than Ti,2· However, the proposed test variables are computationally less 

complex compared to the others. Ideally, all the parameters above should be equal to 

zero for the correct rotation and translation estimates. Consequently, the sum of these 

five test parameters, which can be denoted as Tsum, should also approach to value zero

for valid motion parameters. A new parameter, P, is defined to be i+Ts, and it should

be equal to 1 for the correct 3-D motion parameters. P  is chosen as the performance 

indicator, according to the value of P, the estimation results can be “trusted” , or not.

Random Sample Consensus (RANSAC) is a paradigm for fitting a model to 

experimental data [119]. It is capable of interpreting and smoothing data containing 

a significant percentage of gross errors. Classical techniques for parameter estimation, 

such as least squares, optimize (according to a specified objective function) the fit of 

a functional description, i.e., model, to all of the presented data. Since these methods 

do not have a detection and rejection mechanism, they are susceptible to gross errors in 

many cases. In RANSAC, assuming that a given procedure requires at least n data points 

to determine the model parameters and there are N  points in the initial experimental 

data set {N  > n), a random subset of the data points with n points is selected to 

construct a model. For the initial A^-point data set, the percentage of the points, which 

fits to the constructed model within an error tolerance, is checked using a threshold. If 

the percentage is less than this threshold, then a new random subset is used until the 

error tolerance is satisfied or the maximum number of iterations is reached.
7

Application of RANSAC to E-matrix method is straightforward. The E-matrix 

method requires at least 8 correspondences to estimate the E-matrix and there are dense
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2-D motion fields for each object. Additionally, the error tolerance can be determined 

using the test parameters Ti and T2, which test the validity of the model to the data, 

as it is suggested by the original RANSAC approach. However, RANSAC can further 

be improved by using the performance parameter P, instead. While the test parameters 

Pi,2,5 check the fit of the model to all the input data, Ps 4̂ is necessary to understand 

whether the randomly selected subset is a “good” choice or not.

The overall algorithm can be summarized as below :

For each moving object do :
1. Select a random subset from 2-D motion vectors
2. Find E-matrix, 3-D motion and corresponding P
3. If ( P > Threshold_for_P )

exit with current 3-D motion
else

If ( P > maximum_P_so_far ) 
save P and 3-D motion 

If maximum_#_of_itérâtions has reached 
exit with saved 3-D motion 

goto step 1

Hence, using the algorithm above, a rotation matrix and a translation vector are 

found for each object in a robust manner.

3.2.2 Simulations

T h e  e f f e c t s  o f  e r r o r  s o u r c e s  t o  t h e  c o n v e n t i o n a l  E - m a t r ix  m e t h o d

The simulations on 3-D motion estimation are conducted in three phases. In the first 

phase, artificial data is used to test the performance of the conventional E-matrix method 

[86] by varying the image resolution, matching errors and focal length error. In this phase.
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RANSAC is not utilized. Such an experiment gives an idea about the upper limit of the 

performance of this algorithm for natural data. 100 points are selected on an artificial 

image and these points are moved using known 3-D motion and structure parameters. 

The projection of these 3-D points onto the image plane are achieved after

1. c^uantizing the new 2-D coordinates according to the image size to simulate errors 

due to resolution,

2. adding some Gaussian noise to simulate matching errors,

3. distorting the true focal length to simulate focal length error,

4. applying the above three procedures together.

For all four steps of the first phase, test parameters are obtained to measure the 

performance of the algorithm. Step 1 is achieved for two different image resolutions as 

176x144 (Step l.a), which is a standard QC'/F’ image size, and 1760x1440 (Step l.b). In 

the second step, Gaussian noise, whose variance is 2 pixeP, is added to each component 

of the projected 2-D motion vectors for Q C IF  resolution. 3-D motion parameters and 

depth values for 100 points are selected so that the average motion of the artificial data 

is approximately 20 pixels in both directions. In the third step, the correct focal length 

of imaging system is distorted about 10 percent before projecting the 3-D objects points 

back to the image plane after motion. This step is necessary, since in many of the 

standard video sequences focal length information is not available. Last step, as it is 

denoted above, is a combination of the first three phases (with Q C IF  image size). The 

results of the first phase are given in Table 3.1.

The results of Step 1 show that for natural sequences it is expected to obtain some 

amount of error due to quantization noise. On the other hand, as it is denoted by the 

test parameters of Step l.b, the usage of frames with high spatial resolutions might 

improve the performance of the algorithm. However, in video coding applications it 

is preferable to use frames with small resolutions for better compression and real time 

communication. As it can be clearly observed from the test parameters of Step 2, the
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Step Ti
Ideal 0.0000 0.0000 0.0000 0.0000 0.00 1.0000

1. a 0.0639 0.0415 0.0252 0.0000 0.18 0.7630
l.b 0.0291 0.0108 0.0192 0.0000 0.17 0.8136

0.1388 0.1581 0.1844 0.0000 0.25 0.5776
0.1401 0.3605 0.0146 0.0000 0.19 0.5864
0.1591 0.3933 0.2214 0.0000 0.35 0.4708

Table 3.1: Simulations on E-matrix method using artificial data

E-matrix method is very susceptible to correspondence errors. The focal length should 

also be selected or estimated carefully, since the distortion on focal length might also 

degrade the results considerably. As expected, the combined effect of these three error 

sources is much severe and such a situation is also highly expected in natural sequences.

T h e  p e r f o r m a n c e  o f  t h e  c o n v e n t i o n a l  E - m a t r ix  m e t h o d  w i t h  r e a l  d a t a

In the second phase of the experiments, the conventional E-matrix method [86] is applied 

to real data. The object segmentation and 2-D motion estimation results of Section 2.4.2 

are used as inputs to 3-D motion estimation step. For each object, all the 2-D motion 

vectors are used to estimate the E-matrix in the least squares sense. The estimated 3-D 

motion parameters are not tabulated since they can not be compared with a (true) motion 

parameter set, but rather test parameters, which give an idea about the performance of 

the results, are presented. Moreover, in order to illustrate the performance of 3-D motion 

estimation step, some reconstructed frames can also be presented. However, the depth 

field is necessary to achieve this goal, since the projected 2-D motion depends on both 

3-D motion and depth. The next chapter is completely devoted to depth analysis and 

in the simulation results (Section 4.1.2) of Chapter 4, the reconstructed frames, which 

are obtained using the 3-D motion parameters of this section, are presented. Hence, 

reconstructed frames are not presented here in the simulations of Chapter 3.

In the second phase, the results shown in Figure 2.5 for the 10th and 16th frames
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of Salesman sequence are used in order to find the 3-D motion parameters for each 

object. The size of the frames are QCIF (176 x 144) and it is assumed that the unknown 

local length of the camera is equal to 250 pixels (This approximately corresponds to 

50 mm focal length of a 35 mm camera). Although this assumption is rough, it still 

gives acceptable results. However, to improve the overall performance, a camera with 

a known focal length might be used or the focal length can be estimated [120]. Similar 

to Figure 2.1, the optical (¿r-axis) axis is assumed to pass through the center of these 

images. The test parameters of the conventional E-matrix method are given in Table 3.2.

O b je c t Ti T,

0.285 0.955 0.050 0.000 0.730 0.331
0.630 0.605 0.100 0.000 0.784 0.321
0.243 0.819 0.301 0.000 0.629 0.334
0.519 0.241 0.686 0.000 0.673 0.321
0.148 0.429 0.682 0.000 0.632 0.346

Table 3.2: Simulations on 3-D motion parameter estimation using the conventional 
E-matrix method using 10th and 16th frames of Salesman sequence

T h e  p e r f o r m a n c e  o f  t h e  p r o p o s e d  m e t h o d  w i t h  r e a l  d a t a

In the third phase of the simulations, the method proposed in Section 3.2.1 is utilized 

in order to find the 3-D motion parameters from the previously estimated 2-D motion 

vectors for each object. Using the same 2-D motion vectors and segmentation results 

of Section 2.4.2 as inputs, the obtained test parameters and performance indicators are 

tabulated in Table 3.3. The maximum number of iterations is chosen as 50, whereas the 

threshold for P , which determines the acceptability of the obtained motion parameters, 

is selected as 0.5. Hence, as it is realized from Table 3.3, Objects 1 and 5 required 50 

iterations to converge, whereas the other three needed much less.

As it can be observed from the last columns of the Tables 3.2 and 3.3, the proposed 

scheme has superiority over the conventional method for each object. It should be noted
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O b je c t Ti

0.640 0.042 0.935 0.000 0.141 0.363
0.124 0.375 0.000 0.000 0.191 0.592
0.177 0.057 0.484 0.000 0.233 0.512
0.017 0.515 0.004 0.000 0.025 0.502
0.920 0.300 0.000 0.000 0.082 0.434

Table 3.3: Simulations on 3-D motion parameter estimation using the proposed method 
using 10th and 16th frames of Salesman sequence

that Object 0 is the stationary background, thus motion estimation is not achieved for 

this object. Objects 2 and 5 belong to the occlusion regions and it is expected to have 

small P  values, since there is no rigid motion in these regions. However, while Object 

5 obtains an expected small P  value, the simulation results show that it is also possible 

to find a trustable a 3-D motion parameter set for Object 2 . Hence, even in occlusion 

regions, if the obtained 2-D motion estimates for such regions are smoothly varying, then 

it is also possible to find some 3-D motion representation for such regions. The reason 

for obtaining an untrustable P  value for Object 1 is due to the small head motion in the 

horizontal direction. This situation usually leads to some instabilities in the E-matrix 

method while estimating a 3-D motion parameter set. The small amount of motion 

in the horizontal direction is very susceptible to matching errors and also quantization 

noise for low spatial resolution [86]. Object 3 and 4 are both moving objects and the 

performance indicator of Object 4 is higher than that of Object 3, possibly due to better 

segmentation and 2-D motion estimation.

Similar experiments are conducted to test the performances of two algorithms 

(conventional E-matrix versus the proposed method) on different irame pairs, which 

are shown in Figures 2.6 and 2.7. In Tables 3.4 and 3.5, the simulation results are 

tabulated for these input data, respectively. For both frame pairs, 3-D motions of the 

segmented heads are tried to be estimated.

In these experiments, compared to the conventional E-matrix method, the proposed
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Method T2 Ts T4 Ts P
Proposed 0.121 0.612 0.000 0.000 0.567 0.435
E-matrix 0.513 0.812 0.924 0.000 0.482 0.268

Table 3.4: Simulations on 3-D motion parameter estimation using the proposed and 
conventional E-matrix method using 100th and 103th frames of Foreman sequence

Method T2 n T4 n P
Proposed 0.171 0.400 0.000 0.000 0.331 0.526
E-matrix 0.456 0.890 0.863 0.000 0.426 0.275

Table 3.5: Simulations on 3-D motion parameter estimation using the proposed and 
conventional E-matrix method using 38th and 41th frames of Mother and Dmighter 
sequence

method has also superior values for the test parameters. However, it should be noted 

that while the performance of the 3-D motion estimation step improves with this new 

scheme, the overall computation time also increases according to the number of iterations. 

Nevertheless, the linear E-matrix method is not a time consuming algorithm by itself 

(less than 1 second at a Sun Sparc 10 workstation) and the total execution time of the 

proposed algorithm is still acceptable.

3.3 Proposed Object-based Non-rigid Motion 

Estimation Method

Most of the existing rigid and non-rigid 3-D motion estimation methods have some 

drawbacks. Some of the methods [86, 77, 2 1 , 12 1 , 122 , 96, 113] have some structural 

constraints, like rigidity, planarity or wireframes. A group of approaches [80, 77, 79]
7

uses spatio-temporal gradients during 3-D motion estimation and errors occur as a 

result of discrete differentiation. Lack of segmentation of the scene is another problem 

which exists in some of the algorithms [86, 77, 121, 122, 83]. Moreover, the use
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of orthographic projection approximation in many methods [123, 124, 125, 121, 122] 

limits the performance of such algorithms in some scenes which seem to be projected 

perspectively. Finally, some methods [70, 97, 66], especially the ones which are solved 

by linear approaches, have susceptibility to noise. The aim of this section is to propose 

a novel method which handles all these drawbacks.

There are some methods which track the non-rigid motion and estimate (update) 

the non-rigid shape. These methods are explained briefly in Section 3.1.2. A new 

approach, which attempts to eliminate the drawbacks explained in the first paragraph 

of this section, is proposed in Section 3.3.1. The basic idea is to formulate the problem 

in such a way that all the a priori information about non-rigid motion can be inserted 

into a cost function. This cost function can be selected as the energy function of a Gibbs 

probability density function for the non-rigid 3-D motion parameters.

According to Equation 3.6, the deformation matrix is constant over the whole object, 

hence the corresponding motion is still highly constrained. Such a modeling allows 

only globally linear elastic deformations of the overall object rather than local non-rigid 

behavior. If all the higher order terms, which are neglected from Equation 3.6, are 

taken into account, then any local deformable motion can also be modeled. Rather 

than taking into account all the higher order terms, another approach is to define the 

deformation motion parameters at each point for a more general motion modeling. Due 

to the anatomical reasons (muscles, skin, bones) for human motion, the neighboring 

deformation parameters should be correlated with each other, i.e. they are expected to 

have similar values.

Another important observation concerning Equation 3.6 is expressing the next 

coordinate of any point by using some global (the rigid rotation and translation 

parameters) as well as some deformable (the non-rigid deformation parameters) motion. 

This means that every non-rigid motion has an implicit rigid behavior. If the deformation 

parameters are defined at each point, such an observation might help while estimating 

these parameters.



Chapter 3. 3-D Motion Estimation 44

Taking the above ideas into consideration, a stochastic formulation which defines 

the motion parameters at each point as random variables and takes into account their 

interactions by a joint probability distribution, is proposed in the next section. Observing 

two consecutive frames, the aim is to model and estimate the non-rigid motion between 

them.

3.3.1 Gibbs Model based Non-rigid Motion Estimation

The a priori information for a general non-rigid motion model is the existence of some 

local correlation between neighboring motion parameters. The local interactions permit 

looser relations between neighboring parameters in contrast to the rigidity assumption 

which is ultimately tight. Assuming the rotation angles between the frames are small 

(as in Equation 3.4), for each point on the object, the relation between two coordinates 

(before and after the non-rigid motion) can be written as

■ A'p(i -  1) ■

I'd)! -  1) in

Zp(i — 1)

1

-Wz

Wy - W x

w, -w „

Wx

1

'  A p(i) ■

y M + ty

. Zp(i) _ tz _

(3.11)

The 3-D motion parameter vector 6 =  [wx^Wy^Wz^tx^ty^tzY is defined at each point 

on the object. Only the surface points of the objects are observed on the image and 

the 3-D parameter vector is defined at each point on a 2-D grid. A, on which the 

image intensities are also defined. 0  is defined as the set of motion parameters 0 

which are defined at each point on A. It should be noted that the proposed non-rigid 

motion definition can also be achieved using other rotation matrix representations in 

Section 3.1.1 without any problems. In such a case, the new parameter vector will 

be equal io 0 =  [wninx,ny^Tiz,tx^iy^tzY which corresponds to the rotation matrix in 

Equation 3.5.

Given a frame It and 3-D motion parameters, 0 , the correct non-rigid motion 

parameters should find some intensity correspondences on the previous frame, It-\. After
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projecting the 3-D coordinates perspectively using Equation 3.1, the displacements on 

the image plane can be written as

 ̂ u;,:rp(i) + (-u;.)yp(i) -h 1 -f ’

(~'^z)xp(i) +  l/p(i) +  +  ^p(xp_()
WyXp(t) -b (-w^)yp(t) -b 1 -f 2 p (3 ^  ’yp(i -  1) (3.12)

Using these displacements, when there is no noise, no occlusion and no illumination 

change in the environment, the optic flow holds at each 2-D image coordinate Xp(i) € A:

/,(Xp(<)) = /i-i(xp(i -  1)) (3.13)

In order to find the MAP  estimate of the 3-D motion parameters between two 

consecutive frames, the energy function of Gibbs posterior distribution can be written 

as

u { e \ i t , i t - i , z )  =  i ( { i t .i\ J t ,e ,z ) - i - i3 i ( {e \ iu Z )  . (3 .14)

Minimizing the above equation with respect to 0  field, which consist of 0(x(t)), the 

parameter set at each point, we obtain the MAP estimate for the 3-D motion parameter 

field.

From Equation 3.13 under the assumption that there is Gaussian noise in the 

environment, the first term on rhs of Equation 3.14 becomes

U(It-il/i,0,Z) = (It(xp(t)) -  I(-i(xp(t -  l))f .
X p G A

(3.16)

The second term on rhs of Equation 3.14 can be obtained using the a prion 

information on the non-rigid 3-D motion parameters, as

u ( e \ h , z ) =  Y ,  Y  l|0(xp(<)) - o(xp.c(i))ll" ,
X p G A  X p ,c € r ? x p

(3.16)

where Xp,c € P x p  is the neighbor of Xp. p x  is the neighborhood of x, defined on A. This 

energy function favors similar values on neighboring parameters by assigning higher
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probabilities to such cases. Such a relation is highly expected in most of the non-rigid 
motions.

The formulation above assumes the availability of the depth field, Z, a priori, similar 

to all non-rigid motion estimation algorithms in the literature that are known by the 

author. The depth field can either be obtained from an extra sensor data or a stereo 

pair [28, 29]. Another approach might be obtained after defining the depth field as a 

new random field like motion parameters and to add a new term into Equation 3.14. 

This term should support a priori knowledge which can only be the smoothness of the 

surface. However, in such a situation, the minimization problem will become severely 

under constrained due to scaling ambiguity between the depth field and the translation 

parameters and hence the convergence of the energy function will become extremely 

difficult.

Equation 3.14 can be improved by adding some new segmentation terms (similar 

to Equation 2.1), which segment the scene into objects according to their 3-D motion 

coherence. Hence, this non-rigid analysis will also become applicable for object-based 

algorithms after making some appropriate adjustments in Equation 3.14.

C o n c e p t  o f  H ie r a r c h ic a l  R i g id i t y

Before minimizing Equation 3.14 in order to obtain non-rigid motion parameters, there 

is an important property to mention. As it is stated previously, the energy function 

in Equation 3.14 is valid not only for non-rigid but also for rigid motions, which is an 

extreme case where all the parameters are equal to each other. On the other hand, a 

general non-rigid motion formulation also defines a global rigid motion with some local 

deformations “added” on top of them. Hence, it will be better first to find the global 

rigid motion and afterwards “weaken” this rigid result to obtain local interactions. This 

goal can be achieved during the minimization of Equa t̂ion 3.14.

In order to implement these ideas while minimizing Equation 3.14, a multiscale 

optimization approach is devised [126]. In this approach, the 3-D motion parameters
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cire defined at each point on different grids, similar to the grids shown in Figure 2 .2 , for 

different resolutions. On the coarsest grid, all the motion parametei's are equal to each 

other in a predefined rectangle and therefore the part of the object which is projected 

onto this rectangle is assumed to be rigid. In other words, the resolutions determine 

the size of the rectangle in which the motion parameters are constant. While the scale 

gets finer, the size of the rectangles in which the motion parameters are equal with each 

other, and consequently the rigid part of the object, gets smaller. At the finest scale, the 

rectangle contains only one 3-D motion parameter vector, 0, as it is initially proposed. 

Since the parameters are passed through scales from coarse to fine while minimization 

is achieved at each level, the global rigid motion still exist “under” local interactions. 

Hence, such an approach will also estimate the motion of a rigid object without any 

convergence problems. The proposed method in Section 3.3.1 with such a minimization 

approach is called “hierarchical rigidity” [126]. Similar minimization algorithms are 

independently proposed by [64], called Multiscale Constrained Relaxation (MCR), for 

general recovery problems.

The motion parameters can be estimated by minimizing Equation 3.14 by one of the 

global optimization algorithms explained in Section 2 .3.2 . However, the neighborhood 

definitions between motion vectors change for different scales. In Equation 3.16, the 

motion vectors are accepted as neighbors according to a new neighborhood, which 

is defined on a grid. A", for the resolution n. In this way, the elastic relations between 

3-D motion parameters continue at each scale.

In summary, the proposed method is valid for a general class of 3-D motions without 

structural constraints, like planarity or rigidity. Using hierarchical rigidity, both rigid 

and non-rigid motions can be estimated. This method also does not contain errors due 

to discrete differentiation and can be easily upgraded to achieve segmentation of the 

scene. Moreover, it is more immune to noise as a result of the MAP estimation with a 

more realistic projection being used. The most dominant drawback is the necessity of 

an initial depth field. The requirement of six parameters per pixel for the description of 

motion is also another disadvantage, especially from computational complexity.
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3 .3 .2  S im u la tion s

Although, the formulation is valid for non-rigid motion (which includes the rigid motion 

as a special case), all the simulations are carried on artificial sequences, which have rigid 

motions (Figures 3.1 and 3.4). Nevertheless, these simulations support the validit,y of 

the non-rigid motion estimation algorithm, at least for the rigid motion case.

The experiments consist of three stages, as validation of hierarchical rigidity, handling 

multiple moving objects and noise analysis.

Figure 3.1: (ci), (b) Consecutive original frames of Cube sequence, (c) Ideal motion 
parameter value for lô  shown as an intensity representation.

In the first step, hierarchical rigidity is tested. Minimization of Eciuation 3.14 is 

aehieved using ICM for 3 scales with only 5 iterations at each scale. While all the 

3-D motion parameters are estimated, a typical result is shown in Figure 3.2. The 

estimated parameter Wz is shown by intensities over the image for coarsest and finest 

levels in Figure 3.2 (a) and (b), respectively. The block sizes of the coarsest level can be 

observed from this figure. The estimates at the finest level are similar to ideal results at 

Figure 3.1 (c). In Figure 3.2 (c), the histogram representation of all 3-D parameters are 

shown compared to the true values. The distribution of the true motion values, which 

are shown by the dotted lines, are similar to that of the estimated 3-D motion parameters 

in this histogram. 2-D projection of the estimated 3-D motion parameters is also shown 

in Figure 3.3 by a “needlegram” on the reconstructed image. The reconstructed second 

frame of Cube sequence is oljtained by using the previous available frame, known depth
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values and 3-D motion parameters. The obtained needlegram has sirnilcir results with the 

true 2- D motion vectors, except for the occlusion regions. Hence, it can be concluded that 

the hiercirchical rigidity approach gives satisfactory results for rigid motion estimation.

Tz Ty

(c)

Figure 3.2; The intensity representation of Wz parameter lor (a) 8x8 block size (coarsest
and (b) 1x 1 block size (finest level), (c) The histogram representation of гOr.X ,i J ,Z and

l'x,y,z parameters. Dotted lines ¿ire true, where as solid lines are the estimated values.

In the second step, two consecutive frames (Figure 3.4) of a scene with two cubes
If

{ Cubes sequence) moving with different speeds are examined using hierarchical rigidity. 

After minimization of the energy function, the results in Figure 3.5 show that without
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Figure 3.3: (a) The estimated and (b) true needlegrarris of “Cube” on the reconstructed 
frames.

an initicd segmentation field, the method achieves good results. In the histogram 

representation of ty parameter in Figure 3.5, while the middle peak, which is 0 pixel 

translation along y — axis, represents background, the two peaks at positive and negative 

sides show the moving two cubes. The results show that this method can hcuidle multiple 

ob jects and assign their 3-D motion values, correctly for this input frame pair.

Figure 3.4: Original (a) first and (b) second frames of Cubes sequence

As a final step, noise analysis is performed on the proposed non-rigid 3-D motion 

estimation method. Two frames of Cube sequence are corrupted with Gaussian noise, 

resulting with frames, having SNRyeak values as 28 dB and 43 dB. The minimization 

of Equation 3.14 is achieved using these noise corrupted input data, in Figure 3.6,
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Figure 3.5: Histogram of ty parameter for “Cubes” . True values are shown using solid, 
whereas the estimates with dotted lines.

the Wx and ty components of 3-D motion parameters are presented using histogram 

representation. It is observed that while the injected noise on input increases, the 

performance of the estimation degrades, as expected. For the input with SNRp equals 

to 40 dB, the results are acceptable.

NOISE ANALYSIS on Wx NOISE ANALYSIS on Ty

(a) (b)

Figure 3 .6 : The estimation results of motion parameters (a) Wx and (b) ty for input 
frames with different SNRpeak values.
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3.4 Discussion on the Motion Models

In this chapter, two different 3-D motion models are analyzed : rigid and non-rigid. 

While non-rigid motion analysis is more general, it is difficult to obtain both motion 

and deformable structure by only observing consecutive video frames. Moreover, the 

computational complexity due to six motion parameters at each point of a non-rigid 

object is also ineffective for real-time communication applications. Hence, it is better to 

complete the simulations on this algorithm at this point, since the method of hierarchical 

rigidity is almost impossible to be utilized in a low bit-rate video coder. Nevertheless, 

rather than video coding, in the field of non-rigid motion analysis, the proposed non- 

rigid motion model is a novel approach to the challenging deformable motion analysis 

problem. The concept of hierarchical rigidity is promising, since it handles both global 

rigid and local non-rigid motions in one formulation. However, in the proposed method, 

depth estimation is still an open problem to be overcome before the application of the 

algorithm to areas that require non-rigid motion analysis.

In contrast with non-rigid motion models, it can be stated that rigid motion analysis 

is more preferable in video compression algorithms, since rigid motion description is 

ultimately efficient with low complexity. Consequently, when the aim is video coding 

utilizing 3-D motion information, rigid body analysis should be preferred to non-rigid 

counterpart. However, the most dominant drawback of the utilized E-matrix method 

is its susceptibility to input noise and errors. For small images (e.g., QCIF size), the 

unavoidable quantization of 2-D motion vectors at pel accuracy, also degrades results 

considerably. For example, in artificial sequences with known 2-D motion, if the true 

2-D motion vector accuracy utilized in 3-D motion estimation step is high, then E-matrix 

method will work without any problems. Even the truncation of the floating true motion 

components into integer numbers affects the accuracy of E-matrix method (Table 3.1). 

Hence, in case of using small sized (e.g. QCIF size) images, due to unavoidable accuracy 

problems, 3-D motion estimates always contain some error.

On the other hand, in the proposed rigid 3-D motion estimation method, by rejecting



Chapter 3. 3-D Motion Estimation 53

the outliers of the dense 2-D motion field, the overall performance of the 3-D motion 

estimation algorithm, which uses 2-D motion matches, improves considerably compared 

to the case that uses all the available 2-D motion vectors without any selection. Hence, 

rejection of outliers is a necessary step in the algorithm. In the computer simulations, 

as the obtained test parameters indicate, the estimated 3-D motion parameters are 

acceptable. The selection of motion vectors are achieved by the help of a performance 

indicator. The superior performance of the proposed rigid 3-D motion estimation 

algorithm is a result of utilizing RANSAC and the proposed indicator. This indicator 

compare the input variables and the model both implicitly and explicitly. The two test 

parameters based on eigenvalues implicitly require the selected input motion vectors to 

be a projection of 3-D motion. On the other hand, the other three parameters compare 

explicitly the 2-D projections of the estimated 3-D motion and structure (model) with 

the input 2-D motion vectors. Hence, the joint utilization of these test parameters results 

in better estimates compared to the least-squares solution of the E-matrix.

Although the proposed rigid motion model has obvious advantages that are explained 

in the previous paragraph, it might also be more advantageous to select between 2-D and 

rigid 3-D motion models according to the motion of the current object rather than using 

only the proposed rigid 3-D motion model. The rigid 3-D motion model is unsuccessful 

for non-rigid motions or incorrectly segmented articulated motions. 2-D motion models 

(especially MRF-based models), which are more flexible for any kind of motion, will 

still survive and obtain better performance with respect to its 3-D rigid counterpart in 

such situations. Hence adaptive motion model selection may improve the performance 

of any system with some increase in the complexity of the algorithm. In such a system, 

if the motion of an object is found out to be non-rigid, instead of encoding 3-D motion 

parameters and depth field, dense 2-D motion field obtained by minimizing Equation 2.1 

can be utilized for that object.

In this chapter, a novel rigid 3-D object-based motion estimation method is proposed. 

The simulation results show that this method can be easily inserted into an object- 

based video compression algorithm. The compression performance of such a coding
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algorithm depends on estimation and efficient encoding of the depth field, since rigid 

motion description is very efficient. Depth analysis is examined in detail in the next 

chapter.



Chapter 4

Depth Analysis in 3-D Motion 
Models

Depth analysis is necessary for any video coding scheme which uses 3-D motion models. 

Without having depth information of a point on the image, it is not possible to find 

the next coordinate of the same point after the motion. Hence, for motion compensated 

prediction of the intensities, after finding the 3-D motion parameters, a depth should be 

estimated and afterwards encoded for each point of an object.

If the main application area is determined as video coding, there are two main 

difficulties for depth analysis. First of all, the estimated depth field should be as robust 

as possible to input noise and errors, since it is very likely to feed noisy measurements 

and observations as inputs to the depth estimation algorithm. Moreover, the obtained 

depth field should also be encoded very efficiently in order to use 3-D motion models in 

video coding algorithms for low bit-rates.

Some of the rigid 3-D motion estimation algorithms in the literature are capable 

of finding a depth field. While direct methods in 3-D motion analysis only find a 

depth field for some specific motions such as pure rotation or pure translation [77], 

non-rigid motion estimation methods always require an initial estimate of the depth

55
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field that is usually obtained from an extra sensor data. On the other hand, feature- 

based methods [65], such as E-matrix, can only find the depth values for locations which 

have correspondences between frames. Hence, the obtained sparse depth field has to be 

interpolated by somehow in order to be used in motion compensation for compression. 

Apart from all of these, all the depth estimation algorithms in the literature try to find 

a “true” depth field which is absolutely necessary for the applications in computer and 

robot vision. However, finding the correct depth field with many unnecessary details may 

not be preferable from lossy video coding point of view. For this case, depth analysis 

should be re-analyzed carefully taking into account both rate and distortion.

In the next sections, depth fields are examined in order to solve two main problems 

which are noise immunity and efficient encoding. After defining the sources of error, 

a MAP  formulation is proposed to find a robust depth estimator in the next section. 

Simulations are conducted to test the performance of the algorithm. Afterwards, 

encoding of the depth field is examined in the rate-distortion sense. An efficient 

novel algorithm, which encodes the implicitly available true depth field by taking both 

distortion and bit-rate into account, is proposed. The performance of the algorithm is 

demonstrated by giving some experimental results. At the final section, a discussion on 

the similarities of the proposed two algorithms is given.

4.1 Noise Immune Depth Estimation

Depth estimation is usually achieved after the 3-D motion parameters are obtained. 

Thus, 3-D motion estimation errors might severely affect the performance of depth 

analysis. Since many of the 3-D motion estimation algorithms, including the proposed 

method in the previous chapter, are susceptible to noise, there should be an extra effort 

to maintain error robustness during depth estimation.

Dense depth field can be estimated using a MAP formulation, similar to Equations 2.1 

and 3.14. Using the “true” (error-free) intensity, and 3-D motion, M ,  fields, it is
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possible to obtain the depth field, exactly and this relation is shown in Figure 4.1 . 

However, there is no longer an exact relation when these parameters are observed with 

some noise. Hence, Z  field should be estimated by taking noise into account. Using 

the observed noise contaminated consecutive intensity fields, and the observed 3-

D motion field, tV4, which may also contain some error due to 2-D and 3-D motion 

estimation steps, MAP  estimate of the depth field can be found by maximizing a 

conditional probability distribution. Moreover, this distribution can also be written 

as Gibbsian. A similar Gibbs energy function can be found in [127].

PROBABILISTIC ESTIMATION

Figure 4 .1 : Depth estimation using MAP formulation.

4.1.1 Formulation

MAP  estimate of the depth field can be found by maximizing the probability density 

below :

m a x { P { Z \ M , i i , i t , i t - i ) ]  · (4-1)

If this density can be written as a Gibbsian, the corresponding depth estimate will be
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equal to

¿  =  a v g {m m U {Z \ M ,n ju i t - i ) }  . (4.2)

Using a priori information and the observations, the Gibbs energy function can be written
clS

U (2  \ i (4-3)

where

(^ i(^ p (O )-^ i- i (x p (^ -l) ) )^  > (4.4)
XpGA

-  ^p{^p,c,t)y ■  ̂ -  R{^p,c)) ■ (4.5)
XpgA Xp,c6»?Xp

In the equation above, Xp(i — 1 ) is the previous coordinate of the object point, p, 

corresponding to the current coordinate Xp(t)  =  (a:p(i), r/p(i)),  and these coordinates 

are related by Equation 3.8. Xp,c(i)  is the neighbor coordinate of X p(i)  defined in r/xp.

In Equation 4.5, Uz term is the a priori information about the depth field Z. This 

function supports the experience that it is more likely to have neighboring points of 

an object to have similar depths. Uz term can also be chosen differently while still 

supporting the smooth variation of the depth field. The difference between the spatial 

differentials of the neighboring depth values can be utilized rather than simply taking 

the difference between depth values. In this case, the smoothness of the depth fields will 

be more emphasized. Obviously the smooth variation of depth field is not valid along 

object boundaries which are segmented previously by the TZ field. On the other hand, 

similar to Equations 2.1 and 3.15, term models the difference between the current 

intensity and its motion compensated prediction as a Gaussian noise.

The minimization of Equation 4.3 can be achieved by similar global optimization 

methods which are examined in Section 2 .3.2. Since there is only one unknown (depth 

value) at each image point, the computation time is considerably smaller with respect 

to 2-D motion estimation and segmentation.

Using the previously estimated dense 2-D motion'"vectors, a Zp{xp,t) value can also 

be found by linearly solving Equation 3.8 independently at each location. However, such
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an attempt might result in degraded results since the performance of this estimation 

is susceptible to both 2-D and 3-D motion parameter errors and there might be some 

“untrustable” estimates among the dense 2-D motion vectors. The E-matrix method 

finds the depth values in a similar noise-prone way [93].

The MAP estimate, É, is a dense depth field, consisting of Z {xp ,t) defined at each 

point on the image. Hence, the intensity of all points can be motion compensated 

(i.e., predicted by the 3-D motion pai'ameters and the depth value at that point using 

Equation 3.8) from the previous reconstructed frame at the receiver, if the 3-D motion 

parameters and dense depth field are transmitted for each object. An object-based 3-D 

motion and depth estimation algorithm is proposed using the methods explained up to 

this point. The corresponding flowchart is shown in Figure 4.2. However, in order to 

apply this algorithm in video coding, the encoding of this dense depth field should be 

achieved; a solution to this challenging problem is presented in Section 4.2 .

l-l

M
z
R

/  : Input Frame 
R : Segmentation Field 
D : 2-D Motion Field 
M : 3-D Motion Parameter Set 
Z : Depth Field

Figure 4 .2 : The proposed rigid 3-D object-based motion and depth estimation scheme 
which can be used in object-based video coding.

4.1.2 Simulations

In this section, some experimental results are presented to evaluate the performance 

of the proposed MAP-based depth estimation algorithm. Since the main advantage 

of the algorithm is its noise immunity, the algorithm should be compared with some
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conventional depth estimators in noisy sequences. The experiments are conducted in 

two phases, in which artificial and standard sequences are used, respectively.

R o b u s t  D e p t h  E s t im a t io n  u s in g  A r t if ic ia l  D a t a

In the first phase, the intensities of an artificial frame pair, whose true depth and 3-D 

motion parameters are known beforehand, are injected with Gaussian noise. Using these 

frames, depth is found by both the E-matrix and the proposed MAP-based method. Since 

the superiority of utilizing RANSAC in 3-D motion estimation is observed during the 

preceding simulations, this error-robust version is used to find the 3-D motion parameters 

in the E-matrix method. In order to quantitatively compare two methods for different 

noise levels, five quality parameters, which are very similar to the test parameters in 

Section 3.2.1 are defined as follows :

• Q i =
^X€/?, , where is the horizontal component for the 2-D

projection of the estimated 3-D motion and D^^g is the horizontal component for 

the true projected motion for the Object i .

• Qi —
^xeRi

, where is the vertical component for the 2-D

projection of the estimated 3-D motion and D^.^g is the vertical component for 

the true projected motion for the Object i.

• Qz =  where rit is the number of negative depth values for N  tested points at 

time t.

\Z'p (x ) —J?(x)j ^
• O4 =  — — _ — I where Z is the estimated and ZjTue is the true depth 

value at the corresponding location for the Object i.

• Qs =  jiExpeRi (^<(xp(0) -  h - i M t  -  1)))^, where the relation between X p (i )  

and Xp(f — 1) is given using the Equation 3.8.



Chapter 4. Depth Analysis in 3-D Motion Models 61

Alter these definitions, the simulations can be evaluated. Two consecutive frames 

from the noise-free artihcial frame sequence Salecube and the ideal segmentation of 

the moving cube in the second frame are shown in Figure 4.3 . In these frames, the 

background (everything except the cube) is stationary cind depth field of this part is 

be,yond the scope of this dissertation (indeed, since the background is stationary, it can 

be taken as a poster with no depth variation).

İiİil■İ

iS i

(c)

Figure 4.3: Original (a)Rrst and (b)second frames of Salecube sequence, (c) The ideal 
segmentation result.

In order to test noise immunity, Gaussian noise is injected into both frames of this 

sequence. For different noise levels, the resulting noisy second frames cire presented in 

Figure 4.4.

Figure 4.4: Second frame from Salecube sequence. The results after noise injection :(a) 
35 dB, (b) 25 clB, (c) 15 dB.

In the hrst step of this phase, the noise immunity of the 2-D motion estimation 

algoritlirn is tested, since correct 2-D projections of the real motion is known. The
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results cu-e given in Table 4.1. Some typical results are also shown in Figure 4.5.

Table 4.1: Noise ¿inalysis of 2-D motion estimation step for Salecube sequence, 'two 
quality parameters, Qy-z and the SNRpeak of the reconstructed second frame are 
tabulated for different noise levels.

A Q Q2 SNRp̂ aUdB)
N o i s e l e s s 0.1460 0.1945 31.68

45 dB 0.1456 0.1956 31.66
35 dB 0.1491 0.2002 29.36
25 dB 0.1512 0.2564 25.13
15 dB 0.2293 0.2611 22.46

Figure 4.5: The needlegram representation of the motion between first and second 
frames of Salecube sequence. The results are obtained for (a) true, (b) noise-free, (c) 
15 dB cases.

As it is expected, in Table 4.1 the performance of the motion estimates decreases as 

the level of noise inherent in the image frames increcises. However, Figure 4.5 shows that 

the amount of error in 2-D motion estimation step is not critical. Hence, it can be stated 

that 2-D motion estimation step is considerably noise immune due to the modeling of 

noise in Gibbs formulation (Equation 2 .1 ). Sensitivity analysis can also be conducted to 

understand the effects of noise better.

Using the results of 2-D motion estimation step, 3-D motion and structure analysis 

is achieved. Depth estimates are obtained using both the conventional E-rnatrix (with
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RANSAC) [93] and MAP-based formulation of Equation 4.3. The quality parameters are 

used to evaluate the similarity of the estimated depth with its true counterpart. Apart 

from different noise levels, in order to see the effect of 2-D motion estimation, the true 

(quantized) projected motion, which can be the output of an ideal 2-D motion estimation 

algorithm, is also utilized in this step. The results are tabulated in Tables 4.2 and 4.3.

Table 4.2: The results of the noise analysis of depth fields for Salecube sequence using 
E-matrix method.

Input
Quantized True
Noise-free

45 dB
35 dB
25 dB
15 dB

Q
0 .0354
0.1181
0.1504
0.1227
0.3277
0.4670

Q2
0.0206
0.2404
0.2066
0.2283
0.2490
0.2823

Q3
0.0127
0.0000
0.0048
0.0000
0.0409
0.1065

Q4
0.3799
0.3147
0.4900
0.4966
0.5113
0.7897

Q5
388.33
570.17
632.51
767.71
1665.72
4331.14

Table 4.3: The results of the noise analysis of depth fields for Salecube sequence using 
MAP-based formulation

Input Qi Q2 Qz Q4 Qs
Quaint ized True 0.0332 0.0175 0.0000 0.3356 327.16
Noise-free 0.1076 0.2410 0.0000 0.3147 274.64

45 dB 0.1220 0.2033 0.0000 0.4743 297.99
35 dB 0.1092 0.2251 0.0000 0.4951 301.73
25 dB 0.2020 0.1989 0.0000 0.4767 451.60
15 dB 0.3090 0.1856 0.0000 0.5468 1691.49

The most important observation in Tables 4.2 and 4.3 is the difference between 

the rate of change of quality parameters corresponding for the E-matrix and proposed 

method, while the input error increases. With small amount of noise, both algorithms

have almost similar performances while estimating the depth. However, the quality
'/

of the depth estimates for the E-matrix method degrades considerably with respect to 

MAP-based formulation while the input noise increases. Some typical resulting images 

are shown in Figures 4.6, 4.7 and 4.8.
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TRUE DEPTH FIELD DEPTH FIELD USING E-MATRIX (SNRp = 15dB)

(c)

Figure 4.6: The rnesh representations of the depth fields for the second frame of Salecube 
sequence. The results are obtained for (a) true, (b) 15 dB E-matrix, (c) 15 dB proposed 
cilgorithrn, cases.

In Figure 4.6(b), the estimate depth field has gross errors due to noise susceptibility 

of the E-rna.trix method. As it C cin  be observed from the corresponding depth, which is 

obtained from MAP estimation, the depth field improves both visuall^y and quantitatively 

(Table 4..3). The needlegrams in Figure 4.7 also show that noise immunity of the proposed 

method is better.

Figure 4.7: The needlegram representations of the 2-D motion field which is obtained 
after projecting the estimated 3-D motion and depth field of the second frame of Salecuhe 
sequence. The results are obtained for (a) true, (b) 15 dB E-matrix, (c) 15 dB proposed 
algorithm, cases.
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Figure 4.8: The reconstructed frame of the second frame of Salecube sequence which 
is obtcvined using the the projected 2-D motion field of the estimated 3-D motion and 
depth field. The results cire obtained using MAP-based method for (a) noise-free, (b) 
45 dB, (c) 25 dB, cases.

R o b u s t  D e p t h  E s t im a t io n  u s in g  R e a l  D a t a

In the second phase of the experiments, 38th and 41th frames of Mother and Daughter 

sequence, and the previously obtained segmentation field (Figure 2.7) are used to evaluate 

the performance of the proposed technique. Similar to the previous i:)hase, the original 

frcunes are contaminated with Gaussian noise. Using the proposed robust version of 

the E-rnatrix method, 3-D motion estimates cire obtained for both noise-free and noisy 

data. The 3-D motion estimates are compared using the test i:>arameters (T’1,2,3,4,5) and 

performance indicator [P ) of Section 3.2.1 in Table 4.4

Table 4.4: Noise analysis of 3-D motion estimation step for 38th and 41i/?. frames of 
Mother and Daughter sequence. Five test parameters, T'1,2,3,4,.5 and the the performance 
indicator, F, are tabulated for noise-free and noisy cases.

A Ti T2 Tz Ti T5 P
N o i s e - f r e e 0.467 0.928 0.178 0.000 0.000 0.388

15 dB 1.274 0.651 0.114 0.000 0.655 0.271

4'he effect of noise on 3-D motion parameter estimation can be observed in Table 4.4. 

Using the estimated parameters, depth field is found for both noisj  ̂ and noise-free cases
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using E-matrix and MAP-based methods. The results are shown in Figure 4.9.
0€PTH FIELD USING E-MATRlX (NwM .lrM )

DEPTH FIELD USING MAP ESTIMATION (NoiM-Ira·)

DEPTH F£LD USING E-MATFUX (SNIV -  IS (S)

Figure 4.9: The depth maps of the 41th frame of the Mother and Daughter sequence. 
The results are obtained using the E-matrix method for (a) noise-free, (b) 15 dB cases 
and also MAP-based method for (c) noise-free, (d) 15 dB, cases

Using the estimated depth values and 3-D motion parameters, the reconstructed 41i/i 

frame of Mother and Daughter sequence is shown in Figure 4.10 for noise-free cases using 

E-matrix and the proposed MAP-based formulation.

In Figure 4.10(b), it can be seen that the reconstructed face is deformed. Since this 

linear method does not take into account the intensity matches, on contrary to MAP  

estimation, the reconstructed video frames might be severely distorted; this is a severe 

drawback from coding point of view.
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Figure 4.10: The reconstructed noise-free 41th frame of Mother and Daughter sequence 
wliicli is obtained using the the projected 2-D motion field of the estimated 3-D motion 
and depth field. The results are obtained for noise-free Ccises. (a) Original (b) using 
E-matrix method (c) MAP-hased method.

4.2 Optimal Depth Estimation and Encoding

in many computer vision applications, such as robotics, estimation of physically true 

depth values is necessary. However in video coding, depth estimation problem can be 

solved in a different mcinner since true depth has secondary importance with respect 

to motion compensation between consecutive frames and encoding of this dense depth 

field. Purthermore, due to projection from the 3-D world to 2-D scenes, the physically 

true depth field may not be solved. In the rest of this section, the term “true” depth 

field means the set of depth values which lead to the exact intensity matches between 

consecutive frames. Hence, an approach to encode the depth field between two frames 

can be a joint optimization of the distortion of the reconstructed frame and the bit-rate 

of the encoded depth field. Moreover, such an approach can l̂ e formulated to find a, 

dense depth field which can not be obtained by most of the other methods [1]. It should 

be also noted that none of the current video coding methods with 3-D motion models 

propose a method for the efficient encoding of the depth field [20, 95, 96, 83, 94], except 

for some depth encoding algorithms in stereo video'coding cipplications [128].
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4.2.1 Theoretical Limits of Depth Encoding

Since any 3-D scene can be assumed as an output of a random source, the depth field of 

a scene will be a random field. The depth fields and also intensity frames obtained after 

perspective projection of the scene are only some mappings from this random source to 

a set of numbers and hence they are also random fields, having associated probability 

distributions. The assignment of probability to a depth field is meaningful if it matches 

the frequency of occurrence of that field in the real world; it is assumed that such an 

assignment is made. Using this probability measure, number of bits to encode this 

depth field can be determined according to basic principles of information theory [129]. 

Flowever, such an encoding approach is lossless and it may not be preferable in most of 

the very low bit-rate applications.

Rate-distortion theory [129] seeks for the minimum achievable rate of a source to 

be encoded under a distortion constraint. It is assumed that an unknown “process” 

exists between the true value at the source and reconstructed value at the receiver and 

rate-distortion theory guarantees reaching the minimum bit-rate using this process for 

an arbitrary distortion value [129]. According to this theory, rate and distortion have a 

mutual relation as it is shown in Figure 4.11. Entropy constrained vector quantization 

is one of the applications of rate-distortion theory to image coding [130].

B

A fz j

Figure 4.11: Rate (B) versus Distortion (A )

Inspired from rate-distortion theory, an algorithm can be proposed to find the dense



Chapter 4. Depth Analysis in 3-D Motion Models 69

depth values to be encoded. However, it should be noted that the number of bits to 

encode the unknown true depth field, which have zero distortion, is assumed to be 

higher than the “target” bit-rate or at least minimizing this bit-rate is still preferable. 

Otherwise lossless encoding of the true depth field with sufficient number of bits, yielding 

zero distortion, is the global optimum solution. Hence the aim is to decrease the bit- 

rate by sacrificing from quality in an effective way. For a defined distortion measure 

and a probability distribution of depth field source, a theoretical rate-distortion function 

exists. This function gives the relation between the distortion and the minimum amount 

of bits to encode the depth field that creates the corresponding distortion. For any given 

distortion value, there exists a minimum, but the procedure of finding such a minimum 

is unknown. A possible solution for finding the minimum is to minimize a function J  

which takes into account both bit-rate and distortion with respect to the depth field to 

be encoded. Hence the minimization process maps the true depth field to the encoded 

counterpart while taking into account distortion and bit-rate.

4.2.2 Selection of Encoding Criteria

In order to find a depth field to encode, a function, which represents both

distortion A and bit-rate B, can be minimized. There are many different ways to 

approach this vector optimization problem and the method of objective weighting [131] 

is a possible choice, which can be written cis

J { A , B )  =  A  +  \o-B (4.6)

where Aq is a constant which reflects the weighting between two different quantities A 

and B. Before achieving joint optimization of bit-rate and depth, a distortion criteria 

and a measure of bit-rate should be defined.



Chapter 4. Depth Analysis in 3-D Motion Models 70

D is t o r t io n  C r it e r ia

It is possible to define the distortion between the true and reconstructed depth values 

using input frame intensities. The distortion criteria, A can be defined as the average 

error over objects between the original and reconstructed frames as

(4.7)
xeRi

where N  is the total number of object points in region i?,·. It is the original frame which 

can also be written as below with the assumption that it is in a non-occlusion region, 

the illumination does not change, and there is no noise:

7i(x) = /i.i(x-D2D(^(x,i))) (4.8)

The reconstructed frame. It is also equal to

7,(x) =  / , _ i ( x - D 2 D ( ^ ( x , i ) ) )  (4.9)

In the above equation Z{x, t )  is the true and Z{x, t )  is the encoded depth values at 

location X, In the rest of this section t is dropped for notational simplicity and those 

depth functions are denoted as Z(x)  and Z{x).  Each location x  on the image plane at 

time t has a corresponding 3-D object point X  under perspective projection. Each X  has 

an assigned 3-D motion vector M 3/)(X ) which indicates its 3-D displacement from time 

i — 1 to i (Figure 2.1). The perspective projection of M 3£)(X) is denoted as D 2d (x )· 

Therefore, D 2d (x ) depends implicitly on the depth component of X , which is Z{x) .  To 

stress this dependence the notation D 2d {Z{x )) is used in Equation 4.8,4.9 and 4.15.

Since the true depth is unknown, it is better to use the Ihs of Eqiuition 4.8 instead 

of the rhs. Using this measure, the unknown true depth is implicitly available at the Ihs 

of Equation 4.8 in the intensity information at frame It. In other words, the difference 

between true and encoded depth fields are defined in a nonlinear way as in Equation 4.7. 

Such a nonlinear distortion measure is more preferable than taking directly the difference 

between true and estimated depth values, because the dense true depth values can not 

be obtained at each point. Besides compensation of intensities is more appropriate for 

video coding applications.
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B i t - r a t e  o f  E n c o d e d  D e p t h

In order to find an estimate for the bit-rate of the encoded depth field, a probability 

measure for the depth field must be defined. According to the source coding theorem, 

it is possible to find the number of bits required to encode any depth field by using this 

probability distribution. Although it is impossible to find an exact distribution of the 

dense depth fields existing in 3-D world, some assumptions can be made. In many indoor 

scenes, it is more likely to observe objects with smooth depth variations except at object 

boundaries. Hence a Gibbs distribution taking into account these observations can be 

written.

For each segmented object in the scene, the joint conditional probability distribution 

function of the encoded depth field, Z,  can be written as

^-Uz(Z)-k
P ( Z )  = (4.10)C~^z(Z)-k

where k is the energy constant; the denominator is the normalization factor and Uz is 

the Gibbs energy function. Since the only a priori information is having a smooth depth 

field over each segmented object, the energy function of the Gibbs distribution can be 

written as

Uz {2 )=  E  E  (Z (x )-Z (x j) ' (4.11)
XGRi  X cE r? x

where the sum is over all points x  of the ¿th object, segmented by the region R{ and rjx is 

the neighborhood of x. Such a distribution function gives higher probability to smooth 

surfaces, which is not contradictory to indoor studio scenes.

The required number of bits, B, of the depth field to be transmitted to receiver side 

is simply equal to

B = -log 2 {P{Z))  (4.12)

which can be written as

B =  k ‘ log2t - Y ^  {Z{-x) -  Z { K c ) f  c{k)
x e R i  XcGr^x

(4.13)
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where constant c(k) does not depend on Z  and is equal to

c{k) =  log2 e j (4.14)

The value of c{k) parameter is simply equal to j lo g 2{ ^ )  since the Gibbs distribution, 

which is defined in Equation 4.11, is Gaussian and the normalization factor of a normal 

distribution is explicitly known. Hence Equation 4.13 gives the required number of bits 

to encode the transmitted depth field, Z. According to this bit-rate measure, smooth 

surfaces will need less number of bits to be encoded and this result again supports 

intuitive reasoning.

M in im iz a t io n  o f  t h e  E n c o d in g  C r it e r ia

Distortion and bit-rate is jointly optimized by minimizing Equation 4.6 with respect to 

Z  and this can be written as

ny" I i v  S  -  D20 (Z(x))))'] + A ( £  E  (Z(x) -  Z(x,))') I
xGH. / \xeRiŷ ceiix )  J

(4.15)

Since c(k) parameter does not depend on Z,  it is removed from Equation 4.15. k and 

/0̂ 2 (e) constants can be multiplied with Ao constant and hence this product is defined 

to be A .

Minimization of Equation 4.15 is a global optimization problem and Simulated 

Annealing (SA) [48] is a possible, computationally demanding but optimal solution. 

A suboptimal version of SA is ICM algorithm [51] which gives comparable results with 

SA with much less computation time, when it has good initial estimates or applied in a 

multiresolution manner [64].

For different choices of A, different values for rate and distortion are obtained. For a 

given bit-rate (or distortion), the corresponding distoi-tion (or bit-rate) is optimal. A may 

be specified externally. Equivalently, some external constraints may be used to imply a A. 

For example, there might be some upper limits or some “target” values for bit-rate and/or
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distortion in low bit-rate video coding applications, these limits can be added to the 

minimization problem as extra constraints so that a A value can be selected. Although, 

c{k) parameter is removed from minimization, in order to calculate a theoretical bit- 

rate value, this parameter should be considered after assigning an appropriate value to 

parameter k. Since it is almost impossible to find the “true” value of k, it is better to fix 

a target distortion value, instead of bit-rate, to select among A values. Hence the A value 

is chosen so that the corresponding distortion is nearest to the target distortion value 

among all possible A values. Since it is computationall}'^ costly to make minimization for 

all values of A, a suboptimal solution can be selecting the best A among a predetermined 

small discrete set.

Given previous reconstructed frame and 3-D motion parameters, the unknown depth 

field at present frame is determined by taking into account both reconstructed frame 

quality and the amount of bits required to encode this depth field. It is possible to 

obtain better results with respect to any encoding algorithm which does not take into 

account the rate-distortion dilemma. Hence, this approach is well-suited for video coding 

applications with a 3-D motion model.

T h e  D e p t h  E n c o d e r

The intensity of any point belonging to an object in the current frame will be predicted 

from a corresponding intensity in the previous reconstructed frame using only the 

encoded 3-D motion parameters and depth field. Assuming three rotation angles and 

three translation values can be encoded by very few bits, the compression performance 

of this method mainly depends on depth encoding. Using the methods explained in the 

previous sections, an algorithm is proposed in order to encode the depth field between 

two consecutive frames.

Although finding an efficient depth field to be encoded is explained, approaching to 

the theoretical bit-rate limit is still unknown. Since it is impossible to give a codeword 

to all existing depth fields according to their probabilities, another coding strategy must



Chapter 4. Depth Analysis in 3-D Motion Models 74

be followed. Predictive coding can be applied to remove the redundancy existing in 

the depth field. By linearly predicting each depth value using its causal neighbors and 

sending only the prediction error, some compression is possible. Before transmission, 

the redundancy in this error field can further be removed by using one of the lossless 

compression algorithms. The lossless encoding is achieved as follows: every depth value 

is predicted from its casual horizontal and vertical neighbors (xhor and Xyer respectively) 
simply as

■^e( )̂ =  0.5 ^¿(Xver) +  ■^(Xhor))

and the prediction error, Z — Zg, is encoded in a lossless manner using Lempel-Ziv 

coding[129] . Although sophisticated schemes may be employed, this simple prediction 

gives satisfactory results.

Hence, the overall algorithm can be summarized as below :

1. Find 2-D correspondences between two 2-D consecutive frames (projections of the 

3-D scene) and segmentation of the current image by minimizing Equation 2.1.

2. Find 3-D motion parameters (rotation matrix and translation vector) using E-matrix 

method (with RANSAC) by the help 2-D correspondences for each object, separately.

3. Using segmented 3-D motion parameters and two input frames, minimize 

Equation 4.15 for a given A to find the best depth field.

If A is not given externally, it is possible to continue as follows :

3 .b Repeat step 3 for various values of A.

3 . C Choose the best depth estimate among different A values according to a “target” 

distortion.

4. Encode the selected best depth field using a lossless compression method.

Using this algorithm, the intensities of each segmented rigid object are reconstructed 

at the receiver by using the previous available frame, 3-D motion parameters (rotation 

matrix and translation vector) and encoded depth field.
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4.2.3 Simulations

Experiments on depth encoding are conducted again in two phases. In the first phase, 

an artificial sequence, whose 3-D motion parameters and depth values are known, is 

used. Hence in this phase, motion estimation is not considered and it is assumed that 

all the necessary motion parameters were successfully estimated. The aim of this phase 

is to observe the performance of the method without taking into account errors due to 

motion estimation. In the second phase of experiments, frames from standard sequences 

are used to estimate 3-D motion and depth field of objects. The results of this phase give 

the required number of bits to encode the moving objects for a given distortion value.

D e p t h  E n c o d in g  u s in g  A r t if ic ia l  D a t a

Two consecutive frames (64 x 64) of the artificial Cube sequence with known 3-D motion 

and depth field, are shown in Figure 3.1. In these frames, a cube is rotating along x, 

y and z axes with 5 degrees each and translating with 5 pixels at the same time. The 

focal length of the system is equal to 5(i pixels and the average depth of the cube from 

the origin is 60 pixels. Hence the cube is moving near the image plane and perspective 

deformations are visible, although the cube remains rigid. The background is a 2-D 

poster of a girls head. The segmentation of the frames is also achieved by hand and 

shown in Figure 4.14. The optical axis, which is shown as the z-axis in Figure 2.1, 

passes through the upper left corners of these images.

By the help of the 3-D motion parameters and the segmentation field, the 

minimization of Equation 4.15 is achieved using a multiscale version of the deterministic 

ICM algorithm [51, 64], which is explained in the previous chapters as MCR. Using the 

method of objective weighting, for different values of A, different rate-distortion pairs 

are found by minimizing Equation 4.15 using the MCR algorithm. The obtained depth 

field is inserted into Equations 4.7 and 4.13 to obtain the distortion. A, and computed 

bit-rate, B, values, respectively. These values are tabulated in the second and third 

columns of Table 4.5, respectively.
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Table 4.5: The experimental results for Cube sequence. For different values of A, 
Equation 4.15 is minimized to obtain A  and B (with k =  0.5) values. Bit-rate of the 
depth field is obtained after lossless encoding of the prediction error field.

A B Bit-rate(bits/object)
True Depth 2115 13328

0.001 1388 6128
10 0.105 1268 5880

100 0.740 1157 5224
1000 13.427 941 5152

10000 35.683 851 4872
100000 41.382 801 4704

Note that, B values are theoretical limits for the required number of bits to encode 

the corresponding depth fields for a given value of A: =  0.5. Obviously, B values can only 

be accepted as theoretical limits if the proposed probability distribution of the depth 

fields can exactly match the frequency of occurrence of the corresponding fields in the 

real world and such an exact match for the probabilities is not guaranteed. Even if 

the distribution is chosen correctly, the arbitrary selection of k parameter still causes 

problems in determination of the theoretical bit-rate. Nevertheless, when the algorithm 

presented in Section 4.2.2 is used with the arbitrary selection k =  0.5, the values 

tabulated on the fourth column of Table 4.5 are obtained. The similar behavior between 

B and the experimental results on the third column of the same table supports the 

validity of the overall formulation (Figure 4.11). Different selection of k might increase 

the similarity of the two curves even more. Therefore, as Table 4.5 and Figure 4.11 

indicate, the theoretical and practical results are in harmony. Finally, it can be concluded 

that B can be accepted as the theoretical bit-rate limit with the assumption that the 

proposed probability distribution and k parameter are correct.

During experiments distortion is increasing while bit-rate is decreasing, as expected 

(Figure 4.11). In Figure 4.12, the computed (Equation 4.13 with arbitrary selection of
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k =  0.5) and the experimental bit-rate and distortion curves are plotted for A values 

shown in Table 4.5. The selection of best A among them can be done according to a 

target distortion chosen by the user. In Figure 4.13, the true and encoded depth fields 

(A =  1000) are shown. The encoded depth field is much smoother especially at the 

intersection of cube faces with respect to true field and hence better compression is 

achieved in this way. However the distortion increases as a result of this smoothing.

BIT-RATE vs. DISTORTION

m  8000  

t
CO 6000

- f : Computed 

*: Experimental

15 20  25  30
DISTORTION

Figure 4.12: Bit-rate vs. distortion curve for computed and experimental bit-rate 
values for “Cube” sequence for different values of A (tabulated in Table 4.5).

In Figure 4.14, current frame is reconstructed using 3-D motion parameters, previous 

frame and encoded depth field (A =  1000). The SNRpeak is equal to 41 dB inside 

the moving cube. The needlegram of projected 3-D motion using the encoded depth 

field supports visual motion. The TU regions are also found according to motion 

compensation error between original and reconstructed frames and locates the occluded 

region at the top of the cube. TU regions are segmented by using Equation 2.1 where 

D is replaced with D 2D (see Chapter 5).

D e p t h  E n c o d in g  u s in g  R e a l  D a t a

Two different frame pairs are used in order to check the performance of the proposed 

depth encoding scheme. These pairs are shown in Figure 2.3 and 2.6, respectively. For
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Figure 4.13: The mesh representations of the (a) true and (b) encoded depth fields 
of the current frame of the “Cube” sequence, (c) Depth field with intensity description 
(color-bar shows the depth levels with respect to intensities). Note that the assigned 
depth values for the background is dummy since it can not be determined by any means.

both frame pairs, the .3-D motion jDarameters of the segmented objects are found using 

the proposed algorithm in Section 3.2.1.
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(a) (b)

(d)

Figure 4.14: The experimental results for “Cube” sequence; (a) Segmentation, (b) 
Reconstructed frame using encoded depth with TU cireas detected, (c) The projection 
of 3-D motion as a “needlegram” ( D 2d (.Ẑ (x , t)) of Equation 4.9 is represented by the 
vector whose direction is from the thicker end to the thinner end of the pin where the 
thinner end shows x {/)) , (d) TU arecis (white).

Considering the frame pair in Figure 2.6, Equation 4.15 is minimized again by using 

the MCR method for various values of A and the results are shown in Figure 4.15 for an 

arbitrary value of k =  0.5 and tabulated in Table 4.6.

In the table above, the experimental bit-rate values are also shown after lossless 

encoding of the prediction error of the depth field. As it is expected, the distortion is 

decreasing for increasing number of bits to encode the depth field. If the target distortionIf
is chosen to be 60, which corresponds to approximately 30 dB SNRpeak then the best 

value of A Cell! be chosen as 5. In Figure 4.16, the reconstructed current freune, which is
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Table 4.6: For different values of A, Equation 4.6 is minimized to obtain A  and B (with 
arbitrary k — 0.5) values. Bit-rate is obtained after encoding of the prediction error.

A A B Bit-rate(bits/obj ect)
1 33 9200 14928
5 60 4586 10312
10 65 4147 9752
15 69 3904 8928
25 75 2848 7512
50 93 2455 6288
100 118 2288 5656
1000 243 2118 3560

uf 10000 -
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Figure 4.15: For different values of A, corresponding rate-distortion pairs;

obtained using the estimated 3-D motion parameters, previous frame and the encoded 

depth field, is shown for A =  5. The TU areas are segmented by using Equation 2.1 

(D  is replaced with T>2d ) and the SNRpeak of the overall image is around 33 dB except 

these TU regions.

Further simulations are achieved for a multi-object scene, which is shown in 

Figure 2.3. After the necessary 3-D motion estimation step. Equation 4.15 is minimized 

for various values of A. The distortion values for each object are tabulated in Table 4.7. 

On the same table, the experimental bit-rate values are also shown after lossless encoding
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ENCODED DEPTH FIELD

Figure 4.16: Бог the segmented head, (a) Encoded depth field and (b) reconstructed 
frame using the encoded depth field and motion parameters, lor Л =  5

of the prediction error of the estimated depth fields.

Table 4.7: The experimental results for “Salesnicui” sequence. For each object and 
different values of A, Equation 4.15 is rninimfized to obtain the corresponding Д and 
bit-rate values.

O b ject 1 O b ject 2 O b ject 3 O b ject 4 O b ject 5
A Д Bits Д Bits Д Bits Д Bits Д Bits
1 70.6 5432 118.8 3904 221.8 6592 23.3 2536 2316.2 1240
10 155.4 2656 191.1 3601 227.6 5696 26.8 2320 2317.5 1200
50 176.4 1472 199.2 3248 258.3 4704 34.4 2201 2317.3 1144
100 177.2 1402 203.4 3224 281.6 4344 49.2 2152 2318.5 1136
1000 184.3 1304 836.2 2512 442.9 2608 216.5 1848 2318.2 1168
10000 201.2 1264 1524.9 1272 590.6 1288 981.8 1296 2319.0 1160

In Figure 4.17, the reconstructed current frame is shown for A =  100. The TU areas 

are segmented by using Equation 2.1 and the visiuil quality of the reconstructed frame is 

aeceptable. A significant part of object 5 is successfully segmented as TU. As expected, 

the projections of the 3-D motions are meaningful for the rigid objects 1, 3 and 4. The 

obtained depth values for the objects are also represented in the same figure for the same 

va,lue of A.
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ESTIMATED DEPTH FOR SALESMAN [10-16]
0>)

ESTIMATED DEPTH FOR SALESMAN (10- 16)

Figure 4.17: The results of 3-D motion and depth estimation for Salesman sequence;(a) 
Motion compensated current frame using 3-D motion parameters and encoded depth held 
(TU areas are segmented) (b) Needlegrarn of 2-D projection of 3-D motion; Encoded 
depth field with (c) mesh and (d) intensity representations.

4.3 Discussion on Depth Estimation and Encoding

In this chcipter, two different methods to obtain a depth held are examined. One of the < 

methods gives the depth held simply as the MAP estimate. The second method gives 

a depth field which is suitable for encoding. The similarity between Equations 4.3 and 

4.15 is noteworthy. Since the same a priori probability density for the depth held is used 

in both formuhitions, this is an expected result. Obviously, if the distortion function 

in Equation 4.7 or the Gaussian noise between intensities in Equation 4.5 is replaced 

with different counterparts, the similarity will be^diminished. Finahŷ , it can be stated 

that these approaches yield the “best” dense fields with respect to noise immunity and 

optimal encoding with a similar formulation.
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The proposed two algorithms not only find depth values in an optimum way, but they 

also obtain a dense depth field which is necessary for motion compensating intensities 

at each point. It should be noted that the number of locations whose depth values 

can be determined by the E-matrix method is limited by the number of trustable 2-D 

correspondences between frames. Hence the depth values usually can not be determined 

at each location by using the conventional methods. Finding a dense depth field is an 

important advantage of the proposed methods.

The proposed depth encoding algorithm finds and encodes a dense depth field for any 

two consecutive frames and associated 3-D motion parameter set, but during experiments 

it is observed that better compression and quality are obtained whenever the 3-D motion 

parameter set represents an acceptable motion between the two frames. Hence 3-D 

motion estimation is a critical factor which determines the overall performance.

Apart from the advantages of the proposed methods, which are explained in 

the previous paragraphs, the complexity of the algorithms is an important point to 

examine. For both robust depth estimation and efficient depth encoding procedures, 

the computational complexity of the overall procedures are significant due to nonlinear 

minimization. However, compared to the well-known MRF-based 2-D motion estimation 

algorithms [15], the complexity is lower by a ratio of x to Â , where N  is the number 

of quantized levels of the search space for each unknown. Therefore, the computational 

complexity is not prohibitive.

Before concluding the discussion on depth analysis, it should be noted that the 

required number of bits to encode a depth field is still high for very low bit-rate 

applications according to the simulation results. However, the encoded depth field 

belongs to a rigid object and the temporal redundancy in this field is ultimately high. 

Therefore, the real benefits will be achieved when longer sequences with more than two 

frames are encoded. It can be concluded that the efficient encoding of the depth fields 

puts 3-D motion models as alternatives to the current motion models in object-based 

video coding algorithms.



Chapter 5

Utilization of 3-D Motion for 
Occlusions and Temporal 
Interpolation

During the last decade, 3-D motion models have found applications in video coding to 

predict intensities between frames. By the help of 3-D motion, the temporal redundancy 

between frames are usually reduced either using some pre-defined wireframes [113] or 

direct usage of 3-D motion and structure information [83, 132]. However, in addition to 

motion compensated prediction, 3-D motion models can be further utilized in different 

areas associated with video coding, like motion compensated temporal interpolation and 

detection of occlusion areas. Both of these methods will be examined in the next sections.

5.1 Detection of Occlusion Areas using 3-D 

Motion Models

Occlusions occur as a result of openings and closings of some regions due to the 

movements of objects between consecutive frames. While such an occluding region can

84
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be observed on one frame, it is not visible on the other one. Accordingly, such regions are 

defined as either covered or uncovered. If a region of an object is covered or uncovered due 

to its own motion (e.g. especially during rotation of the object around an axis passing 

through itself), such a case is called self-occlusion. Occlusions can also be defined as the 

temporal non-stationarities in video sequences. Hence, they can be called as temporally 

unpredictable regions, since temporal prediction is not possible in these areas.

Occlusion detection is an important issue in video compression, especially in object- 

based approaches. Since such covered/uncovered areas are temporally unpredictable 

from previous frames, they should be detected and encoded without temporal 

information. In DCT-based video coders, motion compensated prediction of such regions 

gives high prediction errors which cause the encoded DCT coefficients to require more 

bits. Moreover, in order to achieve successful temporal interpolation in every such 

decoder, occlusions should be detected and interpolation must be achieved appropriately 

at these blocks taking into account covered and uncovered regions. In addition, in 

object-based video coders, occlusion detection is an important issue for making correct 

segmentations. Since dense motion vector fields, which are usually required in object- 

based schemes, contain some outliers due to occlusions, such motion vector groups might 

lead to wrong classifications. In such cases, the correct moving object boundary, which 

might be on the border of the occluding region and the moving object, might degrade 

considerably. Hence, in any video coding application, occlusion detection is necessary.

The only way to detect occlusion regions is to examine the intensity prediction error 

between frames. In the literature, 2-D motion models are usually utilized to predict 

intensities and consequently to detect occlusions [43, 44, 81]. Among all, MRF-based 

methods give better results, since they model not only the intensity mismatches, but also 

the clustering property of occlusions, i.e. it is more probable to observe occluding points 

forming clusters, rather than single points. However, even in a true occluding region, 

the prediction error can be small if a 2-D motion vector, which achieves an incorrect 

intensity match, is found by only using local (motion and intensity) information. Since 

in most of the 2-D motion estimation algorithms, local neighborhood is used during the
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estimation process, such a situation is possible, especially when the occluding regions 

have similar textural properties with their neighboring regions. Hence, a possible solution 

for this problem is to utilize global 3-D motion information, which might not permit such 
incorrect matches in a local neighborhood.

5.1.1 Improved Detection of Occlusion using 3-D Motion

In 3-D motion models, given 3-D motion parameters, the projection of the object motion 

onto 2-D image plane is controlled by a constraint, called the epipolar constraint [94]. 

This equation linearly relates the 3-D motion parameters with the positions of the object 

point on the 2-D image plane [86]. Using Equation 3.9, this linear relation between the 

current, X p (t), and previous, X p (i — 1), 2-D coordinates of an object point p  can be 

written as

j/p(i -  1) =  a Xp{t -  1) -f- 6 Xp{t) -f c yp{t) -1- d (5.1)

where the parameters (a, 6, c, d) are functions of the elements of matrix E  in Equation 3.9 

and they are known, if 3-D motion parameters are given. The linear equation above is 

called the epipolar line [94]. The relations above are illustrated in Figure 5.1.

Hence, given 3-D motion parameters and current position of the point, previous 

position must be on a straight line whose orientation is determined by the epipolar 

constraint. In order to find the previous exact position of the point on the line, the 

depth information of the corresponding point must be used. Hence, if the 3-D motion 

parameters of an object are found beforehand, the previous coordinate of the object point 

is tightly constrained and has only one degree of freedom, which is the depth value at 

that point. On the other hand, in 2-D motion models, there are two degrees of freedom, 

which are simply the horizontal and vertical components of the motion vector. Hence in 

the 2-D case, it is more probable to make erroneous intensity matches which not only 

violate the true motion, but also lead to incorrect detection of occlusions.

If 3-D motion parameters are given, the detection of the occluding regions should
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Figure 5.1: The epipolar constraint.

be achieved jointly with depth estimation. For such joint estimation problems, Gibbs 

formulation gives good results [132]. Given two frames, the segmentation field,

7i and 3-D motion parameters, M ,  joint estimation of the depth, Z, and occlusion, <S 

fields can be formulated by using the Gibbs energy function, 7/, as follows :

hii^Z^S I 7^, A f ) — IXn d" hlz "b A* ¿7, (5.2)

Un =  (/l(x) -  D 2u (x,^))f(I -  S(x)) +  S(x)T,
xeR,

%  = E E ( Z ( x ) - Z { x . ) f
x e R i  X c G t/x  

x e R i  XcGr;x

In the equation above, D 2D is the projection of 3-D' motion onto the image plane and it 

depends on the depth value, Z, at that point. The equation is valid for object i, which 

is previously segmented into the region R{ and Xc denotes a neighbor of x. It is probable



that region i?,· contains both the moving object and the occlusion region near this object. 

Hence, the aim is finding this set of temporally unpredictable points in object i. After 

minimizing U with respect to Z  and S, the obtained occluding points not only have 

prediction errors higher than the threshold (supported by the term ¿/„), but also try 

to form regions (supported by the term Us). The detection of occlusions are similar in 

Equation 2.1 with the only difference at motion models. In Equation 2.1, the motion 

models is 2-D, whereas this new method uses 3-D motion model.

The global (epipolar) constraint is determined by 3-D motion parameters and these 

parameters are found using the estimated 2-D motion vectors which contain some 

untrustable 2-D motion vectors due to occlusions. Hence, it should be emphasized that 

3-D motion estimation step should be as robust as possible, so that it can eliminate these 

outliers during 3-D motion parameter estimation. Otherwise, these outliers will disturb 

the orientations of each epipolar line for every object point.

5.1.2 Simulations

The experiments on occlusion detection is tested on different frame pairs, such as Salecube 

(Figure 4.3), Mother and Daughter (Figure 2.7) and Salesman (Figure 2.3). The 3-D 

motion parameter estimation is achieved using the proposed method in the previous 

Chapter 3. After minimizing Equations 2.1 and 5.2, the results in Figures 5.2, 5.3 and

5.4 are obtained in order to compare 2-D and 3-D motion based occlusion detections, 

respectively. From three figures, it can be clearly observed that 3-D motion based 

occlusion detection achieved better results for finding the correct regions for uncovered 

areas in the current frame.

5.1.3 Discussion
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The simulation results show that the proposed method has better performance compared 

to conventional 2-D motion model based occlusion detectors. There are some reasons for
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Figure 5.2: The occlusion regions for the second frame of the Salecube sequence. The 
results are obtained for 2D and 3-D motion models; (a) Temporally Unpredictable regions 
using 2-D motion, (b) Reconstructed frame by the help of 2-D motion, (c) Temporally 
Unpredictable regions using 3-D motion, (d) Reconstructed frame by the help of 3-D 
motion and structure.

this superiority. The proposed algorithm uses not only globed constraints (the epipolar

constrednt), but also neighboring (local) relations {Vis term in Equation 5.2), which force

occluding points to form regions. The joint estimation of depth and occlusions by Gibbs

formulation cdso improves the overall performance compared to sequential estimation of

both. The acceptable performance of the proposed occlusion detection scheme is also

a direct result of the robust 3-D motion estimation edgorithm, based on RAN SAC. If

the E-rnatrix method is applied directly without RANSAC, the 2-D motion vectors of

the occluding regions should lead to erroneous 3-D motion pcirameter estimates and

consequently wrong epipolar constraints. In such a case, some parts of a moving rigid
¥

body, might be obtained as occluded.
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Figure 5.3: The occlusion regions for the 41th frame of the Mother and Daughter 
sequence. The results are obtciined for 2D and 3-D motion models; (a) Temporcrlly 
Unpredictable regions using 2-D motion, (b) Reconstructed frame by the help of 2- 
D motion, (c) Temporally Unpredictable regions using 3-D motion, (d) Reconstructed 
fi'cime by the help of 3-D motion and structure.

5.2 Motion Compensated Temporal Interpolation

In video signal cinalysis. Motion Compensated (MC) processing is necessary for three 

nmjor iireas : predictive coding, noise reduction and sampling structure conversion [45]. 

While MC predictive coding is the cornerstone of all current video coding standards, 

noise in video signals can also be removed better using low-pass filtering along motion 

trcijectories. On the other hand, sampling structure conversion is related with spiitio- 

temporal interpolation. Some applications of this area are frame-rate increase, interlace 

to progressive conversion and general standards conversion (e.g. PAL <-> SECAM, NTSC 

^  HDTV).

In some video coding applications, it is necessary to decrecise the frame rate of the
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Figure 5.4: The occlusion regions for the 16th frame of the Salesman sequence. The 
results are obtained for 2D and 3-D motion models; (a) Temporally Unpredictable regions 
using 2-D motion, (b) Reconstructed frame by the help of 2-D motion, (c) Temporally 
Unpredictable regions using 3-D motion, (d) Reconstructed frame by the help of 3-D 
motion and structure.

origiucil sequence in order to save bits before transmission. However, the original number 

of frames must be obtciined in the decoder from the reconstructed frame sequence which 

has a lower frame-rate. The straightforward method is either the repetition of the 

avcdlable frames or the interpolation of the frames linearly in the temporal domain to fill 

the unavailable frames. However, for high motion areas, while the former solution creates 

the effect of “jerkiness” , the latter leads to “blurring” around motion edges. A possible 

remedy for frame increasing problem is to achieve inteiqDolation along motion trajectory 

rather than the temporal axis and this approach is Ccdled MC temporal interpolation.

As stated in the previous chapter, occlusion detection is an important issue in 

temporal interpolation. The intensities in the covered or uncovered regions of an object, 

should l̂ e simply transferred from the previous or current frames apj)ropriately rather 

than making some interpolation between intensities. This situation is illustrated in
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Figure 5.5.
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Figure 5.5: Motion compensated temporal interpolation with the corresponding motion 
trajectories of 2-D and 3-D models and occlusion areas.

Since MC processing is a well-known subject, there are many approaches to solve this 

problem. The popular Bayesian [133, 43, 45] or block-based [134, 2] motion compensated 

temporal interpolation methods both use 2-D motion model which lack the non-linear 

motion trajectory modeling between frames. Such methods can only obtain linear motion 

trajectories. In Figure 5.5, the modeling of motion trajectories using 2-D and 3-D models 

is illustrated.

Similar to occlusion detection, 3-D motion models have possible advantages over the 

conventional 2-D motion models for temporal interpolation between frames. Except 

for the assumption of rigidity, 3-D motion models do not have any other assumption
r

which will contradict with the true motion trajectory in the scene. In [134], it is shown 

that during MC temporal interpolation, the estimated global camera motion has better



performance compared to conventional block-based methods. In the next section, a MC 

temporal interpolation, which uses 3-D motion models for not only global camera but 
also objects in the scene, is proposed.
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5.2.1 Temporal Interpolation using 3-D Motion Models

In order to use 3-D motion models for temporal interpolation, the rotation and 

translation parameters between two frames and the structure of the rigid body are 

estimated using one of the methods [86, 2, 132]. The novel 3-D motion and structure 

estimation methods, proposed in this dissertation, can also be used.

After obtaining 3-D motion and structure parameters, utilizing the obtained rotation 

angles and translation values, the corresponding rotational and translational velocities 

are calculated between frames. Assuming that these velocities are constant between 

frames, for each frame to be interpolated, an associated rotation and translation 

parameter set is obtained from the velocity information. For example, assuming that the 

rotation angle around x — axis between available current and previous frames at time 

t -{- A  and t — A, respectively, is 0a;. If the number of frames to interpolate in between 

is equal to N, the corresponding rotation angle will be equal to

Qx
”  Â  -b 1

(5.3)

where n takes values between 1 to N. After achieving similar formulations for the 

rotation angles around y and z — axes, the rotation matrix, which will be used to map 

the intensities of the moving object from the current frame to the nth interpolated frame, 

can be written using Equation 3.3 as

1 0 0 cos(0;;) 0 -sm(0;;) cos(0”) S t n ( 0 j ) 0
R" = 0 cos(Q2) sin{ei) • 0 1 0 • —sen(0”) cos(0") 0

0 -sm (0") cos(0J) _ _ sin(Q^) 0 cos(0;;) 0 0 1
(5.4)
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Similar to above formulation, corresponding translational values are equal to

rjill _
n

n

71

Tx
N+1

Ty
N+1
JL·. 
N+l J

(5.5)

where Tx̂  Ty and are the translational values between the available current and 

previous frames for (x ,y ,2) axes, respectively. After finding the corresponding 3-D 

motion parameters, and for each frame to be interpolated, by the help of the 

estimated depth information, the frames in between are reconstructed by compensating 

intensities through the trajectories determined by 3-D motion and structure parameters. 

At this point, it should be noted that, if a point of an object occludes another point of 

the same object after motion, the observability of these points are decided according to 

their depth values; i.e., the intensity of the point, which has a depth value closer to the 

image plane, is used while reconstructing the frame.

The method explained above is a one-way process and the intensities of only one frame 

is used (carried) to find the corresponding pixels at the interpolated frame. However, 

temporal interpolation using motion data can be also achieved in a bi-directional fashion 

[43], which means that for 3-D models, motion, depth and occlusion regions are found 

between two available frames in both directions and used to interpolate the missing frame 

together, taking into account covered and uncovered regions appropriately (Figure 5.5). 

In such bi-directional algorithms, for better performance, the estimated motion and 

occlusion fields are usually defined on the frame to be interpolated. However, for 3-D 

motion models, it is difficult to devise a new algorithm which will find the 3-D motion 

and structure field on the interpolated frame using the other two available frames.

Since the compensated pixels, which are moved along the motion trajectory, pass 

through the interpolated frame at non-grid points, some kind of spatial (e.g. bilinear) 

interpolation should be applied in order to find the intensities at grid locations. Moreover, 

the problems due to occlusions should also be handled appropriately.



5 .2 .2  S im u lation s

The simulations are conducted on an artificial sequence. It is assumed that 3-D 

motion, depth and segmentation are known a priori. Consequently, the utilized motion 

information (both 2-D and 3-D) in this simulation, are ideal. The first 3 frames are 
shown in Figure 5.6,
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Figure 5.6: The original first 3 frames of Salecube sequence, (a) First, (b) second and 
(c) third frame.

In the simulation, the second frame is reconstructed using first and third frames by 

the help of motion information. Figure 5.7 cornpiires the 2-D and 3-D motion-based 

temporal inteiqDolations of the second frame.

3'he difference frames in Figure 5.7(a) and (c) clearly shows the performance 

between 2-D and 3-D motion based temporal interpolations. 2-D motion does not 

hcwe the capability of modeling either rotations or translations along camera axis. The , 

reconstructed cube for 2-D case, is smaller compared to its original size and this is due to 

insufficient modeling of non-linear motion trajectory of the cube. However, 3-D motion 

does not have these drawbacks.

5 .2 .3  D iscu ssion

Although, the proposed method works for any rigid motion, the advantciges of this scheme 

can be realized when the object motion (rotation cind/or translation) is around/along
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Figure 5.7: The error between the original second cuid the interpolated frarne rising (a) 
2-D motion and (c) 3-D motion models. The reconstructed second frame using temporal 
interpolation by the help of (b) 2-D motion and (d) 3-D motion model.

Z-direction. In such cases, the motion trajectories is very non-linear and any 2-D motion 

model does not model these non-linearities without using any 3-D motion information.

Бог low resolution images, which contain small motion, the approximation of the non­

linear true motion path with a 2-D motion vector might not create much degradation. 

Hence, it is more suitable to use the proposed MC temporal interpolation method, when 

the MC prediction for video compression is also achieved using 3-D motion models.

If the pi'oposed one-way interpolated scheme can be improved to work in bi­

directional, the performance of the overall algorithm will improve. However, as stated 

previously, such bi-directional formulations are not as simple ci.s it is in 2-D cases, 

cornpcired to 3-D motion models.



Chapter 6

Conclusions

The main contribution of this dissertation is to show the applicability of the 3-D motion 

models in object-based video coding by proposing some new tools for full video codecs. 

While object-based methods tries to find new horizons within the scope of MPEG-4, 

the current 2-D motion models do not promise a bright future for most of the very low 

bit-rate or some other novel applications, such as 3-D TV. This dissertation proposes 

some tools, not a full-codec, that can be utilized in the complete algorithms for the 

compression of video signals.

In order to construct a full-codec using these tools, some important points, as well 

as some future research topics, are stated in the last section of this chapter. A summary 

of contributions is given in the next section.

6.1 Contributions

In object-based video coding schemes, segmentation of the scene into semantically 

meaningful objects is compulsory. Moreover, if 3-D motions of the objects have to be 

estimated, the performance of this segmentation method becomes much more critical. 

A novel 2-D motion estimation and segmentation algorithm is developed and presented
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in Section 2.4. As the simulation results in Section 2.4.2 clearly indicate, not only the 

segmentation results, but also the estimation of 2-D motion, which is necessary in the 3-D 

motion estimation step, is successful using the proposed hybrid algorithm (Section 2.4) 

which is a combination of deterministic and stochastic powerful segmentation algorithms.

The popular rigid 3-D motion estimation method E-matrix has given good results for 

high-resolution images with some sparse feature correspondences. When the application 

area is object-based compression, which requires motion segmentation using a dense 

motion field for very low bit-rates which usually requires low-resolution video input, 

the conventional method definitely needs some adjustments and improvements. The 

novel method based on RANSAC as proposed in Section 3.2.1 improves the performance 

of 3-D rigid motion estimation using E-matrix considerably and the simulation results 

(Section 3.2.2), based on quantitative criteria, show that it is possible to use noise 

susceptible E-matrix algorithm safely after the insertion of RANSAC-based extension.

Although, the proposed novel non-rigid motion estimation method in Section 3.3.1 

deserves more interest, after it is understood that non-rigid motion descrij^tion is not 

suitable for video compression, further research is useless beyond the scope of this 

dissertation. However, for applications in which modeling is more important than 

compression, this novel method might be a good starting point to improve deformable 

motion analysis methods.

The results of depth analysis might be the most interesting and important 

contributions of this dissertation. Noise immune estimation and optimal encoding 

problems for depth fields are tried to be solved by proposing two different methods 

in Sections 4.1.1 and 4.2.2, respectively. Eventually, these different algorithms are 

converged to similar formulations. The utilization of the same probabilistic models 

and some kind of quality measures in both algorithms should be the reason for having 

equivalent results. The idea behind robust depth estimation (simply MAP estimation) is 

well-known, although the formulation is novel. On the other hand, lossy depth estimation 

concept is first in the literature. For a“ long time, the researchers on computer vision 

community have been trying to find “true” depth fields, which are necessary in their own
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applications. Hence, it is an important contribution to propose how to obtain a lossy 

depth field which is also suitable for coding purposes in the rate-distortion sense.

Apart from motion based intensity prediction, in video coding applications further 

utilization of 3-D motion models is also possible. The simulation results in Section 5.1.2 

show that occlusion detection using 3-D motion models and Gibbs formulation give 

much better results with respect to their counterparts based on 2-D motion models. The 

global constraint due to the 3-D motion of an object forces occluded points not to make 

incorrect intensity matches that mislead occlusion analysis.

Similar to occlusion detection, 3-D motion models have advantages over the 

conventional 2-D counterparts for frame-rate increase using motion compensation. The 

advantage of utilizing 3-D motion models is a direct result of better representation of the 

true motion trajectory of an object in the spatio-temporal domain. The consequence of 

better trajectory modeling is the improved quality during the interpolation of the missing 

frames. If the proposed method in Section 5.2.1 can be improved to work bi-directional, 

the obtained simulation results might be surpassed.

Apart from the contributions stated above, in this dissertation there are numerous 

open questions which requires further research.

6.2 Possible Future Topics

Although, the main theme of this dissertation is on 3-D motion models, the segmentation 

is achieved using 2-D motion information. This is due to the fact that 2-D motion analysis 

is necessary to find a correspondence set for the 3-D motion estimation step. However, 

a final region merging step, which will be based on 3-D motion parameter sets, can be 

used to refine the initial segmentation in which only 2-D motion data is utilized. For 

an object rotating along the camera axis, while 2-D motion based segmentation might 

divide this object into multiple regions due to the hugh differences between projected 

2-D motion vectors, 3-D motion parameters corresponding to these regions will almost
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be equal to each other. Hence, 3-D motion based segmentation is promising concept for 

future research.

Since the utilized 3-D motion estimation algorithm is feature-based, it needs robust 

correspondences as input. The Gibbs formulated 2-D motion estimation algorithm can 

be further improved, so that instead of only intensity information, some motion invariant 

futures, such as edges and corners [81], are also utilized in the motion estimation step. 

While such an approach increases the complexity by a small amount, the robustness of 

the 2-D motion vector set against noise or illumination changes is expected to increase 

considerably. The utilization of color for robust correspondence determination is also 

another open issue to examine.

As it can be easily observed from the depth encoding simulation results, the number 

of bits that is used to encode a depth field of a moving object in one frame is still high, 

even when an efficient lossy depth encoding scheme is utilized. Hence, in order to use 

3-D motion models in very low bit-rate algorithms, the temporal redundancy in not only 

motion but also depth should be decreased. The temporal redundancy reduction in depth 

can be achieved in two different ways. The depth estimate of the initial frame pair can 

be converted into a wireframe which needs less information to transmit in consecutive 

frames. Afterwards, motion analysis can be achieved on the wireframe. In this way, the 

tight (head and shoulder) constraints on the current wireframes will be relaxed and it 

will be possible to apply knowledge-based video coding to any scene and any moving 

object. In the second approach, a “depth accumulator” should be designed, so that the 

structure of the rigid body, which definitely does not change, is not transmitted after 

every frame pair, but rather some error differences between the current depth estimate 

and the corresponding depth at the accumulator will be transmitted. Both of these 

approaches might decrease the temporal redundancy and they require more research.

As it is stated before, the proposed MC temporal interpolation should also be 

upgraded to bi-directional case, by the help of a novel 3-D motion and structure 

estimation scheme in which 3-D motion parameters and structure are defined on the 

frame to be interpolated.
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The extension of all the proposed algorithms to multi-view systems, is also left as 

a future work. Obviously, depth analysis will be much more easy and robust in multi­

view systems. By using a number of views of a scene, the depth field of the overall 

environment can be obtained very easily. In such a case, 3-D motion estimation will 

be achieved after the depth field is estimated. 3-D motion estimation is usually much 

trivial in cases where the depth field is obtained beforehand. Hence, it can be stated 

that the utilization of the multiple views of the same scene will be advantageous while 

3-D motion models are being used.

Obviously, the most important future work after this dissertation should be the design 

of a full object-based video coder which uses 3-D motion models. The integration of the 

proposed tools with some standardized object-based coders of the near-future can also 

be achieved. All the methods, which are explained in the chapters of this dissertation, 

are possible alternatives to existing methods in such object-based full codecs.

Although, the proposed tools in this dissertation are suitable for any video coding 

application, the estimation of the depth information for the moving objects can also 

be utilized in a futuristic digital TV application. In this mono-view TV, during 

broadcasting, every user (viewer) selects the view of observation of the scene interactively 

and independently. By the help of 3-D motion and (accumulated) structure information, 

the scene will be observed from an arbitrary (user-defined) angle, rather than the 

recording camera angle. The same approach can also be applied on the previously 

recorded moving pictures or TV programs. Without extra hardware, the only way to 

fulfill such an achievement is to utilize 3-D motion models.
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