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ABSTRACT

RECURSIVE BIPARTITIONING MODELS FOR
PERFORMANCE IMPROVEMENT IN SPARSE

MATRIX COMPUTATIONS

Seher Acer

Ph.D. in Computer Engineering

Advisor: Cevdet Aykanat

August 2017

Sparse matrix computations are among the most important building blocks of

linear algebra and arise in many scientific and engineering problems. Depending

on the problem type, these computations may be in the form of sparse ma-

trix dense matrix multiplication (SpMM), sparse matrix vector multiplication

(SpMV), or factorization of a sparse symmetric matrix. For both SpMM and

SpMV performed on distributed-memory architectures, the associated data and

task partitions among processors affect the parallel performance in a great ex-

tent, especially for the sparse matrices with an irregular sparsity pattern. Parallel

SpMM is characterized by high volumes of data communicated among proces-

sors, whereas both the volume and number of messages are important for parallel

SpMV. For the factorization performed in envelope methods, the envelope size

(i.e., profile) is an important factor which determines the performance. For im-

proving the performance in each of these sparse matrix computations, we propose

graph/hypergraph partitioning models that exploit the advantages provided by

the recursive bipartitioning (RB) paradigm in order to meet the specific needs of

the respective computation. In the models proposed for SpMM and SpMV, we

utilize the RB process to enable targeting multiple volume-based communication

cost metrics and the combination of volume- and number-based communication

cost metrics in their partitioning objectives, respectively. In the model proposed

for the factorization in envelope methods, the input matrix is reordered by uti-

lizing the RB process in which two new quality metrics relating to profile min-

imization are defined and maintained. The experimantal results show that the

proposed RB-based approach outperforms the state-of-the-art for each mentioned

computation.

Keywords: Sparse matrices, recursive bipartitioning, graph partitioning, hyper-

graph partitioning, distributed-memory architectures, communication cost, enve-

lope methods, factorization, profile reduction.
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ÖZET

SEYREK MATRİS HESAPLAMALARINDA
PERFORMANS İYİLEŞMESİ İÇİN ÖZYİNELEMELİ

İKİYE BÖLÜMLEME MODELLERİ

Seher Acer

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: Cevdet Aykanat

Ağustos 2017

Seyrek matris hesaplamaları lineer cebirin en önemli yapıtaşlarından olup

bilim ve mühendislik alanlarında birçok problemde ortaya çıkmaktadırlar. Bu

hesaplamalar, problem türüne bağlı olarak seyrek matris yoğun matris çarpımı

(SyMM), seyrek matris vektör çarpımı (SyMV), veya seyrek simetrik bir matrisin

faktörizasyonu şeklinde olabilirler. Dağıtık bellekli mimarilerde gerçekleştirilen

SyMM ve SyMV işlemlerinde, özellikle düzensiz seyreklik örüntüsü olan matrisler

için, işlemciler arasındaki veri ve görev bölümlemesi paralel performansı fazlaca

etkilemektedir. Paralel SyMM işlemciler arasındaki yüksek hacimli iletişimler ile

nitelendirilirken, paralel SyMV için hem iletişim hacmi hem de mesaj sayısı önemli

olmaktadır. Zarf yöntemlerinde gerçekleştirilen faktörizasyonda, matris zarfının

büyüklüğü yani matris profili faktörizasyon performansını belirleyen önemli bir

etmendir. Bahsi geçen hesaplamaların performanslarını iyileştirmek amacıyla bu

hesaplamaların herbiri için özyinelemeli ikiye bölümleme (ÖİB) paradigmasını

kullanan çizge/hiperçizge bölümleme modelleri önermekteyiz. Önerilmekte olan

modeller, ÖİB tarafından sunulan avantajları ilgili hesaplamanın performans

iyileşmesi yönünde spesifik ihtiyaçlarını karşılama amacıyla kullanmaktadırlar.

ÖİB işlemi bölümleme objektifinin, SyMM için önerilen modellerde birden fa-

zla hacim tabanlı iletişim maliyeti ölçütlerini, SyMV için ise hem hacim hem

mesaj sayısı ölçütlerini hedefleyecek şekilde kullanılmasını sağlamaktadır. Zarf

yöntemlerindeki faktörizasyon için önerilen modelde ise, ÖİB işlemi, matris pro-

filini küçültme ile yakından ilişkili olan iki yeni kalite ölçütünün tanımlanıp hede-

flenmesine izin vererek girdi matrisin satır ve sütunlarını bu hedefle yeniden

sıralanmasını sağlamakadır. Deneysel sonuçlar ÖİB yaklaşımının bahsi geçen her-

bir hesaplama için alanında var olan en iyi yöntemlerden daha başarılı olduğunu

göstermektedir.

Anahtar sözcükler : Seyrek matrisler, özyinelemeli ikiye bölümleme, çizge
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bölümleme, hiperçizge bölümleme, dağıtık bellekli mimariler, iletişim maliyeti,

zarf yöntemleri, faktörizasyon, profil azaltma.
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cal Research Council of Turkey (TÜBİTAK) for supporting me throughout my

Ph.D. studies under the national scholarship program BIDEB 2211. I also thank
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Chapter 1

Introduction

Sparse matrix computations are among the most important building blocks of

linear algebra and arise in many scientific and engineering problems in different

forms. This thesis considers three forms of sparse matrix computations: sparse

matrix dense matrix multiplication (SpMM), sparse matrix vector multiplication

(SpMV) and the factorization of a sparse symmetric matrix performed in envelope

methods.

SpMM is a common operation in block iterative methods such as block conju-

gate gradient variants [2, 3, 4, 5], block Lanczos [6] and block Arnoldi [7]. It is also

used in big data analytics and corresponds to the computations regarding a level

of the level-synchronized multi-source breadth-first search [8, 9, 10, 11, 12, 13],

which is used in centrality measures [14]. The performance of SpMM on a

distributed-memory architecture is mainly characterized by the amount of data

communicated among processors, i.e., communication volume, due to the possibil-

ity of communicating a whole row of the dense matrix for a single nonzero entry

of the sparse matrix. For improving the performance of distributed-memory-

parallel SpMM, multiple performance metrics regarding the communication vol-

ume should be minimized in the partitioning objective.

SpMV is also a common operation in iterative solvers. The performance of

1



SpMV on a distributed-memory architecture is not dominated by a single type

of overhead such as volume, but better expressed as a combination of the met-

rics regarding the bandwidth and latency costs. Bandwidth cost is defined using

the amount of the data communicated, whereas the latency cost is defined us-

ing the number of messages communicated. For improving the performance of

distributed-memory-parallel SpMV, multiple performance metrics regarding the

bandwidth and latency costs should be minimized in the partitioning objective.

Envelope methods are widely utilized for solving sparse symmetric systems of

linear equations. These methods only store the numerical values in the envelope

of the input sparse matrix and perform computations on these values. Hence, the

size of the envelope, which is known as profile, determines the storage and runtime

complexities of these methods [15, 16, 17, 18]. For improving the performance of

these methods, the profile of the input sparse matrix should be minimized by a

symmetric permutation of rows and columns.

In this thesis, we propose recursive-bipartitioning-based graph/hypergraph

partitioning models for achieving performance improvement in the above-

mentioned sparse matrix computations. The recursive bipartitioning (RB)

paradigm is widely utilized for achieving multi-way graph/hypergraph partition-

ing. In the RB paradigm, an input graph/hypergraph is bipartitioned (i.e., parti-

tioned into two parts), then two new graphs/hypergraphs are formed using these

two parts, and then these graphs/hypergraphs are recursively bipartitioned re-

peating the same procedure at each bipartitioning until the desired number of

parts is obtained. The objective of multi-way partitioning is handled in the RB

process by various techniques such as cut-edge/net removal and cut-net split-

ting [19].

The RB paradigm provides many flexibilities which direct multi-way partition-

ing can not provide. An example to these flexibilities might be measuring the

overall partition quality at each RB step and adjusting the partitioning parame-

ters accordingly. Another example might be adding additional objectives which

can only be formulated by the overall partition information to the individual RB

steps. The models proposed in this thesis all exploit the flexibilities provided by

2



the RB paradigm, each in a different way. For SpMM, we utilize the RB paradigm

to propose graph/hypergraph partitioning models which can minimize multiple

volume-based metrics simultaneously in a single partitioning phase. For encoding

the volume-based metrics other than total volume, we use multi-constraint parti-

tioning and assign communication loads to vertices as additional vertex weights

in each RB step. For SpMV, we utilize the RB paradigm to propose two hy-

pergraph partitioning models which can minimize bandwith and latency costs

simultaneously in a single partitioning phase. For encoding the latency cost, we

use message nets to represent the messages between processor groups and add

them to the respective hypergraph in each RB step. For the envelope methods,

we utilize the RB paradigm to propose a hypergraph partitioning model which

reorders the matrix by maintaining two quality metrics which relate to profile

minimization. For this purpose, we use two different nets for each row of the

matrix and manipulate these nets in each RB step accordingly.

The rest of the thesis is organized as follows. Chapter 2 gives background on

graph and hypergraph partitioning problems, their variants and the RB paradigm.

Chapter 3 presents the proposed graph and hypergraph partitioning models for

improving the performance of the distibuted-memory parallel SpMM and the

corresponding experimental evaluation. Chapter 4 presents the proposed hy-

pergraph partitioning models for improving the performance of the distributed-

memory-parallel SpMV and the corresponding experimental evaluation. Chap-

ter 5 presents the proposed hypergraph partitioning model for improving the

perfomance of envelope methods by profile reduction and the corresponding ex-

perimental evaluation. Chapter 6 concludes the thesis.

3



Chapter 2

Background

2.1 Graph partitioning problem

A graph G = (V , E) is defined as a set V of vertices and a set E of edges, where

each edge connects a pair of distinct vertices. The edge that connects vertices vi

and vj is denoted by ei,j. A vertex vj is said to be adjacent to vertex vi if ei,j ∈ E .

The set of vertices adjacent to vi is denoted by Adj(vi) and formulated as

Adj(vi) = {vj : ei,j ∈ E}.

ΠK(G) = {V1,V2, . . . ,VK} denotes a K-way partition of G if vertex parts are

mutually disjoint and exhaustive. For a given ΠK(G), an edge ei,j is said to be

cut if the vertices connected by ei,j are assigned to different parts. A vertex vi is

said to be a boundary vertex in ΠK(G) if it is connected by at least one cut edge.

In G, each edge ei,j is assigned a cost, which is denoted by c(ei,j). For a given

partition ΠK(G), the cutsize is defined as the sum of the costs of the cut edges,
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which is formulated as

cutsize =
∑

ei,j :vi∈Vk,vj∈V 6̀=k

c(ei,j).

In G, each vertex vi is assigned a weight, which is denoted by w(vi). For a

given partition ΠK(G), the weight W (Vk) of part Vk is defined as the sum of the

weights of the vertices in Vk, that is, W (Vk) =
∑

vi∈Vk w(vi). For a pre-determined

ε value, a given partition ΠK(G) is said to be balanced if the following condition

holds for each part Vk ∈ ΠK(H):

W (Vk) ≤ Wavg(1 + ε).

Here, Wavg denotes the average part weight, which is formulated as Wavg =∑
vi∈V w(vi)/K.

For given K and ε values, the graph partitioning problem is defined as finding

a K-way partition ΠK(G) with the objective of minimizing the cutsize under the

constraint of maintaining balance on the weights of the parts. Graph partitioning

problem is known to be NP-hard [20].

2.2 Hypergraph partitioning problem

A hypergraph H = (V ,N ) is defined as a set V of vertices and a set N of nets

(hyperedges), where each net connects a subset of vertices. The subset of vertices

connected by a net ni is denoted by Pins(ni). ΠK(H) = {V1,V2, . . . ,VK} denotes

a K-way partition ofH if vertex parts are mutually disjoint and exhaustive. For a

given ΠK(H), a net ni is said to connect a part Vk if it connects at least one vertex

in Vk, i.e., Pins(ni) ∩ Vk 6= ∅. The connectivity Λ(ni) of ni is defined as the set

of the parts that are connected by ni. That is, Λ(ni) = {Vk : Pins(ni)∩Vk 6= ∅}.
The number of parts that are connected by ni is denoted λ(ni), that is, λ(ni) =

|Λ(nj)|. A net ni is said to be cut if it connects multiple parts, i.e., λ(nj) > 1, and
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uncut (internal), otherwise, i.e., λ(ni) = 1. A vertex vi is said to be a boundary

vertex in ΠK(H) if it is connected by at least one cut net.

In H, each net ni is assigned a cost, which is denoted by c(ni). For a given

partition ΠK(H), there are two commonly-used cutsize definitions, which are

explained as follows. The cutsize according to the cut-net metric corresponds to

the sum of the costs of the cut nets in ΠK(H), that is,

cutsize =
∑

ni:λ(ni)>1

c(ni).

The cutsize according to the connectivity-1 metric is formulated as

cutsize =
∑
ni∈N

c(ni)(λ(ni)− 1).

Note that only the cut nets contribute to the summation given in this formulation

since λ(ni) − 1 = 0 for an uncut net ni. Also note that for K = 2, the cutsizes

given by these two different definitions are always equal to each other.

In H, each vertex vi is assigned a weight, which is denoted by w(vi). For a

given partition ΠK(H), the weight W (Vk) of part Vk is defined as the sum of the

weights of the vertices in Vk, that is, W (Vk) =
∑

vi∈Vk w(vi). For a pre-determined

ε value, a given partition ΠK(H) is said to be balanced if the following condition

holds for each part Vk ∈ ΠK(H):

W (Vk) ≤ Wavg(1 + ε).

Here, Wavg denotes the average part weight, which is formulated as Wavg =∑
vi∈V w(vi)/K.

For given K and ε values, the hypergraph partitioning problem is defined as

finding a K-way partition ΠK(H) with the objective of minimizing the cutsize un-

der the constraint of maintaining balance on the weights of the parts. Hypergraph

partitioning problem is known to be NP-hard [21].
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2.3 Multi-constraint graph/hypergraph parti-

tioning

In the multi-constraint graph/hypergraph partitioning problem, C > 1 weights

are assigned to each vertex instead of a single weight. The cth weight as-

signed to vertex vi is denoted by wc(vi), for 1 ≤ c ≤ C. For a given parti-

tion ΠK(G)/ΠK(H), the cth weight of a part Vk is defined as the sum of the

cth weights of the vertices in Vk. Then, for a predetermined εc value for each

c ∈ {1, 2, . . . , C}, a given partition ΠK(G)/ΠK(H) is said to be balanced if the

following condition holds for each part Vk and each c ∈ {1, 2, . . . , C}:

W c(Vk) ≤ W c
avg(1 + εc).

Here, W c
avg denotes the average part weight for the cth vertex weight, which is

formulated as W c
avg =

∑
vi∈V w

c(vi)/K.

The multi-constraint graph/hypergraph partitioning problem [22, 23] is then

defined as finding a K-way partition of a given graph/hypergraph with the ob-

jective of minimizing the cutsize under the constraints of maintaining balance on

each weight of the parts. Note that the graph/hypergraph partitioning problem

given in Section 2.1/2.2 is a special case of the multi-constraint graph/hypergraph

partitioning problem for C = 1.

2.4 Graph/hypergraph partitioning with fixed

vertices

In case of graph/hypergraph partitioning with fixed vertices, we have an addi-

tional constraint on part assignment of some vertices, i.e., a number of vertices

are assigned to parts prior to partitioning with the condition that, at the end of

the partitioning, those vertices will remain in the part that they are assigned to.
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2.5 Recursive bipartitioning paradigm

Recursive bipartitioning (RB) is a successful paradigm which has been com-

monly used for obtaining multi-way partitions. In this paradigm, the input

graph/hypergraph is first bipartitioned (i.e., partitioned into two parts) and two

new graphs/hypergraphs are formed using this bipartition information. Then,

these two new graphs/hypergraphs are bipatitioned in a recursive manner until

the desired number of parts is obtained.

In the RB process for partitioning a graph, while forming the two new graphs in

each RB step, the vertex-induced subgraphs are obtained using the corresponding

bipartition. In the RB process for partitioning a hypergraph, each internal net is

included as is in the new hypergraph formed for the part which the corresponding

net is internal to. For the cut-nets, there are two commonly-used techniques.

In the cut-net removal technique, none of the cut nets is included in the new

hypergraphs. In this technique, the sum of the cutsizes of the bipartitions encodes

the cutsize of the resulting K-way partition according to the cut-net metric. In

the cut-net splitting technique, each cut net is split into two new nets, where each

split net connects the vertices in only one of the parts of the bipartition. It can

be considered as bipartitioning the vertices connected by a cut net into two nets

in a way conformal to the overall bipartition of the corresponding hypergraph.

In this technique, the sum of the cutsizes of the bipartitions encodes the cutsize

of the resulting K-way partition according to the connectivity-1 metric.

The RB process forms a hypothetical full binary tree, which we refer to as

the RB tree, where each node represents a graph/hypergraph formed and/or

bipartitioned throughout this process. For example, the topmost node of the RB

tree represents the input graph/hypergraph. Note that it is not necessary to form

the graph/hypergraph for a leaf node if that graph/hypergraph is not going to be

bipartitioned, i.e., the recursion stops at that node. For a K-way partitioning,

the overall RB process stops when there are K leaves in the RB tree. The vertex

sets of the leaves then induce a K-way partition of the input graph/hypergraph.
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Suppose that the required number of parts, i.e., K, is a power of 2. For

obtaining a balanced K-way partition, all graphs/hypergraphs belonging to the

same level of the RB tree should be bipartitioned. That is, the RB tree formed

for a balanced K-way partition should be a complete binary tree with log2K + 1

levels.

Throughout this thesis, the RB-tree levels are numbered as 0, 1, 2, . . . , log2K+

1, from top to bottom. Likewise, the nodes belonging to a same level ` of the

tree are numbered as 0, 1, 2, . . . , 2` − 1, from left to right. A graph/hypergraph

represented by the kth node in the `th level is denoted by G`
k/H`

k. We use the

same subscript and superscript notation to refer to the vertex and edge/net sets

of these hypergraphs. That is, the vertex and net sets of H`
k are denoted by V`k

and N `
k , respectively. Then, the K-way partition resulting from the RB process

can be formulated as

{V log2K
0 ,V log2K

1 , . . . ,V log2K
K−1 }.
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Chapter 3

Improving performance of sparse

matrix dense matrix

multiplication on large-scale

parallel systems

Sparse matrix kernels form the computational basis of many scientific and en-

gineering applications. An important kernel is the sparse matrix dense matrix

multiplication (SpMM) of the form Y = AX, where A is a sparse matrix, and X

and Y are dense matrices.

SpMM is already a common operation in computational linear algebra, usually

utilized repeatedly within the context of block iterative methods. The practical

benefits of block methods have been emphasized in several studies. These stud-

ies either focus on the block versions of certain solvers (i.e., conjugate gradient

variants) which address multiple linear systems [2, 3, 4, 5], or the block methods

for eigenvalue problems, such as block Lanczos [6] and block Arnoldi [7]. The

column dimension of X and Y in block methods are usually very small compared

to that of A [25].

see [24] for the original work
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Along with other sparse matrix kernels, SpMM is also used in the emerging

field of big data analytics. Graph algorithms are ubiquitous in big data analytics.

Many graph analysis approaches such as centrality measures [14] rely on shortest

path computations and use breadth-first search (BFS) as a building block. As

indicated in several recent studies [8, 9, 10, 11, 12, 13], processing each level in

BFS is actually equivalent to a sparse matrix vector “multiplication”. Graph

algorithms often necessitate BFS from multiple sources. In this case, processing

each level becomes equivalent to multiplication of a sparse matrix with another

sparse (the SpGEMM kernel [26]) or dense matrix. For a typical small world

network [27], matrix X is sparse at the beginning of BFS, however it usually

gets denser as BFS proceeds. Even in cases when it remains sparse, the changing

pattern of this matrix throughout the BFS levels and the related sparse book-

keeping overhead make it plausible to store it as a dense matrix if there is memory

available.

SpMM is provided in Intel MKL [28] and Nvidia cuSPARSE [29] libraries for

multi-/many-core and GPU architectures. To optimize SpMM on distributed

memory architectures for sparse matrices with irregular sparsity patterns, one

needs to take communication bottlenecks into account. Communication bottle-

necks are usually summarized by latency (message start-up) and bandwidth (mes-

sage transfer) costs. The latency cost is proportional to the number of messages

while the bandwidth cost is proportional to the number of words communicated,

i.e., communication volume. These costs are usually addressed in the literature

with intelligent graph and hypergraph partitioning models that can exploit irreg-

ular patterns quite well [30, 31, 19, 32, 33, 34]. Most of these models focus on

improving the performance of parallel sparse matrix vector multiplication. Al-

though one can utilize them for SpMM as well, SpMM necessitates the use of new

models tailored to this kernel since it is specifically characterized with its high

communication volume requirements because of the increased column dimensions

of dense X and Y matrices. In this regard, the bandwidth cost becomes critical

for overall performance, while the latency cost becomes negligible with increased

average message size. Therefore, to get the best performance out of SpMM, it

is vital to address communication cost metrics that are centered around volume
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such as maximum send volume, maximum receive volume, etc.

3.0.1 Related work on multiple communication cost met-

rics

Total communication volume is the most widely optimized communication cost

metric for improving the performance of sparse matrix operations on distributed

memory systems [19, 32, 35, 36, 37]. There are a few works that consider com-

munication cost metrics other than total volume [38, 39, 40, 41, 42, 43]. In an

early work, Uçar and Aykanat [39] proposed hypergraph partitioning models to

optimize two different cost metrics simultaneously. This work is a two-phase ap-

proach, where the partitioning in the first phase is followed by a latter phase in

which they minimize total number of messages and achieve a balance on commu-

nication volumes of processors. In a related work, Uçar and Aykanat [38] adapted

the mentioned model for two-dimensional fine-grain partitioning. A very recent

work by Selvitopi and Aykanat aims to reduce the latency overhead in two-

dimensional jagged and checkerboard partitioning [1].

Bisseling and Meesen [40] proposed a greedy heuristic for balancing communi-

cation loads of processors. This method is also a two-phase approach, in which

the partitioning in the first phase is followed by a redistribution of communication

tasks in the second phase. While doing so, they try to minimize the maximum

send and receive volumes of processors while respecting the total volume obtained

in the first phase.

The two-phase approaches have the flexibility of working with already exist-

ing partitions. However, since the first phase is oblivious to the cost metrics

addressed in the second phase, they can get stuck in local optima. To remedy

this issue, Deveci et al. [42] recently proposed a hypergraph partitioner called

UMPa, which is capable of handling multiple cost metrics in a single partitioning

phase. They consider various metrics such as maximum send volume, total num-

ber of messages, maximum number of messages, etc., and propose a different gain

12



computation algorithm specific to each of these metrics. In the center of their

approach are the move-based iterative improvement heuristics which make use of

directed hypergraphs. These heuristics consist of a number of refinement passes.

To each pass, their approach is reported to introduce an O(V K2)-time overhead,

where V is the number of vertices in the hypergraph (number of rows/columns

in A) and K is the number of parts/processors. They also report that the slow-

down of UMPa increases with increasing K with respect to the native hypergraph

partitioner PaToH due to this quadratic complexity.

3.0.2 Contributions

In this study, we propose a comprehensive and generic one-phase framework to

minimize multiple volume-based communication cost metrics for improving the

performance of SpMM on distributed memory systems. Our framework relies

on the widely adopted recursive bipartitioning paradigm utilized in the context

of graph and hypergraph partitioning. Total volume can already be effectively

minimized with existing partitioners [19, 32, 35]. We focus on the other impor-

tant volume-based metrics besides total volume, such as maximum send/receive

volume, maximum sum of send and receive volumes, etc. The proposed model as-

sociates additional weights with boundary vertices to keep track of volume loads

of processors during recursive bipartitioning. The minimization objectives associ-

ated with these loads are treated as constraints in order to make use of a readily

available partitioner. Achieving a balance on these weights of boundary ver-

tices through these constraints enables the minimization of target volume-based

metrics. We also extend our model by proposing two practical enhancements to

handle these constraints in partitioners more efficiently.

Our framework is unique and flexible in the sense that it handles multi-

ple volume-based metrics through the same formulation in a generic manner.

This framework also allows the optimization of any custom metric defined on

send/receive volumes. Our algorithms are computationally lightweight: they only

introduce an extra O(nnz(A)) time to each recursive bipartitioning level, where
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nnz(A) is the number of nonzeros in matrix A. To the best of our knowledge,

it is the first portable one-phase method that can easily be integrated into any

state-of-the-art graph and hypergraph partitioner. Our work is also the first work

that addresses multiple volume-based metrics in the graph partitioning context.

Another important aspect is the simultaneous handling of multiple cost met-

rics. This feature is crucial as overall communication cost is simultaneously de-

termined by multiple factors and the target parallel application may demand op-

timization of different cost metrics simultaneously for good performance (SpMM

and multi-source BFS in our case). In this regard, Uçar and Aykanat [38, 39]

accommodates this feature for two metrics, whereas Deveci et al. [42], although

addresses multiple metrics, does not handle them in a completely simultaneous

manner since some of the metrics may not be minimized in certain cases. Our

models in contrast can optimize all target metrics simultaneously by assigning

equal importance to each of them in the feasible search space. In addition, the

proposed framework allows one to define and optimize as many volume-based

metrics as desired.

For experiments, the proposed partitioning models for graphs and hypergraphs

are realized using the widely-adopted partitioners Metis [32] and PaToH [19], re-

spectively. We have tested the proposed models for 128, 256, 512 and 1024 pro-

cessors on a dataset of 964 matrices containing instances from different domains.

We achieve average improvements of up to 61% and 78% in maximum commu-

nication volume for graph and hypergraph models, respectively, in the categories

of matrices for which maximum volume is most critical. Compared to the state-

of-the-art partitioner UMPa, our graph model achieves an overall improvement

of 5% in the partition quality 14.5x faster and our hypergraph model achieves

an overall improvement of 11% in the partition quality 3.4x faster. Our average

improvements for the instances that are bounded by maximum volume are even

higher: 19% for the proposed graph model and 24% for the proposed hypergraph

model.

We test the validity of the proposed models for both parallel SpMM and

multi-source BFS kernels on large-scale HPC systems Cray XC40 and Lenovo
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NeXtScale, respectively. For parallel SpMM, compared to the standard parti-

tioning models, our graph and hypergraph partitioning models respectively lead

to reductions of 14% and 22% in runtime, on average. For parallel BFS, we show

on graphs with more than a billion edges that the scalability can significantly be

improved with our models compared to a recently proposed two-dimensional par-

titioning model [11] for the parallelization of this kernel on distributed systems.

The rest of the chapter is organized as follows. Section 3.1 gives background

for partitioning sparse matrices via graph and hypergraph models. Section 3.2

defines the problems regarding minimization of volume-based cost metrics. The

proposed graph and hypergraph partitioning models to address these problems

are described in Section 3.3. Section 3.4 proposes two practical extensions to

these models. Section 5.4 gives experimental results for investigated partitioning

schemes and parallel runtimes. Section 3.6 concludes.

3.1 Background

3.1.1 Parallel SpMM with one-dimensional sparse matrix

partitioning

Consider the parallelization of sparse matrix dense matrix multiplication (SpMM)

of the form Y = AX, where A is an n× n sparse matrix, and X and Y are n× s
dense matrices. Assume that A is permuted into a K-way block structure of the

form

ABL =
[
C1 · · · CK

]
=


R1

...

RK

 =


A11 · · · A1K

...
. . .

...

AK1 · · · AKK

 , (3.1)

for rowwise or columnwise partitioning, where K is the number of processors
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Figure 3.1: Row-parallel Y = AX with K = 4 processors, n = 16 and s = 3.

in the parallel system. Processor Pk owns row stripe Rk = [Ak1 · · ·AkK ] for

rowwise partitioning, whereas it owns column stripe Ck = [AT1k · · ·ATKk]T for

columnwise partitioning. We focus on rowwise partitioning in this work, however,

all described models apply to columnwise partitioning as well. We use Rk and Ak

interchangeably throughout the paper as we only consider rowwise partitioning.

In both block iterative methods and BFS-like computations, SpMM is per-

formed repeatedly with the same input matrix A and changing X-matrix ele-

ments. The input matrix X of the next iteration is obtained from the output

matrix Y of the current iteration via element-wise linear matrix operations. We

focus on the case where the rowwise partitions of the input and output dense ma-

trices are conformable to avoid redundant communication during these linear op-

erations. Hence, a partition of A naturally induces partition [Y T
1 . . . Y T

K ]T on the

rows of Y , which is in turn used to induce a conformable partition [XT
1 . . . X

T
K ]T

on the rows of X. In this regard, the row and column permutation mentioned

in (3.1) should be conformable.

A nonzero column segment is defined as the nonzeros of a column in a specific
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Algorithm 1: An SpMM iteration performed by processor Pk

Require: Ak and Xk

1: B Pre-communication phase — Expands on X-matrix rows
2: Pk receives row i of X from P` for each nonzero column segment i in Ak`
3: Pk sends row j of X to Pm for each nonzero column segment j in Amk

4: B Computations
5: Yk ← AkX

6: return Yk

submatrix block. For example in Figure 3.1, there are two nonzero column seg-

ments in A14 which belong to columns 13 and 15. In row-parallel Y = AX, which

is given in Algorithm 1, Pk owns row stripes Ak and Xk of the input matrices,

and is responsible for computing respective row stripe Yk = AkX of the output

matrix. Pk can perform computations regarding diagonal block Akk locally using

its own portion Xk without requiring any communication, where Akl is called a

diagonal block if k = l, and an off-diagonal block otherwise. Since Pk owns only

Xk, it needs the remaining X-matrix rows that correspond to nonzero column

segments in off-diagonal blocks of Ak. Hence, the respective rows must be sent

to Pk by their owners in a pre-communication phase prior to SpMM computa-

tions. Specifically, to perform the multiplication regarding off-diagonal block Akl,

Pk needs to receive the respective X-matrix rows from Pl. For example, in Fig-

ure 3.1 for P3, since there exists a nonzero column segment in A34, P3 needs to

receive the corresponding three elements in row 14 of X from P4. In a similar

manner, it needs to receive the elements of X-matrix rows 2, 3 from P1 and 5, 7

from P2.

3.1.2 Sparse matrix partitioning models

In this section, we describe how to obtain a one-dimensional rowwise partitioning

of matrix A for row-parallel Y = AX using graph and hypergraph partitioning

models. These models are the extensions of standard models used for sparse
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matrix vector multiplication [19, 32, 44, 45, 46].

In the graph and hypergraph partitioning models, matrix A is represented as

an undirected graph G = (V , E) and a hypergraph H = (V ,N ). In both, there

exists a vertex vi ∈ V for each row i of A, where vi signifies the computational

task of multiplying row i of A with X to obtain row i of Y . So, in both models, a

single (C = 1) weight of s times the number of nonzeros in row i of A is associated

with vi to encode the load of this computational task. For example, in Figure 3.1,

w1(v5) = 4× 3 = 12.

In G, each nonzero ai,j or aji (or both) of A is represented by an edge ei,j ∈ E .

The cost of edge ei,j is assigned as c(ei,j) = 2s for each edge ei,j with ai,j 6= 0

and aji 6= 0, whereas it is assigned as c(ei,j) = s for each edge ei,j with either

ai,j 6= 0 or aji 6= 0, but not both. In H, each column j of A is represented by a

net nj ∈ N , which connects the vertices that correspond to the rows that contain

a nonzero in column j, i.e., Pins(nj) = {vi : ai,j 6= 0}. The cost of net nj is

assigned as c(nj) = s for each net in N .

In a K-way partition Π(G) or Π(H), without loss of generality, we assume

that the rows corresponding to the vertices in part Vk are assigned to processor

Pk. In Π(G), each cut edge ei,j, where vi ∈ Vk and vj ∈ V`, necessitates c(ei,j)

units of communication between processors Pk and P`. Here, P` sends row j of

X to Pk if ai,j 6= 0 and Pk sends row i of X to P` if aji 6= 0. In Π(H), each cut

net nj necessitates c(nj)(λ(nj) − 1) units of communication between processors

that correspond to the parts in Λ(nj), where the owner of row j of X sends it

to the remaining processors in Λ(nj). Hereinafter, Λ(nj) is interchangeably used

to refer to parts and processors because of the identical vertex part to processor

assignment.

Through these formulations, the problem of obtaining a good row partition-

ing of A becomes equivalent to the graph and hypergraph partitioning problems

in which the objective of minimizing cutsize relates to minimizing total com-

munication volume, while the constraint of maintaining balance on part weights

corresponds to balancing computational loads of processors. The objective of
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hypergraph partitioning problem is an exact measure of total volume, whereas

the objective of graph partitioning problem is an approximation [19].

3.2 Problem definition

Assume that matrix A is distributed among K processors for parallel SpMM

operation as described in Section 3.1.1. Let σ(Pk, P`) be the amount of data

sent from processor Pk to P` in terms of X-matrix elements. This is equal to

s times the number of X-matrix rows that are owned by Pk and needed by P`,

which is also equal to s times the number of nonzero column segments in off-

diagonal block A`k. Since Xk is owned by Pk and computations on Akk require

no communication, σ(Pk, Pk) = 0. We use the function ncs(.) to denote the

number of nonzero column segments in a given block of matrix. ncs(Ak`) is

defined to be the number of nonzero column segments in Ak` if k 6= `, and 0

otherwise. This is extended to a row stripe Rk and a column stripe Ck, where

ncs(Rk) =
∑

` ncs(Ak`) and ncs(Ck) =
∑

` ncs(A`k). Finally, for the whole

matrix, ncs(ABL) =
∑

k ncs(Rk) =
∑

k ncs(Ck). For example, in Figure 3.1,

ncs(A42) = 2, ncs(R3) = 5, ncs(C3) = 4 and ncs(ABL) = 21.

The send and receive volumes of Pk are defined as follows:

• SV (Pk), send volume of Pk: The total number of X-matrix elements sent

from Pk to other processors. That is, SV (Pk) =
∑

` σ(Pk, P`). This is equal

to s× ncs(Ck).

• RV (Pk), receive volume of Pk: The total number of X-matrix elements

received by Pk from other processors. That is, RV (Pk) =
∑

` σ(P`, Pk).

This is equal to s× ncs(Rk).

Note that the total volume of communication is equal to
∑

k SV (Pk) =∑
k RV (Pk). This is also equal to s times the total number of nonzero column

segments in all off-diagonal blocks, i.e., s× ncs(ABL).
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In this study, we extend the sparse matrix partitioning problem in which the

only objective is to minimize the total communication volume, by introducing

four more minimization objectives which are defined on the following metrics:

1. maxk SV (Pk): maximum send volume of processors (equivalent to maxi-

mum s× ncs(Ck)),

2. maxk RV (Pk): maximum receive volume of processors (equivalent to maxi-

mum s× ncs(Rk)),

3. maxk(SV (Pk) + RV (Pk)): maximum sum of send and receive volumes of

processors (equivalent to maximum s× (ncs(Ck) + ncs(Rk))),

4. maxk max{SV (Pk), RV (Pk)}: maximum of maximum of send and receive

volumes of processors (equivalent to maximum s×max{ncs(Ck), ncs(Rk)}).

Under the objective of minimizing the total communication volume, minimiz-

ing one of these volume-based metrics (e.g., maxk SV (Pk)) relates to minimizing

imbalance on the respective quantity (e.g., imbalance on SV (Pk) values). For

instance, the imbalance on SV (Pk) values is defined as

maxk SV (Pk)∑
k SV (Pk)/K

.

Here, the expression in the denominator denotes the average send volume of

processors.

A parallel application may necessitate one or more of these metrics to be

minimized. These metrics are considered besides total volume since minimization

of them is plausible only when total volume is also minimized as mentioned above.

Hereinafter, these metrics except total volume are referred to as volume-based

metrics.
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3.3 Models for minimizing multiple volume-

based metrics

This section describes the proposed graph and hypergraph partitioning models

for addressing volume-based cost metrics defined in the previous section. Our

models have the capability of addressing a single, a combination or all of these

metrics simultaneously in a single phase. Moreover, they have the flexibility of

handling custom metrics based on volume other than the already defined four

metrics. Our approach relies on the widely adopted recursive bipartitioning (RB)

framework utilized in a breadth-first manner and can be realized by any graph

and hypergraph partitioning tool.

3.3.1 Recursive bipartitioning

In the RB paradigm, the initial graph/hypergraph is partitioned into two sub-

graphs/subhypergraphs. These two subgraphs/subhypergraphs are further bipar-

titioned recursively until K parts are obtained. This process forms a full binary

tree, which we refer to as an RB tree, with lg2K levels, where K is a power of

2. Without loss of generality, graphs and hypergraphs at level r of the RB tree

are numbered from left to right and denoted as Gr
0, . . . , G

r
2r−1 and Hr

0, . . . ,Hr
2r−1,

respectively. From bipartition Π(Gr
k) = {Vr+1

2k ,Vr+1
2k+1} of graph Gr

k = (Vrk , Erk),

two vertex-induced subgraphs Gr+1
2k = (Vr+1

2k , Er+1
2k ) and Gr+1

2k+1 = (Vr+1
2k+1, E

r+1
2k+1)

are formed. All cut edges in Π(Gr
k) are excluded from the newly formed sub-

graphs. From bipartition Π(Hr
k) = {Vr+1

2k ,Vr+1
2k+1} of hypergraph Hr

k = (Vrk ,N r
k ),

two vertex-induces subhypergraphs are formed similarly. All cut nets in Π(Hr
k)

are split to correctly encode the cutsize metric [19].
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Figure 3.2: The state of the RB tree prior to bipartitioning G2
1 and the corre-

sponding sparse matrix. Among the edges and nonzeros, only the external (cut)
edges of V2

1 and their corresponding nonzeros are shown.

3.3.2 Graph model

Consider the use of the RB paradigm for partitioning the standard graph rep-

resentation G = (V , E) of A for row-parallel Y = AX to obtain a K-way

partition. We assume that the RB proceeds in a breadth-first manner and

RB process is at level r prior to bipartitioning kth graph Gr
k. Observe that

the RB process up to this bipartitioning already induces a K ′-way partition

Π(G) = {Vr+1
0 , . . . ,Vr+1

2k−1,Vrk , . . . ,Vr2r−1}. Π(G) contains 2k vertex parts from

level r+ 1 and 2r− k vertex parts from level r, making K ′ = 2r + k. After bipar-

titioning Gr
k, a (K ′+ 1)-way partition Π′(G) is obtained which contains Vr+1

2k and

Vr+1
2k+1 instead of Vrk . For example, in Figure 3.2, the RB process is at level r = 2

prior to bipartitioning G2
1 = (V2

1 , E21 ), so, the current state of the RB induces

a five-way partition Π(G) = {V3
0 ,V3

1 ,V2
1 ,V2

2 ,V2
3}. Bipartitioning G2

1 induces a

six-way partition Π′(G) = {V3
0 ,V3

1 ,V3
2 ,V3

3 ,V2
2 ,V2

3}. P r
k denotes the group of pro-

cessors which are responsible for performing the tasks represented by the vertices

in Vrk . The send and receive volume definitions SV (Pk) and RV (Pk) of individual

processor Pk are easily extended to SV (P r
k ) and RV (P r

k ) for processor group P r
k .

We first formulate the send volume of the processor group P r
k to all other
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processor groups corresponding to vertex parts in Π(G). Let connectivity set of

vertex vi ∈ Vrk , Con(vi), denote the subset of parts in Π(G) − {Vrk} in which vi

has at least one neighbor. That is,

Con(vi) = {V t` ∈ Π(G) : Adj(vi) ∩ V t` 6= ∅} − {Vrk},

where t is either r or r + 1. Vertex vi is boundary if Con(vi) 6= ∅, and once vi

becomes boundary, it remains boundary in all further bipartitionings. For exam-

ple, in Figure 3.2, Con(v9) = {V3
1 ,V2

2 ,V2
3}. Con(vi) signifies the communication

operations due to vi, where P r
k sends row i of X to processor groups that corre-

spond to the parts in Con(vi). The send load associated with vi is denoted by

sl(vi) and is equal to

sl(vi) = s× |Con(vi)|

The total send volume of P r
k is then equal to the sum of the send loads of all

vertices in Vrk , i.e., SV (P r
k ) =

∑
vi∈Vr

k
sl(vi). In Figure 3.2, the total send volume

of P 2
1 is equal to sl(v7)+sl(v8)+sl(v9)+sl(v10) = 3s+2s+3s+s = 9s. Therefore,

during bipartitioning Gr
k, minimizing

max

{ ∑
vi∈Vr+1

2k

sl(vi),
∑

vi∈Vr+1
2k+1

sl(vi)

}

is equivalent to minimizing the maximum send volume of the two processor groups

P r+1
2k and P r+1

2k+1 to the other processor groups that correspond to the vertex parts

in Π(G).

In a similar manner, we formulate the receive volume of the processor group

P r
k from all other processor groups corresponding to the vertex parts in Π(G).

Observe that for each boundary vj ∈ V t` that has at least one neighbor in Vrk , P r
k

needs to receive the corresponding row j of X from P t
` . For instance, in Figure 3.2,

since v5 ∈ V3
1 has two neighbors in V2

1 , P 2
1 needs to receive the corresponding

fifth row of X from P 3
1 . Hence, P r

k receives a subset of X-matrix rows whose

cardinality is equal to the number of vertices in V − Vrk that have at least one

neighbor in Vrk , i.e., |{vj ∈ {V − Vrk} : vi ∈ Vrk and eji ∈ E}|. The size of this set

for V2
1 in Figure 3.2 is equal to 10. Note that each such vj contributes s words to
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the receive volume of P r
k . This quantity can be captured by evenly distributing

it among vj’s neighbors in Vrk . In other words, a vertex vj ∈ V tl that has at

least one neighbor in Vrk contributes s/|Adj(vj) ∩ Vrk | to the receive load of each

vertex vi ∈ {Adj(vj) ∩ Vrk}. The receive load of vi, denoted by rl(vi), is given by

considering all neighbors of vi that are not in Vrk , that is,

rl(vi) =
∑

eji∈E and vj∈Vt
`

s

|Adj(vj) ∩ Vrk |
.

The total receive volume of P r
k is then equal to the sum of the receive loads of

all vertices in Vrk , i.e., RV (P r
k ) =

∑
vi∈Vr

k
rl(vi). In Figure 3.2, the vertices v11,

v12, v15 and v16 respectively contribute s/3, s/2, s and s to the receive load of

v8, which makes rl(v8) = 17s/6. The total receive volume of P 2
1 is equal to

rl(v7)+rl(v8)+rl(v9)+rl(v10) = 3s+17s/6+10s/3+5s/6 = 10s. Note that this

is also equal to the s times the number of neighboring vertices of V2
1 in V − V2

1 .

Therefore, during bipartitioning Gr
k, minimizing

max

{ ∑
vi∈Vr+1

2k

rl(vi),
∑

vi∈Vr+1
2k+1

rl(vi)

}

is equivalent to minimizing maximum receive volume of the two processor groups

P r+1
2k and P r+1

2k+1 from the other processor groups that correspond to the vertex

parts in Π(G).

Although these two formulations correctly encapsulate the send/receive vol-

ume loads of P r+1
2k and P r+1

2k+1 to/from all other processor groups in Π(G), they

overlook the send/receive volume loads between these two processor groups. Our

approach tries to refrain from this small deviation by immediately utilizing the

newly generated partition information while computing volume loads in the up-

coming bipartitionings. That is, the computation of send/receive loads for bi-

partitioning Gr
k utilizes the most recent K ′-way partition information, i.e., Π(G).

This deviation becomes negligible with increasing number of subgraphs in the

latter levels of the RB tree. The encapsulation of send/receive volumes between

P r+1
2k and P r+1

2k+1 during bipartitioning Gr
k necessitates implementing a new parti-

tioning tool.
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Algorithm 2: GRAPH-COMPUTE-VOLUME-LOADS

Input: G = (V , E), Gr
k = (Vrk , Erk), part, s

foreach boundary vertex vi ∈ Vrk do1

B Compute the send load
Con(vi)← ∅2

foreach boundary vertex vj ∈ Adj(vi) and vj /∈ Vrk do3

Con(vi)← Con(vi) ∪ {part[vj]}4

sl(vi)← s× |Con(vi)|5

B Compute the receive load
rl(vi)← 06

foreach boundary vertex vj ∈ Adj(vi) and vj /∈ Vrk do7

rl(vi)← rl(vi) + s/|Adj(vj) ∩ Vrk |8

Algorithm 2 presents the computation of send and receive loads of vertices

in Gr
k prior to its bipartitioning. As its inputs, the algorithm needs the original

graph G = (V , E), graph Gr
k = (Vrk , Erk), and the up-to-date partition information

of vertices, which is stored in part array of size V = |V|. To compute the send

load of a vertex vi ∈ Vrk , it is necessary to find the set of parts in which vi has

at least one neighbor. For this purpose, for each vj /∈ Vrk in Adj(vi), Con(vi)

is updated with the part that vj is currently in (lines 2-4). Adj(·) lists are the

adjacency lists of the vertices in the original graph G. Next, the send load of

vi, sl(vi), is simply set to s times the size of Con(vi) (line 5). To compute the

receive load of vi ∈ Vrk , it is necessary to visit the neighbors of vi that are not in

Vrk . For each such neighbor vj, the receive load of vi, rl(vi), is updated by adding

vi’s share of receive load due to vj, which is equal to s/|Adj(vj)∩ Vrk | (lines 6-8).

Observe that only the boundary vertices in Vrk will have nonzero volume loads at

the end of this process.

Algorithm 3 presents the overall partitioning process to obtain a K-way par-

tition utilizing breadth-first RB. For each level r of the RB tree, the graphs in

this level are bipartitioned from left to right, Gr
0 to Gr

2r−1 (lines 3-4). Prior to

bipartitioning of Gr
k, the send load and the receive load of each vertex in Gr

k
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are computed with GRAPH-COMPUTE-VOLUME-LOADS (line 5). Recall that in the

original sparse matrix partitioning with graph model, each vertex vi has a sin-

gle weight w1(vi), which represents the computational load associated with it.

To address the minimization of maximum send/receive volume, we associate an

extra weight with each vertex. Specifically, to minimize the maximum send vol-

ume, the send load of vi is assigned as its second weight, i.e., w2(vi) = sl(vi).

In a similar manner, to minimize the maximum receive volume, the receive load

of vi is assigned as its second weight, i.e., w2(vi) = rl(vi). Observe that only

the boundary vertices have nonzero second weights. Next, Gr
k is bipartitioned

to obtain Π(Gr
k) = {Vr+1

2k ,Vr+1
2k+1} using multi-constraint partitioning to handle

multiple vertex weights (line 7). Then, two new subgraphs Gr+1
2k and Gr+1

2k+1 are

formed from Gr
k using Π(Gr

k) (line 8). In partitioning, minimizing imbalance on

the second part weights corresponds to minimizing imbalance on send (receive)

volume if these weights are set to send (receive) loads. In other words, under the

objective of minimizing total volume in this bipartitioning, minimizing

max{W 2(Vr+1
2k ),W 2(Vr+1

2k+1)}
(W 2(Vr+1

2k ) +W 2(Vr+1
2k+1))/2

relates to minimizing max{SV (P r+1
2k ), SV (P r+1

2k+1)} (max{RV (P r+1
2k ), RV (P r+1

2k+1)})
if the second weights are set to send (receive) loads. Then part array is updated

after each bipartitioning to keep track of the most up-to-date partition informa-

tion of all vertices (line 9). Finally, the resulting K-way partition information is

returned in part array (line 10). Note that in the final K-way partition, processor

group P
lg2K
k denotes the individual processor Pk, for 0 ≤ k ≤ K − 1.

In order to efficiently maintain the send and receive loads of vertices, we make

use of the RB paradigm in a breadth-first order. Since these loads are not known

in advance and depend on the current state of the partitioning, it is crucial to act

proactively by avoiding high imbalances on them. Compare this to computational

loads of vertices, which is known in advance and remains the same for each vertex

throughout the partitioning. Hence, utilizing a breadth-first or a depth-first RB

does not affect the quality of the obtained partition in terms of computational
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Algorithm 3: GRAPH-PARTITION

Input: G = (V , E), K, s
Let part be an array of size |V|1

G0
0 ← G2

for r ← 0 to lg2K − 1 do3

for k ← 0 to 2r − 1 do4

GRAPH-COMPUTE-VOLUME-LOADS(G,Gr
k, part, s)5

Set volume-based vertex weights using sl(vi) and/or rl(vi)6

Bipartition Gr
k = (Vrk , Erk) to obtain Π(Gr

k) = (Vr+1
2k ,Vr+1

2k+1)7

Form new graphs Gr+1
2k and Gr+1

2k+1 using Π(Gr
k)8

Update part using Π(Gr
k)9

return part10

load. We prefer a breadth-first RB to a depth-first RB for minimizing volume-

based metrics since operating on the parts that are at the same level of the RB

tree (in order to compute send/receive loads) prevents the possible deviations

from the target objective(s) by quickly adapting the current available partition

to the changes that occur in send/receive volume loads of vertices.

The described methodology addresses the minimization of maxk SV (Pk) or

maxk RV (Pk) separately. After computing the send and receive loads, we can

also easily minimize maxk(SV (Pk) + RV (Pk)) by associating the second weight

of each vertex with the sum of send and receive loads, i.e., w2(vi) = sl(vi)+rl(vi).

For the minimization of maxk max{SV (Pk), RV (Pk)}, either the send loads or the

receive loads are targeted at each bipartitioning. For this objective, the decision

of minimizing which measure in a particular bipartitioning can be given according

to the imbalance values on these measures for the current overall partition. If the

imbalance on send loads is larger, then the second weights of vertices are set to

the send loads, whereas if the imbalance on receive loads is larger, then the second

weights of vertices are set to the receive loads. In this way, we try to control the

high imbalance in maxk RV (Pk) that is likely to occur when minimizing solely

maxk SV (Pk), and vice versa.

Apart from minimizing a single volume-based metric, our approach is very
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flexible in the sense that it can address any combination of volume-based metrics

simultaneously. This is achieved by simply associating even more weights with

vertices. For instance, if one wishes to minimize maxk SV (Pk) and maxk RV (Pk)

at the same time, it is enough to use two more weights in addition to the computa-

tional weight by setting w2(vi) = sl(vi) and w3(vi) = rl(vi) accordingly. Observe

that one can utilize as many weights as desired with vertices. However, associating

several weights with vertices does not come for free and has practical implica-

tions, which we address in the next section. Another important useful feature of

our model is that, once the send and the receive loads are in hand, it is possible

to define custom metrics regarding volume to best suit the needs of the target

parallel application. For instance, although not sensible and just for demon-

stration purposes, one can address objectives like maxk min{SV (Pk), RV (Pk)},
maxk(SV (Pk)

2 +RV (Pk)), etc. For our work, we have chosen the metrics which

we believe to be the most crucial and definitive for a general application realized

in message passing paradigm.

The arguments made so far are valid for the graph representation of symmet-

ric matrices. To handle nonsymmetric matrices, it is necessary to modify the

adjacency list definition by defining two adjacency lists for each vertex. This is

because, the nonzeros ai,j and aji have different communication requirements in

nonsymmetric matrices. Specifically, a nonzero aji signifies a send operation from

Pk to P` no matter whether ai,j is nonzero or not, where vi and vj are respectively

mapped to processors Pk and P`. Hence, the adjacency list definition regarding

the send operations for vi becomes AdjS(vi) = {vj : aji 6= 0}. In a dual manner,

a nonzero ai,j signifies a receive operation from P` to Pk no matter whether aji is

nonzero or not. Thus, the adjacency list definition regarding the receive opera-

tions for vi becomes AdjR(vi) = {vj : ai,j 6= 0}. Accordingly, in Algorithm 2, the

adjacency lists in lines 4, 7, and 8 need to be replaced with AdjS(vi), AdjR(vi),

and AdjS(vj), respectively, to handle nonsymmetric matrices. Note that for all

vi ∈ V , if the matrix is symmetric, then AdjS(vi) = AdjR(vi) = Adj(vi).

3.3.2.0.1 Complexity analysis Compared to the original RB-based graph

partitioning model, our approach additionally requires computing and setting
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volume loads (lines 5-6). Hence, we only focus on the runtime of these opera-

tions to analyze the additional cost introduced by our method. When we con-

sider GRAPH-COMPUTE-VOLUME-LOADS for a single bipartitioning of graph Gr
k, the

adjacency list of each boundary vertex (Adj(vi)) in this graph is visited once.

Note that although the lines 4 and 8 in this algorithm could be realized in a

single for-loop, the computation of loads are illustrated with two distinct for-

loops for the ease of presentation. In a single level of the RB tree (lines 4-9 of

GRAPH-PARTITION), each edge ei,j of G is considered at most twice, once for com-

puting loads of vi, and once for computing loads of vj. The efficient computation

of |Con(vi)| in line 4 and |Adj(vj) ∩ Vrk | in line 8 requires special attention. By

maintaining an array of size O(K) for each boundary vertex, we can retrieve

these values in O(1) time. In the computation of the send loads, the `th ele-

ment of this array is one if vi has neighbor(s) in Vr` , and zero otherwise. In the

computation of the receive loads, it stands for the number of neighbors of vi in

Vr` . Since both of these operations can be performed in O(1) time with the help

of these arrays, the computation of volume loads in a single level takes O(E)

time in GRAPH-PARTITION (line 5). For lines 6 and 9, each vertex in a single

level is visited only once, which takes O(V ) time. Hence, our method introduces

an additional O(V + E) = O(E) cost to each level of the RB tree. Note that

O(E) = O(nnz(A)), where nnz(A) is the number of nonzeros in A. The total

runtime due to handling of volume-based loads thus becomes O(E lg2K). The

space complexity of our algorithm is O(VBK) due to the arrays used to han-

dle connectivity information of boundary vertices, where VB ⊆ V denotes the

set of boundary vertices in the final K-way partition. In practice |VB| and K

are much smaller than |V|. In addition, for the send loads, these arrays contain

only binary information which can be stored as bit vectors. Also note that the

multi-constraint partitioning is expected to be costlier than its single-constraint

counterpart.
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3.3.3 Hypergraph model

Consider the use of the RB paradigm for partitioning the hypergraph represen-

tation H = (V ,N ) of A for row-parallel Y = AX to obtain a K-way partition

(Section 3.1.2) . Without loss of generality, we assume that the communication

task represented by net ni is performed by the processor that vi is assigned to.

We assume that the assumptions made for the graph model also applies here

so that we are at the stage of bipartitioning Hr
k for a given K ′-way partition

Π(H). The hypergraph model for minimizing volume-based metrics resembles

to the graph model. The only differences are the definitions regarding the send

and receive loads of vertices. Recall that in the hypergraph model, ni represents

the communication task in which the processor that owns vi ∈ Vrk sends row i

of X to the processors that correspond to the parts in Λ(ni) − {Vrk}. So, in the

hypergraph model, the connectivity set of vertex vi is defined as the number of

parts that ni connects other than V r
k , that is,

Con(vi) = {V t` ∈ Π(H) : Pins(ni) ∩ V t` 6= ∅} − Vrk .

Hence, in the hypergraph model, the send load sl(vi) of vertex vi is given by

sl(vi) = s× |Con(vi)| = s× (λ(ni)− 1).

Consider the communication task represented by a net nj that connects vi ∈
Vrk , where the vertex vj associated with nj is in V t` . Recall that V t` is a part in

Π(H) other than V r
k , where t is either r or r + 1. For this task, the processor

groups that correspond to the parts in Λ(nj) − {V t`} receive row j of X from

P t
` . This receive load of s words from P t

` to P r
k is evenly distributed among the

vertices in Pins(nj) ∩ Vrk . That is, nj contributes s/|Pins(nj) ∩ Vrk | amount to

the receive load of vi. Hence, the receive load rl(vi) of vi is given by

rl(vi) =
∑

nj∈Nets(vi)−{ni}

s

|Pins(nj) ∩ Vrk |
.
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Algorithm 4: HYPERGRAPH-COMPUTE-VOLUME-LOADS

Input: H = (V ,N ), Hr
k = (Vrk ,N r

k ), part, s

foreach boundary vertex vi ∈ Vrk do1

B Compute the send load
Con(vi)← ∅2

foreach boundary vertex vj ∈ Pins(ni) and vj /∈ Vrk do3

Con(vi)← Con(vi) ∪ {part[vj]}4

sl(vi)← s× |Con(vi)|5

B Compute the receive load
rl(vi)← 06

foreach nj ∈ Nets(vi)− {ni} and vj /∈ Vrk do7

rl(vi)← rl(vi) + s/|Pins(nj) ∩ Vrk |8

The remaining definitions regarding SV (P r
k ), RV (P r

k ) and the equivalence

of minimization of the above-mentioned quantities with the defined metrics

for the graph model hold as is for the hypergraph model. The algorithm

HYPERGRAPH-COMPUTE-VOLUME-LOADS (Algorithm 4) computes the send and re-

ceive loads of vertices in the hypergraph model and resembles to that of graph

model (Algorithm 2). In line 3 of this algorithm where we compute the send load

of vi, we traverse pin list of ni instead of adjacency list of vi. In line 7 where

we compute the receive load of vi, we traverse the nets that connect vi instead

of its adjacency list and in line 8, the receive load of vi is updated by taking

intersection of Vrk with Pins(nj) instead of with Adj(vj). To compute a K-way

partition of H, Algorithm 3 can be used as is by replacing its graph terminology

with the hypergraph terminology.

3.3.3.0.1 Complexity analysis The computation of volume loads in the

hypergraph model differs from the graph model only in the sense that instead

of visiting the adjacency lists of boundary vertices, the vertices connected by

cut nets and the nets connecting boundary vertices are visited. Again, by

associating an O(K)-size array with each boundary vertex, lines 4 and 8 in
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HYPERGRAPH-COMPUTE-VOLUME-LOADS can be performed in O(1) time. In the com-

putation of the send loads, each vertex and the vertices connected by the net

associated with that vertex are visited at most once in a single level of the RB

tree. This requires visiting all vertices and pins of the hypergraph once in a single

level in the worst case, which takes O(V + P ) time, where P =
∑

n∈N |Pins(n)|.
In the computation of the receive loads, each vertex and its net list are visited

once. This also requires visiting all vertices and pins of the hypergraph once

in a single level, which takes O(V + P ) time. Hence, our method introduces

an additional O(V + P ) = O(P ) cost to each level of the RB tree. Note that

O(P ) = O(nnz(A)). The total runtime due to handling of volume-based loads

thus becomes O(P lg2K). The space complexity is O(VBK), where VB ⊆ V de-

notes the set of boundary vertices in the final K-way partition. Observe that we

introduce the same overhead both in graph and hypergraph models.

3.3.4 Partitioning tools

The multi-constraint graph and hypergraph partitioning tools associate multi-

ple weights with vertices. These tools allow users to define different maximum

allowed imbalance ratios ε1, . . . , εC for each constraint, where εc denotes the max-

imum allowed imbalance ratio on the cth constraint. Recall that in our approach,

minimizing the imbalance on a specific weight relates to minimizing the respective

volume-based metric. Hence, by using the existing tools within our approach, it

is possible to minimize the target volume-based metric(s).

The partitioning tools do not try to minimize the imbalance on a specific

constraint. Rather, they aim to stay within the given threshold for any given εc.

For this reason, the imbalance values provided to the tools should be as low as to

the degree how much these metrics are important for optimization. Enforcing a

very small value on εc can put a lot of strain on the partitioning tool, which in turn

may cause the tool to intolerably loosen its objective. This may increase total

volume drastically and make the minimization of target volume-based metrics

pointless as they are defined on the amount of volume communicated. For this
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reason, it is not sensible to use a very small value for εc.

3.4 Efficient handling of multiple constraints

In this section, we describe the two drawbacks of using multiple constraints within

the context of our model and propose two practical schemes which enhance this

model to overcome them.

Our approach introduces as many constraints as needed in order to address the

desired volume-based cost metrics. Recall that the volume related weights are

nonzero only for the boundary vertices because only these vertices incur commu-

nication. Since the objective of minimizing cutsize with partitioners also relates to

minimizing the number of boundary vertices, only a small portion of all vertices

will have nonzero volume related weights throughout the partitioning process.

So, balancing the volume related weights of parts will have much less degree of

freedom compared to balancing the computational weights of parts. That is, the

partitioner will have difficulty in maintaining balance on volume-related weights

of parts because of small number of vertices with nonzero volume-related weights.

Each introduced constraint puts an extra burden on the partitioning tool by

restricting the solution space, where the more restricted the solution space, the

worse the quality of the solutions generated by the partitioning tool. Hence, the

additional constraint(s) used for minimizing volume-based metrics may lead to

higher total volume (i.e., cutsize). This also has the side effect on the other factors

that determine the overall communication cost, such as increasing contention on

the network or increasing the latency overhead.

To address these shortcomings, in Section 3.4.1, we propose a scheme which se-

lectively utilizes volume-related weights, and in Section 3.4.2, we propose another

scheme which unifies multiple weights.
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3.4.1 Delayed formation of volume loads

In this scheme, we utilize level information in the RB tree to form and make use

of the volume related loads in a delayed manner. Specifically, in bipartitionings of

the first ρ levels of the RB tree, we allow only a single constraint, i.e., regarding

the computational load. In the remaining bipartitionings which belong to the

latter lg2K − ρ levels, we consider volume-based metrics by introducing as many

constraints as needed. This results in a level-based hybrid scheme in which either

a single constraint or multiple constraints are utilized.

Our motivations for adopting this scheme are three-fold. First, we aim to im-

prove the quality of the obtained solutions in terms of total volume by sacrificing

from the quality of the volume-based metrics. Recall that the minimization of

volume-based metrics is pointless unless the total volume is properly addressed.

Next, the total volume changes as the partitioning progresses, and the volume-

based metrics are defined over this changing quantity. As the ratio of boundary

vertices increases in latter levels of the RB tree, addressing volume-based loads

in bipartitionings of these levels leads to more efficient utilization of partitioners.

Finally, utilization of volume-based loads in the latter levels rather than the ear-

lier levels of the RB tree prevents the deviations on these loads which are likely

to occur in the final solution if these constraints were utilized in the earlier levels

rather than the latter levels.

This can be seen as an effort to achieve a tradeoff between minimizing total vol-

ume and minimizing target volume-based metrics. If we use multiple constraints

in all bipartitionings, the target volume-based metrics will be optimized but the

total obtained volume will be relatively high. On the other hand, if we use a

single constraint (i.e., computational load), the total volume will be relatively

low but the target metrics will not be addressed properly.
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3.4.2 Unified weighting

In this scheme, we utilize only a single constraint by unifying multiple loads into

a single load through a linear formula. Note that this scheme also refrains from

the issue related with boundary vertices since the unified single weight for each

vertex becomes almost always nonzero.

In order to use a single weight for vertices, it is required to establish a rela-

tion between distinct loads those are of interest. For SpMM, determining the

relationship between the computational and communication loads is necessary to

accurately estimate a single load for each vertex. In large-scale parallel architec-

tures, per unit communication time is usually greater than per unit computation

time. To unify the respective loads, we define a coefficient α that represents the

per unit communication time in terms of per unit computation time. This coeffi-

cient depends on various factors such as clock rate, properties of the interconnect

network, the requirements of the underlying parallel application, etc. The fol-

lowing code snippet constitutes the basic skeleton of the SpMM operations from

processor Pk’s point of view:

. . .

MPI Irecv()

MPI Send()

Perform local computations using Akk

MPI Waitall() // Wait all receives to complete

Perform non-local computations using Ak`, ` 6= k

. . .

In this implementation, non-blocking receive operation is preferred to enable over-

lapping local SpMM computations AkkXk and incoming messages. Blocking send

operation is used since the performance gain from overlapping local computations

and outgoing messages is very limited. The total load of a vertex vi in this exam-

ple can be captured with two distinct weights, where the first weight w1(vi) and

the second weight w2(vi) respectively represent the computational load and the

send load associated with vi. The receive loads of vertices are neglected for this
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implementation because of the non-blocking receive operations under the assump-

tion that each processor has enough amount of local computation to overlap with

the incoming messages. Then, with α in hand, we can easily unify these weights

into a single weight as w(vi) = w1(vi) + αw2(vi). Note that for non-boundary

vertices w(vi) = w1(vi).

3.5 Experiments

3.5.1 Experimental setting

3.5.1.1 Datasets

We perform our experiments on three datasets. The first dataset is used

to compare the proposed graph and hypergraph partitioning models (Sec-

tions 3.3 and 3.4) against the standard partitioning models (Section 3.1.2). Note

that the standard models address only total volume. The second dataset is used

to compare our models against the state-of-the-art partitioner UMPa, which ad-

dresses maximum send volume of processors. The third dataset is used to assess

the strong and weak scaling performance of our models on multi-source breadth-

first search (BFS) by comparing them against a recent two-dimensional parti-

tioning model [11]. Tables 3.1, 3.2 and 3.3 describe the basic properties of these

three datasets.

The first dataset is abbreviated as ds-general and contains all the square

matrices from SuiteSparse Matrix Collection [47] (formerly known as the UFL

Sparse Matrix Collection) with at least 5,000 rows/columns and between 50,000

and 50,000,000 nonzeros. At the time of the experiment, UFL had 964 such

matrices, so ds-general contains 964 matrices. We categorized these matri-

ces according to the maximum send volume of processors obtained by the stan-

dard partitioning models when they are partitioned among 128, 256, 512 and

1024 processors. The naming for the categories is in the format of m -Kk -Vv .
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Table 3.1: Properties of the matrices in dataset ds-general. The values are the
averages of the matrices in the respective category.

number
of

matrices

avg
number of
rows/cols

avg
number of
nonzeros

avg max
row/col
sparsity

number
of

matrices

avg
number of
rows/cols

avg
number of
nonzeros

avg max
row/col
sparsity

matrix
category

matrix
category

ca
te

go
ri

es
ob

ta
in

ed
b
y
G
-
T
V

G-K128-V8000 50 303K 8,903K 0.0443 G-K512-V8000 32 350K 10,279K 0.0746
G-K128-V4000 103 191K 5,513K 0.0233 G-K512-V4000 54 240K 8,296K 0.0598
G-K128-V2000 167 175K 4,328K 0.0122 G-K512-V2000 98 179K 6,083K 0.0302
G-K128-V1000 287 129K 3,067K 0.0099 G-K512-V1000 175 159K 4,304K 0.0146
G-K128-V500 462 113K 2,487K 0.0056 G-K512-V500 329 108K 2,534K 0.0134
G-K128-V250 646 83K 1,566K 0.0049 G-K512-V250 553 84K 1,769K 0.0084
G-K128-V125 808 73K 1,227K 0.0040 G-K512-V125 709 73K 1,394K 0.0055
G-K128-V0 964 60K 907K 0.0032 G-K512-V0 964 60K 907K 0.0032

G-K256-V8000 40 303K 9,832K 0.0915 G-K1024-V8000 23 312K 9,907K 0.1171
G-K256-V4000 73 195K 7,089K 0.0362 G-K1024-V4000 47 271K 8,053K 0.0867
G-K256-V2000 135 182K 5,136K 0.0154 G-K1024-V2000 78 168K 5,885K 0.0628
G-K256-V1000 200 149K 3,943K 0.0138 G-K1024-V1000 174 120K 3,216K 0.0360
G-K256-V500 404 123K 2,851K 0.0063 G-K1024-V500 313 78K 1,520K 0.0330
G-K256-V250 574 91K 1,874K 0.0057 G-K1024-V250 500 85K 1,823K 0.0105
G-K256-V125 770 74K 1,279K 0.0045 G-K1024-V125 650 75K 1,502K 0.0068
G-K256-V0 964 60K 907K 0.0032 G-K1024-V0 964 60K 907K 0.0032

ca
te

go
ri

es
ob

ta
in

ed
b
y
H
-
T
V

H-K128-V8000 50 185K 8,869K 0.0686 H-K512-V8000 39 155K 8,791K 0.0852
H-K128-V4000 91 170K 6,253K 0.0250 H-K512-V4000 51 132K 7,726K 0.0848
H-K128-V2000 167 166K 4,323K 0.0142 H-K512-V2000 89 165K 6,262K 0.0351
H-K128-V1000 267 123K 3,122K 0.0133 H-K512-V1000 170 154K 4,383K 0.0135
H-K128-V500 453 112K 2,478K 0.0059 H-K512-V500 303 111K 2,895K 0.0115
H-K128-V250 624 86K 1,686K 0.0049 H-K512-V250 554 84K 1,700K 0.0078
H-K128-V125 801 72K 1,246K 0.0041 H-K512-V125 696 74K 1,412K 0.0058
H-K128-V0 964 60K 907K 0.0032 H-K512-V0 964 60K 907K 0.0032

H-K256-V8000 41 152K 9,447K 0.0893 H-K1024-V8000 38 134K 6,529K 0.1061
H-K256-V4000 69 155K 7,494K 0.0519 H-K1024-V4000 50 124K 6,564K 0.1042
H-K256-V2000 128 164K 5,191K 0.0177 H-K1024-V2000 75 151K 6,240K 0.0567
H-K256-V1000 214 135K 3,607K 0.0163 H-K1024-V1000 126 151K 5,090K 0.0267
H-K256-V500 380 117K 2,808K 0.0071 H-K1024-V500 322 83K 1,654K 0.0261
H-K256-V250 556 93K 1,965K 0.0053 H-K1024-V250 508 81K 1,644K 0.0103
H-K256-V125 753 72K 1,300K 0.0048 H-K1024-V125 653 75K 1,470K 0.0067
H-K256-V0 964 60K 907K 0.0032 H-K1024-V0 967 60K 907K 0.0032
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Here, m ∈ {G,H} denotes the model, where m = G if the partitions are ob-

tained by the standard graph model and m = H if the partitions are obtained

by the standard hypergraph model. k denotes the number of processors, where

k ∈ {128, 256, 512, 1024}. v denotes the lower bound for the maximum send vol-

ume obtained, where v ∈ {8000, 4000, 2000, 1000, 500, 250, 125, 0}. For example,

G-K512-V1000 denotes the set of matrices for which the standard graph model

obtains a maximum send volume of at least 1000 units for K = 512 processors.

Here and hereafter one unit of communication refers to an X-matrix row that

contains s words. Our motivations for this categorization are two-fold: (i) to cat-

egorize the matrices according to their likelihood for which the maximum send

volume is a bottleneck for parallel performance and (ii) to facilitate a better per-

formance analysis of the proposed models. Table 3.1 displays various important

properties of the matrices in those categories as the geometric averages. Note

that the categories for the standard graph and hypergraph models are different

as the maximum send volume values obtained by them are typically different.

Also note that m -Kk -V8000 ⊆ m -Kk -V4000 ⊆ · · · ⊆ m -Kk -V0 and m -Kk -V0

contains all the matrices in ds-general, for any m and k . “avg max row/col

sparsity” column of Table 3.1 denotes the maximum number of nonzeros in a

row or column divided by the number of rows/columns in the respective matrix,

averaged over all the matrices in the respective category.

For the comparison against UMPa, we run our models on the matrices in Table 1

of [42], the work that propose UMPa. We use these matrices for our experiments

since UMPa is not publicly available. The matrices in this dataset are obtained

from 10th DIMACS Implementation Challenge [48] and contains 38 matrices from

eight different classes. We exclude two synthetic matrices, namely 1,280,000 and

320,000, in our experiments as the communicated items in these matrices have

different sizes and the communication load formulation utilized in our models does

not support varying sizes of communicated items. We abbreviate the resulting

dataset of 36 matrices as ds-dimacs. For the matrices in this dataset, the number

of rows/columns is between 100,000 and 1,585,478 and the number of nonzeros is

between 119,666 and 38,354,076. The properties of the matrices in this dataset

are given in Table 3.2.
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Table 3.2: Properties of the matrices in dataset ds-dimacs.

matrix
name

number of
rows/cols

number of
nonzeros

matrix
name

number of
rows/cols

number of
nonzerosclass class

citationCiteseer 268K 2,313K Citation rgg n 2 19 s0 524K 6,540K RandomGeometric
coAuthorsCiteseer 227K 1,628K Citation rgg n 2 20 s0 1,049K 13,783K RandomGeometric
coAuthorsDBLP 299K 1,955K Citation af shell10 1,508K 52,672K Sparse
coPapersCiteseer 434K 32,073K Citation af shell9 505K 17,589K Sparse
coPapersDBLP 540K 30,491K Citation audikw 1 944K 77,652K Sparse
caidaRouterLevel 192K 1,218K Clustering ecology1 1,000K 4,996K Sparse
cnr-2000 326K 3,216K Clustering ecology2 1,000K 4,996K Sparse
eu-2005 863K 19,235K Clustering G3 circuit 1,585K 7,661K Sparse
G n pin pout 100K 1,002K Clustering ldoor 952K 46,522K Sparse
in-2004 1,383K 16,917K Clustering thermal2 1,228K 8,580K Sparse
pref.Att. 100K 1,000K Clustering belgium osm 1,441K 3,100K Street
smallworld 100K 1,000K Clustering luxembourg osm 115K 239K Street
delaunay n17 131K 786K Delaunay 144 145K 2,149K Walshaw
delaunay n18 262K 1,573K Delaunay 598a 111K 1,484K Walshaw
delaunay n19 524K 3,146K Delaunay auto 449K 6,629K Walshaw
delaunay n20 1,049K 6,291K Delaunay fe ocean 143K 819K Walshaw
rgg n 2 17 s0 131K 1,458K RandomGeometric m14b 215K 3,358K Walshaw
rgg n 2 18 s0 262K 3,095K RandomGeometric wave 156K 2,119K Walshaw

Table 3.3: Properties of the matrices in ds-large.

matrix
name

number of
rows/cols

number of
nonzeros

problem
kind

arabic-2005 22,744K 640,000K directed graph
nlpkkt240 27,994K 760,648K optimization problem
uk-2005 39,460K 936,364K directed graph
webbase-2001 118,142K 1,019,903K directed graph
it-2004 41,292K 1,150,725K directed graph

The third dataset is abbreviated as ds-large and contains five of the six

largest matrices in the SuiteSparse Matrix Collection [47]. The properties of the

matrices in this dataset are given Table 3.3. These are larger than the matrices

in ds-general and ds-dimacs, with the number of rows/columns between 22.7

million and 118.1 million and the number of nonzeros between 640 million and

1.15 billion. We experiment with larger number of processors up to 2048 on this

dataset.

39



3.5.1.2 Implementation and parallel systems

The parallel SpMM and multi-source BFS kernels are implemented within a par-

allel library [49] in C that uses MPI for interprocess communication. We use two

systems in our experiments. The first system is a Cray XC40 machine. A node on

this machine consists of 24 cores (two 12-core Intel Haswell Xeon processors) with

2.5 GHz clock frequency and 128 GB memory. The nodes are connected with a

high speed Dragonfly network topology called CRAY Aries. The second system

is used for scalability analysis and is a Lenovo NeXtScale machine. A node on

this machine consists of 28 cores (two 14-core Intel Haswell Xeon processors) with

2.6 GHz clock frequency and 64 GB memory. The nodes are connected with an

Infiniband non-blocking tree network topology.

The proposed models can be realized with any graph and hypergraph parti-

tioning tool. For models that rely on using multiple constraints (i.e., the pro-

posed model and its delayed version), the tool should support multiple weights

on vertices. In our experiments, we used Metis [32] for partitioning graphs and

PaToH [19] for partitioning hypergraphs, both in default settings. Metis and

PaToH are respectively used to bipartition the graphs and hypergraphs in line 7

of Algorithm 3.

3.5.1.3 Compared schemes and models

We evaluate six proposed schemes that address the total volume and the maxi-

mum send volume simultaneously. Each of these schemes considers the minimiza-

tion of the maximum send volume of processors, (i.e., maxk SV (Pk)) in accordance

with the discussions given in Section 3.4.2. These schemes are as follows:

• G-TMV: The proposed graph partitioning model which addresses both Total

and Maximum Volume metrics (Section 3.3.2). This scheme utilizes two

weights, one for the computational loads and one for the send volume loads.

• H-TMV: The hypergraph counterpart of G-TMV (Section 3.3.3).
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• G-TMVd: The variant of G-TMV with the send loads formed in a delayed

manner (Section 3.4.1). ρ is set to dlg2K/2e.

• H-TMVd: The hypergraph counterpart of G-TMVd.

• G-TMVu: The variant of G-TMV with unified loads (Section 3.4.2). The coef-

ficient that determines the relation between computational and communi-

cation loads is set to α = 10.

• H-TMVu: The hypergraph counterpart of G-TMVu.

The baseline models that we compare our proposed models against are as

follows:

• G-TV: The standard graph partitioning model which only addresses Total

Volume (Section 3.1.2). Recall that this is the most widely adopted model

in the literature for sparse matrix/graph partitioning and there exists a

single weight, which is on the computational loads. This scheme refers to

the use of Metis as is for K-way partitioning.

• H-TV: The standard hypergraph partitioning model which only addresses

Total Volume (Section 3.1.2). This scheme refers to the use of PaToH as is

for K-way partitioning.

• UMPa: The state-of-the-art partitioner that can minimize multiple commu-

nication cost metrics [42]. In our case, we consider UMPaMSV in which the

single objective is to minimize the maximum send volume handled by a

processor.

• 2D: The two-dimensional partitioning model proposed for parallel level-

synchronized BFS [11]. Although this method considers the single-source

BFS, it is trivially extended to the multi-source BFS.

For the proposed schemes and the baseline schemes G-TV and H-TV, we use

10% as the maximum allowed imbalance for each of the constraints. Hereinafter,
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we will refer to the maximum send volume of processors simply as maximum

volume.

In Section 3.5.2, we compare the six proposed schemes among themselves and

against standard models G-TV and H-TV. In Section 3.5.3, we compare the best

performing proposed scheme for graph and hypergraph models against UMPa. In

Section 3.5.4, we compare these best schemes against 2D to analyze their scala-

bility on parallel multi-source BFS.

3.5.2 Comparison against standard partitioning models

3.5.2.1 Partitioning results

In this section, we provide the results of the proposed partitioning schemes for

both graph and hypergraph models in terms of maximum volume, total vol-

ume, maximum number of messages and total number of messages, on dataset

ds-general following the categorization described in Section 3.5.1.1. Although

bandwidth-related metrics are expected to be more important for parallel SpMM

performance, latency-related metrics such as maximum and total number of mes-

sages can still affect the performance for certain matrices, hence we include them

in our analysis. The results obtained by G-TMV, G-TMVd and G-TMVu are normal-

ized with respect to those of G-TV and the results obtained by H-TMV, H-TMVd

and H-TMVu are normalized with respect to those of H-TV. The obtained normal-

ized values for K = 1024 processors are displayed as plots for each of the four

metrics seperately for graph and hypergraph models, respectively in Figures 3.3

and 3.4. The detailed results for each K ∈ {128, 256, 512, 1024} are given in Ta-

bles 3.4 and 3.5. In the plots in Figures 3.3 and 3.4, the x-axis denotes the eight

respective matrix categories in order of increasing maximum volume whereas the

y-axis denotes the normalized values. Each value in the plots and the tables

is the geometric average of the normalized values obtained for the matrices in

the respective category. For example, the three values reported for category

G-K1024-V2000 in the plot for maximum volume for graph model (the top left
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one in Figure 3.3) denote the geometric averages of the normalized values ob-

tained by G-TMV, G-TMVd and G-TMVu with respect to those obtained by G-TV on

78 matrices in this category.

As seen in Figure 3.3, G-TMV, G-TMVd and G-TMVu perform better than G-TV

in terms of maximum volume. These three schemes perform drastically better in

the matrices for which maximum volume is a bottleneck for performance. The

improvements obtained by all three schemes increase with increasing significance

of maximum volume. For example, for category G-K1024-V500, G-TMV, G-TMVd

and G-TMVu respectively achieve improvements of 21%, 21% and 14%, whereas

for category G-K1024-V8000, these improvements increase to respectively, 61%,

59% and 39%. In addition, for category G-K1024-Vv with varying v values of 0,

125, 250, 500, 1000, 2000, 4000 and 8000, the improvement of G-TMV over G-TV

gradually increases as 5%, 10%, 14%, 21%, 33%, 48%, 56% and 61%, respectively.

The reason for this increase in the improvement is that there exists more room

for improvement in partitioning the matrices for which the standard graph model

yields high maximum volume.

When we compare G-TMV, G-TMVd and G-TMVu among themselves, G-TMV usu-

ally obtains the best improvements in maximum volume since it addresses this

metric as a stand-alone objective during the entire partitioning process. In this

sense, it differs from G-TMVd and G-TMVu, where G-TMVd addresses maximum

volume only in latter bipartitionings and G-TMVu, in order to address maximum

volume, uses a single unified constraint that also involves the computational load.

Compared to G-TV, G-TMV causes an increase of 17% and 7% in total volume for

G-K1024-V0 and G-K1024-V8000, respectively, and G-TMVd causes an increase

of 15% and 4%. This is due to the additional constraint utilized in G-TMV and

G-TMVd. Recall that utilizing multiple constraints degrades the quality of the

solutions obtained by the partitioner in terms of total volume. The reason for

smaller degradation rates in total volume for categories with high maximum vol-

ume can be attributed to the matrices in these categories having a high total

volume, which leaves less room for degradation as a significant fraction of the

edges were already in the cut in the partitions obtained by the standard model.

G-TMVu, which is proposed to remedy this problem, does not increase the total
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Figure 3.3: Maximum volume, total volume, maximum number of messages and
total number of messages of the proposed graph schemes G-TMV, G-TMVd and
G-TMVu normalized with respect to those of G-TV for K = 1024, averaged on
matrices in each category G-K1024-Vv .
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volume in contrast to G-TMV and G-TMVd, and attains comparable results with

G-TV in this metric.

As seen in Figure 3.3, G-TMV obtains the worst results in terms of maximum

number of messages, followed by G-TMVd. These two schemes in this metric re-

spectively cause increases of 42% and 33% in category G-K1024-V0, and 20% and

10% in category G-K1024-V8000 over G-TV. G-TMVu on the other hand causes a

very slight increase over G-TV. The same observations hold for the total number of

messages as well. Observe that while maximum volume is substantially improved

by G-TMVu, other important factors that determine the communication time such

as maximum and total number of messages and total volume are kept almost

intact.

As seen in Figure 3.4, most of the above observations and discussions made for

the graph model hold for the hypergraph model as well. In the hypergraph model

for maximum and total volume, the improvement and deterioration rates of the

proposed schemes over H-TV are magnified compared to those of the graph models

over G-TV. For example, for category H-K1024-V500, H-TMV, H-TMVd and H-TMVu

respectively achieve improvements of 28%, 25% and 26%, whereas for category

H-K1024-V8000, these improvements become 78%, 66% and 63%. H-TMV causes

increases of 28% and 14% in total volume for H-K1024-V0 and H-K1024-V8000,

respectively, and H-TMVd causes increases of 25% and 11%. H-TMVu on the other

hand obtains slightly smaller total volume than H-TV. In terms of maximum

number of messages, H-TMV and H-TMVd perform worse than H-TV while H-TMVu

performs slightly better. In terms of total number of messages, all three schemes

perform worse than H-TV.

As seen in Tables 3.4 and 3.5, the improvements of the proposed models in

maximum volume increase as the number of processors increases. For example,

for category G-Kk -V2000 with increasing number of k processors 128, 256, 512

and 1024, the improvements of G-TMVu over G-TV respectively increase as 19%,

25%, 27% and 30%. The improvements of H-TMVu over H-TV for the same setting

respectively increase as 18%, 25%, 38% and 51%. The reason for the better per-

formance of the proposed models in larger number of processors is the increased
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Figure 3.4: Maximum volume, total volume, maximum number of messages and
total number of messages of the proposed hypergraph schemes H-TMV, H-TMVd
and H-TMVu normalized with respect to those of H-TV for K = 1024, averaged on
matrices in each category H-K1024-Vv .
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Table 3.4: Normalized values of maximum volume, total volume, maximum
number of messages and total number of messages of the proposed graph
models G-TMV, G-TMVd and G-TMVu with respect to those of G-TV for K ∈
{128, 256, 512, 1024}.

normalized values w.r.t those of G-TV

max volume total volume max message total message

K category G-TMV G-TMVd G-TMVu G-TMV G-TMVd G-TMVu G-TMV G-TMVd G-TMVu G-TMV G-TMVd G-TMVu

12
8

G-K128-V8000 0.69 0.74 0.73 1.10 1.07 1.00 1.05 1.03 0.99 1.22 1.14 1.04
G-K128-V4000 0.73 0.82 0.76 1.12 1.09 0.99 1.09 1.04 1.00 1.27 1.17 1.03
G-K128-V2000 0.78 0.85 0.81 1.10 1.08 0.99 1.13 1.06 1.02 1.29 1.16 1.05
G-K128-V1000 0.84 0.88 0.85 1.10 1.07 0.99 1.16 1.09 1.01 1.28 1.16 1.03
G-K128-V500 0.86 0.89 0.87 1.11 1.08 0.99 1.18 1.10 1.01 1.31 1.19 1.03
G-K128-V250 0.89 0.90 0.88 1.12 1.09 0.99 1.24 1.12 1.01 1.35 1.21 1.03
G-K128-V125 0.91 0.92 0.89 1.13 1.10 1.00 1.30 1.16 1.01 1.40 1.24 1.03

G-K128-V0 0.95 0.95 0.90 1.16 1.12 1.00 1.43 1.24 1.00 1.48 1.29 1.02

25
6

G-K256-V8000 0.54 0.69 0.65 1.09 1.07 0.99 1.07 1.02 1.01 1.26 1.16 1.08
G-K256-V4000 0.63 0.73 0.68 1.12 1.08 0.99 1.10 1.05 1.00 1.31 1.18 1.04
G-K256-V2000 0.70 0.81 0.75 1.10 1.07 0.99 1.12 1.07 1.00 1.31 1.17 1.04
G-K256-V1000 0.76 0.84 0.79 1.10 1.07 0.99 1.13 1.05 0.99 1.30 1.16 1.03
G-K256-V500 0.82 0.86 0.85 1.11 1.08 0.99 1.21 1.10 1.00 1.32 1.18 1.03
G-K256-V250 0.86 0.88 0.87 1.12 1.08 0.99 1.24 1.10 0.99 1.35 1.20 1.03
G-K256-V125 0.90 0.90 0.89 1.13 1.09 0.99 1.30 1.13 0.99 1.39 1.22 1.03

G-K256-V0 0.95 0.94 0.90 1.16 1.11 1.00 1.43 1.21 0.99 1.47 1.27 1.02
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G-K512-8000 0.49 0.59 0.68 1.09 1.06 0.99 1.09 1.03 1.00 1.27 1.13 1.06
G-K512-V4000 0.52 0.60 0.67 1.11 1.07 0.99 1.10 1.04 0.99 1.30 1.17 1.08
G-K512-V2000 0.60 0.70 0.73 1.11 1.08 0.99 1.13 1.07 0.99 1.35 1.21 1.06
G-K512-V1000 0.68 0.74 0.78 1.11 1.08 0.99 1.15 1.08 1.00 1.32 1.21 1.04
G-K512-V500 0.77 0.80 0.84 1.12 1.09 0.99 1.23 1.12 1.01 1.33 1.21 1.04
G-K512-V250 0.85 0.86 0.88 1.13 1.10 0.99 1.28 1.15 1.00 1.38 1.24 1.03
G-K512-V125 0.89 0.89 0.89 1.14 1.11 0.99 1.34 1.19 0.99 1.40 1.26 1.03

G-K512-V0 0.94 0.93 0.90 1.17 1.13 0.99 1.43 1.27 0.99 1.46 1.31 1.02

10
24

G-K1024-V8000 0.39 0.41 0.61 1.07 1.04 0.98 1.08 1.02 1.01 1.20 1.10 1.03
G-K1024-V4000 0.44 0.48 0.63 1.10 1.07 0.99 1.08 1.03 0.99 1.30 1.19 1.06
G-K1024-V2000 0.52 0.57 0.70 1.11 1.09 1.00 1.10 1.06 0.99 1.32 1.23 1.04
G-K1024-V1000 0.67 0.69 0.80 1.11 1.09 1.00 1.14 1.09 1.00 1.31 1.23 1.04
G-K1024-V500 0.79 0.79 0.86 1.12 1.10 1.00 1.15 1.09 1.00 1.32 1.24 1.04
G-K1024-V250 0.86 0.86 0.89 1.14 1.11 1.00 1.28 1.19 1.00 1.36 1.26 1.03
G-K1024-V125 0.90 0.89 0.90 1.15 1.12 1.00 1.36 1.23 1.00 1.39 1.29 1.02

G-K1024-V0 0.95 0.94 0.91 1.17 1.15 1.00 1.42 1.31 1.00 1.42 1.33 1.02
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Table 3.5: Normalized values of maximum volume, total volume, maximum
number of messages and total number of messages of the proposed hyper-
graph models H-TMV, H-TMVd and H-TMVu with respect to those of H-TV for
K ∈ {128, 256, 512, 1024}.

normalized values w.r.t those of H-TV

max volume total volume max message total message

K category H-TMV H-TMVd H-TMVu H-TMV H-TMVd H-TMVu H-TMV H-TMVd H-TMVu H-TMV H-TMVd H-TMVu

12
8

H-K128-V8000 0.50 0.66 0.72 1.15 1.10 0.97 1.07 1.03 0.99 1.58 1.24 1.02
H-K128-V4000 0.62 0.73 0.79 1.16 1.10 0.98 1.09 1.06 1.00 1.48 1.22 1.02
H-K128-V2000 0.71 0.80 0.82 1.15 1.11 0.98 1.13 1.07 1.00 1.49 1.23 1.03
H-K128-V1000 0.78 0.85 0.85 1.17 1.12 0.99 1.15 1.09 0.99 1.46 1.24 1.02
H-K128-V500 0.85 0.89 0.87 1.19 1.15 0.99 1.21 1.11 1.00 1.48 1.26 1.02
H-K128-V250 0.89 0.91 0.87 1.21 1.16 0.99 1.25 1.13 0.99 1.49 1.27 1.02
H-K128-V125 0.93 0.95 0.89 1.24 1.19 0.99 1.30 1.16 1.00 1.51 1.29 1.03

H-K128-V0 1.01 1.01 0.90 1.28 1.23 0.99 1.35 1.20 1.00 1.54 1.32 1.02

25
6

H-K256-V8000 0.38 0.53 0.65 1.16 1.12 0.96 1.06 1.04 0.98 1.84 1.41 1.04
H-K256-V4000 0.50 0.62 0.72 1.18 1.13 0.97 1.10 1.07 0.98 1.76 1.43 1.04
H-K256-V2000 0.61 0.69 0.75 1.18 1.15 0.98 1.12 1.08 0.99 1.61 1.38 1.04
H-K256-V1000 0.71 0.77 0.79 1.17 1.13 0.98 1.16 1.09 0.99 1.54 1.36 1.04
H-K256-V500 0.79 0.83 0.82 1.19 1.16 0.98 1.19 1.11 0.99 1.52 1.36 1.03
H-K256-V250 0.84 0.86 0.84 1.21 1.17 0.98 1.24 1.14 0.98 1.51 1.36 1.03
H-K256-V125 0.90 0.91 0.86 1.23 1.20 0.99 1.27 1.16 0.98 1.52 1.37 1.03

H-K256-V0 1.00 1.00 0.88 1.28 1.24 0.99 1.35 1.22 0.98 1.55 1.40 1.03

51
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H-K512-V8000 0.32 0.50 0.52 1.15 1.11 0.95 1.05 1.04 0.95 1.95 1.43 1.09
H-K512-V4000 0.34 0.50 0.53 1.19 1.14 0.96 1.05 1.03 0.94 2.00 1.51 1.11
H-K512-V2000 0.47 0.60 0.62 1.19 1.14 0.97 1.08 1.05 0.96 1.78 1.44 1.09
H-K512-V1000 0.64 0.74 0.73 1.18 1.14 0.98 1.14 1.08 0.96 1.60 1.35 1.05
H-K512-V500 0.73 0.79 0.76 1.19 1.15 0.98 1.17 1.09 0.97 1.56 1.34 1.04
H-K512-V250 0.83 0.86 0.82 1.21 1.17 0.98 1.20 1.11 0.97 1.52 1.33 1.03
H-K512-V125 0.87 0.89 0.83 1.23 1.19 0.98 1.25 1.13 0.98 1.53 1.34 1.03

H-K512-V0 1.00 1.01 0.85 1.28 1.23 0.99 1.33 1.20 0.98 1.55 1.36 1.03

10
24

H-K1024-V8000 0.22 0.34 0.37 1.14 1.11 0.92 1.02 1.01 0.92 2.12 1.61 1.19
H-K1024-V4000 0.26 0.38 0.41 1.16 1.14 0.93 1.02 0.99 0.89 2.06 1.62 1.17
H-K1024-V2000 0.36 0.46 0.49 1.18 1.14 0.95 1.03 0.98 0.89 1.87 1.53 1.12
H-K1024-V1000 0.51 0.59 0.59 1.18 1.15 0.96 1.11 1.04 0.92 1.67 1.42 1.08
H-K1024-V500 0.72 0.75 0.74 1.19 1.16 0.97 1.12 1.06 0.95 1.57 1.39 1.04
H-K1024-V250 0.79 0.82 0.78 1.21 1.18 0.98 1.18 1.11 0.96 1.54 1.38 1.04
H-K1024-V125 0.85 0.86 0.80 1.23 1.20 0.98 1.23 1.15 0.96 1.54 1.39 1.04

H-K1024-V0 1.00 1.01 0.83 1.28 1.25 0.99 1.32 1.23 0.97 1.55 1.41 1.03
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number of bipartitions in which our model is applied throughout the recursive

bipartitioning process.

Table 3.6: Comparison of partitioning times averaged over 964 matrices.

actual (miliseconds) normalized w.r.t. G-TV

model K G-TV G-TMV G-TMVd G-TMVu G-TMV G-TMVd G-TMVu

gr
ap

h

128 597 1307 1192 636 2.19 2.00 1.06
256 801 2136 1897 865 2.67 2.37 1.08
512 1143 3148 2933 1251 2.75 2.57 1.09
1024 1073 3662 3502 1184 3.41 3.26 1.10

actual (miliseconds) normalized w.r.t. H-TV

model K H-TV H-TMV H-TMVd H-TMVu H-TMV H-TMVd H-TMVu

h
y
p

er
gr

ap
h 128 5601 5225 5124 5939 0.93 0.91 1.06

256 6602 5973 6786 6758 0.90 1.03 1.02
512 7720 7012 8249 7933 0.91 1.07 1.03
1024 8932 7956 9161 9669 0.89 1.03 1.08

Table 3.6 displays the partitioning times of the compared schemes for the

graph and hypergraph models. For each K ∈ {128, 256, 512, 1024}, we present

the actual time and the normalized time (with respect to G-TV for graph schemes

G-TMV, G-TMVd and G-TMVu, and H-TV for hypergraph schemes H-TMV, H-TMVd and

H-TMVu), which are both geometric averages of 964 matrices. Recall that the pro-

posed schemes introduce the same partitioning overhead of O(nnz(A)) in both

models. This overhead can be extracted from the normalized values of G-TMVu

over G-TV and H-TMVu over H-TV, and is only 6%–10% for the graph model and

2%–8% for the hypergraph model. For the graph model, among the proposed

schemes, G-TMVu introduces the lowest partitioning overhead compared to G-TV.

The worse performances of G-TMV and G-TMVd compared to G-TMVu are expected

since multi-constraint partitioning is more expensive than single-constraint par-

titioning because of the additional feasibility conditions. Although one expects

the same for the hypergraph model, the multi-constraint partitioning times of

PaToH are surprisingly better than those of single-constraint partitioning.
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Judging from the partitioning results, G-TMVu among the graph schemes and

H-TMVu among the hypergraph schemes always achieve significant reductions in

maximum volume while keeping the change in other three metrics as small as pos-

sible compared to G-TV and H-TV, respectively. For this reason, we only consider

G-TMVu and H-TMVu among the proposed schemes in the rest of the experimenta-

tion.

3.5.2.2 Parallel SpMM runtime results

We have run parallel SpMM [49] on a Cray XC40 machine for 128, 256 and 512

processors, with s = 10. Due to the quota limitations on our core-hours on this

system, we have tested the performance of G-TMVu over G-TV and H-TMVu over

H-TV for 30 test matrices. Whenever we use the phrase “parallel SpMM with

G-TMVu/H-TMVu/G-TV/H-TV”, we refer to the parallel SpMM execution when the

matrices in SpMM are partitioned with G-TMVu/H-TMVu/G-TV/H-TV.

Table 3.7 presents the parallel SpMM runtime results with G-TMVu and H-TMVu

normalized with respect to those of G-TV and H-TV, respectively. The 30 test

matrices are a subset of dataset ds-general with 964 matrices whose partitioning

results are given in the previous section.

Observe that the improvements obtained by G-TMVu and H-TMVu in maximum

volume (Tables 3.4 and 3.5) are reflected upon the parallel SpMM runtimes. In

most instances, these two schemes lead to a lower runtime compared to the stan-

dard models. On the average, parallel SpMM with G-TMVu runs 4%, 11% and

14% faster than parallel SpMM with G-TV, whereas parallel SpMM with H-TMVu

runs 14%, 13% and 22% faster than parallel SpMM with H-TV for 128, 256 and

512 processors, respectively. There are two important observations that can be

inferred from these results. (i) The improvements in parallel SpMM runtimes at-

tained both by G-TMVu and H-TMVu increase with increasing number of processors.

This can be attributed to the increased importance of communication costs with

increasing number of processors. (ii) H-TMVu attains higher improvements in par-

allel SpMM runtime compared to G-TMVu. This conforms with the experimental

50



Table 3.7: Parallel SpMM runtimes attained by G-TMVu and H-TMVu normalized
with respect to parallel SpMM runtimes attained by G-TV and H-TV, respectively,
for 128, 256 and 512 processors.

matrix
name

number of
rows/cols

number of
nonzeros

problem
kind

G-TMVu H-TMVu

128 256 512 128 256 512

144 145K 2,149K undirected graph 1.08 0.78 0.78 0.81 0.89 1.01
598a 111K 1,484K undirected graph 1.02 0.85 0.88 0.81 0.89 0.84
bauru5727 40K 145K eigenvalue/model reduction 0.97 0.70 0.73 0.75 0.73 0.83
bcsstk25 40K 145K structural 1.16 1.16 0.84 0.97 0.91 0.63
big 13K 92K directed weighted graph 0.76 0.87 0.78 1.07 1.00 0.90
bips07 3078 21K 76K eigenvalue/model reduction 0.87 0.69 0.93 0.94 0.88 0.77
bodyy4 18K 122K structural 1.03 0.92 1.00 0.74 1.00 0.90
chipcool0 20K 281K model reduction 1.03 0.76 0.96 1.18 0.92 0.95
copter1 17K 211K computational fluid dynamics 0.81 0.88 1.09 1.30 1.04 0.96
ford1 19K 102K structural 0.97 1.00 0.71 0.70 0.76 1.05
fv1 10K 85K 2D/3D 1.57 0.90 1.00 1.00 1.11 1.00
hcircuit 106K 513K circuit simulation 0.96 0.93 0.80 0.64 1.01 1.02
hvdc1 25K 158K power network 0.86 0.82 0.73 1.00 1.03 1.03
jan99jac040 14K 73K economic 0.56 0.91 0.90 0.97 0.64 0.68
juba40k 40K 145K eigenvalue/model reduction 0.98 1.13 0.55 1.18 1.08 0.50
lhr11 11K 232K chemical process simulation 0.83 0.82 0.52 0.95 0.80 0.50
m14b 215K 3,358K undirected graph 1.00 0.85 0.92 0.95 0.90 0.70
offshore 260K 4,243K electromagnetics 0.98 0.93 0.80 0.92 0.87 0.91
OPF 3754 15K 142K power network 1.00 0.88 1.14 1.08 0.80 0.67
pattern1 19K 9,323K optimization 0.77 0.81 0.65 0.62 0.67 0.60
pds10 17K 150K optimization 0.93 1.09 0.94 1.21 0.83 0.75
pesa 12K 80K directed weighted graph 0.97 0.74 0.90 0.76 1.00 0.86
rail 20209 20K 139K model reduction 1.17 1.00 1.18 1.03 0.90 0.94
ri2010 25K 126K undirected weighted graph 0.95 0.83 0.85 0.83 0.96 0.83
skirt 13K 197K structural 1.42 0.78 1.10 0.80 1.04 1.00
std1 Jac2 22K 1,248K chemical process simulation 0.82 0.97 0.62 0.47 0.63 0.54
tandem vtx 19K 253K structural 1.31 0.98 1.09 0.93 0.82 1.14
TSOPF RS b2383 38K 16,171K power network 0.92 1.01 1.01 0.62 0.82 0.37
xingo3012 21K 74K eigenvalue/model reduction 0.93 0.86 0.79 0.96 1.00 0.63
Zd Jac3 23K 1,916K chemical process simulation 0.85 0.92 1.00 0.45 0.54 0.69

geomean 0.96 0.89 0.86 0.86 0.87 0.78

best 0.56 0.69 0.52 0.45 0.54 0.37

worst 1.57 1.16 1.18 1.30 1.11 1.14
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finding that H-TMVu attains higher improvements in maximum volume compared

to G-TMVu as also seen in Tables 3.4 and 3.5.

We analyze the scalability of parallel SpMM with G-TMVu and H-TMVu in Fig-

ure 3.5 on 10 matrices by respectively comparing them against those with G-TV

and H-TV. The results of each matrix are grouped for graph and hypergraph

model. Each bar chart in the figure belongs to a different matrix and indicates

the parallel SpMM runtime obtained with the respective scheme and the number

of processors. The three consecutive bars for each scheme and each matrix denote

the respective parallel SpMM runtimes obtained on 128, 256 and 512 processors.

These matrices are chosen in such a way that they illustrate and summarize dif-

ferent scalability characteristics of both schemes. For matrices that already scale

well with G-TV and H-TV such as 144, 598a, bauru5727 and m14b, G-TMVu and

H-TMVu almost always lead to lower SpMM runtimes for all K values and improve

the scalability. For matrices such as bcsstk25, juba40k and pattern1, which

have an elbow while moving from 256 to 512 processors, communication costs

become a bottleneck and hinder scalability. Addressing the right bottleneck for

these matrices via G-TMVu and H-TMVu pays off with improved scalability by the

decreased runtimes with increasing number of processors. For harder instances

such as lhr11, although none of the two schemes scales, G-TMVu and H-TMVu are

still able to reduce the parallel SpMM runtime drastically. For example, for lhr11

on 512 processors, G-TMVu and H-TMVu respectively lead to 48% and 50% better

SpMM runtimes compared to G-TV and H-TV.

3.5.3 Comparison against UMPa

In this section, we compare our models against UMPa [42] and present the results

in Table 3.8. Each instance reported in the table is the geometric average of the

results of five partitioning runs. The comparison is performed in terms of the

partition quality and the partitioning time. The partition quality is measured in

terms of the maximum volume in number of words and reported as the actual

values for UMPa in the second column (as reported in [42]). The third and fourth
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Figure 3.5: Strong scaling analysis of parallel SpMM with G-TMVu and H-TMVu

schemes compared to those with G-TV and H-TV, respectively.
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Table 3.8: Comparison of G-TMVu and H-TMVu against UMPa in terms of maximum
volume (number of words communicated) and partitioning time for K = 512
processors. The matrices are sorted according to the maximum volume values
obtained by UMPa.

max volume partitioning time
w.r.t. PaToHactual norm. w.r.t. UMPa

name UMPa G-TMVu H-TMVu UMPa G-TMVu H-TMVu

eu-2005 8544 1.18 0.27 6.68 0.18 1.05
coPapersDBLP 7229 1.03 0.96 3.40 0.10 0.91
in-2004 4962 0.74 0.60 2.83 0.17 0.87
preferentialAttachment 3938 0.45 1.62 8.48 0.33 1.27
coPapersCiteseer 3927 0.83 0.78 1.56 0.07 1.06
cnr-2000 3096 0.41 0.32 6.93 0.22 1.05
caidaRouterLevel 2932 0.29 0.29 6.93 0.38 1.32
audikw 1 2655 1.04 1.04 1.57 0.09 1.03
citationCiteseer 2003 1.06 1.08 6.64 0.26 1.24
coAuthorsDBLP 1489 0.71 0.61 8.72 0.44 1.35
G n pin pout 1283 0.96 1.12 7.01 0.40 1.46
auto 717 1.22 1.17 6.96 0.21 1.34
coAuthorsCiteseer 688 0.85 0.89 7.17 0.44 1.33
af shell10 621 1.03 0.97 1.13 0.20 1.10
ldoor 582 0.98 0.98 1.61 0.14 1.07
m14b 501 1.01 0.99 6.94 0.23 1.42

max volume of UMPa > 500
avg: – 0.81 0.76 4.35 0.21 1.17

impr: – 19% 24% – 20.7x 3.7x

smallworld 497 0.93 0.93 7.84 0.50 1.35
G3 circuit 406 1.02 0.99 5.40 0.45 1.41
144 402 0.89 0.86 6.64 0.25 1.48
wave 375 1.09 1.10 6.87 0.27 1.51
af shell9 352 1.06 1.04 1.61 0.20 1.16
598a 327 1.04 1.02 6.93 0.27 1.48
rgg n 2 20 s0 253 1.17 1.02 2.31 0.30 1.25
thermal2 248 0.98 0.96 3.12 0.39 1.31
fe ocean 232 1.29 1.01 7.36 0.45 1.95
delaunay n20 209 1.02 1.01 3.49 0.43 1.36
ecology1 203 1.16 0.97 4.58 0.51 1.45
ecology2 201 1.18 1.01 4.58 0.50 1.45
rgg n 2 19 s0 172 1.17 1.01 3.51 0.31 1.26
delaunay n19 147 1.02 1.00 4.38 0.43 1.41
rgg n 2 18 s0 123 1.13 0.99 4.06 0.33 1.31
delaunay n18 108 0.99 0.97 5.15 0.42 1.46
rgg n 2 17 s0 85 1.13 1.01 5.70 0.35 1.34
delaunay n17 77 1.01 0.97 6.05 0.42 1.47
belgium osm 65 1.29 1.29 2.06 1.03 1.72
luxembourg osm 17 1.21 1.10 4.83 1.14 1.90

overall
avg: – 0.95 0.89 4.40 0.30 1.31

impr: – 5% 11% – 14.5x 3.4x
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columns display the maximum volume values obtained by G-TMVu and H-TMVu

as normalized values with respect to those of UMPa, respectively. The last three

columns display the partitioning times of the compared models as normalized

values with respect to the runtime of the partitioner PaToH [19] in default setting.

The rows of the table are sorted with respect to the maximum volume obtained by

UMPa and are divided into two according to the matrices for which UMPa obtains

a maximum volume higher/lower than 500 words.

Both G-TMVu and H-TMVu are able to obtain better quality partitions than

UMPa. On the average, G-TMVu and H-TMVu obtain improvements of 5% and 11%

in maximum volume compared to UMPa, respectively. For the matrices for which

UMPa obtains higher maximum volume, i.e., at least 500 words, the improvements

attained by G-TMVu and H-TMVu are more apparent: 19% for G-TMVu and 24%

for H-TMVu. Recall that for such matrices, maximum volume is more likely to

be a critical factor in determining the overall performance. The examples for

such matrices are seen in classes such as “Citation” and “Clustering” (see the

classes of the matrices in Table 3.2), for which both G-TMVu and H-TMVu perform

significantly better than UMPa in terms of partition quality. These are usually hard

instances that are scale-free. In the remaining classes, G-TMVu produces slightly

worse quality partitions, while H-TMVu produces comparable quality partitions.

Both G-TMVu and H-TMVu are significantly faster than UMPa. The average par-

titioning time of UMPa is 4.40x that of PaToH, whereas the average partitioning

times of G-TMVu and H-TMVu are respectively 0.30x and 1.31x that of PaToH. As

a result, remarkably, G-TMVu is on the average 14.5x faster than UMPa. H-TMVu is

3.4x faster than UMPa.

3.5.4 Scalability analysis

We thoroughly evaluate the scalability of the multi-source level-synchronized

BFS kernel executed on the five graphs in dataset ds-large. We compare

our models G-TMVu and H-TMVu against 2D [11] in terms of parallel runtime of

multi-source BFS and communication statistics. The runtimes reported in this
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section are the execution times of parallel multi-source BFS on these graphs

and not the partitioning times. Whenever we use the phrase “parallel BFS

with G-TMVu/H-TMVu/2D”, we refer to the parallel BFS execution when the ver-

tices/edges of the input graph are partitioned using G-TMVu/H-TMVu/2D. We

investigate the scalability performance on the multi-source BFS and not on

SpMM since 2D was originally proposed for the former and all three models

exhibit similar behaviors in both. There are four different number of proces-

sors, K ∈ {256, 512, 1024, 2048} and four different number of source vertices,

s ∈ {5, 10, 20, 40} in our experiments. Recall that the number of source vertices

in the multi-source BFS is equivalent to the number of columns of input dense

matrix X in SpMM. We investigate both strong and weak scaling performances

of multi-source BFS with these three models. The experiments were performed

on the Lenovo NeXtScale system.

We present the strong scaling results in Figure 3.6. Each row in the figure

belongs to a different graph and each column belongs to a different s value. Each

plot contains three lines comparing G-TMVu, H-TMVu and 2D for a specific graph

and s. The x-axis and y-axis respectively denote the number of processors and

the runtime of the operations in a single level of parallel multi-source BFS in

miliseconds. Both axes are in logarithmic scale.

As seen in the plots in Figure 3.6, for all instances, both parallel BFS with

G-TMVu and parallel BFS with H-TMVu run much faster than parallel BFS with 2D.

For example, for 256, 512, 1024 and 2048 processors, parallel BFS with G-TMVu

respectively runs 5.3x, 6.9x, 8.0x and 10.8x faster than 2D, for s = 20, on the

average. Again for s = 20 and for the same numbers of processors, parallel BFS

with H-TMVu respectively runs 6.6x, 8.4x, 10.3x and 10.3x faster than 2D. This

is simply because the communication cost of parallel multi-source BFS is largely

dominated by the bandwidth costs and our models aim at reducing bandwidth-

related metrics total and maximum volume, whereas 2D only aims to provide an

upper bound on latency-related metrics. This results in our models to achieve

lower communication overhead and hence better performance. The scalability
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Figure 3.6: Strong scaling analysis of parallel multi-source BFS with G-TMVu,
H-TMVu and 2D. The x-axis denotes the number of processors.
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Figure 3.7: Communication times in parallel multi-source BFS with G-TMVu,
H-TMVu and 2D for it-2004 and nlpkkt240 both with s ∈ {5, 40}. The x-axis
denotes the number of processors.

of our models becomes more apparent with increasing s. The performance gap

between 2D and our models in terms of scalability turns into favor of our models

with increasing s. For example, for it-2004, compared to 2D, parallel BFS with

G-TMVu runs 3.5x faster on 256 processors and 2.7x faster on 2048 processors for

s = 5, whereas for s = 40 it runs 3.6x faster on 256 processors and 8.1x faster on

2048 processors. Similar improvements are observed for parallel BFS with H-TMVu

as well, where these two values are 4.5x and 2.4x for s = 5 and they are 4.8x and

9.0x for s = 40. The close performances of G-TMVu and H-TMVu for nlpkkt240

are due to the regular sparsity pattern of this matrix which hides the flaw of the

graph model [44, 19] to a large extent.

We investigate the communication performance of parallel BFS with G-TMVu,

H-TMVu and 2D. The volume and message count statistics obtained by these mod-

els are given in Table 3.9 for s = 5 and s = 40, and for 256, 512, 1024 and 2048

processors. Both the volume and message count statistics include maximum and

average values. We focus on two graphs it-2004 and nlpkkt240 since it-2004

is the largest graph in ds-large and for the other graphs in ds-large except

nlpkkt240, we observe similar findings with those for it-2004. Figure 3.7 illus-

trates variation of the communication times with varying number of processors

for parallel BFS.

In all instances, both of our models obtain lower communication times than
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Table 3.9: Volume and message count statistics of it-2004 and nlpkkt240 for
s = 5 and s = 40. Note that message count statistics are the same for s = 5 and
s = 40.

volume statistics (in megabytes)

s = 5 s = 40

maximum average maximum average

graph K 2D G-TMVu H-TMVu 2D G-TMVu H-TMVu 2D G-TMVu H-TMVu 2D G-TMVu H-TMVu

it-2004

256 37.71 0.83 0.75 37.45 0.16 0.11 301.70 6.63 6.00 299.61 1.31 0.84
512 21.11 0.71 0.57 20.86 0.09 0.06 168.85 5.64 4.59 166.89 0.75 0.49

1024 13.93 0.64 0.32 13.70 0.06 0.04 111.45 5.14 2.59 109.63 0.50 0.30
2048 7.70 0.50 0.52 7.48 0.05 0.03 61.58 3.98 4.15 59.81 0.38 0.27

nlpkkt240

256 54.53 0.64 0.48 54.44 0.47 0.35 436.26 5.15 3.86 435.52 3.72 2.80
512 33.45 0.39 0.31 33.38 0.29 0.23 267.63 3.10 2.50 267.07 2.32 1.83

1024 19.84 0.25 0.21 19.77 0.18 0.15 158.69 2.03 1.69 158.19 1.48 1.21
2048 11.08 0.16 0.15 11.02 0.12 0.10 88.62 1.31 1.21 88.15 0.95 0.79

message count statistics

maximum average

graph K 2D G-TMVu H-TMVu 2D G-TMVu H-TMVu

it-2004

256 30 245 240 30 172 139
512 46 463 442 46 267 184

1024 62 724 731 62 347 192
2048 94 1171 1488 94 324 231

nlpkkt240

256 30 20 22 30 12 12
512 46 23 21 46 13 13

1024 62 22 23 62 14 14
2048 94 21 25 94 14 14
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2D. The significantly better performance of our models can be explained with the

significant reductions obtained in both maximum and average volume, as seen in

Table 3.9. For example, for 512 processors and s = 40, the maximum volume

values obtained by 2D for 512 processors and s = 40 are 168.85 MB and 267.63

MB for it-2004 and nlpkkt240, respectively, whereas these two values are 5.64

MB and 3.10 MB for G-TMVu, respectively, and 4.59 MB and 2.50 MB for H-TMVu,

respectively. There are similar significant reductions in average volume.

For it-2004, it is seen from the left two plots in Figure 3.7 that the perfor-

mance gap between G-TMVu/H-TMVu and 2D is much higher for s = 40 than the

gap for s = 5, especially with larger number processors. This is mainly because

the volume-based metrics for s = 40 are more determinant in communication

times compared to s = 5, as message count statistics do not change while volume

statistics increase with increasing s. For example, the average volume obtained

by 2D for 1024 processors is 13.70 MB for s = 5 while it is 109.63 MB for s = 40

and the average message count is 62 regardless of s. For s = 5, the decrease in the

performance gap between our models and 2D for larger number of processors can

be explained by the increased importance of latency-related metrics in communi-

cation time and since 2D model provides an upper bound on the maximum and

total message counts, it achieves a lower latency overhead compared to G-TMVu

and H-TMVu.

Compared to it-2004, nlpkkt240 exhibits a more regular structure as it is

obtained by PDE discretization while it-2004 is a web graph. This can be seen

in Table 3.9 by comparing the maximum or average message counts obtained

by our models. For example, for 1024 processors, the maximum message count

obtained by G-TMVu for it-2004 is 724 while it is only 22 for nlpkkt240. The

regular structure of nlpkkt240 is successfully exploited by our models as G-TMVu

and H-TMVu always obtain lower maximum and average message counts than 2D.

As opposed to it-2004, there always exists a big performance gap between our

models and 2D regardless of s and number of processors since both G-TMVu and

H-TMVu perform much better in terms of both bandwidth and latency costs.

The different behavior of G-TMVu and H-TMVu for it-2004 and nlpkkt240 can
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be explained by the varying importance of latency costs in communication times.

For both of these graphs, with increasing number of processors, maximum and

average volume values tend to decrease, however maximum and average message

count values for it-2004 increase while they remain the same for nlpkkt240.
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Figure 3.8: Weak scaling analysis of parallel multi-source BFS with G-TMVu,
H-TMVu and 2D. The x-axis denotes the number of processors.

We present the weak scaling results in Figure 3.8. To keep the computational

load of each processor fixed when we double the number of processors, we double

the number of source vertices while using the same input graph. In this way, when

we double the number of processors, we double the total amount of computation

while keeping the structure of the input graph same. Ideally, the number of edges

assigned to each processor is halved when the number of processors is doubled. In

other words, we use s = 5 at 256 processors, s = 10 at 512 processors, etc. Using

different number of source vertices for the BFS enables us to seamlessly perform

weak scaling analysis. The five plots in Figure 3.8 show that our models exhibit

superior weak scaling performance compared to 2D. This is mainly because the

communication costs incurred by our models tend to increase less than those

incurred by 2D when the number of processors is doubled. The lines that belong
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to our models in these plots sometimes have a negative slope when the number

of processors is doubled. This behavior can be attributed to the following two

reasons: (i) unstable computational load imbalances in the partitions obtained

with the partitioners, leading to number of edges owned by the processors to not

always halve when the number of processors is doubled, and (ii) the increased

cache utilization in local computations due to the good reorderings generated by

the partitioners. Nonetheless, it can be said that our models more than often

exhibit consistently good weak scaling performance overall.

3.6 Conclusion

This work aimed to improve the performance of sparse matrix dense matrix multi-

plication on distributed memory systems. We addressed the high communication

volume requirements of this kernel by proposing graph and hypergraph partition-

ing models which can minimize multiple volume-based communication cost met-

rics simultaneously in a single partitioning phase. Relying on a formulation that

makes use of multiple constraints in recursive bipartitioning framework, we addi-

tionally proposed two practical schemes to efficiently utilize the existing partition-

ing tools. The experiments performed with this kernel and a level-synchronized

multi-source parallel breadth-first search kernel on a large-scale high performance

computing system up to 2048 processors validate the benefits of optimizing mul-

tiple volume-based metrics via our models by improving scalability.

As future work, we plan to try out different orders for bipartitionings in recur-

sive bipartitioning. Moreover, we also consider using other partitioners to realize

our models. Among them, Scotch [35] is the first to consider due to its high

quality partitions in terms of load balance.
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Chapter 4

Improving performance of sparse

matrix vector multiplication on

large-scale parallel systems

Sparse matrix vector multiplication (SpMV), which is denoted by y = Ax, is one

of the most common operations which arise in many scientific and engineering

problems. In iterative applications such as iterative solvers, SpMV is usually

performed once at each iteration. Therefore, performance of SpMV is quite crucial

to the overall performance of the application.

The irregularity of the coefficient matrix A plays an important role in the

parallelization of SpMV for distributed-memory systems, since the distribution

of the nonzero entries greatly affect the runtime cost of parallel SpMV. This cost

consists of two major components:

• computational cost: the cost of performing the computation operations,

• communication cost: the cost of exchanging data among processors.

The unit of the computational cost in SpMV is an individual multiply-and-add

operation performed on a nonzero entry of A, i.e., yi ← yi + ai,jxj. Hence,
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the computational cost of the processor which is assigned the maximum number

of nonzero entries equate to the computational cost of the parallel SpMV. The

communication cost is usually assumed to have the following components:

• bandwidth cost: the cost of transferring messages,

• latency cost: the start-up cost of preparing messages.

The bandwidth cost is proportional to the number of words transmitted among

processors, i.e., the communication volume, whereas the latency cost is propor-

tional to the number of messages. The distribution of the nonzeros of input

coefficient matrix A as well as the distribution of the entries of input and output

vectors x and y determine both of these costs.

For an effective optimization of the runtime cost of parallel SpMV, the com-

putational cost should be minimized by assigning balanced computational loads

(i.e., number of nonzeros) to processors and the communication cost should be

minimized by considering both of bandwidth and latency costs. For these mini-

mization purposes, graph and hypergraph partitioning models have been utilized.

The partitioning models in [31, 19, 32, 33, 22, 44, 45, 50, 51, 52, 53] minimize

the computational and the bandwidth costs while disregarding the latency cost.

Among these models, the hypergraph-based ones have a correct encoding for the

minimization objective of the bandwidth cost while the graph-based ones only

relate to that objective.

There are numerous different hypergraph partitioning models that address

the bandwidth cost. These models basically vary on the dimensionality and the

granularity of the partition. In the coarse-grain models [19], an atomic task is

defined as the multiplication of a row/column of A by vector x. The distribution

of the tasks induce a rowwise/columnwise one-dimensional (1D) partitioning of A.

In the checkerboard and jagged models [22, 54], an atomic task is defined as the

multiplication of a subset of nonzeros in a row/column of A by the corresponding

x-vector entries. In the fine-grain model [55], an atomic task is defined as the

multiplication of a single nonzero entry of A by the corresponding x-vector entry.
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The checkerboard, jagged and fine-grain models all obtain a two-dimensional (2D)

partition of A. Note that the fine-grain model defines the tasks in the smallest

possible granularity. Hence among the mentioned models, the fine-grain model is

the most flexible one in distributing the nonzeros of A and has the largest solution

space for the minimization objective. The fine-grain model having the largest

solution space results in the lowest communication volume and the imbalance on

the computational loads of the processors. Therefore, the lowest bandwidth and

computational costs for parallel SpMV is attained by this partitioning model.

The flexibility of independently assigning the tasks defined on nonzero entries

comes with the expense of losing the row/column coherences of the nonzeros.

Thus, the fine-grain model usually results in a larger number of messages, i.e.,

high latency cost, compared to the other models. In this work, we propose a

hypergraph partitioning model based on the fine-grain model, where the par-

titioning objective of minimizing the cutsize simultaneously addresses both the

bandwidth and latency costs.

Since each nonzero entry of A introduces a different task in the fine-grain

model, it has the largest partitioning cost among all partitioning models due the

larger number of tasks. A recent work, the medium-grain model [52] proposed for

partitioning sparse matrices, remedies this problem by obtaining partitions with

a quality comparable to that of fine-grain model in a faster manner. This model

involves a heuristic in order to group the nonzeros of A in a more intelligent

way compared to the coarser-grain models. The partitioning cost of the medium-

grain model is less than that of the fine-grain model and comparable to those of

the coarse-grain models, hence, this model is a good alternative to the fine-grain

model. Hence, we propose another hypergraph partitioning model based on the

medium-grain model, with the objective of minimizing both the bandwidth and

latency costs.

The proposed models utilize the recursive bipartitioning paradigm in order to

encode the messages with a special type of nets called message nets. The nets of

the original fine- and medium-grain models are called volume nets, and the pro-

posed models utilize both types of nets to reduce the bandwidth and latency costs
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simultaneously. The model proposed in [1] uses message nets for applications with

a single communication phase and conformal input and output partitions. In the

current work, the proposed models optimize the two communication phases found

in the parallel SpMV partitioned with fine-/medium-grain model. Moreover, the

proposed models are able to produce nonconformal input and output partitions

(i.e., the partitions of x and y vectors) as well as conformal ones. The exper-

iments conducted on a dataset containing almost one thousand matrices show

that the proposed models drastically improve the latency costs of the original

fine-grain and medium-grain models. The experiments also show that compared

to the baseline model proposed in [1], the proposed models obtain better results

in volume-related metrics and computational imbalance. The runtime results of

parallel SpMV validate the proposed models.

The rest of the chapter is organized as follows. Section 4.1 gives background

on parallel SpMV with two-dimensional partitioning and original fine-grain and

medium-grain hypergraph partitioning models. Sections 4.2 and 4.3 present the

proposed models based on fine-grain and medium-grain models, respectively. Sec-

tion 4.4 presents two techniques for further improving the quality of the partitions

obtained by the proposed models. Section 4.5 gives the experimental results and

Section 4.6 concludes the chapter.

4.1 Background

4.1.1 Parallel SpMV with two-dimensional sparse matrix

partitioning

Consider an SPMV operation denoted by y = Ax, where A is a sparse matrix

of size nr × nc. ai,j denotes the entry in the ith row and the jth column of A,

whereas ri and cj respectively denote the ith row and the jth column of A. xj

and yi denote the jth entry of vector x and the ith entry of vector y, respectively.
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Let A denote the set of nonzero entries in matrix A. That is,

A = {ai,j : ai,j 6= 0}.

Similarly, let X and Y denote the set of entries in input vector x and output

vector y, respectively. That is,

X = {x1, x2, . . . , xnc} and

Y = {y1, y2, . . . , ynr}.

Assume that there are K processors denoted by P1, P2, . . . , PK in the paral-

lel system. Let ΠK(A) = {A1,A2, . . . ,AK}, ΠK(X ) = {X1,X2, . . . ,XK} and

ΠK(Y) = {Y1,Y2, . . . ,YK} denote K-way partitions of sets A, x and y, respec-

tively.

The set of nonzeros in Ak are assigned to processor Pk, for each 1 ≤ k ≤ K.

Pk performs the computation task of the multiply-and-add operation in the form

of yi ← yi + ai,jxj for each ai,j ∈ Ak. The vector entries in Xk and Yk are also

assigned to Pk. The partitions on vectors x and y, i.e., ΠK(X ) and ΠK(Y), are

said to be conformal if nr = nc and the same processor owns xi and yi for each

1 ≤ i ≤ nr = nc. Otherwise, the vector partitions are said to be non-conformal.

There are two communication phases in each iteration of parallel SpMV. One

of them is performed before the computations of the multiply-and-add operations

and called the pre-communicaton phase. The aim of this phase is to communicate

the x-vector entries so that each processor Pk has the updated x-vector entry xj

for each ai,j in Ak. The owner of an x-vector entry sending it to possibly multiple

processors is called the expand operation on the respective x-vector entry. The

other communication phase is performed after the computations and called the

post-communication phase. The aim of this phase is to communicate the partial

results computed for y-vector entries so that the owner processor of each y-vector

entry yi has all partial results computed for yi. The owner of a y-vector entry

receiving partial results for it from possibly multiple processors is called the fold

operation on the respective y-vector entry. An outline of the operations performed
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Algorithm 5: An SpMV iteration performed by processor Pk

Require: Ak and Xk

1: B Pre-communication phase — Expands on x-vector entries
2: Pk receives the needed x-vector entries that are not in Xk
3: Pk sends the x-vector entries in Xk that are needed by other processors

4: B Computations
5: y

(k)
i ← y

(k)
i + ai,jxj for each ai,j ∈ Ak

6: B Post-communication phase — Folds on y-vector entries
7: Pk receives the partial results for y-vector entries that are in Yk
8: Pk sends the partial results for y-vector entries that are not in Yk

9: yi ←
∑
y
(t)
i for each partial result y

(t)
i for yi ∈ Yk

10: return Yk

by Pk during parallel SpMV is given in Algorithm 5. In this algorithm, the partial

result produced by a processor Pt for a vector entry yi is denoted by y
(t)
i . As seen in

the algorithm, no computation starts until all needed x-vector entries are received.

Similarly, no produced partial results are sent to the owners of the respective y-

vector entries until all computation finishes. Hence, this is an example for the

parallel SpMV with non-overlapping computation and communication.

For an efficient parallelization, the objective is to findK-way partitions ΠK(A),

ΠK(X ) and ΠK(Y) so that the communication overhead is minimized while a

balance on the computational loads of the processors is maintained. The next

subsections describe the fine-grain [22] and medium-grain [52] hypergraph par-

titioning models, in which this objective is met only partially. That is, those

models aim at minimizing the communication overhead by only minimizing the

bandwidth cost, i.e., the total communication volume.
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4.1.2 Fine-grain hypergraph model

Let H = (V ,N ) denote the fine-grain hypergraph of a given SpMV instance

y = Ax. In H, the vertex set V contains three types of vertices:

• the vertices representing the nonzero entries in A,

• the vertices representing the entries in X and

• the vertices representing the entries in Y .

V contains a vertex vai,j for each nonzero entry ai,j in matrix A, a vertex vxj for

each entry xj in vector x and a vertex vyi for each entry yi in vector y. That is,

V = {vai,j : ai,j ∈ A} ∪ {vxj : xj ∈ X} ∪ {vyi : yi ∈ Y}.

Note that each vertex represents a data entry. However, for each vertex vai,j ∈
V , vai,j additionally represents the computational task of the multiply-and-add

operation yi ← yi + ai,jxj.

The net set N contains two types of nets:

• the nets representing the input dependencies of the computational tasks to

x-vector entries and

• the nets representing the output dependencies of the computational tasks

to y-vector entries.

N contains a net nxj for each entry xj in x and a net nyi for each entry in y. That

is,

N = {nxj : xj ∈ X} ∪ {nyi : yi ∈ Y}.

Since nxj represents the input dependency of the tasks on xj, it connects vxj and

the vertices that represent the tasks that need xj. That is,

Pins(nxj ) = {vxj } ∪ {vat,j : at,j 6= 0}.
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Figure 4.1: A sample y = Ax instance and its corresponding fine-grain hyper-
graph.

Since nyi represents the output dependency of the tasks on yi, it connects vyi and

the vertices that represent the tasks that produce partial results for yi. That is,

Pins(nyi ) = {vyi } ∪ {vai,t : ai,t 6= 0}.

H contains nnz + nc + nr vertices, nc + nr nets and 2nnz + nc + nr pins. A

sample SpMV instance and the fine-grain hypergraph corresponding to this SpMV

instance are shown in Figure 4.1.

In the fine-grain model, the weight w(v) of vertex v is set to the computation

load associated to v. So, a unit weight w(vai,j) = 1 is assigned to each vai,j ∈ V
and zero weights w(vxj ) = w(vyi ) = 0 are assigned to each vxj ∈ V and vyi ∈ V .

For parallel SpMV, a K-way partition ΠK(H) of H is decoded as follows. The

nonzeros and the responsibilities of performing their corresponding multiply-and-

add operations represented by the vertices in part Vk are assigned to processor

Pk, as well as the vector entries represented by the vertices in Vk. That is,

Ak = {ai,j : vai,j ∈ Vk},
Xk = {xj : vxj ∈ Vk},
Yk = {yi : vyi ∈ Vk}.
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Consider a cut net nxj in ΠK(H) and let vxj ∈ Vk for some Vk ∈ λ(nxj ). The pin of

nxj to a vertex vai,j ∈ V` with ` 6= k signifies the need of processor P` to vector entry

xj due to the computation task yi ← yi+ai,jxj. Hence in the pre-communication

phase, Pk sends xj to the processors that correspond to the parts in λ(nxj )− Vk.
The total volume of communication in the pre-communication phase is then the

sum of (λ(nxj )−1) values over the cut nets representing input dependencies on x-

vector entries. Similarly, consider a cut net nyt in ΠK(H) and let vyt ∈ Vq for some

Vq ∈ λ(nyt ). The pin of nyt to a vertex vat,s ∈ Vr with r 6= q signifies the partial

results produced by processor Pr for vector entry yt due to the computation task

yt ← yt + at,sxs. Hence in the post-communication phase, Pq receives partial

results for yt from the processors that correspond to the parts in λ(nyt )−Vq. The

total volume of communication in the post-communication phase is the sum of

(λ(nyt )−1) values over the cut nets representing output dependencies on y-vector

entries. As a result, the total volume of communication in an SpMV iteration

equates to the total cutsize of ΠK(H). Therefore, minimizing the total cutsize of

ΠK(H) corresponds to minimizing the total communication volume of the parallel

SpMV with the corresponding partitions ΠK(A), ΠK(X ) and ΠK(Y).

For each part Vk in ΠK(H), the weight W (Vk) of Vk is defined as the sum of

the weights of the vertices in Vk. Since only the vertices representing nonzero

entries in matrix A are assigned (unit) weights, W (Vk) equates to the number

of the multiply-and-add operations performed by Pk. Then, maintaining balance

on the weights of the parts in ΠK(H) corresponds to maintaining balance on the

computational loads of the processors.

4.1.3 Medium-grain hypergraph model

Given an SpMV instance y = Ax, the medium-grain hypergraph model applies

the recursive bipartitioning (RB) paradigm on the nonzero entries of matrix A and

the entries of vectors x and y. As in graph/hypergraph partitioning described in

the previous chapters, this procedure forms a hypothetical RB tree whose nodes

represent the parts consisting of matrix and vector entries. Let A`k, X `
k and Y`k
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denote the parts of sets A, X and Y corresponding to the kth node of the `th

level of the RB tree. Here, ` ranges from 0 to logK, where K is the number

of parts/processors. Note that the topmost node of the RB tree represents the

original sets A, X and Y . That is, A0
0 = A, X 0

0 = X and Y0
0 = Y .

At each step of bipartitioning a node in the RB process, the medium-grain

model forms a new hypergraph using the A-matrix nonzero entries and the vector

entries. The hypergraph formed while bipartitioning the parts A`k, X `
k and Y`k is

denoted by H`
k, for 0 ≤ ` ≤ logK and 0 ≤ k ≤ 2` − 1. Before forming H`

k, a

two-way splitting of the nonzeros in A`k is obtained. In this splitting procedure,

if row i contains at least one nonzero entry in A`k or Y`k contains y-vector entry

yi, then a group rowi represents these entries, for each 1 ≤ i ≤ nr. Note that A`k
does not have to contain a nonzero entry in row i just because yi ∈ Y`k. If A`k does

not contain any nonzero entries in row i and yi ∈ Yk, group rowi represents only

yi. In a dual manner, Y`k does not have to contain yi just because A`k contains

some nonzeros in row i. If yi /∈ Y`k and A`k contains at least one nonzero entry in

row i, group rowi represents those nonzeros in row i in A`k. Similarly, if column j

contains at least one nonzero entry in A`k or X `
k contains x-vector entry xj, then

a group columnj represents these entries, for each 1 ≤ j ≤ nc.

In the medium-grain model, each nonzero entry ai,j ∈ A`k is assigned either

to group rowi or to group columnj. This assignment is determined by a simple

heuristic, which was proven to be effective [52]. In this heuristic, a nonzero entry

ai,j ∈ A`k is assigned to rowi if row i has fewer nonzero entries inA`k than column j.

It is assigned to columnj, if column j has fewer nonzero enries in A`k than row i.

The motivation is that the nonzero entries of a row/column with fewer nonzeros

are less likely to be scattered to multiple processors, hence it is better to keep

those nonzeros together for the partitioning procedure. If column j and row i

have equal number of nonzeros in Ak, then ai,j is assigned to the group for the

longer dimension. For a matrix with nr = nc, a global decision of always assigning

such nonzeros to either their row groups or their column groups is followed.

After each nonzero in A`k is assigned to a group corresponding to its row or

column, the corresponding hypergraph H`
k = (V`k,N `

k) is formed as follows. For
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each group columnj, vertex set V contains a vertex vxj , which represents the

nonzeros assigned to columnj as well as the vector entry xj. Similarly for each

group rowi, V contains a vertex vyi , which represents the nonzeros assigned to

rowi as well as the vector entry yi. That is,

V`k = {vxj : xj ∈ X `
k or at,j ∈ A`k} ∪ {v

y
i : yi ∈ Y`k or ai,t ∈ A`k}

For each group rowi/columnj, net set N contains a net nyi /n
x
j . That is,

N = {nxj : xj ∈ X `
k or at,j ∈ A`k} ∪ {n

y
i : yi ∈ Y`k or ai,t ∈ A`k}

Net nxj represents the dependency of the groups to x-vector entry xj. Note that

group columnj always depends on xj because it either represents xj or contains

A-matrix nonzeros each of whose multiply-and-add operation requires xj, or both.

Also note that columnj is the only column group that can depend on xj. However,

multiple row groups can depend on xj, since multiple nonzeros in column j happen

to be assigned to their column groups. That is, for each nonzero at,j which is

assigned to group rowt, rowt depends on xj due to the multiply-and-add operation

of at,j. Let map(·) function denote the assignment of nonzeros to their row or

column groups. Then, the set of vertices connected by nxj can be formulated as

Pins(nxj ) = {vxj } ∪ {v
y
t : map(at,j) = rowt}.

Similary, net nyi represents the dependency of the groups to y-vector entry yi.

Row group rowi as well as each column group columnr where ai,r is assigned

to columnr depend on yi. Hence, the set of vertices connected by nyi can be

formulated as

Pins(nyi ) = {vyi } ∪ {vxr : map(ai,r) = columnr}.

In the medium-grain model, each net is assigned unit cost and each vertex is

assigned a weight equal to the number of nonzeros assigned to the corresponding
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Figure 4.2: The nonzero assignments of the sample y = Ax and the corresponding
medium-grain hypergraph.

row/column group. That is,

w(vxj ) = |{at,j : map(at,j) = columnj}|,
w(vyi ) = |{ai,t : map(ai,r) = rowr}|.

Then, H`
k is bipartitioned with the objective of minimizing the cutsize and the

constraint of maintaining balance on the part weights. As in the fine-grain model,

the cutsize-minimization objective in all RB steps corresponds to the objective

of minimizing the total volume of communication. The constraint of maintaining

balance on the weights of the parts corresponds to the constraint of maintaining

balance on the computational loads of the processors.

A sample SpMV instance is given in Figure 4.2 together with the arrows point-

ing the direction of the assignment which is performed in the medium-grain model

according to the described heuristic. Note that this assignment takes places be-

fore the first bipartition, hence it covers all of the nonzeros in A, i.e., A0
0. As an

assignment example, nonzero a1,2 is assigned to group column2 since row 1 has

two nonzeros while column 2 has only one nonzero. The corresponding medium-

grain hypergraph H0
0 is also given in the figure. For example, net nx3 connects

vertex vx3 as well as vertices vy1 , vy2 and vy3 since all nonzeros in column 3 are
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assigned to their corresponding row groups.

4.2 Reducing latency in fine-grain model

In this section, the proposed fine-grain hypergraph partitioning model by which

the bandwidth and latency costs of parallel SpMV are simultaneously minimized

is described. The proposed model utilizes the RB paradigm and is built upon the

fine-grain hypergraph, which is described in Section 4.1.2. In each bipartitioning

step, our model forms and adds new nets to the hypergraph to be bipartitioned

in addition to the existing nets in the original fine-grain model. The newly added

nets encode the minimization of the latency cost by minimizing the total num-

ber of messages, so, these nets are called message nets. The nets that alredy

exist in the original fine-grain model are called volume nets since they encode the

minimization of the bandwidth cost by minimizing the total volume of commu-

nication.

Message nets motivate the matrix nonzeros and vector entries that altogether

cause communicating a message to stay together throughout the RB process. In

other words, the total cutsize defined over the message nets relate to the total

number of messages. The message net concept was used in [1] for iterative applica-

tions with one communication phase and conformal input and output partitions.

In the current work, the message nets are used for improving the performance of

parallel SpMV with two communication phases and possibly nonconformal vector

partitions.

The existence of the message nets in our model relies on the fine-grain model

which is partitioned using the RB paradigm. As in models described in the

previous sections and chapters, the RB process forms a hypothetical full binay

tree called RB tree. The naming of the nodes in the RB tree is the same as

the previous models, that is, the kth hypergraph in the `th level of the RB tree

is denoted by H`
k. So, the topmost hypergraph in the RB tree, i.e., H0

0, is the

original fine-grain hypergraph H = (V ,N ). Again as in the previous models,
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the hypergraphs are assumed to be bipartitioned in the breadth-first order of the

nodes in the RB tree. At any step of the RB process, the vertex sets of the leaf

hypergraphs of the current RB tree induce a k-way partition, where k denotes the

number of leaves. Recall that a k-way partition induced by the leaves of the RB

tree then induces a k-way partition on the processors. The kth node in the `th

level also represents the processor group denoted by P`k. The computation tasks

(multiply-and-add operations) and data elements (A-matrix nonzeros and x- and

y-vector entries) that are represented by the vertices in H`
k, or equivalently V`k

are assigned to the processors in the group P`k.

Throughout the RB process, the nets of the original fine-grain hypergraph H0
0,

i.e., the volume nets, are maintained by the cut-net splitting technique [19]. Con-

sider the bipartition Π(H`
k) = {V`+1

2k ,V`+1
2k+1} of hypergraph H`

k. In hypergraphs

H`+1
2k and H`+1

2k+1, the volume nets in H`
k are split as follows. If a net ni is internal

to V`+1
2k , i.e., Pins(ni) ⊆ V`+1

2k , then ni is included in H`+1
2k as is, i.e., without

changing any of its connections. Similarly if ni is internal to V`+1
2k+1, then it is

included in H`+1
2k+1 as is. If ni is a cut net, then two split versions of ni, namely n′i

and n′′i , are respectively included in H`+1
2k and H`+1

2k+1. Split net n′i only connects

the subset of vertices connected by ni that are assigned to H`+1
2k . That is,

Pins(n′i) = {v : v ∈ Pins(ni) ∩ V`+1
2k }.

Similarly, split net n′′i only connects the subset of vertices connected by ni that

are assigned to H`+1
2k+1. That is,

Pins(n′′i ) = {v : v ∈ Pins(ni) ∩ V`+1
2k+1}.

In this technique, the sum of the number of cut volume nets over the RB steps

amounts to the total cutsize of the volume nets in the final K-way partition which

results from the RB process.

Note that the maintainance of the volume nets throughout the RB process

only requires the local bipartition information for each RB step. For this reason,

the volume nets of a hypergraph can be formed as soon as the vertex set is
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Algorithm 6: MAIN

Require: A, X , Y and K
1: A0

0 ← A, X 0
0 ← X , Y0

0 ← Y
2: H0

0 ← H←FINE-GRAIN-HYPERGRAPH(A,X ,Y)
3: K ′ ← 1
4: ΠK′(A)← {A0

0}, ΠK′(X )← {X 0
0 }, ΠK′(Y)← {Y0

0}
5: for `← 0 to log2K − 1 do
6: for k ← 0 to 2` − 1 do

7: if ` > 0 then
8: ADD-MESSAGE-NETS(H`

k,ΠK′(A),ΠK′(X ),ΠK′(Y))

9: Π← BIPARTITION(H`
k) BΠ = {V`+1

2k ,V`+1
2k+1}

B Derive bipartitions for A`k, X `
k and Y`k using Π

10: A`+1
2k ← {ai,j : vai,j ∈ V`+1

2k } and A`+1
2k+1 ← {ai,j : vai,j ∈ V`+1

2k+1}
11: X `+1

2k ← {xj : vxj ∈ V`+1
2k } and X `+1

2k+1 ← {xj : vxj ∈ V`+1
2k+1}

12: Y`+1
2k ← {yi : vyi ∈ V`+1

2k } and Y`+1
2k+1 ← {yi : vyi ∈ V`+1

2k+1}

B Update partitions
13: ΠK′+1(A)← ΠK′(A)− {A`k} ∪ {A`+1

2k ,A
`+1
2k+1}

14: ΠK′+1(X )← ΠK′(X )− {X `
k} ∪ {X `+1

2k ,X `+1
2k+1}

15: ΠK′+1(Y)← ΠK′(Y)− {Y`k} ∪ {Y`+1
2k ,Y`+1

2k+1}

16: Split cut-volume nets of N `
k to obtain H`+1

2k and H`+1
2k+1

17: K ′ ← K ′ + 1
18: return ΠK(A), ΠK(X ) and ΠK(Y)
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formed. For example, volume nets of H`+1
2k and H`+1

2k+1 can be formed just after

the bipartition Π(H`
k) = {V`+1

2k ,V`+1
2k+1} of hypergraph H`

k is obtained. However,

the construction of the message nets needs a more global view as they involve

information about all of the processor groups, which are represented by the whole

set of leaf nodes in the RB tree. Hence, the message nets are added to H`
k just

before it is bipartitioned for the most up-to-date state of the processor groups to

be covered.

Algorithm 6 displays the basic steps of the proposed partitioning algorithm.

As inputs, it takes the sets A, X and Y and the number of processors/parts

K. As seen in line 1, these sets are represented by the topmost node of the

RB tree. In line 2, the fine-grain hypergraph H = H0
0 is formed as described in

Section 4.1.2. The running number of parts (i.e., the number of leaves in the RB

tree) is denoted by K ′ and its initial value is set to 1 in line 3. The partitions of

sets A, X and Y are all initialized as their singleton partition, as seen in line 4.

The RB process takes place in lines 5-17. As seen in lines 7-9, the message nets are

added to hypergraph H`
k, which already contains the volume nets, just before it is

bipartitioned. The bipartition Π of H`
k is then utilized to form the bipartitions of

A`k, X `
k and Y`k, as seen in lines 10-12. Then in lines 13-15, the global partitions of

A, X and Y are updated by adding the new parts and removing the old parts that

have just been bipartitioned. In line 16, the cut-net splitting technique is applied

to the volume nets of H`
k and two new hypergraphs H`+1

2k = {V`+1
2k ,N `+1

2k } and

H`+1
2k+1 = {V`+1

2k+1,N
`+1
2k+1} are obtained. As seen in line 18, the K-way partitions

ΠK(A) = {Alog2K
0 ,Alog2K

1 , . . . ,Alog2K
K−1 }

ΠK(X ) = {X log2K
0 ,X log2K

1 , . . . ,X log2K
K−1 }

ΠK(Y) = {Y log2K
0 ,Y log2K

1 , . . . ,Y log2K
K−1 }

are returned.

Algorithm 7 displays the message-net addition algorithm. As input, it takes

hypergraph H`
k to which message nets are going to be added. It also takes the

K ′-way partitions of the sets A, X and Y . Recall that K ′ denotes the number of
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Algorithm 7: ADD-MESSAGE-NETS

Require: H`
k = (V`k,N `

k), ΠK′(A), ΠK′(X ), ΠK′(Y).

B Form expand-send nets

1: for each xj ∈ X `
k do

2: for each at,j ∈ Arq where Arq 6= A`k do
3: if esrq /∈ N `

k then
4: Pins(esrq)← {vxj } and N `

k ← N `
k ∪ {esrq}

5: else
6: Pins(esrq)← Pins(esrq) ∪ {vxj }

B Form expand-receive nets

7: for each at,j ∈ A`k do
8: for each xj ∈ X r

q where X r
q 6= X `

k do
9: if errq /∈ N `

k then
10: Pins(errq)← {vat,j} and N `

k ← N `
k ∪ {errq}

11: else
12: Pins(errq)← Pins(errq) ∪ {vat,j}

B Form fold-send nets

13: for each ai,t ∈ A`k do
14: for each yi ∈ Yrq where Yrq 6= Y`k do
15: if fsrq /∈ N `

k then
16: Pins(fsrq)← {vai,t} and N `

k ← N `
k ∪ {fsrq}

17: else
18: Pins(fsrq)← Pins(fsrq) ∪ {vai,t}

B Form fold-receive nets

19: for each yi ∈ Y`k do
20: for each ai,t ∈ Arq where Arq 6= A`k do
21: if frrq /∈ N `

k then
22: Pins(frrq)← {v

y
i } and N `

k ← N `
k ∪ {frrq}

23: else
24: Pins(frrq)← Pins(frrq) ∪ {v

y
i }
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leaves of the current RB tree. Hence, the input partitions are up-to-date. Also

recall that the elements in A`k, X `
k and Y`k and the corresponding multiply-and-

add operations are assigned to processor group P`k, and there exists a processor

group for each leaf node of the current RB tree.

There are four types of message nets: expand-send nets, expand-receive nets,

fold-send nets and fold-receive nets. To differentiate the message nets from the

volume nets, we denote them with their initials. We use es, er, fs and fr to

denote expand-send, expand-receive, fold-send and fold-receive nets. For each

processor group Prq different than P`k, these four different message nets can be

added toH`
k depending on the distribution of the matrix and vector elements. esrq,

errq , fs
r
q and frrq respectively denote the expand-send, expand-receive, fold-send

and fold-receive nets which are added for processor group Prq .

Expand-send net esrq signifies the message sent by P`k to Prq regarding the

expand operations in the pre-communication phase. esrq is added to H`
k only if

such a message exists. It connects the vertices that represent the x-vector entries

to be expanded to Prq . Since each xj ∈ X `
k for each at,j ∈ Arq should be sent to

Prq by P`k, the vertices connected by esrq can be formulated as

Pins(esrq) = {vxj : xj ∈ X `
k and at,j ∈ Arq}.

The addition of the expand-send nets toH`
k is given in lines 1–6 of Algorithm 7. If

esrq becomes cut in bipartiton Π, then both P`+1
2k and P`+1

2k+1 send a message to Prq
in the pre-communication phase. The sets of x-vector entries sent from P`+1

2k and

P`+1
2k+1 to Prq are {xj : vxj ∈ V`+1

2k and at,j ∈ Arq} and {xj : vxj ∈ V`+1
2k+1 and at,j ∈

Arq}, respectively.

Expand-receive net errq signifies the message received by P`k from Prq regarding

the expand operations in the pre-communication phase. errq is added to H`
k only

if such a message exists. It connects the vertices that represent the A-matrix

nonzeros that need x-vector entries to be received from Prq . Since each xi ∈ X r
q

for each ai,t ∈ A`k should be received from Prq by P`k, the vertices connected by
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errq can be formulated as

Pins(errq) = {vat,j : at,j ∈ A`k and xj ∈ X r
q }.

The addition of the expand-receive nets toH`
k is given in lines 7–12 of Algorithm 7.

If errq becomes cut in bipartiton Π, then both P`+1
2k and P`+1

2k+1 receive a message

from Prq in the pre-communication phase. The sets of x-vector entries received

by P`+1
2k and P`+1

2k+1 from Prq are {xj : vxj ∈ Vrq and at,j ∈ A`+1
2k } and {xj : vxj ∈

Vrq and at,j ∈ A`+1
2k+1}, respectively.

Fold-send net fsrq signifies the message sent by P`k to Prq regarding the fold

operations in the post-communication phase. fsrq is added to H`
k only if such a

message exists. It connects the vertices that represent the A-matrix nonzeros that

produce partial results for the y-vector entries in Prq . Since each partial result of

ai,t ∈ A`k for each yi ∈ Yrq should be sent to Prq by P`k, the vertices connected by

fsrq can be formulated as

Pins(fsrq) = {vai,t : ai,t ∈ A`k and yi ∈ Yrq}.

The addition of the fold-send nets to H`
k is given in lines 13–18 of Algorithm 7.

If fsrq becomes cut in bipartiton Π, then both P`+1
2k and P`+1

2k+1 send a message to

Prq in the post-communication phase. The sets of partial results sent by P`+1
2k and

P`+1
2k+1 to Prq are {ai,txt : vyi ∈ Vrq and ai,t ∈ A`+1

2k } and {ai,txy : vyi ∈ Vrq and ai,t ∈
A`+1

2k+1}, respectively.

Fold-receive net frrq signifies the message received by P`k from Prq regarding

the fold operations in the post-communication phase. frrq is added to H`
k only if

such a message exists. It connects the vertices that represent the y-vector entries

that need partial results from Prq . Since a partial result for each yi ∈ Y`k for each

ai,t ∈ Arq should be received from Prq by P`k, the vertices connected by frrq can be

formulated as

Pins(frrq) = {vyi : yi ∈ Y`k and ai,t ∈ Arq}.

The addition of the fold-receive nets to H`
k is given in lines 19–24 of Algorithm 7.

If frrq becomes cut in bipartiton Π, then both P`+1
2k and P`+1

2k+1 receive a message
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Figure 4.3: 5-way partitions of A, X and Y .

from Prq in the post-communication phase. The sets of partial results received by

P`+1
2k and P`+1

2k+1 from Prq are {ai,txt : vyi ∈ V`+1
2k and ai,t ∈ Arq} and {ai,txt : vyi ∈

V`+1
2k+1 and ai,t ∈ Arq}, respectively.

Note that at most four message nets can be added to H`
k to encapsulate the

messages between P`k and Prq . Since there are at most K ′ − 1 processor groups

that P`k may communicate with, the maximum number of message nets in H`
k

amounts to 4(K ′ − 1).

Figure 4.3 displays an SpMV instance with a 6 × 8 matrix A. Consider the

RB process of partitioning the fine-grain hypergraph H corresponding to this

SpMV instance. Assume that the RB process is at the state before bipartitioning

H2
1, so, there are five leaf hypergraphs: H3

0, H3
1, H2

1, H2
2 and H2

3. The figure

displays the assignments of the matrix nonzeros and vector entries to processor

groups P3
0 , P3

1 , P2
1 , P2

2 and P2
3 induced by the leaf hypergraphs. Each symbol
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in the figure represents a distinct processor group and a symbol inside a cell

signifies the assignment of the corresponding matrix nonzero or vector entry to

the processor group represented by that symbol. For example, nonzeros a1,3, a1,7,

a2,3, a2,4, a4,5, a4,7, x-vector entries x3, x7, and y-vector entries y1, y4 are assigned

to P2
1 . Figure 4.4 displays hypergraph H2

1 before and after message-net addition.

∏ a bipartition 
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Figure 4.5: A bipartition Π of hypergraph H2
1.

Figure 4.5 displays a sample bipartition Π for H2
1 with both net types. As seen

in the figure, message nets es22 and er30 are both internal nets, whereas message

nets fs31 and fr22 are both cut nets. Net es22 being internal to part V3
2 represents

that among P3
2 and P3

3 , only P3
2 sends x-vector entries to P2

2 regarding the expand

operations in the pre-communication phase. Net er30 being internal to part V3
3

represents that among P3
2 and P3

3 , only P3
3 receives x-vector entries from P3

0

regarding the expand operations in the pre-communication phase. Net fs31 being
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Table 4.1: The messages communicated by processor group P2
1 (equivalently, P3

2

and P3
3 ) in pre- and post-communication phases before and after bipartitioning

H2
1.

RB state phase message due to

before
Π

pre
P2

1 sends {x3, x7} to P2
2 a5,3, a5,7

P2
1 receives {x4, x5} from P3

0 a2,4, a4,5

post
P2

1 sends {a2,3x3 + a2,4x4} to P3
1 a2,3, a2,4

P2
1 receives {a1,1x1, a4,1x1} from P2

2 a1,1, a4,1

after
Π

pre
P3

2 sends {x3, x7} to P2
2 a5,3, a5,7

P3
3 receives {x4, x5} from P3

0 a2,4, a4,5

post

P3
2 sends {a2,3x3} to P3

1 a2,3
P3

3 sends {a2,4x4} to P3
1 a2,4

P3
2 receives {a1,1x1} from P2

2 a1,1
P3

3 receives {a4,1x1} from P2
2 a4,1

cut represents that both P3
2 and P3

3 send partial results to P3
1 regarding the fold

operations in the post-communication phase. Net fr22 being cut represents that

P3
1 receive partial results from both P3

2 and P3
3 regarding the fold operations in

the post-communication phase. Table 4.1 displays the messages communicated

by P2
1 with the other processor groups. The top half of the table displays the

message traffic before H3
1 (equivalently, P2

1 ) is bipartitioned, whereas the bottom

half displays the traffic after H2
1 is bipartitioned as given in Figure 4.5.

In each hypergraph bipartitioning throughout the proposed RB process, the

cost of each volume net is set to be the per-word transfer time, tw, whereas the

cost of each message net is set to be the message start-up time, ts. For a given

bipartition Π, let m and v respectively denote the number of cut-message nets

and the number of cut-volume nets. Then, the cutsize of Π can be formulated as

mts + vtw.

As exemplified with Figure 4.5 and Table 4.1, m is equal to the increase in the

number of messages that P`k communicates with the other processor groups. Since

the sum of the cutsizes of the RB-steps when partitioning the original fine-grain
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hypergraph is equal to the total communication volume, v is equal to the increase

in the total volume of communication. The increase in the overall total number

of messages after the bipartition is equal to m+δ, where δ denotes the number of

messages between P`+1
2k and P`+1

2k+1. δ is bounded by 2 and emprically found to be

equal to 2 in almost all of the bipartitions. Let M and V respectively denote the

total number of messages and the total communication volume of the resulting

K-way partition. Assume that the communication cost of the resulting partition

is formulated as

Mts + V tw.

Then, minimizing the cutsize of the bipartitions in the RB process corresponds

to minimizing the communication cost of the resulting K-way partition.

The analysis for deriving the complexity of adding message nets are given as

follows. While adding expand-send nets to H`
k, all external nonzeros at,j ∈ Arq

with xj ∈ X `
k are visited once (lines 1–6). Since the parts for x-vector entries

represented by the leaf nodes of the RB tree are mutually disjoint and exhaustive,

each nonzero of A is visited once during the bipartitionings of a single RB-tree

level. While adding expand-receive nets, all nonzeros in A`k are visited once (lines

7–12). Again since the parts of the nonzeros of A represented by the leaf nodes

of the RB tree are mutually disjoint and exhaustive, each nonzero of A is visited

once. Therefore, the complexity of adding expand-send and expand-receive nets

in a single level of the RB tree is equal to O(nnz). For the addition of the fold-

send and fold-receive nets, a dual discussion holds. Then, the overall complexity

of adding message nets is O(nnz logK).

4.2.1 Adaptation for conformality constraint

The conformality of input and output vector partitions is defined as assigning the

xi and yi to the same processor for each i value. Note that the coefficient matrix

should be a square matrix in order the conformality constraint to be imposed.

The motivation for the conformality constraint arises in the iterative solvers where

yi of an iteration becomes the xi of the next iteration. Assigning xi and yi to the
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same processor prevents communicating yi to the owner processor of xi as it will

be the new xi of the next iteration.

In the proposed model, there is no conformality constraint imposed. However,

it is possible to adapt the proposed model to obey the conformality constraint

with a simple technique used in [33]. In this technique, vertices vxi and vyi are

amalgamated into a new vertex vi. That is, a single amalgamated vertex vi

represents both xi and yi. The weight of vi is set to be zero as the weights of vxi and

vyi are both zero. In hypergraph H`
k, each (volume or message) net that connects

vxi or vyi then connects the amalgamated vertex vi. At each bipartitioning, xi and

yi are both assigned to the processor/processor-group corresponding to the leaf

hypergraph which contains vi.

4.3 Reducing latency in medium-grain model

In this section, we describe a hypergraph partitioning model which is built on

the medium-grain model. As in Section 4.2, the proposed model simultaneously

reduces the bandwidth and latency costs by utilizing volume nets and message

nets. The idea is similar to that in Section 4.2, that is, the nets (i.e., the vol-

ume nets) of the original medium-grain model capture the bandwidth cost by

encoding the volume of communication, whereas the message nets are added to

the hypergraphs in the RB process to capture the latency cost by encoding the

messages. The context for the message nets, i.e., their types and meanings, is the

same as that in Section 4.2. However, the procedure for adding message nets to

a medium-grain hypergraph is different than that in Section 4.2.

Consider the medium-grain model described in Section 4.1.3 for obtaining a

K-way partition of a given SpMV y = Ax. Assume that the RB process is at the

state before bipartitioning the kth node of the `th level of the RB tree. That is,

by using parts A`k, X `
k and Y`k, the medium grain hypergraph H`

k is going to be

formed and bipartitioned to obtain (A`+1
2k ,A

`+1
2k ), (X `+1

2k ,X `+1
2k ) and (Y`+1

2k ,Y`+1
2k ).

As in Section 4.2, the items in A`k, X `
k and Y`k and their associated tasks are
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assigned to processor group P`k. In each RB step of the proposed model, the

following steps are applied:

1. Form the medium-grain hypergraph H`
k corresponding to A`k, X `

k , Y`k.

2. Add message nets to H`
k.

3. Obtain a bipartition Π = {V`+1
2k ,V`+1

2k+1} of H`
k.

4. Derive bipartitions (A`+1
2k ,A

`+1
2k+1), (X `+1

2k ,X `+1
2k+1) and (Y`+1

2k ,Y`+1
2k+1) from Π.

Each of these steps are described in detail as follows.

1) Form the medium-grain hypergraph H`
k using A`k, X `

k , Y`k. This process is

exactly the same as that takes place for each RB step in the medium-grain model

as described in Section 4.1.3. Recall that the nets in the orginal medium-grain

hypergraph capture the total volume of communication. Hence, each of these

nets are assigned a cost of tw as in Section 4.2.

2) Add message nets to H`
k. For each processor group Prq different than P`k, there

are four possible message nets that can be added to H`
k as in Section 4.2. For

each of these four net types, the existence condition is the same as that for the

corresponding net type in Section 4.2. These four message nets are described as

follows:

• expand-send net esrq: The set of the vertices that are connected by esrq is

exactly the same as that of the expand-send net described in Section 4.2.

• expand-receive net errq : The set of vertices connected by errq is given by

Pins(errq) = {vxj : at,j ∈ A`k,map(at,j) = columnj, xj ∈ X r
q } ∪

{vyt : at,j ∈ A`k,map(at,j) = rowt, xj ∈ X r
q }.
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• fold-send net fsrq: The set of vertices connected by fsrq is given by

Pins(fsrq) = {vxt : ai,t ∈ A`k,map(ai,t) = columnt, yi ∈ Yrq} ∪
{vyi : ai,t ∈ A`k,map(ai,t) = ri, yi ∈ Yrq}.

• fold-receive net frrq : The set of the vertices that are connected by frrq is

exactly the same as that of the fold-receive net described in Section 4.2.

As in Section 4.2, each message net is assigned a cost of ts, as they encapsulate

the latency cost.

3) Obtain a bipartition Π. Use a partitioner to bipartition H`
k and obtain Π =

{V`+1
2k ,V`+1

2k+1}.

4) Derive bipartitions (A`+1
2k ,A

`+1
2k+1), (X `+1

2k ,X `+1
2k+1) and (Y`+1

2k ,Y`+1
2k+1) from Π.

The same as lines 10–12 of Algorithm 6.

Figure 4.6 displays the medium-grain hypergraph H2
1 = (V2

1 ,N 2
1 ), which is

formed during the RB process for the SpMV instance given in Figure 4.3. Recall

that A2
1 = {a1,3, a1,7, a2,3, a2,4, a4,5, a4,7}, X 2

1 = {x3, x7}, and Y2
1 = {y1, y4}. Note

that the figure also displays the message nets, hence it is between steps 2 and 3.

Also note that V2
1 contains vertices representing vector entries that are neither

in X 2
1 nor in Y2

1 . These vertices are vx4 , vx5 , and vy2 . The assignments of the

nonzeros that are computed by the mentioned heuristic are also given in the

figure. The assignment information, i.e., map(·) function, is utilized while forming

the sets of vertices connected by the nets. For example, net nx3 connects vy1 due

to map(a1,3) = row1. As seen in the figure, there are four message nets in H2
1

as in the fine-grain hypergraph H2
1 given in Figure 4.4. This is because the

existency conditions of the message nets in the proposed fine- and medium-grain

models are the same. Note that the sets of vertices connected by expand-send

net es22 and receive-fold net r22 are the same in Figures 4.4 and 4.6. Expand-

receive net er30 connects vertices vx4 and vy5 since P2
1 receives {x4, x5} from P3

0 due

to nonzeros in {a2,4, a4,5}, and map(a2,4) = column4 and map(a4,5) = column5.

Fold-send net fs31 connects vertices vx4 and vy2 since P2
1 sends the partial result
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Figure 4.6: The medium-grain hypergraph H2
1 formed during the RB process for

the SpMV instance given in Figure 4.3 and the message nets.

a2,3x3 + a2,4x4 to P3
1 due to nonzeros in {a2,3, a2,4}, and map(a2,3) = row2 and

map(a2,4) = column4.

4.3.1 Adaptation for conformality constraint

As in the model proposed in Section 4.2, the model proposed in Section 4.3 does

not impose the conformality constraint either. However, the technique for adapt-

ing the proposed medium-grain model for obeying the conformality constraint

slightly differs from that described in Section 4.2.1. Vertex set V`k of the medium-

grain hypergraph H`
k contains the amalgamated vertex vi if at least one of the

following conditions holds:

• xi ∈ X `
k , or equivalently, yi ∈ Y`k.
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• There exists at,i ∈ A`k such that map(at,i) = columni.

• There exists ai,t ∈ A`k such that map(ai,t) = rowi.

The weight of vi is then formulated as

w(vi) = |{at,i : at,i ∈ A`k and map(at,i) = columni}| +
|{ai,t : ai,t ∈ A`k and map(ai,t) = rowi}|.

As described in Section 4.2.1, each net in H`
k that connects vxi or vyi now connects

the amalgamated vertex vi.

4.4 Delayed addition and thresholding for mes-

sage nets

The preliminary experiments show that adding message nets to the hypergraphs

at each RB step increases the total volume of communication drastically. This

increase can be attributed to the bipartitionings in the early levels of the RB

tree as follows. Note that there are only a few parts in the early levels of the

RB tree compared to the latter levels. Each of these early parts represent a large

processor group, so, the messages among these large groups of processors are very

difficult to refrain from. In hypergraph partitioning terms, message nets in the

hypergraphs at the early levels of the RB tree connect larger numbers of vertices

and their cost is also much larger than the cost of volume nets since ts is much

larger than tw in modern architectures. Hence, trying to save these big high-cost

nets from the cut is very difficult. While the partitioning tool is trying to save

these nets from the cut in these bipartitionings, it may be causing drastically

larger numbers of volume nets to be cut. In addition, those cut volume nets

will turn into new messages hence message nets in the latter levels of the RB

tree. Therefore, adding message nets in the early levels of the RB tree may be

adversely affecting the overall partition quality in multiple ways.

91



The RB approach provides the ability to change/adjust the partitioning deci-

sions/parameters in the individual RB steps for the sake of the overall partition

quality. In our model, this flexibility allows us to exploit the trade-off between

the bandwidth and latency costs by selectively deciding whether to add message

nets or not in each bipartitioning. Although there can be many parameters to

be considered while making this decision in each single bipartition, we only use

the level information for simplicity. That is, the addition of the message nets is

delayed until the ρth RB-tree. In other words, the bipartitionings in level ` are

carried out only with volume nets for some 1 ≤ ` < ρ ≤ logK. Thus, message

nets enter the picture when their size (in terms of the number of vertices that

they connect) is not as large as those in the top-level hypergraphs.

Another solution for not having big high-cost nets is eliminating the message-

nets whose size is larger than a threshold. That is, a message net m with

Pins(m) > t is not added for some t > 0 although message net addition is

enabled in the corresponding bipartition. This approach also enables a selective

approach for send and receive message nets. In the parallel SpMV algorithm given

in Algorithm 5, the receive operations are performed by non-blocking MPI func-

tions (i.e., MPI Irecv), whereas the send operations are performed by blocking

MPI functions (i.e., MPI Send). When the maximum number of messages or the

maximum volume of communication is considered as causing a bottleneck over-

head, blocking send operations may be more limiting compared to non-blocking

receive operations. Note that saving message net from the cut tends to assign the

respective communication operations less number of processors, hence the maxi-

mum number of messages and maximun volume of communication may increase.

Then, for the case send operations are more limiting than receive operations,

the threshold for the send message nets should be smaller than that of the re-

ceive nets. This approach will decrease the increase in the maximum number of

messages and the maximum volume of communication metrics.
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4.5 Experiments

In this section, we compare five SpMV partitioning models which are listed below:

1. FG: the original fine-grain model which addresses only the bandwidth cost

(described in Section 4.1.2),

2. MG: the original medium-grain model which addresses only the bandwidth

cost (described in Section 4.1.3),

3. FG-LM: the proposed fine-grain model which simultaneously addresses the

bandwidth and latency costs (described in Section 4.2),

4. MG-LM: the proposed medium-grain model which simultaneously addresses

the bandwidth and latency costs (described in Section 4.3),

5. 1D-LM: the one-dimensional (1D) coarse-grain model [1] which simultane-

ously addresses the bandwidth and latency costs.

Among the listed models, FG-LM and MG-LM are the proposed models whereas

the others constitute the baseline algorithms. The suffix -LM stands for “latency

minimized”. In all -LM models, each message net is assigned a cost of 50, whereas

each volume net is assigned unit cost, i.e., 1. The reasoning for this assignment

is given in [1].

Note that the first four of the compared models obtain two-dimensional

nonzero-based partitions of the input sparse matrix. In all compared models,

the partitioning constraint corresponds to balancing the computational loads of

processors, i.e., the number of nonzeros assigned to processors.

For evaluating the performance of the compared models, two groups of per-

formance metrics are utilized: the partition statistics and the runtime results

of parallel SpMV. The partition statistics include the total/maximum volume of

communication, total/maximum number of messages communicated, the compu-

tation load imbalance and the partitioning time. The maximum volume and the
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maximum number of messages are computed over the volume of data and the

number of messages sent by processors, respectively.

Note that the compared models are all based-on hypergraph partitioning. In

all these models, the hypergraphs are bipartitioned using PaToH [19] with the

default setting. For the resulting K-way partitions to have at most ε = 0.10

imbalance ratio on the part weights, the maximum allowable imbalance ratio in

each bipartition is set to

(1 + ε)
1

logK − 1 = (1.10)
1

logK − 1.

The models are tested for five different number of parts/processors, K ∈
{64, 128, 256, 512, 1024}.

The parallel SpMV is implemented using the PETSc toolkit [56] and run on

a Blue Gene/Q system using the partitions provided by the compared models.

A node on Blue Gene/Q system consists of 16 PowerPC A2 processors with 1.6

GHz clock frequency and 16 GB memory. The nodes are connected by a 5D torus

chip-to-chip network.

The test matrices are obtained from the SuiteSparse Matrix Collection [47],

which is formerly known as the UFL Sparse Matrix Collection. We consider

the parallel SpMV with conformal input and output vector partitions as it is

more common for the applications in which SpMV is used as a kernel operation.

Hence, only the square matrices are considered. Among all square matrices in

SuiteSparse Matrix Collection, the matrices that have at least 50 million nonzeros

are excluded. Based on the remaining matrices, we formed a different dataset for

each K value, i.e., the number of parts/processors. For each K value, we excluded

the matrices that have at most 100K nonzeros or at most 50K rows/columns from

the dataset corresponding to that K value. We also excluded the matrices that

have at least 100000K nonzeros from the corresponding dataset. In the datasets

formed for K values of 64, 128, 256, 512 and 1024, there are 833, 730, 616, 475

and 316 matrices, respectively. The union of these datasets contains a total of

978 test matrices.
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4.5.1 Parameter tuning for proposed models

In this section, we analyze the effect of the parameters described in Section 4.4

on the partition statistics.

4.5.1.1 Delayed-addition parameter: ρ

Recall that in the delayed message-net addition scheme described in Section 4.4,

the message net addition is delayed until the ρth level of the RB tree. That is,

the hypergraphs in the `th level where ` < ρ contain only the volume nets.

Table 4.2 presents the average partition statistics of the delayed message-net

addition scheme in the fine-grain model for four different ρ values, in comparison

against non-delayed FG-LM and the original FG. The tested ρ values are logK−4,

logK − 3, logK − 2, logK − 1. Note that message nets are utilized in ` levels

when ρ = logK − `. Also note that the non-delayed FG-LM, which is described in

Section 4.2, corresponds to the delayed FG-LM with ρ ≤ 1. In a dual manner, FG

corresponds to the delayed FG-LM with ρ ≥ logK.

Table 4.2 presents the results of the six versions of the fine-grain model for

each K value. For a K value, the first and second rows display the results of FG

and non-delayed FG-LM, respectively. The next four rows display the results of

the delayed versions of FG-LM, each with a different ρ value. The second column

displays the model name for FG and non-delayed FG-LM, and ρ value for the

delayed versions of FG-LM. The third column displays computational imbalance

value in percent, which is computed as

max1≤k≤K nnz(Ak)
nnz(A)
K

− 1.

The fourth and fifth columns display the maximum and total value for the volume

of communication handled by processors (i.e., bandwidth cost), whereas the sixth

and seventh columns display them for the number of messages (i.e., latency cost).

the eighth column displays the partitioning time. The columns mentioned so far
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present the actual results, while the rest of the columns (from the ninth to the

fourteenth) display the results normalized with respect to those of FG.

As seen in Table 4.2, FG-LM reduces the total number of messages compared

to FG by 55%, 58%, 62%, 61% and 58% on average for 64, 128, 256, 512 and 1024

processors, respectively. FG-LM reduces maximum number of messages compared

to FG-LM, by 22%, 18% and 7% on average for 64, 128 and 256 processors, while

increasing it by 4% and 16% for 512 and 1024 processors, respectively. These

reductions can be attributed to the high reductions in total number of messages,

whereas these increases can be explained by the clustered messages in some of

the processors. As mentioned in Section 4.4, FG-LM causes drastic increases in

the volume-based metrics compared to FG. In total volume, the average increase

is 68%, 76%, 85%, 99% and 103% for 64, 128, 256, 512 and 1024 processors,

respectively. In maximum volume, it is even worse and 213%, 278%, 376%,

445% and 493% for 64, 128, 256, 512 and 1024 processors, respectively. These

increase rates in the volume-based metrics are not tolerable when compared to the

reductions achieved in latency-based metrics. As seen in the table, the respective

increase rates in the delayed versions are not as large as the ones in the non-

delayed FG-LM. Nonetheless, the results of ρ = logK − 4 for the latency-based

metrics are so close to those of non-delayed FG-LM. This implies that having

message nets in only last four levels is still good enough for reducing latency-

based metrics. As seen in the table, as the number of levels where the message

net addition is applied decreases, the increase rate in the volume-based metrics

decreases faster than the decrease in the decrease rate in the total number of

messages. Therefore, we pick ρ = logK − 2 as the delayed version which gives

the most tolerable increase rates in the volume-based metrics while keeping the

decrease in the latency-based metrics large enough, i.e., around 50%, for the total

number of messages.

Table 4.3 presents the average results for MG, non-delayed MG-LM and the de-

layed MG-LM with four different ρ values. The formatting of this table is the same

as that of Table 4.2. As seen in the table, the reduction rates in the total num-

ber of messages achieved by MG-LM over MG are not as large as those achieved by

FG-LM over FG. MG-LM achieves 44%, 46%, 48%, 46% and 43% reductions in total
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Table 4.2: Average partition statistics of the delayed message-net addition scheme
in the fine-grain model for four different ρ values, in comparison against FG and
non-delayed FG-LM.

actual values normalized w.r.t. FG

volume message volume message

K model/ρ imb max total max total time imb max total max total time

64

FG 0.91 413 11811 32 968 7.7 - - - - - -
FG-LM 0.89 1293 19804 25 436 8.7 0.98 3.13 1.68 0.78 0.45 1.14
lgK−4 0.89 1232 19733 24 440 8.0 0.98 2.98 1.67 0.75 0.45 1.05
lgK−3 0.96 1107 19241 24 451 7.9 1.05 2.68 1.63 0.75 0.47 1.03
lgK−2 0.91 906 18155 24 498 7.7 1.00 2.19 1.54 0.75 0.51 1.01
lgK−1 0.88 662 15871 26 628 7.4 0.97 1.60 1.34 0.81 0.65 0.96

128

FG 1.11 484 24670 45 2332 16.4 - - - - - -
FG-LM 1.10 1830 43338 37 972 19.0 0.99 3.78 1.76 0.82 0.42 1.16
lgK−4 1.20 1654 43058 35 990 17.9 1.08 3.42 1.75 0.78 0.42 1.09
lgK−3 1.11 1425 41918 34 1035 17.7 1.00 2.94 1.70 0.76 0.44 1.08
lgK−2 1.08 1112 38972 34 1166 17.1 0.97 2.30 1.58 0.76 0.50 1.04
lgK−1 1.09 779 33101 36 1512 16.3 0.98 1.61 1.34 0.80 0.65 0.99

256

FG 1.36 567 52357 60 5560 40.9 - - - - - -
FG-LM 1.33 2700 96802 56 2120 47.9 0.98 4.76 1.85 0.93 0.38 1.17
lgK−4 1.27 2213 94983 49 2186 44.9 0.93 3.90 1.81 0.82 0.39 1.10
lgK−3 1.37 1818 90802 46 2317 44.0 1.01 3.21 1.73 0.77 0.42 1.07
lgK−2 1.33 1346 82651 46 2694 42.6 0.98 2.37 1.58 0.77 0.48 1.04
lgK−1 1.29 926 69572 49 3574 40.7 0.95 1.63 1.33 0.82 0.64 0.99

512

FG 1.67 584 92141 72 11186 77.9 - - - - - -
FG-LM 1.67 3183 183332 75 4349 90.9 1.00 5.45 1.99 1.04 0.39 1.17
lgK−4 1.75 2369 178035 61 4491 85.1 1.05 4.06 1.93 0.85 0.40 1.09
lgK−3 1.68 1888 168597 57 4796 83.2 1.01 3.23 1.83 0.79 0.43 1.07
lgK−2 1.58 1384 151451 56 5599 80.7 0.95 2.37 1.64 0.78 0.50 1.04
lgK−1 1.62 933 124694 60 7358 76.4 0.97 1.60 1.35 0.83 0.66 0.98

1024

FG 1.87 530 165923 69 20209 156.2 - - - - - -
FG-LM 1.92 3142 337216 80 8414 182.4 1.03 5.93 2.03 1.16 0.42 1.17
lgK−4 1.90 2261 326383 62 8656 172.3 1.02 4.27 1.97 0.90 0.43 1.10
lgK−3 1.85 1764 304878 57 9188 167.1 0.99 3.33 1.84 0.83 0.45 1.07
lgK−2 1.85 1260 269921 55 10576 159.9 0.99 2.38 1.63 0.80 0.52 1.02
lgK−1 1.81 861 220174 59 13606 155.0 0.97 1.62 1.33 0.86 0.67 0.99
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Table 4.3: Average partition statistics of the delayed message-net addition scheme
in the medium-grain model for four different ρ values, in comparison against MG

and non-delayed MG-LM.

actual values normalized w.r.t. MG

volume message volume message

K model/ρ imb max total max total time imb max total max total time

64

MG 0.90 412 11655 31 928 3.9 - - - - - -
MG-LM 0.87 835 16985 25 523 4.5 0.97 2.03 1.46 0.81 0.56 1.17
lgK − 4 0.82 820 16875 25 525 4.3 0.91 1.99 1.45 0.81 0.57 1.12
lgK − 3 0.85 773 16581 24 534 4.3 0.94 1.88 1.42 0.77 0.58 1.09
lgK − 2 0.87 694 15765 25 566 4.1 0.97 1.68 1.35 0.81 0.61 1.07
lgK − 1 0.91 573 14227 26 662 4.0 1.01 1.39 1.22 0.84 0.71 1.02

128

MG 1.13 482 24256 44 2217 8.1 - - - - - -
MG-LM 1.04 1055 36227 36 1202 9.7 0.92 2.19 1.49 0.82 0.54 1.19
lgK − 4 1.11 1012 35882 35 1214 9.0 0.98 2.10 1.48 0.80 0.55 1.12
lgK − 3 1.11 945 34857 35 1242 8.9 0.98 1.96 1.44 0.80 0.56 1.10
lgK − 2 1.14 821 33061 35 1329 8.6 1.01 1.70 1.36 0.80 0.60 1.07
lgK − 1 1.14 662 29537 37 1583 8.2 1.01 1.37 1.22 0.84 0.71 1.01

256

MG 1.48 558 49867 57 5103 19.1 - - - - - -
MG-LM 1.42 1368 77479 50 2674 23.4 0.96 2.45 1.55 0.88 0.52 1.23
lgK − 4 1.45 1264 77227 48 2735 21.9 0.98 2.27 1.55 0.84 0.54 1.15
lgK − 3 1.45 1148 74341 47 2809 21.7 0.98 2.06 1.49 0.82 0.55 1.14
lgK − 2 1.44 969 69159 47 3066 21.0 0.97 1.74 1.39 0.82 0.60 1.10
lgK − 1 1.35 776 61070 50 3695 19.9 0.91 1.39 1.22 0.88 0.72 1.04

512

MG 1.91 588 91856 67 10265 39.7 - - - - - -
MG-LM 1.75 1508 147893 64 5537 50.0 0.92 2.56 1.61 0.96 0.54 1.26
lgK − 4 1.85 1337 144080 59 5610 46.3 0.97 2.27 1.57 0.88 0.55 1.17
lgK − 3 1.84 1197 137584 57 5785 45.4 0.96 2.04 1.50 0.85 0.56 1.14
lgK − 2 1.85 1016 126729 57 6327 43.5 0.97 1.73 1.38 0.85 0.62 1.10
lgK − 1 1.82 809 110850 59 7522 41.5 0.95 1.38 1.21 0.88 0.73 1.04

1024

MG 2.05 530 165722 65 18692 82.2 - - - - - -
MG-LM 1.97 1394 267677 65 10681 104.4 0.96 2.63 1.62 1.00 0.57 1.27
lgK − 4 2.03 1209 258857 59 10809 97.7 0.99 2.28 1.56 0.91 0.58 1.19
lgK − 3 2.00 1094 245893 56 11061 95.9 0.98 2.06 1.48 0.86 0.59 1.17
lgK − 2 2.11 935 226901 56 11926 92.1 1.03 1.76 1.37 0.86 0.64 1.12
lgK − 1 2.03 739 197574 57 13924 85.7 0.99 1.39 1.19 0.88 0.74 1.04
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number of messages, for 64, 128, 256, 512 and 1024 processors, respectively. It

reduces maximum number of messages by 19%, 18%, 12%, 4% and 0% for 64, 128,

256, 512 and 1024 processors, respectively. Similarly, the increase rates in the

volume-based metrics caused by MG-LM over MG are not as large as those caused

by FG-LM over FG. The increase rates in total volume caused by MG-LM are 46%,

49%, 55%, 61% and 62% for 64, 128, 256, 512 and 1024 processors, respectively.

The increase rates in maximum volume are 103%, 119%, 145%, 156% and 163%

for 64, 128, 256, 512 and 1024 processors, respectively. With the same reasoning

made for the delayed versions for the variants of the fine-grain model given in the

previous table, we pick ρ = logK − 2 as the delayed version with the best results

when all metrics are considered.

As seen in Tables 4.2 and 4.3, the variants of the fine-grain model are more

extreme in terms of the increase and decrease rates compared to those of the

medium-grain model. This can be attributed to the fact that the fine-grain model

has a larger solution space hence the metric with a higher importance in a variant

of the fine-grain model can be targeted better than the others.

4.5.1.2 Thresholding parameters: τs and τr

Recall that in the net-thresholding scheme described in Section 4.4, only the

message nets with the number of connected vertices smaller than or equal to a

threshold t > 0 are allowed to be added to the hypergraphs in the RB process.

We denote the thresholds for send-message nets and receive-message nets as τs

and τr, respectively. That is, an expand-send/fold-send net s is not added to

the respective hypergraph if Pins(s) > τs even though the message net addition

is active. Similarly, an expand-receive/fold-receive net r is not added to the

respective hypergraph if Pins(r) > τr even though the message net addition is

active.

Tables 4.4 and 4.5 present the average partition statistics of the net-

thresholding scheme for the variants of the fine-grain model for different com-

binations of (τs, τr) values in comparison against the FG and FG-LM schemes.
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Table 4.4: Average partition statistics of the net-thresholding scheme in the
fine-grain model for nine different combinations of (τs, τr) values, in compari-
son against FG and FG-LM with all message nets included, for 64, 128 and 256
processors.

actual values normalized w.r.t. FG

volume message volume message

K model imb max total max total time imb max total max total time

64

FG 0.91 413 11811 32 968 7.7 - - - - - -
FG-LM 0.89 1293 19804 25 436 8.7 0.98 3.13 1.68 0.78 0.45 1.14
15, 15 0.87 468 12382 31 842 7.4 0.96 1.13 1.05 0.97 0.87 0.96
15, 30 0.87 509 12825 30 791 7.4 0.96 1.23 1.09 0.94 0.82 0.97
15, 50 0.88 542 13267 29 753 7.4 0.97 1.31 1.12 0.91 0.78 0.97
30, 15 0.86 518 12819 31 791 7.4 0.95 1.25 1.09 0.97 0.82 0.97
30, 30 0.93 538 13109 30 761 7.4 1.02 1.30 1.11 0.94 0.79 0.97
30, 50 0.89 573 13541 29 726 7.4 0.98 1.39 1.15 0.91 0.75 0.97
50, 15 0.87 562 13267 31 751 7.4 0.96 1.36 1.12 0.97 0.78 0.97
50, 30 0.85 580 13526 30 724 7.4 0.93 1.40 1.15 0.94 0.75 0.97
50, 50 0.83 601 13840 29 699 7.4 0.91 1.46 1.17 0.91 0.72 0.96

128

FG 1.11 484 24670 45 2332 16.4 - - - - - -
FG-LM 1.10 1830 43338 37 972 19.0 0.99 3.78 1.76 0.82 0.42 1.16
15, 15 1.08 568 26186 43 1964 16.3 0.97 1.17 1.06 0.96 0.84 0.99
15, 30 1.04 618 27171 42 1841 16.4 0.94 1.28 1.10 0.93 0.79 1.00
15, 50 1.01 669 28159 40 1751 16.3 0.91 1.38 1.14 0.89 0.75 1.00
30, 15 1.05 637 27176 43 1838 16.3 0.95 1.32 1.10 0.96 0.79 0.99
30, 30 1.01 669 27825 42 1763 16.3 0.91 1.38 1.13 0.93 0.76 1.00
30, 50 1.02 711 28702 41 1678 16.4 0.92 1.47 1.16 0.91 0.72 1.00
50, 15 1.01 707 28156 44 1741 16.4 0.91 1.46 1.14 0.98 0.75 1.00
50, 30 1.00 728 28789 42 1671 16.3 0.90 1.50 1.17 0.93 0.72 0.99
50, 50 1.05 757 29461 41 1615 16.3 0.95 1.56 1.19 0.91 0.69 0.99

256

FG 1.36 567 52357 60 5560 40.9 - - - - - -
FG-LM 1.33 2700 96802 56 2120 47.9 0.98 4.76 1.85 0.93 0.38 1.17
15, 15 1.26 706 56218 58 4539 40.9 0.93 1.25 1.07 0.97 0.82 1.00
15, 30 1.27 773 58452 56 4258 40.7 0.93 1.36 1.12 0.93 0.77 0.99
15, 50 1.21 835 60864 54 4043 40.8 0.89 1.47 1.16 0.90 0.73 1.00
30, 15 1.22 793 58418 59 4251 41.0 0.90 1.40 1.12 0.98 0.76 1.00
30, 30 1.21 827 60086 57 4087 40.8 0.89 1.46 1.15 0.95 0.74 1.00
30, 50 1.23 900 62393 55 3879 41.1 0.90 1.59 1.19 0.92 0.70 1.00
50, 15 1.20 879 61099 59 4037 40.8 0.88 1.55 1.17 0.98 0.73 1.00
50, 30 1.23 908 62516 58 3877 40.9 0.90 1.60 1.19 0.97 0.70 1.00
50, 50 1.17 952 64041 56 3729 40.5 0.86 1.68 1.22 0.93 0.67 0.99
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Table 4.5: Average partition statistics of the net-thresholding scheme in the
fine-grain model for nine different combinations of (τs, τr) values, in comparison
against FG and FG-LM with all message nets included, for 512 and 1024 processors.

actual values normalized w.r.t. FG

volume message volume message

K model imb max total max total time imb max total max total time

512

FG 1.67 584 92141 72 11186 77.9 - - - - - -
FG-LM 1.67 3183 183332 75 4349 90.9 1.00 5.45 1.99 1.04 0.39 1.17
15, 15 1.55 726 99582 71 9144 78.0 0.93 1.24 1.08 0.99 0.82 1.00
15, 30 1.58 799 103937 69 8613 77.2 0.95 1.37 1.13 0.96 0.77 0.99
15, 50 1.61 863 108497 66 8218 77.2 0.96 1.48 1.18 0.92 0.73 0.99
30, 15 1.54 817 103490 72 8627 76.8 0.92 1.40 1.12 1.00 0.77 0.99
30, 30 1.59 857 105937 69 8245 75.5 0.95 1.47 1.15 0.96 0.74 0.97
30, 50 1.58 917 110302 67 7851 76.1 0.95 1.57 1.20 0.93 0.70 0.98
50, 15 1.59 905 107850 73 8190 75.6 0.95 1.55 1.17 1.01 0.73 0.97
50, 30 1.58 934 110637 70 7872 77.0 0.95 1.60 1.20 0.97 0.70 0.99
50, 50 1.56 984 113629 68 7569 76.0 0.93 1.68 1.23 0.94 0.68 0.98

1024

FG 1.87 530 165923 69 20209 156.2 - - - - - -
FG-LM 1.92 3142 337216 80 8414 182.4 1.03 5.93 2.03 1.16 0.42 1.17
15, 15 1.83 661 179065 69 17125 158.7 0.98 1.25 1.08 1.00 0.85 1.02
15, 30 1.83 747 187975 67 16242 156.8 0.98 1.41 1.13 0.97 0.80 1.00
15, 50 1.81 811 196236 66 15415 159.6 0.97 1.53 1.18 0.96 0.76 1.02
30, 15 1.78 766 187379 71 16188 157.3 0.95 1.45 1.13 1.03 0.80 1.01
30, 30 1.76 818 193762 69 15514 157.1 0.94 1.54 1.17 1.00 0.77 1.01
30, 50 1.79 869 203544 67 14852 158.3 0.96 1.64 1.23 0.97 0.73 1.01
50, 15 1.72 854 196052 73 15443 154.8 0.92 1.61 1.18 1.06 0.76 0.99
50, 30 1.74 897 201763 70 14843 153.1 0.93 1.69 1.22 1.01 0.73 0.98
50, 50 1.78 931 208023 68 14277 153.7 0.95 1.76 1.25 0.99 0.71 0.98
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Table 4.4 displays the results for 64, 128 and 256 processors, whereas Table 4.5

displays the results for 512 and 1024 processors. Similar to Tables 4.2 and 4.3,

for each K value, the first and second rows present the results of FG and FG-LM

with all message nets, respectively. The next nine rows present the results of

the net-thresholding scheme, each for a different combination of τs ∈ {15, 30, 50}
and τr ∈ {15, 30, 50} values. In all variants of the net-thresholding scheme, the

delayed parameter ρ is set to be logK − 2, as described in Section 4.5.1.1. The

formats of Tables 4.4 and 4.5 are the same as those of Tables 4.2 and 4.3.

As seen in Tables 4.4 and 4.5, the improvements obtained by the net-

thresholding variants (τs = α, τr = β) and (τs = β, τr = α) in a metric different

than maximum volume and maximum number of messages are generally the same

for a specific K value. This is because such a metric is oblivous to the direction

of the communication.

However, a variant with (τs = α1, τr = β) results in less maximum volume and

less maximum number of messages compared to a variant with (τs = α2, τr = β)

for α1 < α2. This is expected since including more send-message nets clusters

more communication items to be sent in some processors. We pick τs as the

smallest value tried for this parameter, i.e., τ = 15, since it gives the smallest

increase in maximum volume and the largest decrease in maximum number of

messages compared to FG. However, we pick τr as the largest value tried for this

parameter, i.e., τ = 50, since it does not affect the mentioned metrics much.

Tables 4.6 and 4.7 present the net-thresholding results for the variant of the

medium-grain model. Similar to the case of the fine-grain model, we pick τs = 15

and τ = 50 as they give the best combination of the increase and decrease rates.
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Table 4.6: Average partition statistics of the net-thresholding scheme in the
medium-grain model for nine different combinations of (τs, τr) values, in com-
parison against MG and MG-LM with all message nets included, for 64, 128 and 256
processors.

actual values normalized w.r.t. MG

volume message volume message

K model imb max total max total time imb max total max total time

64

MG 0.90 412 11655 31 928 3.9 - - - - - -
MG-LM 0.87 835 16985 25 523 4.5 0.97 2.03 1.46 0.81 0.56 1.17
15, 15 0.90 462 12313 30 814 4.0 1.00 1.12 1.06 0.97 0.88 1.04
15, 30 0.91 495 12800 29 768 4.1 1.01 1.20 1.10 0.94 0.83 1.05
15, 50 0.87 521 13205 28 732 4.1 0.97 1.26 1.13 0.90 0.79 1.06
30, 15 0.90 500 12804 29 764 4.1 1.00 1.21 1.10 0.94 0.82 1.05
30, 30 0.85 521 13034 29 741 4.1 0.94 1.26 1.12 0.94 0.80 1.05
30, 50 0.85 545 13420 28 710 4.1 0.94 1.32 1.15 0.90 0.77 1.05
50, 15 0.82 536 13237 29 729 4.1 0.91 1.30 1.14 0.94 0.79 1.04
50, 30 0.87 549 13431 29 709 4.1 0.97 1.33 1.15 0.94 0.76 1.05
50, 50 0.84 562 13649 28 691 4.1 0.93 1.36 1.17 0.90 0.74 1.04

128

MG 1.13 482 24256 44 2217 8.1 - - - - - -
MG-LM 1.04 1055 36227 36 1202 9.7 0.92 2.19 1.49 0.82 0.54 1.19
15, 15 1.10 559 25965 42 1887 8.3 0.97 1.16 1.07 0.95 0.85 1.03
15, 30 1.10 600 26994 40 1775 8.4 0.97 1.24 1.11 0.91 0.80 1.03
15, 50 1.08 634 27799 39 1690 8.4 0.96 1.32 1.15 0.89 0.76 1.04
30, 15 1.08 611 27013 41 1775 8.3 0.96 1.27 1.11 0.93 0.80 1.03
30, 30 1.13 635 27585 41 1715 8.4 1.00 1.32 1.14 0.93 0.77 1.04
30, 50 1.10 658 28331 39 1644 8.5 0.97 1.37 1.17 0.89 0.74 1.05
50, 15 1.06 649 27902 41 1692 8.4 0.94 1.35 1.15 0.93 0.76 1.04
50, 30 1.08 669 28354 40 1646 8.5 0.96 1.39 1.17 0.91 0.74 1.05
50, 50 1.12 691 28853 39 1603 8.4 0.99 1.43 1.19 0.89 0.72 1.04

256

MG 1.48 558 49867 57 5103 19.1 - - - - - -
MG-LM 1.42 1368 77479 50 2674 23.4 0.96 2.45 1.55 0.88 0.52 1.23
15, 15 1.44 681 54772 55 4293 20.3 0.97 1.22 1.10 0.96 0.84 1.06
15, 30 1.40 727 56981 53 4052 20.4 0.95 1.30 1.14 0.93 0.79 1.07
15, 50 1.39 766 58981 52 3876 20.6 0.94 1.37 1.18 0.91 0.76 1.08
30, 15 1.39 746 56998 55 4036 20.3 0.94 1.34 1.14 0.96 0.79 1.06
30, 30 1.41 763 58166 54 3916 20.5 0.95 1.37 1.17 0.95 0.77 1.08
30, 50 1.38 794 59847 52 3758 20.7 0.93 1.42 1.20 0.91 0.74 1.08
50, 15 1.36 783 58933 55 3884 20.4 0.92 1.40 1.18 0.96 0.76 1.07
50, 30 1.40 805 59890 53 3775 20.5 0.95 1.44 1.20 0.93 0.74 1.07
50, 50 1.39 825 60936 52 3681 20.4 0.94 1.48 1.22 0.91 0.72 1.07
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Table 4.7: Average partition statistics of the net-thresholding scheme in the
medium-grain model for nine different combinations of (τs, τr) values, in com-
parison against MG and MG-LM with all message nets included, for 512 and 1024
processors.

actual values normalized w.r.t. MG

volume message volume message

K model imb max total max total time imb max total max total time

512

MG 1.91 588 91856 67 10265 39.7 - - - - - -
MG-LM 1.75 1508 147893 64 5537 50.0 0.92 2.56 1.61 0.96 0.54 1.26
15, 15 1.75 710 100363 66 8629 43.0 0.92 1.21 1.09 0.99 0.84 1.08
15, 30 1.82 757 103475 64 8177 42.4 0.95 1.29 1.13 0.96 0.80 1.07
15, 50 1.80 785 108128 62 7878 43.7 0.94 1.34 1.18 0.93 0.77 1.10
30, 15 1.76 773 104449 66 8170 42.5 0.92 1.31 1.14 0.99 0.80 1.07
30, 30 1.85 803 106445 65 7956 42.5 0.97 1.37 1.16 0.97 0.78 1.07
30, 50 1.80 838 109963 63 7683 42.4 0.94 1.43 1.20 0.94 0.75 1.07
50, 15 1.75 814 108019 66 7859 42.8 0.92 1.38 1.18 0.99 0.77 1.08
50, 30 1.78 842 109801 64 7658 42.7 0.93 1.43 1.20 0.96 0.75 1.07
50, 50 1.68 855 111668 62 7491 42.5 0.88 1.45 1.22 0.93 0.73 1.07

1024

MG 2.05 530 165722 65 18692 82.2 - - - - - -
MG-LM 1.97 1394 267677 65 10681 104.4 0.96 2.63 1.62 1.00 0.57 1.27
15, 15 2.04 637 181918 64 16222 85.6 1.00 1.20 1.10 0.98 0.87 1.04
15, 30 1.98 693 189551 63 15468 87.9 0.97 1.31 1.14 0.97 0.83 1.07
15, 50 2.00 724 196443 61 14827 87.5 0.98 1.37 1.19 0.94 0.79 1.06
30, 15 1.91 710 189740 65 15458 86.4 0.93 1.34 1.14 1.00 0.83 1.05
30, 30 1.99 731 193037 63 15002 86.3 0.97 1.38 1.16 0.97 0.80 1.05
30, 50 1.98 757 199297 61 14496 85.9 0.97 1.43 1.20 0.94 0.78 1.05
50, 15 1.98 736 195599 64 14864 86.5 0.97 1.39 1.18 0.98 0.80 1.05
50, 30 1.93 768 199212 62 14449 86.0 0.94 1.45 1.20 0.95 0.77 1.05
50, 50 2.01 793 203012 62 14128 85.3 0.98 1.50 1.23 0.95 0.76 1.04
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4.5.2 Comparison against coarse-grain model 1D-LM

In Section 4.5.1, the parameters of the delayed-addition and thresholding schemes

for the message nets in FG-LM and MG-LM models are set as follows.

ρ = logK − 2, τs = 15, τr = 50.

Table 4.8 presents the average partition statistics for these FG-LM and MG-LM mod-

els, in comparison against their own baselines (FG, MG) and the general baseline

algorithm, 1D-LM [1], for 64, 128, 256, 512 and 1024 processors. The formatting

of this table is the same as the other tables in this chapter.

As seen in Table 4.8, 1D-LM results in the largest average computational im-

balance value among the compared models, for each K value. This is because

1D models have less flexibility while maintaining the partitioning constraint in

contrast to the 2D models. FG and FG-LM have similar reduction rates in this im-

balance value compared to 1D-LM, as well as MG and MG-LM. FG-LM obtains 29%,

47%, 52%, 49% and 45% average reductions in imbalance compared to 1D-LM, for

64, 128, 256, 512 and 1024 processors. Similarly, MG-LM obtains 30%, 44%, 44%,

43% and 39% average reductions in imbalance compared to 1D-LM, for 64, 128,

256, 512 and 1024 processors.

As seen in Table 4.8, all 2D models achieve better average results in volume-

based metrics compared to 1D-LM. This is because 2D models have a larger so-

lution space for optimizing the bandwidth cost, especially FG and MG. Although

FG-LM and MG-LM cause an increase in volume-based metrics respectively com-

pared to FG and MG, they still achieve less maximum and total volume compared

to 1D-LM. FG-LM achieves 43%, 42%, 40%, 43% and 39% reductions in total volume

compared to 1D-LM, for 64, 128, 256, 512 and 1024 processors. The respective

reduction rates in maximum volume are 28%, 21%, 14%, 8% and 2%. Simi-

larly, MG-LM achieves 44%, 43%, 42%, 43% and 39% reductions in total volume

compared to 1D-LM, for 64, 128, 256, 512 and 1024 processors. The respective

reduction rates in maximum volume are 31%, 25%, 21%, 16% and 13%.
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Table 4.8: Average partition statistics of FG-LM and MG-LM in comparison against
their baselines (FG and MG) and the general baseline algorithm, 1D-LM [1], for 64,
128, 256, 512 and 1024 processors.

actual values normalized w.r.t. 1D-LM

volume message volume message

K model imb max total max total time imb max total max total time

1D-LM 1.24 750 23479 16 416 2.4 - - - - - -
FG 0.91 413 11811 32 968 7.7 0.73 0.55 0.50 2.00 2.33 3.16

64 MG 0.90 412 11655 31 928 3.9 0.73 0.55 0.50 1.94 2.23 1.61
FG-LM 0.88 542 13267 29 753 7.4 0.71 0.72 0.57 1.81 1.81 3.06
MG-LM 0.87 521 13205 28 732 4.1 0.70 0.69 0.56 1.75 1.76 1.70

1D-LM 1.92 851 48730 24 1007 5.2 - - - - - -
FG 1.11 484 24670 45 2332 16.4 0.58 0.57 0.51 1.88 2.32 3.17

128 MG 1.13 482 24256 44 2217 8.1 0.59 0.57 0.50 1.83 2.20 1.56
FG-LM 1.01 669 28159 40 1751 16.3 0.53 0.79 0.58 1.67 1.74 3.15
MG-LM 1.08 634 27799 39 1690 8.4 0.56 0.75 0.57 1.63 1.68 1.62

1D-LM 2.50 968 101565 33 2448 13.2 - - - - - -
FG 1.36 567 52357 60 5560 40.9 0.54 0.59 0.52 1.82 2.27 3.11

256 MG 1.48 558 49867 57 5103 19.1 0.59 0.58 0.49 1.73 2.08 1.45
FG-LM 1.21 835 60864 54 4043 40.8 0.48 0.86 0.60 1.64 1.65 3.10
MG-LM 1.39 766 58981 52 3876 20.6 0.56 0.79 0.58 1.58 1.58 1.56

1D-LM 3.18 933 190222 40 5082 27.9 - - - - - -
FG 1.67 584 92141 72 11186 77.9 0.53 0.63 0.48 1.80 2.20 2.79

512 MG 1.91 588 91856 67 10265 39.7 0.60 0.63 0.48 1.68 2.02 1.42
FG-LM 1.61 863 108497 66 8218 77.2 0.51 0.92 0.57 1.65 1.62 2.77
MG-LM 1.80 785 108128 62 7878 43.7 0.57 0.84 0.57 1.55 1.55 1.57

1D-LM 3.28 830 324324 40 9562 53.4 - - - - - -
FG 1.87 530 165923 69 20209 156.2 0.57 0.64 0.51 1.73 2.11 2.92

1024 MG 2.05 530 165722 65 18692 82.2 0.63 0.64 0.51 1.63 1.95 1.54
FG-LM 1.81 811 196236 66 15415 159.6 0.55 0.98 0.61 1.65 1.61 2.99
MG-LM 2.00 724 196443 61 14827 87.5 0.61 0.87 0.61 1.53 1.55 1.64
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As seen in Table 4.8, all 2D models have worse average results in latency-based

metrics compared to 1D-LM. This is explained by the two distinct communication

phases in 2D models while 1D models have only a single one. Despite this,

FG-LM and MG-LM reduces the increase in the latency-based metrics over 1D-LM,

respectively compared to FG and MG. FG-LM reduces the increase in total number

of messages of FG over 1D-LM, from 133%, 132%, 127%, 120% and 111%, to 81%,

74%, 65%, 62% and 61%, for 64, 128, 256, 512 and 1024 processors, respectively.

Similarly, MG-LM reduces the increase in total number of messages of MG over

1D-LM, from 123%, 120%, 108%, 102% and 95%, to 76%, 68%, 58%, 55% and

55%, for 64, 128, 256, 512 and 1024 processors, respectively. Similar reductions

are achieved in the increase in maximum number of messages by FG-LM and MG-LM

as well.

When we compare FG-LM and MG-LM against each other, MG-LM outperforms

FG-LM in terms of maximum volume, maximum number of messages and total

number of messages. They are comparable in terms of total volume, however,

FG-LM outperforms MG-LM in terms of computational imbalance. When we also

take the partitioning time into account, MG-LM becomes a better alternative than

FG-LM, for the comparison held against 1D-LM. For this reason, we only present

the parallel runtime results of MG and MG-LM while comparing them against those

of 1D-LM in the next section.

4.5.3 Parallel SpMV runtime results

Figure 4.7 presents the strong scaling results for parallel SpMV for each of the

models 1D-LM, MG and MG-LM for K ∈ {64, 128, 256, 512} on eight different ma-

trices. These matrices vary in both their sizes and problem kinds. The number

of nonzeros in these matrices varies between 330870 and 57708624, whereas the

number of rows/columns varies between 45101 and 23947347. The problem kinds

include 2D/3D problem, computational fluid dynamics problem, circuit simula-

tion problem and directed/undirected graphs.
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Figure 4.7: Strong scaling analysis of parallel SpMV for 1D-LM, MG and MG-LM.
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As seen in Figure 4.7, for all eight tested matrices, MG-LM scales bet-

ter than 1D-LM and MG. Except for Freescale1 and eu-2005, there is a

significant/drastic gap between the performances of MG-LM and 1D-LM. For

invextr1 new, web-Google, mouse gene and eu-2005, 1D-LM starts to speed

down while MG-LM still speeds up. These strong scaling results indicate that

MG-LM finds a better trade-off among the many performance metrics compared to

1D-LM.

4.6 Conclusion

In this work, we proposed two separate hypergraph partitioning models each of

which aims at reducing the bandwidth and latency costs of parallel SpMV simul-

taneously. We utilized recursive bipartitioning paradigm together with message

nets to encapsulate this objective. One of the proposed models is based on the

fine-grain model, whereas the other one is based on the medium-grain model. The

experiments performed in almost a thousand matrices validate the proposed mod-

els as they achieved upto 60% of average reduction in total number of messages.

To expolit the tradeoff among different performance metrics, we also proposed

delayed addition and thresholding for the message nets and tuned the proposed

models for the sake of other metrics. The experiments comparing the proposed

models against a baseline algorithm [1] showed that the proposed models achieve

significant reductions in at least three metrics on average. The runtime results of

parallel SpMV verified the validity of the proposed models.
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Chapter 5

Improving performance of

envelope methods: a top-down

profile reduction algorithm

The focus of this work is reducing the profile of a given m × m sparse matrix

A = (ai,j) through symmetric row/column permutation. The profile reduction is

a crucial factor in the performance of envelope methods widely used in scientific

computing community for solving sparse symmetric systems of linear equations.

A key parameter that determines the envelope size or profile is the column index

fc(i) of the first nonzero entry of row i:

fc(i) = min{j : ai,j 6= 0, 1 ≤ j ≤ i}. (5.1)

The envelope of A is defined as the set of column indices that lie between the

first nonzero entry and the diagonal in each row. That is,

envelope(A) = {(i, j) : fc(i) ≤ j < i, 1 ≤ i ≤ m}. (5.2)
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The profile of A is the number of elements in the envelope which is equal to the

sum of the row widths, i.e.,

profile(A) =
m∑
i=1

row width(i) =
m∑
i=1

(i− fc(i)). (5.3)

The envelope methods store fc(i) together with the numeric values (including

zeros) between column indices fc(i) and i, for each row i. So, the storage com-

plexity and computational complexity of the envelope methods are respectively

proportional to the sum of row widths (profile) and the sum of squares of row

widths [15, 16, 17, 18]. Hence, profile reduction is an important combinatorial

optimization problem for increasing the performance of envelope methods.

The problem of minimizing the profile of a sparse matrix is known to be NP-

hard [57]. So many heuristics are proposed and implemented in the scientific

computing community to solve this important combinatorial problem. RCM,

which was proposed by George [58], is the earliest commonly-used heuristic and

utilizes the level structure of the standard graph representation of a given ma-

trix. Gibbs, Poole and Stockmeyer [59] proposed GPS algorithm, which includes

several modifications on RCM in terms of efficiency. Hence, GPS produces com-

parable results with those of RCM but is many times faster than RCM. Several

further improvements of GPS [60, 61, 62, 63] including reductions in both com-

putational and storage complexities have been reported. Sloan [18] proposed a

more successful improvement on GPS by utilizing a priority function for nodes

during the renumbering step of GPS. Sloan’s algorithm was reported to produce

smaller profile than previous algorithms and improved further by Duff, Reid and

Scott [64].

The spectral algorithm, which was proposed by Barnard, Pothen and Si-

mon [15], adopts a linear algebraic approach utilizing Laplacian matrices rather

than a graph-based approach. Kumfert and Pothen [65] proposed a hybrid al-

gorithm in which a global view is obtained by spectral ordering in the first step

and fed to Sloan’s algorithm for local refinement in the second step. The hy-

brid algorithm was reported to produce better results than both of the spectral
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and Sloan’s algorithms alone. Reid and Scott [66] further improved the hybrid

algorithm by using binary heap and supervariables in the implementation.

By the motivation of the success achieved by multilevel approaches in graph

partitioning [30, 32, 67, 68], two multilevel profile reduction algorithms were

proposed by Boman and Hendrickson [16] and Hu and Scott [17]. The former

algorithm utilizes the spectral algorithm in reordering the coarsest graph step,

whereas the latter one utilizes Sloan in both reordering the coarsest graph and

refinement steps.

Hager [69] proposed two heuristics which includes greedy and weighted greedy

labeling of rows/columns that try to minimize the number of zeros entering the

envelope at each time. In the same work, Hager also proposed two exchange

methods for rows/columns in which reduction in profile is calculated for a set

of sequence of adjacent row/column exchanges and the one that gives the best

reduction is realized each time. Reid and Scott [70] provided an efficient im-

plementation of Hager’s exchange methods and reported that applying exchange

methods as a post-processing step to multilevel hybrid algorithm [17] produces

the best results.

Unlike the traditional profile reduction algorithms, we propose a two-phase

approach that adopts a top-down approach in the first phase and a bottom-up

approach in the second phase. In the first phase, we recursively bipartition the

rows/columns of diagonal blocks until the size of each diagonal block becomes

sufficiently small. We utilize the bipartitions on diagonal blocks to induce biparti-

tions on the respective row/column stripes for obtaining a block structure. In the

second phase, we adapt and use Hager’s weighted greedy row/column relabeling

algorithm [69] to reorder the rows/columns of individual row/column stripes.

For the first phase, we first identify two quality metrics to be maintained during

the recursive bipartitioning (RB) process in order to obtain a block structure with

a “small” profile. Then, we propose a novel hypergraph model that encapsulates

these quality metrics. We present a step-by-step construction of the proposed

hypergraph model starting from arow-net hypergraph model.
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The construction of the proposed hypergraph model includes fixed vertex,

clone-net and external-row net additions, and row-net deletions to/from the prim-

itive row-net hypergraph model of diagonal blocks. In symmetric row/column

bipartitioning of a diagonal block, the proposed hypergraph model encodes the

first quality metric of minimizing the number of nonzero row-segments in only

lower off-diagonal block through vertex fixation and clone net addition schemes,

whereas the conventional row-net hypergraph model encodes minimizing the sum

of the number of nonzero row-segments in lower and upper off-diagonal blocks.

Row-net deletion and external-row net addition schemes are introduced to encode

the second quality metric of moving the nonzeros in lower off-diagonal blocks to-

wards diagonal.

The rest of the chapter is organized as follows. Section 5.1 presents the pro-

posed quality metrics and how they are maintained during the RB process. The

proposed hypergraph model is discussed in section 5.2. Section 5.3 discusses the

method proposed for constructing hypergraphs during the RB process. Experi-

mental results are presented and discussed in section 5.4.
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5.1 Maintaining quality metrics during recur-

sive row/column bipartitioning

In the first phase of the proposed approach, we recursively bipartition the

rows/columns of matrix A into a block structure form

Aπ = PAP T =



A11 A12 · · · A1k · · · A1K

A21 A22 · · · A2k · · · A2K

...
...

. . .
...

...

Ak1 Ak2 · · · Akk · · · AkK
...

...
...

. . .
...

AK1 AK2 · · · AKk · · · AK,K


=



R1

R2

...

Rk

...

RK


=

(
C1 C2 · · · Ck · · · CK

)
(5.4)

until the number of rows/columns in each row/column stripe becomes sufficiently

small. This RB process induces a symmetric partial row/column permutation,

where P denotes an m×m permutation matrix to be applied on both rows and

columns of A. In symmetrically permuted matrix Aπ, row i belongs to row stripe

Rk if and only if column i belongs to column stripe Ck. The induced row/column

permutation is partial since the rows and columns of the row/column stripes can

be ordered arbitrarily.

In Aπ, for k = 1, . . . , K, Akk denotes the kth diagonal block, whereas Akh

denotes a lower off-diagonal block for h < k and Ak` denotes an upper off-diagonal

block for k < `. Let fcs(i) denote the index h of the column stripe Ch in which

row i contains its first nonzero ai,j. That is,

fcs(i) = min{h : fc(i) ∈ Ch}. (5.5)

A row i in Rk is said to be a nonzero row if it contains at least one nonzero in

lower off-diagonal blocks {Akh}k−1h=1 of Rk, (i.e., fcs(i) < k) or zero row otherwise

(i.e., fcs(i) ≥ k). The nonzeros of a zero-row i are confined to the diagonal block
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Akk and upper off-diagonal blocks {Ak`}K`=k+1 of Rk.

Our algorithm considers the following quality metrics during the RB process

to obtain the above-mentioned block structure with a smaller profile:

• keep the number of nonzero rows in lower off-diagonal blocks as small as

possible

• keep the nonzeros in lower off-diagonal blocks close to the diagonal as much

as possible

In the first level of the RB process, row/column bipartitioning is applied on the

original matrix, whereas in the following bipartitioning levels row/column bipar-

titionings are applied on the diagonal blocks obtained in the previous level in a

hierarchical manner. As shown in Figure 5.1, row and column bipartitions of a di-

agonal block Akk respectively induce a left-right column bipartition (C left
k , Cright

k )

on the columns of Ck and a up-low row bipartition (Rup
k , R

low
k ) on the rows of Rk.

Note that the column bipartition of all off-diagonal blocks along Ck conform the

column bipartition (C left
k , Cright

k ), whereas the row bipartition of all off-diagonal

blocks along Rk conform the row bipartition (Rup
k , R

low
k ). Also note that due to

symmetric partitioning, we have |Rup
k | = |C left

k | and |Rlow
k | = |Cright

k |, where | · |
denotes the number of rows/columns in the respective row/column stripe.

As seen in Figure 5.1, the row/column bipartitioning of a diagonal block Akk

considers the first quality metric by trying to minimize the number of nonzero

rows introduced by the row/column bipartitioning of Akk in the lower off-diagonal

block of Akk. In a bipartition of Akk, for a row i that contains its first nonzero in

Ck, assigning all columns of Ck that contain a nonzero in row i to Cright
k reduces

row width(i) roughly by |C left
k | on the average. This corresponds to the case

where row i, which was a zero row before the bipartitioning, continues to be a

zero row after the bipartitioning.

As seen in Figure 5.1, the row/column bipartitioning of an intermediate diago-

nal block Akk considers the second quality metric in two distinct ways as follows:
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Figure 5.1: A row/column bipartition of Akk
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The row bipartitioning tries to move the nonzeros in the lower off-diagonal blocks

of Rk upwards through assigning the respective rows to Rup
k . In a bipartition of

Akk, assigning nonzero-row i to Rup
k reduces row width(i) roughly by |Rlow

k | on

the average. The column bipartitioning tries to move the nonzeros in the lower

off-diagonal blocks of Ck rightwards through assigning the respective columns to

Cright
k . In a bipartition of Akk, for a nonzero-row i that contains its first nonzero

in Ck, assigning all columns of Ck that contain a nonzero in row i to Cright
k reduces

row width(i) roughly by |C left
k | on the average.

All bipartitioning levels–except the first level–of the RB process consider both

quality metrics, whereas the first level bipartitioning considers only the first qual-

ity metric. For the second quality metric, the bipartitioning of the first diagonal

block can only handle moving nonzeros in the lower off-diagonal blocks of the first

column slice rightwards, whereas the bipartitioning of the last diagonal block can

only handle moving nonzeros in the lower off-diagonal blocks of the last row slice

upwards.

5.2 Hypergraph model

Here, we describe our hypergraph model proposed to handle the above-mentioned

two quality metrics during the RB process. In an RB step applied for row/column

bipartitioning of a diagonal block Akk at a particular level, the proposed hyper-

graph model is constructed by extending the row-net hypergraph model of Akk.

The row-net hypergraph model [19] of a given matrix A = (ai,j) contains one

vertex vi for each column i and one row-net nj for each row j. Each row-net nj

represents the sparsity pattern of row j by connecting the vertices corresponding

to the columns that have a nonzero entry in row j. That is,

Pins(nj) = {vi : aj,i 6= 0} and Nets(vi) = {nj : aj,i 6= 0}. (5.6)
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In the following two subsections, we describe how we extend the row-net hyper-

graph model to handle the two quality metrics separately.

5.2.1 Keeping the number of nonzero rows small

Without loss of generality, let A denote a diagonal block subject to row/column

bipartitioning at a particular RB step and let H(A) = (V ,N ) denote the row-net

hypergraph of A. Consider row/column bipartitioning of A

Aπ = PAP T =

[
AUU AUL

ALU ALL

]
=

[
Rup

Rlow

]

=
[
C left Cright

] (5.7)

Here AUU and ALL respectively denote upper and lower diagonal blocks, whereas

ALU and AUL respectively denote lower off-diagonal and upper off-diagonal blocks

obtained after the bipartitioning. In a similar manner, Rup and Rlow denote upper

and lower row stripes, whereas C left and Cright denote left and right column

stripes.

As described in [19], the cutsize of bipartition of H(A) encodes the sum of the

number of nonzero row segments in lower and upper off-diagonal blocks ALU and

AUL. However, the first quality metric refers to minimizing the number of nonzero

row segments in only lower off-diagonal block ALU . In order to enable encoding

this asymmetric quality metric through symmetric row/column bipartitioning of

A, we extend the row-net hypergraph model H(A) to He(A) = (Ve,Ne) by adding

two vertices and |N | nets as follows.

We introduce two new vertices vU and vL that are respectively fixed to the

upper and lower parts VU and VL of a bipartition Π = {VU ,VL}. We also introduce
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Figure 5.2: Row-net ni and its clone net nci

a new clone net nci for each row-net ni. That is,

Ve ← V ∪ {vU , vL}, (5.8)

Ne ← N ∪ {nci : ni ∈ N}. (5.9)

The clone net nci is defined as connecting vertices vi and vU , i.e.,

Pins(nci) ← {vi, vU}. (5.10)

We enforce each row-net ni to connect the fixed vertex vL, i.e.,

Pins(ni)← Pins(ni) ∪ {vL}. (5.11)

Figure 5.2 displays a visualization of row-net ni and its clone net nci for a row i

that contains three nonzeros in columns i, j, and k.

For an m × m matrix A with nnz(A) nonzeros, He(A) contains two fixed

vertices, m free vertices, 2 × m nets and 3 × m + nnz(A) pins. Figure 5.4(a)

displays the extended row-net hypergraph He(A33) of diagonal block A33 which

contains 7 rows/columns and 15 nonzeros. As seen in Figure 5.4(a), He(A33)

contains 2 fixed vertices, 7 free vertices, 2× 7 = 14 nets and 3× 7 + 15 = 36 pins.

A vertex bipartition Π = {VU ,VL}, where vU ∈ VU and vL ∈ VL, is decoded

as inducing a row/column bipartition of A as follows. vi ∈ VU is decoded as

assigning row i and column i respectively to row slice Rup and column slice C left,

whereas vi ∈ VL is decoded as assigning row i and column i respectively to row

slice Rlow and column slice Cright.
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Here we will discuss how minimizing the cutsize of a bipartition of He(A) is

equivalent to minimizing the number of nonzero rows in the lower off-diagonal

block ALU . The two fixed vertices vU and vL serve as anchors to the nets as

follows for any bipartition Π(He) = (VU ,VL). vU anchors each clone net nci to

the upper part VU , that is VU ∈ Λ(nci). vL anchors each row-net ni to the lower

part VL, that is VL ∈ Λ(ni). Since VU ∈ Λ(nci), VL ∈ Λ(ni) and nets ni and nci

share vertex vi, either one of them or both of them are in the cut of Π for each

row/column i. Below, we investigate these three cut/uncut states for each net

pair (ni, n
c
i) and display their visualizations in the left side of Figure 5.3.

State 1: ni is cut and nci is uncut. This state occurs when vi ∈ VU . Since row i

is assigned to Rup, it does not incur any nonzero-row segments in ALU .

State 2: ni is uncut and nci is cut. This state occurs when all pins of ni including

vi are assigned to VL. Although row i is assigned to Rlow, it does not incur

any nonzero-row segments to ALU since all nonzeros of row i are confined

to ALL.

State 3: ni and nci are both cut. This state occurs when vi ∈ VL and ni has at

least one pin in VU . Since row i is assigned to Rlow and ni has at least one

pin in VU , row i has at least one nonzero in ALU and hence it incurs one

nonzero-row segment in ALU .

In summary, in the first two states, net pair (ni, n
c
i) incurs a total cost of 1 (in

terms of cutsize) while introducing no nonzero rows to ALU . In third state, net

pair (ni, n
c
i) incurs a total cost of 2 while introducing 1 nonzero row to ALU . So

we have

number of nonzero rows in ALU = cutsize(Π(He))− |N |. (5.12)

Since |N | (i.e., number of rows/columns) is constant, the bipartitioning objec-

tive of minimizing the number of cut-nets corresponds to minimizing number of

nonzero rows in ALU .
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Figure 5.4: Step-by-step construction of the proposed hypergraph model
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5.2.2 Keeping nonzeros close to the diagonal

Without loss of generality, let Akk denote a diagonal block subject to row/column

bipartitioning at a particular RB step and let He(Akk) = (Ve,Ne) denote the

extended row-net hypergraph of Akk which is constructed as described in Sec-

tion 5.2.1. As mentioned earlier, we utilize the column bipartitioning of Akk to

move the nonzeros in lower off-diagonal blocks of Ck rightwards. In a dual man-

ner, we utilize the row bipartitioning of Akk to move the nonzero rows in lower

off-diagonal blocks of Rk upwards.

5.2.2.1 Moving nonzeros in lower off-diagonal blocks in Rk up towards

Rk−1: Constructing H′e(Akk) from He(Akk)

Consider a row i in Rk that contains at least one nonzero in the lower off-diagonal

blocks (Akh for 1 ≤ h < k) of Rk, i.e., fcs(i) < k. So, row i is already a nonzero

row of Rk independent of the row/column bipartitioning of Akk. In other words,

making row i a zero row of Akk through removing row-net ni from the cut (making

ni uncut as seen in State 2 of Figure 5.3) does not make row i a zero row of Rk.

That is, row-net ni does not serve the purpose of satisfying the first quality

metric for row i. Thus, we delete net ni from He(Akk) while keeping nci in the

construction of H′e(Akk). We keep nci in H′e(Akk), because making net nci uncut

will enforce vi to be assigned to the upper part VU as seen in State 1 of Figure 5.3.

Assigning vi to VU corresponds to assigning row i to the upper row slice Rup
k of

the row/column bipartition of Akk. Assigning row i to Rup
k serves the purpose

of satisfying the second quality metric of moving the nonzeros of row i in lower

off-diagonal blocks in Rk upwards. In other words, making nci uncut reduces

row width(i) roughly by |Rlow
k | on the average.

The above-mentioned row-net deletion process can be expressed as follows:

N ′e = Ne − {ni : fcs(i) < k}. (5.13)
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Figure 5.4(b) shows the row-net deletion process for constructing H′e(A33) from

the extended hypergraph model He(A33) given in Figure 5.4(a). As seen in

Figure 5.4(b), there exists 3 nonzero-rows f, h and l in R3 with fcs(f) = 2,

fcs(h) = 1 and fcs(l) = 2. So row-nets nf , nh and nl are deleted from He(A33)

together with their pins, whereas nets ncf , n
c
h and ncl remain in H′e(A33).

5.2.2.2 Moving nonzeros in lower off-diagonal blocks in Ck right to-

wards Ck+1: Constructing H′′e(Akk) from H′e(Akk)

Consider a nonzero-row x in R` with ` > k and fcs(x) = k, just before the current

RB step. We encapsulate moving the nonzeros of row x rightwards by adding a

new net nx that represents the sparsity pattern of row x in A`k as an external-row

net to H′e(Akk). Row-net nx connects the vertices corresponding to the columns

that have a nonzero entry in row x in A`k as well as the fixed vertex vL. Since

row-net nx is anchored to VL, nx can be removed from the cut only if all of its

pins are assigned to VL. This corresponds to moving all nonzeros of row x to

the right column slice Cright
k induced by the column bipartition of Akk. In other

words, making nx uncut reduces row width(x) roughly by |C left
k | on the average.

Note that if nonzero-row x contains at least one nonzero in lower off-diagonal

blocks that lie left to A`k (i.e., fcs(x) < k), we do not add an external-row net

nx to H′e(Akk). This is because moving all nonzeros of row x in Ck to Cright
k does

not have any potential to reduce row width(x), in this case.

The above-mentioned external-row net addition process can be expressed as

follows:
N ′′e = N ′e ∪ {nx : fcs(x) = k}, where

Pins(nx) = {vL} ∪ {vj : ax,j 6= 0 and j ∈ Ck}.
(5.14)

Figure 5.4(c) shows the external-row net addition process for constructing

H′′e(A33) from H′e(A33) for the sample matrix A given in Figure 5.4(a). As seen

in Figure 5.4 (c), there exists 3 nonzero-rows x, y and z in lower off-diagonal

block(s) of C3 with fcs(x) = 2, fcs(y) = 3 and fcs(z) = 3. Since nonzero-

rows y and z contain their first nonzero in C3, we add row-nets ny and nz with
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Pins(ny) = {vf , vh, vj} and Pins(nz) = {vj, vl} to H′e(A33) as external nets. Al-

though row x is also a nonzero-row in C3, row x does not incur the addition of

a new row-net to H′e(A33) as an external-row net since row x contains its first

nonzero in C2. However, row x as well as rows f and l incur the addition of

external-row nets to H′′(A22), since all of the rows x, f and l have their first

nonzero in C2.

We should mention here the close relation between the row-net deletion and the

external-row net addition processes mentioned above. Consider a nonzero-row i

in R` with fcs(i) = k. Nonzero-row i incurs the deletion of a row-net ni with

Pins(ni) = {vL} ∪ {vj : ai,j 6= 0 and j ∈ C`} from He(A``), whereas it incurs the

addition of external-row net n′i with Pins(n′i) = {vL}∪{vj : ai,j 6= 0 and j ∈ Ck}
to H′e(Akk). For example, in Figure 5.4, consider nonzero-row h in R3 with

fcs(h) = 1. Nonzero-row h incurs the deletion of a row-net fromHe(A33), whereas

it incurs the addition of a new net to H′e(A11) as an external-row net.

5.3 Hypergraph construction during recursive

bipartitioning

In Section 5.2, the extended row-net hypergraph model, row-net deletion and

external-row net addition operations required to constructH′′e(Akk) for a diagonal

block Akk are discussed in terms of the sparsity pattern of Akk as well as the

sparsity patterns of lower off-diagonal blocks of row and column stripes Rk and

Ck. Although this scheme is utilized for the sake of clarity of the presentation,

it does not lead to an efficient implementation scheme since it requires multiple

passes over the nonzeros of the original matrix at each RB level. Here, we propose

and discuss an efficient hypergraph construction scheme, which requires only one

pass over the nonzeros of the original matrix, during each RB level.

In the proposed method, only in the first RB level, the hypergraph model is

constructed from scratch by using the extended row-net hypergraph model that
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utilizes the sparsity pattern of the original matrix. In the successive RB levels,

hypergraph model of each diagonal block is constructed from the hypergraph

model of its parent diagonal block. In other words, hypergraphs H′′e(AUU) and

H′′e(ALL) are constructed for the upper and lower diagonal blocks AUU and ALL

that are induced by the bipartition Π(H′′e(A)) = {VU ,VL} of the hypergraph

H′′e(A) of their parent diagonal block A (see (5.7)). Without loss of generality,

let A represent the diagonal block Akk at the row and column stripes Rk and Ck,

just before the current RB step. For the sake of simplicity, we will use HA, HU

and HL to refer to H′′e(A), H′′e(AUU) and H′′e(ALL), respectively.

We identify three cases depending on the existence of either one of ni and nci

or both of them in HA. In all cases, we will have

HU = (VU ∪ {vL},NU) and HL = (VL ∪ {vU},NL). (5.15)

Below, we discuss the construction of the net sets NU and NL in an incremental

manner from the net set NA of HA for each different case.

Case 1: HA contains both ni and nci . This case occurs when row i contains

at least one off-diagonal nonzero in A and no nonzeros in lower off-diagonal blocks

of Rk. The latter requirement refers to the fact that row i is a zero row in the

block structure just before the current RB step. In other words, the net deletion

process mentioned earlier does not apply to row-net ni.

There exists a different net construction scheme for each different cut/uncut

states for net pair (ni, n
c
i) as shown in Figure 5.3.

State 1: ni is cut and nci is uncut. Row i is assigned to Rup. So, row i incurs a

net pair (n′i, n
c
i) in NU , where pins of n′i correspond to the nonzeros of row i

that are confined to AUU . That is,

NU = NU ∪ {nci} ∪ {n′i : Pins(n′i) = (Pins(ni) ∩ VU) ∪ {vL}}. (5.16)
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Row i does not incur any nets in NL.

State 2: ni is uncut and nci is cut. Row i is assigned to Rlow in such a way that

all of its nonzeros are confined to ALL, row i incurs a net pair (n′i, n
c
i) in

NL, where pins of n′i are exactly equal to those of ni. That is,

NL = NL ∪ {nci} ∪ {n′i : Pins(n′i) = Pins(ni)}. (5.17)

Row i does not incur any nets in NU .

State 3: ni and nci are both cut. Row i is assigned to Rlow in such a way that

its nonzeros are scattered between ALU and ALL. So, row i incurs net nci

in NL and n′i in NU , where pins of n′i correspond to the nonzeros of row i

that are confined to AUU . That is,

NL = NL ∪ {nci}, (5.18)

NU = NU ∪ {n′i : Pins(n′i) = (Pins(ni) ∩ VU) ∪ {vL}}. (5.19)

In summary, for all three states, net nci with Pins(nci) = {vi, vU} become a net

of the hypergraph that represents the part to which vertex vi is assigned in Π.

Note that row i, which was a zero row before the bipartitioning, continues to be

a zero row after the bipartitioning in the first two states, whereas it becomes a

nonzero row after the bipartitioning in the third state. So, in the first two states,

net n′i derived from ni also becomes a net of the hypergraph that represents the

part to which vertex vi is assigned, whereas in the third state n′i becomes a net of

the hypergraph that represents the other part of the bipartition. Hence, having

ni and nci in the same hypergraph in the first two states serves the first quality

metric, whereas having ni and nci in two different hypergraphs in the third state

serves the second quality metric. In the third state, instead of first including net

pair (ni, n
c
i) in HL then deleting row-net ni from HL and then adding external-

row net n′i in HU as described in Section 5.2, we simply include n′i and nci in HU

and HL, respectively.

Case 2: HA contains nci but not ni. This case occurs when row i contains
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at least one nonzero in lower off-diagonal blocks of Rk, i.e., row i is a nonzero row

in the block structure just before the current RB step. In other words, HA does

not contain row-net ni due to the net deletion process mentioned earlier. There

are two cut/uncut states for nci as shown in Figure 5.5.

State 1: nci is uncut. Row i is assigned to Rup . So, row i incurs nci in NU . That

is,

NU = NU ∪ {nci}. (5.20)

State 2: nci is cut. Row i is assigned to Rlow . So, row i incurs nci in NL. That

is,

NL = NL ∪ {nci}. (5.21)

In summary, for both states, net nci with Pins(nci) = {vi, vU} become a net of the

hypergraph that represents the part to which vertex vi is assigned in Π. Note that

in both states of nci , instead of first including net pair (ni, n
c
i) in the hypergraph

that represents the part to which vertex vi is assigned and then removing row-net

ni from that hypergraph as described in Section 5.2, we simply include only nci ,

since having nci but not ni in HA infers that row i is already a nonzero row.

Case 3: HA contains ni but not nci . This case occurs when row i contains its

first nonzero in one of the lower off-diagonal blocks of Ck, i.e., row i is a nonzero

row in the block structure just before the current RB step. In other words, HA

contains external-row net ni due to the net addition process mentioned earlier.

There are two cut/uncut states for ni as shown in Figure 5.6.

State 1: ni is uncut. All nonzeros of row i are confined to Cright. So, row i

incurs n′i in NL as

NL = NL ∪ {n′i : Pins(n′i) = Pins(ni)}. (5.22)

State 2: ni is cut. Nonzeros of row i are scattered between C left and Cright, i.e.,
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row i contains its first nonzero in C left. So, row i incurs n′i in NU as

NU = NU ∪ {n′i : Pins(n′i) = (Pins(ni) ∩ VU) ∪ {vL}}. (5.23)
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5.4 Experiments

5.4.1 Datasets

We have tested the performance of the proposed profile reduction algorithm on

three datasets, each of which consists of symmetric matrices obtained from the

SuiteSparse Matrix Collection [47]. These datasets are derived from the ones

that were previously used in the evaluations of the well-known successful profile

reduction algorithms.

Dataset 1 is obtained by merging the 18 matrices in Kumfert and Pothen’s

Collection, which was used in [15, 16, 66, 65, 17, 70] and the 8 matrices in NASA

Collection, which was used in [15, 69]. The resulting dataset contains 23 matrices

from a variety of application areas: structural analysis, fluid dynamics, stochastic

optimization and multicommodity flows.

Dataset 2 is derived from the Netlib Linear Programming Problem Collec-

tion, which was used in [69]. We first exclude the matrices with less than 1000

rows/columns or more than 100000 rows/columns. Then, we multiply each of the

remaining 44 matrices with its transpose and use the resulting AAT matrix as a

test matrix.

Dataset 3 is obtained from the Harwell-Boeing Collection, which was used

in [15, 69, 17]. We exclude nonsymmetric matrices and the ones with less than

1000 rows/columns. The resulting dataset contains 71 matrices, which all arise

in structural engineering problems.

Tables 5.1, 5.2 and 5.3 display the properties of the matrices in Datasets 1,

2, and 3, respectively. Columns “name”, “n” and “nnz” respectively refer to the

name, the number of rows/columns and the number of nonzeros of the respective

matrix.
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Table 5.1: Performance comparison on Dataset 1

matrix properties normalized profile
name n nnz orig. GK+H S+H HS+H HP
nasa1824 1824 39208 112.7 106.8 102.2 103.5 81.4
nasa2146 2146 72250 76.7 75.6 73.2 75.0 79.0
nasa2910 2910 174296 180.7 172.9 156.0 154.0 149.8
nasa4704 4704 104756 195.1 175.8 171.5 146.7 151.0
barth4 6019 40965 358.7 59.6 50.2 46.2 40.2
barth 6691 46187 2369.6 72.9 66.7 56.9 54.1
commanche dual 7920 31680 2088.8 42.5 38.3 36.9 31.9
shuttle eddy 10429 103599 1117.7 64.4 58.2 58.4 53.0
skirt 12598 196520 290.6 73.6 53.3 60.9 52.1
barth5 15606 107362 260.0 109.1 83.9 75.5 70.5
pds10 16558 149658 1089.3 900.3 534.0 559.0 398.5
copter1 17222 211064 1102.3 337.5 330.3 332.5 353.5
tandem vtx 18454 253350 4389.7 393.3 308.8 268.7 248.4
ford1 18728 101576 1879.4 100.5 98.6 80.0 76.5
bcsstk30 28924 2043492 542.4 533.2 552.2 294.3 288.2
pwt 36519 326107 2416.4 140.8 133.7 132.6 117.3
finance256 37376 298496 6458.7 723.6 166.4 175.9 114.7
nasasrb 54870 2677324 370.2 346.4 341.8 323.7 307.5
copter2 55476 759952 19540.8 803.3 649.9 557.9 603.9
finance512 74752 596992 12858.2 563.5 155.9 136.1 141.4
onera dual 85567 419201 8286.8 1003.1 932.7 509.8 513.2
tandem dual 94069 460493 5182.0 757.3 625.2 430.4 401.9
ford2 100196 544688 3714.6 358.4 333.3 248.7 231.2
average profile 218.8 172.2 152.7 140.6
number of smallest profiles 0 2 4 17
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Table 5.2: Performance comparison on Dataset 2

matrix properties normalized profile
name n nnz orig. GK+H S+H HS+H HP
lp truss 1000 26120 272.1 44.3 44.5 46.5 44.7
lp sctap2 1090 12100 103.0 56.1 56.7 57.9 41.8
lp woodw 1098 41940 182.5 125.8 122.2 122.9 80.4
lp osa 07 1118 106050 78.4 54.2 55.0 61.0 77.0
lp ship12l 1151 22388 462.1 31.5 17.4 16.7 19.5
lp ship12s 1151 11732 461.4 19.8 13.7 13.1 14.1
lp sierra 1227 5819 309.4 6.6 6.2 6.0 6.3
lp ganges 1309 16621 331.5 32.5 86.9 35.0 29.9
lp pilot 1441 124461 494.5 233.8 221.1 232.0 192.3
lp sctap3 1480 16252 142.1 76.9 77.8 54.4 41.6
lp degen3 1503 101775 670.0 239.7 179.0 183.6 157.0
lp cycle 1903 57318 137.1 70.2 215.9 78.1 58.2
lp pilot87 2030 238588 573.3 363.0 310.7 279.9 303.1
lp stocfor2 2157 27633 328.5 77.5 28.8 29.4 26.7
lp d2q06c 2171 56131 514.0 200.0 240.8 112.1 104.7
lp 80bau3b 2262 22410 551.8 109.4 85.0 68.1 80.1
lp bnl2 2324 29224 194.3 103.9 115.8 92.7 83.1
lp osa 14 2337 230023 80.3 55.9 56.9 61.9 92.2
lp greenbea 2392 70061 405.5 190.8 145.9 109.5 92.3
lp greenbeb 2392 70061 405.5 190.8 145.9 109.5 92.3
lpi greenbea 2393 70074 405.9 189.0 146.5 111.1 95.4
lp ken 07 2426 14382 35.1 28.2 158.2 27.8 27.4
lpi gran 2658 197312 287.6 147.0 137.2 157.5 111.9
lpi bgindy 2671 126747 446.6 164.1 417.7 338.0 187.6
lp pds 02 2953 23281 208.7 142.9 138.7 102.2 64.5
lpi cplex1 3005 2265521 1000.5 626.2 626.2 626.2 703.3
lp cre c 3068 40776 1316.2 151.6 128.5 118.8 55.8
lp maros r7 3136 664080 272.8 271.3 271.3 271.3 400.4
lp qap12 3192 152376 1590.0 1057.7 1052.1 1014.8 926.9
lp cre a 3516 44866 1549.3 160.2 147.3 89.5 57.4
lpi ceria3d 3576 1963306 1774.3 989.4 982.9 984.3 1034.8
lpi gosh 3792 206008 1506.1 506.8 332.3 235.0 182.2
lp osa 30 4350 436738 81.1 56.6 57.7 62.7 71.6
lp dfl001 6071 81917 2474.7 749.2 619.4 554.0 534.0
lp qap15 6330 378480 3157.5 2099.1 2121.8 1937.6 1873.4
lp cre d 8926 369786 2587.0 1170.8 431.4 438.8 266.4
lp cre b 9648 396310 2928.6 1234.5 480.2 394.0 292.9
lp pds 06 9881 88003 677.9 547.1 346.2 340.6 242.8
lp osa 60 10280 1016354 81.6 58.2 56.1 57.1 75.8
lp ken 11 14694 82454 82.6 62.2 814.4 60.2 58.2
lp pds 10 16558 149658 1089.3 900.3 534.0 559.0 398.5
lp stocfor3 16675 223395 2664.4 546.0 49.4 51.1 48.5
lp ken 13 28632 161804 114.4 85.8 1912.9 82.6 80.6
lp pds 20 33874 320120 2180.3 1269.5 1051.7 932.7 869.2
average profile 166.0 168.8 124.5 110.7
number of smallest profiles 7 4 7 30
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Table 5.3: Performance comparison on Dataset 3

matrix properties normalized profile
name n nnz orig. GK+H S+H HS+H HP
saylr3 1000 3750 34.7 21.8 21.6 23.0 18.1
sherman1 1000 3750 34.7 21.8 21.6 23.0 18.1
dwt 1005 1005 8621 120.5 33.1 32.4 29.4 28.7
dwt 1007 1007 8575 25.6 20.9 21.0 18.9 18.9
jagmesh2 1009 6865 53.8 23.2 23.2 31.9 23.0
lshp1009 1009 6865 53.8 23.2 23.2 31.9 23.0
can 1054 1054 12196 254.3 32.9 32.1 29.3 28.6
can 1072 1072 12444 258.6 41.5 40.4 30.8 30.1
bcsstk08 1074 12960 223.6 77.6 52.5 51.4 53.3
lock1074 1074 51588 96.2 70.1 71.2 67.0 66.7
bcsstk09 1083 18437 57.8 56.1 56.1 56.1 53.5
bcsstk10 1086 22070 34.1 18.1 18.1 18.1 23.1
bcsstm10 1086 22092 34.1 18.1 18.1 18.1 19.9
jagmesh3 1089 7361 65.1 22.5 22.5 22.5 22.9
1138 bus 1138 4054 80.5 13.6 8.9 8.3 9.1
jagmesh7 1138 7450 36.9 17.1 17.1 16.1 16.2
jagmesh8 1141 7465 30.2 22.0 20.6 23.8 19.5
eris1176 1176 18552 76.3 17.8 19.5 17.0 17.8
jagmesh5 1180 7750 29.5 17.6 16.0 14.1 14.1
bcsstk27 1224 56126 40.3 40.3 40.1 40.1 46.5
bcsstm27 1224 56126 40.3 40.3 40.1 40.1 46.5
dwt 1242 1242 10426 88.7 32.1 27.7 28.1 26.9
lshp1270 1270 8668 61.0 26.0 26.1 25.7 25.8
jagmesh9 1349 9101 51.2 22.9 22.9 19.8 19.2
jagmesh6 1377 8993 20.9 11.7 12.7 11.9 11.8
jagmesh4 1440 9504 30.9 18.3 18.3 18.3 19.8
bcspwr06 1454 5300 52.0 13.5 11.2 9.4 8.1
bcsstk11 1473 34241 90.8 44.6 45.0 44.4 46.8
bcsstk12 1473 34241 90.8 44.6 45.0 44.4 46.8
bcsstm12 1473 19659 90.2 25.3 24.6 27.1 24.7
lshp1561 1561 10681 68.3 28.8 28.8 40.7 28.5
bcspwr07 1612 5824 55.2 14.3 11.0 10.3 8.2
bcspwr08 1624 6050 58.4 15.1 12.4 9.6 9.5
bcspwr09 1723 6511 274.2 15.5 12.7 10.0 10.6
bcsstk14 1806 63454 108.4 97.9 86.5 90.2 83.6
lshp1882 1882 12904 75.6 31.7 31.7 31.1 31.2
plat1919 1919 32399 645.5 48.2 39.8 41.5 40.2
bcsstk26 1922 30336 98.9 89.2 61.2 63.2 50.6
bcsstk13 2003 83883 217.1 209.1 246.8 211.5 169.7
bcsstm13 2003 21943 52.7 28.7 32.5 27.9 24.8
blckhole 2132 14872 88.4 76.0 72.6 66.6 49.9
lock2232 2232 80352 54.4 46.6 43.6 46.2 44.7
lshp2233 2233 15337 82.9 34.5 34.5 53.3 33.9
lshp2614 2614 17980 90.3 37.3 37.3 36.7 36.6
dwt 2680 2680 25026 219.4 32.6 31.7 31.8 31.2
cegb2802 2802 277362 117.2 85.5 83.8 86.1 121.6
zenios 2873 27191 368.3 4.4 4.4 4.4 7.9
cegb2919 2919 321543 336.9 198.4 186.9 174.4 177.2
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Table 5.3 – Continued from previous page
matrix properties normalized profile

name n nnz orig. GK+H S+H HS+H HP
cegb3024 3024 79848 157.4 83.1 72.2 45.6 58.9
lshp3025 3025 20833 97.6 40.1 40.1 62.8 39.6
bcsstk23 3134 45178 332.5 216.7 216.4 214.2 204.8
cegb3306 3306 74916 108.0 104.0 55.7 56.5 68.5
sstmodel 3345 22749 32.3 24.9 21.0 21.3 20.5
lshp3466 3466 23896 105.0 42.9 42.9 42.1 42.5
lock3491 3491 160444 172.7 153.1 119.1 135.2 131.4
bcsstk24 3562 159910 569.4 152.1 118.3 118.6 144.3
saylr4 3564 22316 188.5 78.8 78.2 73.8 71.8
bcsstk21 3600 26600 117.2 47.9 47.9 52.2 49.0
bcsstk15 3948 117816 251.8 240.0 185.7 178.2 166.7
bcsstk28 4410 219024 180.8 173.2 181.9 128.2 114.6
bcsstk16 4884 290378 125.0 120.8 121.0 121.5 121.6
bcspwr10 5300 21842 1155.1 39.0 30.4 22.0 22.6
man 5976 5976 225046 211.7 206.6 191.3 168.0 205.5
bcsstk33 8738 591904 408.7 394.9 319.9 358.8 366.3
bcsstk17 10974 428650 258.6 234.6 200.3 186.7 201.3
bcsstk18 11948 149090 427.6 253.2 240.0 168.6 139.5
bcsstk29 13992 619488 531.8 504.1 403.8 183.9 189.3
bcsstk25 15439 252241 190.7 161.0 165.0 152.2 151.6
bcsstk30 28924 2043492 542.4 533.2 552.2 294.3 288.2
bcsstk31 35588 1181416 650.9 622.0 915.1 513.5 449.6
bcsstk32 44609 2014701 2477.7 1053.7 514.4 451.3 308.8
average profile 51.9 48.1 45.7 44.2
number of smallest profiles 8 16 25 37

5.4.2 Baseline algorithms

We use the following well-known profile reduction algorithms as the baseline al-

gorithms for evaluating the performance of the proposed algorithm.

• Gibbs-King: The efficient implementation of Gibbs-King algorithm [60] pro-

vided by Lewis [61] in ACM Algorithm 582.

• Sloan: The enhanced Sloan algorithm [18] provided by Reid and Scott [66]

in HSL code MC60.

• Hu-Scott: The multilevel hybrid algorithm proposed and implemented by

Hu and Scott [17] in HSL code MC73. This hybrid algorithm refines the

multilevel spectral reordering using MC60.
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• Hager: The efficient implementation of Hager’s exchange algorithm [69]

provided by Reid and Scott [70] in HSL code MC67. The algorithm applies

the down exchange algorithm followed by the up exchange algorithm five

times.

In [70], Reid and Scott report that applying Hager’s exchange algorithm as a post-

processing step to certain profile reduction algorithms yields smaller profiles than

using them separately. Hence, we compare the performance of our algorithm

against three baseline algorithms, all containing two phases, where the input

matrix is reordered with one of Gibbs-King, Sloan or Hu-Scott in the first phase

and Hager is applied on the reordered matrix in the second phase. Hereinafter, we

use “GK+H”, “S+H” and “HS+H” to respectively denote utilizing Gibbs-King,

Sloan and Hu-Scott in the first phase and Hager in the second phase. We use

the double-precision implementations of the baseline algorithms if available and

compiled them with gfortran version 4.7.2 with the O2 optimization flag.

5.4.3 Implementation details

We use PaToH [71] for bipartitioning hypergraphs, with the Absorption Matching

as the coarsening algorithm, the Sweep as the vertex visit order during coarsening

and the Kernihgan-Lin as the refinement algorithm (see PaToH manual [71]). We

set the maximum imbalance ratio of each bipartition to 50% since the proposed

algorithm does not require tightly-balanced bipartitions to reduce the profile.

The proposed algorithm continues recursive bipartitioning until the number

of vertices in a part reduces below 25. This process results in a K-way BS

form in which each row/column stripe has less than 25 rows/columns. Then,

in order to determine the internal ordering of each row/column stripe, we utilize

Algorithm 2 (weighted greedy) which was also proposed by Hager [69]. We slightly

modify Algorithm 2 in such a way that the partial ordering induced by the K-

way BS form is respected. In other words, we call modified Algorithm 2 once

for each stripe to let the scoring function in each call consider only the rows
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in the corresponding stripe. The original Algorithm 2 labels/orders the rows

in the given matrix starting from the last row and continues towards the first

row in order to score them more accurately. In a similar manner, we apply

Algorithm 2 starting from the last row/column stripe RK/CK towards the first

row/column stripe R1/C1. The reordering of row stripe Rk is then also used as

the reordering of column stripe Ck, for each k. Our initial experiments show

that using Algorithm 2 on a BS form with sufficiently small stripes leads to

smaller profiles than continuing recursive bipartitioning until each stripe has one

row/column. This is probably because multilevel hypergraph partitioning tools

do not perform well in very small graphs.

The proposed algorithm was implemented in C and compiled with gcc version

4.7.2 with the O2 optimization flag. All experiments were carried out on a

Linux workstation equipped with six 2100-MHz quad-core CPUs and 132 GB of

memory.

5.4.4 Performance comparison

In Tables 5.1, 5.2 and 5.3, we compare the performance of the proposed algorithm

against the baseline algorithms in terms of normalized profile, which is defined for

a matrix as the ratio of its profile to its number of rows/columns. Hereinafter, we

use “HP”, which stands for “Hypergraph Partitioning”, to refer to the proposed

algorithm. For each matrix, we display the normalized profile of the original

ordering under column “orig.” and give the smallest profile attained by the com-

pared algorithms in bold. The “average profile” and “number of smallest profiles”

given at the end of each of these tables respectively refer to the geometric aver-

ages of the normalized profiles and the number of smallest profiles attained by

the corresponding algorithm in the respective dataset. Note that “average pro-

file” can be dominated by exceptionally high or low results whereas “number of

smallest profiles” does not reflect the amount of improvement achieved. To over-

come these problems, we also present the performance profiles of the compared

algorithms in terms of normalized profiles in Figure 5.7.
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Table 5.1 displays the performance comparison of the algorithms on Dataset 1.

As seen in the table, in terms of both the average profile and the number of

smallest profiles, the proposed HP algorithm performs significantly better than

the baseline algorithms on this dataset. Among the results of the baseline al-

gorithms, the best values for average profile and number of smallest profiles are

respectively 152.7 and 4, which are both obtained by HS+H. The average profile

obtained by HP is 140.6, which is 8% smaller than that of HS+H. The number of

smallest profiles obtained by HP is 17, which is 3.3× more than that of HS+H.

Table 5.2 displays the performance comparison of the algorithms on Dataset 2.

As seen in the table, in terms of both the average profile and the number of

smallest profiles, the proposed HP algorithm again performs significantly better

than the baseline algorithms on this dataset. Among the baseline algorithms, the

best values for average profile and number of smallest profiles are respectively

124.5 (obtained by HS+H) and 7 (obtained by both HS+H and GK+H). The

average profile obtained by HP is 110.7, which is 11% smaller than that of HS+H.

The number of smallest profiles obtained by HP is 30, which is again 3.3× more

than that of HS+H.

Table 5.3 displays the performance comparison of the algorithms on Dataset 3.

As seen in the table, in terms of both the average profile and the number of

smallest profiles, the proposed HP algorithm performs slightly better than the

baseline algorithms on this dataset. Among the baseline algorithms, the best

values for average profile and number of smallest profiles are respectively 45.7

and 25 which are both obtained by HS+H, again. The average profile obtained

by HP is 44.2, which is 3% smaller than that of HS+H. The number of smallest

profiles obtained by HP is 37, which is 0.5× more than that of HS+H.

Figure 5.7 displays the performance profile plots for the compared algorithms

in terms of the normalized profile on Datasets 1, 2 and 3, respectively. In the per-

formance profile, the value Y displayed for method M in τ = X denotes that the

ratio of the number of instances for which method M produces a result within

a factor X of the best result to the overall dataset size is Y [72]. As seen in
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Figure 5.7: The performance profile plots comparing the profile achieved by
GK+H, S+H, HS+H and HP on Datasets 1, 2 and 3.
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Table 5.4: Performance of the Harwell frontal solver MA42 applied on the matri-
ces reordered with HS+H and HP.

normalized # of nnzs in # of factorization
profile factor matrices FLOPs time (s) time

name HS+H HP HS+H HP HS+H HP HS+H HP ratio
nasa1824 103.5 81.4 638K 556K 108M 84M 0.164 0.140 0.85
barth4 46.2 40.2 885K 784K 62M 48M 0.128 0.128 1.00
comm. dual 36.9 31.9 999K 872K 72M 49M 0.120 0.108 0.90
pds10 559.0 398.5 106M 73M 410G 191G 217.718 122.284 0.56
copter2 557.9 603.9 138M 160M 177G 252G 236.539 299.759 1.27
lp sctap3 54.4 41.6 1087K 772K 475M 224M 0.228 0.192 0.84
lp degen3 183.6 157.0 2057K 1903K 1821M 1526M 0.880 0.668 0.76
lp pds 06 340.6 242.8 35M 29M 74G 51G 21.361 15.541 0.73
sherman1 23.0 18.1 93K 68K 7179K 3369K 0.052 0.052 1.00
jagmesh8 23.8 19.5 88K 71K 3259K 2045K 0.056 0.044 0.79
bcsstk13 211.5 169.7 1798K 1530K 950M 718M 0.672 0.628 0.93
lshp3025 62.8 39.6 586K 365K 58M 20M 0.100 0.072 0.72

the figures, for any factor τ smaller than 1.6, HP produces the normalized pro-

files within that factor of the best result for significantly more matrices than the

baseline algorithms, in all datasets. For the remaining factors, HP still performs

better than the baseline algorithms in Datasets 1 and 2 whereas HS+H and HP

perform comparable in Dataset 3. For all matrices in Dataset 1, HP produces

the normalized profiles within a factor τ = 1.1 of the best result, whereas HS+H

achieves the same for 70% of the matrices. In Dataset 2, the matrices for which

the normalized profiles produced by HP and HS+H are within a factor τ = 1.1,

respectively constitute 80% and 55% of the dataset. For Dataset 3, the improve-

ment attained by HP compared to HS+H is smaller than the other datasets, since

this dataset contains much smaller matrices than the other datasets, as seen in

Table 5.3. This is probably because the proposed algorithm is top-down and thus

performs better on larger matrices compared to smaller matrices.

Table 5.4 displays the performance of the Harwell frontal solver MA42 [73] ap-

plied on 12 matrices that were reordered with HS+H and HP. Since the results in

terms of average profiles and number of smallest profiles displayed in Tables 5.1,

5.2 and 5.3 as well as the performance profiles displayed in Figure 5.7 consistently

show that among the baseline algorithms, HS+H performs better than the others,
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Table 5.5: Average running times of the profile reduction algorithms (in seconds)

GK+H S+H HS+H HP
Dataset 1 0.385 0.325 0.395 2.279
Dataset 2 0.155 0.113 0.187 0.457
Dataset 3 0.049 0.038 0.060 0.210

we only compare HP against HS+H in this experiment. The matrices used in this

experiment constitute a representative set for all matrices in Datasets 1, 2 and

3. Matrices nasa1824, barth4, commanche dual, pds10 and copter2 are from

Dataset 1, matrices lp sctap3, lp degen3 and lp pds 06 are from Dataset 2

and matrices sherman1, jagmesh8, bcsstk13 and lshp3025 are from Dataset 3.

The columns under “normalized profile” display the normalized profiles produced

by HS+H and HP for the respective matrix. The columns under “# of nnzs in

factor matrices” display the sum of the nonzeros in factors PL and UQ obtained

by HS+H and HP for the respective matrix A, where P and Q are permutation

matrices, L is a lower triangular matrix and U is an upper triangular matrix in

the factorization A = PLUQ. The columns under “# of FLOPs” and “factor-

ization time” respectively display the number of floating-point operations in the

innermost loops and the factorization times in seconds obtained by HS+H and

HP for the respective matrix. The column labeled with “time ratio” denotes the

ratio of the factorization time obtained by HP to the one obtained by HS+H, for

the respective matrix. As seen in the table, for most of these matrices, a smaller

profile produced by HP results in a smaller factorization time. The correlation

between a small profile and a small factorization time can be observed better

for matrices pds10 and lshp3025. For matrices barth4 and sherman1, although

the factorization times obtained by HS+H and HP are equal, the smaller profile

obtained by HP leads to a less number of FLOPs compared to HS+H.

Table 5.5 displays the running times of the proposed algorithm together with

the ones of the baseline algorithms in seconds as the geometric averages over

the matrices in each dataset. As seen in the table, running times of the baseline

algorithms are almost comparable with each other where HS+H is the slowest one

for each dataset. HP runs 5.8×, 2.4× and 3.5× slower than HS+H, respectively
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for Dataset 1, 2 and 3. The higher running times of HP can be justified for

applications that involve multiple iterations with a factorization in each iteration

such as interior point methods used for solving linear programming problems.

5.5 Conclusion

We proposed and implemented a novel two-phase approach for reducing the pro-

file of sparse matrices through symmetric row/column permutation. In the first

phase, we use a top-down approach that makes use of the global view of the

sparsity pattern of the given matrix to obtain a block structure with a smaller

profile through recursive row/column bipartitioning. Two quality metrics iden-

tified for small profile of a block structure are successfully encapsulated by the

proposed novel hypergraph model during recursive bipartitionings. The multi-

level paradigm utilized in the state-of-the-art hypergraph partitioning tool used

for bipartitioning hypergraphs successfully capture the global view of the sparsity

of the matrix during the recursive bipartitioning process. In the second phase,

we adopt an existing constructive algorithm that makes use of the local view of

row stripes of the block structure obtained in the first phase. We have tested

our proposed approach on three commonly used data sets against state-of-the-art

profile reduction codes and showed its validity by producing significantly better

solutions.
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Chapter 6

Conclusion

In this thesis, we presented graph and hypergraph partitioning models for per-

formance improvement in different sparse matrix computations. These compu-

tations include sparse matrix dense matrix multiplication (SpMM), sparse ma-

trix vector multiplication (SpMV) and the envelope methods used in solvers for

sparse linear systems of equations. For SpMM and SpMV, we particularly con-

sidered their distributed-memory parallel implementations. For parallel SpMM,

we proposed graph and hypergraph partitioning models each of which minimizes

multiple volume-related communication cost metrics simultaneously. For parallel

SpMV, we proposed two hypergraph partitioning models each of which simultane-

ously minimizes total volume and total number of messages. For the factorization

in the envelope methods, we proposed a hypergraph-partitioned-based reordering

model reducing the matrix profile. In each of these models, the RB paradigm

allows targeting a complicated partitioning objective tailored for the respective

computation. The proposed models were compared against the state-of-the-art

algorithms on large sets of test matrices and significant performance improvents

are observed over these algorithms.
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