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ABSTRACT

EXTENSION OPERATORS FOR SPACES OF
INFINITELY DIFFERENTIABLE FUNCTIONS

Muhammed Altun

Ph.D. in Mathematics

Supervisor: Assist. Prof. Dr. Alexander Goncharov

September, 2005

We start with a review of known linear continuous extension operators for the

spaces of Whitney functions. The most general approach belongs to PawÃlucki and

Pleśniak. Their operator is continuous provided that the compact set, where the

functions are defined, has Markov property. In this work, we examine some model

compact sets having no Markov property, but where a linear continuous exten-

sion operator exists for the space of Whitney functions given on these sets. Using

local interpolation of Whitney functions we can generalize the PawÃlucki-Pleśniak

extension operator. We also give an upper bound for the Green function of do-

mains complementary to generalized Cantor-type sets, where the Green function

does not have the Hölder continuity property. And, for spaces of Whitney func-

tions given on multidimensional Cantor-type sets, we give the conditions for the

existence and non-existence of a linear continuous extension operator.

Keywords: Extension operator, Green function, Markov inequality, infinitely dif-

ferentiable functions, polynomial interpolation.
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ÖZET

SONSUZ TÜREVLENEBİLİR FONKSİYON UZAYLARI
İÇİN GENİŞLETME OPERATÖRLERİ

Muhammed Altun

Matematik Bölümü, Doktora

Tez Yöneticisi: Yard. Doç. Dr. Alexander Goncharov

Eylül, 2005

Whitney fonksiyon uzayları için üretilmiş, şimdiye kadar bilinen lineer, sürekli

genişletme operatörleri ile ilgili bir inceleme vererek başladık. Bu operatörler

arasında en genel olan operatör PawÃlucki ve Pleśniak’a ait olanıdır. PawÃlucki-

Pleśniak operatörünün sürekli olması, kompakt kümenin Markov özelliğine sahip

olmasına bağlıdır. Ondan dolayı bu calışmada, Markov özelliğinin olmadığı,

fakat bu kümelerde tanımlanmış Whitney fonksiyon uzayları için lineer, sürekli

bir genişletme operatörünün var olduğu, bazı model kompakt kümeleri in-

celedik. Whitney fonksiyonlarının polinomlarla lokal interpolasyonunu kulla-

narak, PawÃlucki-Pleśniak genişletme operatörünü genelleştirdik. Ayrıca, Green

fonksiyonunun Hölder süreklilik özelliğini sağlamadığı bazı genelleştirilmiş Cantor

kümeleri için Green fonksiyonuna üstten sınırlandırma yaptık. Son olarak, çok

boyutlu Cantor kümelerinde tanımlanmış Whitney fonksiyon uzaylarında, lineer,

sürekli bir genişletme operatörünün var olma ve olmama durumları için gerekli

şartları verdik.

Anahtar sözcükler : Genişletme operatörü, Green fonksiyonu, Markov eşitsizliği,

sonsuz türevlenebilir fonksiyonlar, polinom interpolasyonu.
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operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Extension operator for E(K(α)) . . . . . . . . . . . . . . . . . . . 37

3.4 Continuity of the operator . . . . . . . . . . . . . . . . . . . . . . 40

4 Extension for another model case 44

4.1 Extension operator for E(K) . . . . . . . . . . . . . . . . . . . . . 47

4.2 Continuity of the operator . . . . . . . . . . . . . . . . . . . . . . 48

5 Extension property of Cantor sets in Rn 53

5.1 Cantor type sets in Rn and the extension

property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



Chapter 1

Introduction

Let U be an open set of Rn. We denote by Em(U) (respectively E(U)) the algebra

of m times continuously differentiable (respectively infinitely differentiable) func-

tions in U , with the topology of uniform convergence of functions and all their

partial derivatives on compact subsets of U . This is the topology defined by the

seminorms

|f |Km = sup

{
|∂
|k|f

∂xk
(x)| : x ∈ K, |k| ≤ m

}
,

where K is a compact subset of U (and m runs through N in the C∞ case). Here

x = (x1, ..., xn), k denotes a multiindex k = (k1, ..., kn) ∈ Nn, |k| = k1 + ... + kn

and
∂|k|

∂xk
=

∂|k|

∂xk1
1 ...∂xkn

n

.

We will sometimes use m for either a nonnegative integer or +∞ and write

E+∞(U) = E(U)

When is a function f , defined in a closed subset X of Rn, the restriction of

a Cm function in Rn ([48],[49])? And when can we extend the function f in a

continuous linear way? The existence of an extension operator in the C∞ case

was first proved by Mityagin [28] and Seeley [38].

Let Em([0,∞)) denote the space of continuous functions g in [0,∞) such that

g is Cm in (0,∞) and all derivatives of g|(0,∞) extend continuously to [0,∞).

1



CHAPTER 1. INTRODUCTION 2

Then Em([0,∞)) has the structure of a Frechet space defined by the seminorms

|g|Km = sup{|g(k)(y)| : y ∈ K, |k| ≤ m},

where K is a compact subset of [0,∞) (and m runs through N in the C∞ case),

and where g(k) denotes the continuation of (dk/dyk)(g|(0,∞)) to [0,∞).

The following theorem gives the extension operator for the half space [0,∞),

and from the proof we can see how the problem gets complicated when we pass

from finite m to the case m = ∞.

Theorem 1.1 There is a continuous linear extension operator

E : Em([0,∞)) −→ Em(R)

such that E(g)|[0,∞) = g for all g ∈ Em([0,∞)).

Proof: Our problem is to define E(g)(y) when y < 0. If m = 0 we can define

E(g)(y) by reflection in the origin : E(g)(y) = g(−y), y < 0. If m = 1 we can

use a weighted sum of reflections. Consider

E(g)(y) = a1g(b1y) + a2g(b2y), y < 0

Where b1, b2 < 0. Then E(g) determines a C1 extension of g provided that the

limiting values of E(g)(y) and E(g)′(y) agree with those of g(−y) and g′(−y) as

y −→ 0− ; in other words if

a1 + a2 = 1

a1b1 + a2b2 = 1

For distinct b1, b2 < 0 these equations have a unique solution a1, a2.This extension

is due to Lichtenstein [24].

Hestenes [21] remarked that the same technique works for any m < ∞ :

a weighted sum of m reflections leads to solving a system of linear equations

determined by a Vandermonde matrix.
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If m = ∞, we can use an infinite sum of reflections [38]:

E(g)(y) =
∞∑

k=1

akφ(bky)g(bky), y < 0,

where {ak}, {bk} are sequences satisfying

(1) bk < 0, bk −→ −∞ as k −→∞;

(2)
∞∑

k=1

|ak||bk|n < ∞ for all n ≥ 0;

(3)
∞∑

k=1

akb
n
k = 1 for all n ≥ 0

and φ is a C∞ function such that φ(y) = 1 if 0 ≤ y ≤ 1 and φ(y) = 0 if y ≥ 2.

In fact condition (1) guarantees that the sum is finite for each y < 0. Condition

(2) shows that all derivatives converge as y −→ 0− uniformly in each bounded

set, and (3) shows that the limits agree with those of the derivatives of g(y) as

y −→ 0+. The continuity of the extension operator also follows from (2).

It is easy to choose sequences {ak}, {bk} satisfying the above conditions. We

can take bk = −2k and choose ak using a theorem of Mittag Leffler : there exists

an entire function
∑∞

k=1 akz
k taking arbitrary values (here (−1)n) for a sequence

of distinct points (here 2n) provided that the sequence does not have a finite

accumulation point. 2

It is clear that Seeley’s extension operator actually provides a simultaneous

extension of all classes of differentiability.

Mitiagin [28] presented an extension operator for a closed interval in R. Mi-

tiagin in his work proved the fact that the Chebyshev Polynomials Tn(x) =

cos(n cos−1 x) form a basis in the space C∞[−1, 1] i.e., for Ψ(t) ∈ C∞[−1, 1]

and

ξn =
1

π

∫ 1

−1

Ψ(x) cos(n cos−1 x)√
1− x2

dx

we have that

Ψ(x) =
∞∑

n=0

ξnTn(x) in C∞[−1, 1].
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A linear transformation of the argument sets up an isomorphism between the

spaces C∞[−1, 1] and C∞[a, b], −∞ < a, b < ∞ ; therefore the correspondingly

transformed Chebishev polynomials form a basis in the space C∞[a, b].

Mitiagin constructs in [28] special extensions T̃n for the polynomials Tn(x)

and defines the operator M : C∞[−1, 1] −→ C∞[−2, 2] by

(MΨ)(x) =
∞∑

n=1

ξn(x)(T̃n)(x)

and by using an infinitely differentiable function l0(t) on the whole straight line

such that

l0(t) ≡ 1 |t| ≤ 1 and l0(t) ≡ 0 |t| ≥ 1 +
1

4

he defines the continuous linear extension operator M ′ : C∞[−1, 1] −→
C∞(−∞,∞) by

(M ′Φ)(x) = (MΦ)(x)l0(x).

1.1 Whitney jets and Whitney’s Extension

theorem

When we are speaking of extension operators it is important to examine the

classical extension theorem of Whitney [48]. Let U be an open subset of Rn, and

X a closed subset of U . Whitney’s theorem asserts that a function F 0 defined

in X is the restriction of a Cm function in U (m ∈ N or m = +∞) provided

there exists a sequence (F k)|k|≤m of functions defined in X which satisfies certain

conditions that arise naturally from Taylor’s formula.

First we consider m ∈ N. By a jet of order m on X we mean a set of continuous

functions F = (F k)|k|≤m on X. Here k denotes a multiindex k = (k1, ..., kn) ∈ Nn.

Let Jm(X) be the vector space of jets of order m on X. We write

|F |Km = sup{|F k(x)| : x ∈ K, |k| ≤ m}

if K is a compact subset of X, and F (x) = F 0(x).
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There is a linear mapping Jm : Em(U) −→ Jm(X) which associates to each

f ∈ Em(U) the jet

Jm(f) =

(
∂|k|f
∂xk

∣∣∣∣X

)

|k|≤m

For each k with |k| ≤ m, there is a linear mapping Dk : Jm(X) −→ Jm−|k|(X)

defined by DkF = (F k+l)|l|≤m−|k|. We also denote by Dk the mapping of Em(U)

into Em−|k|(U) given by

Dkf =
∂|k|f
∂xk

This will not cause any problem since

Dk ◦ Jm = Jm−|k| ◦Dk

If a ∈ X and F ∈ Jm(X) , then the Taylor polynomial (of order m) of F at a is

the polynomial

Tm
a F (x) =

∑

|k|≤m

F k(a)

k!
(x− a)k

of degree ≤ m. Here k! = k1!...kn!. We define Rm
a F = F − Jm(Tm

a F ), so that

(Rm
a F )k(x) = F k(x)−

∑

|l|≤m−|k|

F k+l(a)

l!
.(x− a)l

if |k| ≤ m.

Definition 1.2 A jet F ∈ Jm(X) is a Whitney jet of class Cm on X if for each

|k| ≤ m

(Rm
x F )k(y) = o(|x− y|m−|k|) (1.1)

as |x− y| −→ 0, x, y ∈ X.

Let Em(X) ⊂ Jm(X) be the subspace of Whitney jets of class Cm. Em(X) is

a Frechet space with the seminorms

‖F‖K
m = |F |Km + sup

{ |(Rm
x F )k(y)|

|x− y|m−|k| : x, y ∈ K,x 6= y, |k| ≤ m

}
,

where K ⊂ X is compact.
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Two more equivalent systems of seminorms could be used to identify the

topology in Em(X), which are:

‖F‖K
m = |F |Km + sup





∑

|k|≤m

|(Rm
x F )k(y)|

|x− y|m−|k| : x, y ∈ K, x 6= y



 ,

and the other is

‖F‖K
m = max

{
|F |Km, sup

{
|Rm−|k|

x F k(y)|
|x− y|m−|k| : x, y ∈ K, x 6= y, |k| ≤ m

}}
.

Remark 1.3 If F ∈ Jm(U) and for all x ∈ U, |k| ≤ m we have

lim
y−→x

|(Rm
x F )k(y)|

|x− y|m−|k| = 0

then there exists f ∈ Em(U) such that F = Jm(f). This simple converse of Tay-

lor’s theorem shows that the two spaces we have denoted by Em(U) are equivalent.

On Em(U), the topologies defined by the seminorms |.|Km, ‖.‖K
m are equivalent (by

the open mapping theorem).

Theorem 1.4 (Whitney [48]) There is a continuous linear mapping

W : Em(X) −→ Em(U)

such that DkW (F )(x) = F k(x) if F ∈ Em(X), x ∈ X, |k| ≤ m, and W (F )
∣∣(U −

X) is C∞.

Remark 1.5 The condition (1.1) cannot be weakened to

lim
y−→x

|(Rm
x F )k(y)|

|x− y|m−|k| = 0 (1.2)

for all x ∈ X, |k| ≤ m.

For example let A be the set of points (using one variable) x = 0, 1/2s and

1/2s + 1/22s (s = 1, 2, ...). Set f(x) = 0 at x = 0 and 1/2s and f(x) = 1/22s at
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x = 1/2s + 1/22s.Set f 1(x) ≡ 0 in A. The above condition is satisfied but there’s

no extension of f(x) which has continuous first derivative.

The proof of Theorem 1.4 is based on the following fundamental lemma (Whit-

ney partition of unity) [48].

Lemma 1.6 Let K be a compact subset of Rn. There exist a countable family of

functions Φl ∈ E(Rn −K), l ∈ I, such that

(1) {suppΦl}l∈I is locally finite: in fact each x belongs to at most 3n of the

suppΦl’s,

(2) Φl ≥ 0 for all l ∈ I, and
∑

l∈I Φl = 1, x ∈ Rn −K,

(3) 2d(suppΦl, K) ≥ diam(suppΦl) for all l ∈ I,

(4) there exist constants Ck depending only on k and n, such that if x ∈ Rn−K,

then

|DkΦl(x)| ≤ Ck

(
1 +

1

d(x,K)|k|

)
.

The proof of Theorem 1.4 can be done by a simple partition of unity argument

it is enough to assume U = Rn and X = K, a compact subset of Rn. Let {Φl}l∈I

be a Whitney partition of unity on Rn −K.

For each l ∈ I, choose al ∈ K such that

d(suppΦl, K) = d(suppΦl, al).

Let F ∈ Em(K). Define a function f = W (F ) on Rn by

f(x) = F 0(x) x ∈ K and f(x) =
∑

l∈I

Φl(x)Tm
al

F (x) x /∈ K

Clearly f = W (F ) depends linearly on F , and is C∞ on Rn −K. We must show

that f is Cm, Dkf |K = F k, |k| ≤ m, and W is continuous. If |k| ≤ m, we write

fk(x) = Dkf(x), x /∈ K.

By a modulus of continuity we mean a continuous increasing function α : [0,∞) →
[0,∞) such that α(0) = 0 and α is concave downwards. There exists a modulus

of continuity α such that

|(Rm
a F )k(x)| ≤ α(|x− a|) · |x− a|m−|k|
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for all a, x ∈ K, |k| ≤ m, and

α(t) = α(diamK), t ≥ diamK,

||F ||km = |F |km + α(diamK).

In fact, define β : [0,∞) → [0,∞) by β(0) = 0 and

β(t) = sup

{ |(Rm
x F )k(y)|

|x− y|m−|k| : x, y ∈ K,x 6= y, |x− y| ≤ t, |k| ≤ m

}
t ≥ 0.

Then β is increasing and continuous at 0. We get α from the convex envelope of

the positive t-axis and the graph of β.

Let Λ be a cube in Rn such that K ⊂ IntΛ. Let λ = supx∈Λ d(x, K). We have

the following assertion from [48].

There exists a constant C depending only on m,n, λ such that if |k| ≤ m, a ∈
K, x ∈ Λ, then

|fk(x)−DkTm
a F (x)| ≤ Cα(|x− a|) · |x− a|m−|k|. (1.3)

Once (1.3) is established, the proof of the theorem can be completed as follows.

Let (j) denote the multiindex whose j’th component is 1 as whose other compo-

nents are 0. If a ∈ K, x /∈ K, |k| < m, then

|fk(x)− fk(a)−
n∑

j=1

(xj − aj)f
k+(j)(a)| ≤

|fk(x)−DkTm
a F (x)|+ |DkTm

a F (x)−DkTm
a F (a)−

n∑
j=1

(xj − aj)D
k+(j)Tm

a F (a)|.

The first term on the right hand side is o(|x − a|) by (1.3), while the second is

o(|x− a|) since Tm
a F (x) is a polynomial. Hence fk is continuously differentiable

and ∂fk

∂xj
= fk+(j).

Applying (1.3) to a point x ∈ Λ and a point a ∈ K such that d(x,K) = d(x, a),

we have

|Dkf(x)| ≤ |DkTm
a F (x)|+ Cα(λ)λm−|k|

≤
∑

|i|≤m−|k|

λ|i|

i!
|F |Km + Cλm−|k|(||F ||Km − |F |Km).
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Hence there is a constant Cλ (depending only on m,n, λ) such that

|W (F )|Λm ≤ Cλ||F ||Km.

In particular, W is a continuous linear operator.

Definition 1.7 Let U be an open subset of Rn and X a closed subset of U . A

jet of infinite order on X is a sequence of continuous functions F = (F k)k∈N on

X. Let J(X) be the space of such jets. For each m ∈ N, there is a projection

πm : J(X) → Jm(X) associating to each jet (F k)k∈N the jet (F k)|k|≤m. Let

E(X) =
⋂

m∈N
π−1

m (Em(X)).

An element of E(X) is a Whitney jet of class C∞ on X.

E(X) is a Fréchet space, with the seminorms || · ||Km, where m ∈ N and K ⊂ X is

compact.

When we have perfect sets in R, or C∞-determining subsets of Rn for the

closed subset given in the definition, the first element of the Whitney jet will

describe the other elements. Which means, in such cases, functions will be in

the front place. A compact set K ⊂ Rn is called C∞-determining if for each

f ∈ C∞(Rn), f |K = 0 implies f (k)|K = 0 for all k ∈ Nn.

Let us give an example of a function which is not Whitney (or not extendable).

Let K = {0} ∪ ∪∞k=1[ak, bk] such that bk > ak and [ak, bk] ∩ [ak+1, bk+1] = ∅ for

k = 1, 2, ... and ak ↓ 0. Now, define the function as f(0) = 0 and f(x) = ak

for x ∈ [ak, bk], k = 1, 2, .... Since f is constant on any interval [ak, bk], we have

f ′(ak) = 0. If f is extendable to a function f̃ ∈ C∞(R), then by continuity

f̃ ′(0) = limk→∞ f ′(ak) = 0. On the other hand, by the Mean-Value Theorem, for

each k = 1, 2, ... there exists a point ξk ∈ (0, ak) such that the extension f̃ ′(ξk) = 1

and hence we have f̃ ′(0) = limk→∞ f̃ ′(ξk) = 1. Therefore, f /∈ E(K). In the same

way for any m ∈ N one can construct f ∈ Em(K)\Em+1(K). Similar examples

can be given also for Cantor type sets.
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For K a closed subset of Rn and m ∈ N, Whitney’s extension theorem [48]

gives an extension operator (a linear continuous extension operator) from the

space Em(K) of Whitney jets on K to the space Cm(Rn). In the case m = ∞
such an operator does not exist in general.

Definition 1.8 For K ⊂ Rn, K has the Extension property if there exists a

linear continuous extension operator L : E(K) −→ C∞(Rn).

The simplest example for a compact set which does not have the extension

property is the set K = {0} ⊂ R. Assume that there exists such a continuous

extension operator L for K = {0}. Hence we have

∀p ∃q, C : ‖LF‖p ≤ C‖F‖q ∀F ∈ E(K).

Let p = 0, then we have q, C satisfying ‖LF‖0 ≤ C‖F‖q ∀F ∈ E(K).

Let F = (Fi)
∞
i=0 with Fq+1 = 1 and Fi = 0 for all i 6= q + 1.

It is easy to see that ‖F‖q = 0.

But of course LF 6= 0 since LF (q+1)(0) 6= 0.

Then we get 0 < ‖LF‖0 ≤ C‖F‖q = 0 which is a contradiction.

Generalizing this, it is easy to see that if K ⊂ Rn has isolated points then K

has no extension property.

For K = {0} any jet f ∈ J(K) is a Whitney jet of class C∞ (by Borel’s

theorem).

For any jet f ∈ E(X), an extension can be given by a telescoping series:

W (f) = W0(f) +
∞∑

m=1

[Wm(f)−Wm−1(f)−Hm−1]

where {Hm}∞m=0 are C∞ functions satisfying

|Wm(f)−Wm−1(f)−Hm−1|m−1 ≤ 1

2m
,

and Wm is the Whitney extension operator for Em(X), m = 0, 1, ....
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1.2 Linear Topological Invariants

Let us denote by K either of the fields R or C.

Definition 1.9 A K-vector space F , endowed with a metric, is called metric

linear space, if in F addition is uniformly continuous and scalar multiplication is

continuous.

A metric linear space F is said to be locally convex if for each a ∈ F and

each neighborhood V of a there exists a convex neighborhood U of a with U ⊂ V .

A complete, metric, locally convex space is called a Fréchet space.

Every normed space is a metric linear space and every Banach space is a Fréchet

space.

C∞(U) for U an open subset of Rn, C∞(U)-the space of infinitely differentiable

functions on an open bounded domain U which are uniformly continuous with all

their derivatives, E(K) for K a compact subset of Rn and A(U) for U an open

domain in Cn are typical examples of non-normable Fréchet spaces.

Definition 1.10 Let E be a locally convex space. A collection U of zero neigh-

borhoods in E is called a fundamental system of zero neighborhoods, if for every

zero neighborhood U there exists a V ∈ U and an ε > 0 with εV ⊂ U .

A family (‖.‖α)α∈A of continuous seminorms on E is called a fundamental

system of seminorms, if the sets

Uα := {x ∈ E : ‖x‖α < 1}, α ∈ A,

form a fundamental system of zero neighborhoods.

Notation 1.11 Let E be a locally convex space which has a countable fundamen-

tal system of seminorms (‖.‖n)n∈N. By passing over to (max1≤j≤n‖.‖j)n∈N one

may assume that

‖x‖n ≤ ‖x‖n+1 ∀x ∈ E, n ∈ N
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holds. We call (‖.‖n)n∈N an increasing fundamental system.

Definition 1.12 A sequence (ej)j∈N in a locally convex space E is called a

Schauder basis of E, if for each x ∈ E, there is a uniquely determined sequence

(ξj(x))j∈N in K, for which x =
∑∞

j=1 ξj(x)ej is true. The maps ξj : E −→ K, j ∈
N, are called the coefficient functionals of the Schauder basis (ej)j∈N. They are

linear by the uniqueness stipulations.

A Schauder basis (ej)j∈N of E is called an absolute basis, if for each continuous

seminorm p on E there is a continuous seminorm q on E and there is a C > 0

such that

∑

j∈N
|ξj(x)|p(ej) ≤ Cq(x) ∀x ∈ E.

Let A = (aip)i∈I,p∈N be a matrix of real numbers such that 0 ≤ aip ≤ aip+1.

Köthe space, defined by the matrix A, is said to be the locally convex space K(A)

of all sequences ξ = (ξi) such that

|ξ|p :=
∑
i∈I

aip|ξi| < ∞ ∀p ∈ N

with the topology, generated by the system of seminorms {|.|p, p ∈ N}. The set

of indices I is supposed to be countable, but in general I 6= N. This is convenient

for applications, especially when multiple series are considered.

Definition 1.13 Let E and F be locally convex spaces ; let us define

L(E, F ) := {A : E −→ F : A is linear and continuous }
L(E) := L(E,E) and E ′ := L(E,K)

E ′ is called the dual space, of E.

A linear map A : E −→ F is called an isomorphism, if A is a homomorphism.

E and F are said to be isomorphic, if there exists an isomorphism A between E

and F . Then we write E ' F .
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By the Dynin-Mityagin theorem (see for example [27]) every Fréchet space

with absolute basis is isomorphic to some Köthe space. More precisely, If E is

a Fréchet space, {ei}i∈I is an absolute basis in E, and {‖.‖p}p∈N is an increasing

sequence of seminorms, generating the topology of E, then E is isomorphic to

the Köthe space, defined by the matrix A = (aip), where aip = ‖ei‖p.

For example the space C∞[−1, 1] is isomorphic to the Köthe space s = K(np)

(see [28]), the space A(D), where D = {z ∈ C : |z| < 1}, is isomorphic to

K(exp(−n/p)), the space A(C) is isomorphic to K(exp(pn)).

It is known ([9],[14],[41],[44],[54]) if the boundary of a domain D is smooth,

Lipschitz or even Hölder, then the space C∞(D) is isomorphic to the space s.

To examine whether two given linear topological spaces are isomorphic or not

it is useful to deal with some properties of linear topological spaces which are

invariant under isomorphisms. More precisely, if Σ is a class of linear topological

spaces, Ω is a set with an equivalence relation ∼ and Φ : Σ −→ Ω is a mapping,

such that

X ' Y =⇒ Φ(X) ∼ Φ(Y )

then Φ is called a Linear Topological Invariant. We say that the invariant Φ is

complete on the class Σ if for any X,Y ∈ Σ

Φ(X) ∼ Φ(Y ) =⇒ X ' Y

First linear topological invariants connected with isomorphic classification of

Fréchet spaces are due to A.N. Kolmogorov [23] and A. Pelczynski [30]. They in-

troduced a linear topological invariant called approximative dimension and proved

by its help that A(D) is not isomorphic to A(G) if D ⊂ Cn, G ⊂ Cm, m 6= n and

A(Dn) is not isomorphic to A(Cn), where Dn is the unit polydisc in Cn. Later C.

Bessaga, A. Pelczynsky, S. Rolewics [7] and B. Mitiagin [28] considered another

linear topological invariant called diametral dimension, which turns out to be

stronger and more convenient than the approximative dimension. V.Zahariuta

[50, 51], introduced some general characteristics as generalizations of Mitiagin’s

invariants and some new invariants in terms of synthetic neighborhoods [52, 53].
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Suppose X is a Fréchet space and (‖.‖p, p = 1, 2, ...) be a system of seminorms

generating the topology of X. The following so called Interpolation Invariants

are very important in structure theory of Fréchet spaces.

(DN) ∃p∀q∃r, C : ‖x‖2
q ≤ C‖x‖p‖x‖r x ∈ X;

(Ω) ∀p∃q∀r∃ε∃C : ‖x′‖∗q ≤ C(‖x′‖∗p)ε(‖x′‖∗r)1−ε x′ ∈ X ′;

The notations are due to D.Vogt [27]. (DN) means that the norm || · ||p dominates

in the space X. V. Zahariuta uses the notations D1, Ω1 respectively.

We shall reformulate (DN) in an equivalent way in the following simple propo-

sition. For the proof see for example [27].

Proposition 1.14 A Fréchet space E with an increasing fundamental system

(‖.‖k)k∈N of seminorms has the property (DN) if and only if the following holds:

∃p ∀q ∀ε > 0 ∃r, C : ‖x‖q ≤ C‖x‖1−ε
p ‖x‖ε

r (1.4)

for all x ∈ E.

(1.4) can be stated also as follows :

∃p ∀q ∀ε > 0 ∃r, C : ‖x‖1+ε
q ≤ C‖x‖p‖x‖ε

r (1.5)

for all x ∈ E.

(DN) is also equivalent to the following:

∃p ∀q ∃r, C : ‖x‖q ≤ t‖x‖p +
C

t
‖x‖r t > 0 (1.6)

Proposition 1.15 The following statement is equivalent to DN :

∀R > 0 ∀q ∃r, C > 0 : |.|q ≤ tR|.|0 +
C

t
||.||r, t > 0 (1.7)

From [4] we have that the property DN is equivalent to the following:

∀ε ∈ (0, 1) ∀q ∃r, C > 0 : |.|q ≤ C|.|1−ε
0 .‖.‖ε

r

hence DN is equivalent to (1.7).
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1.3 Tidten-Vogt Topological Characterization

of the Extension Property

Let (Ei, Ai)i∈Z be a sequence of linear spaces Ei and linear maps Ai : Ei −→ Ei+1.

The sequence is said to be exact at the position Ei in case R(Ai−1) = N(Ai). Here

R denotes image and N denotes the kernel of the map. The sequence is said to

be exact, if it is exact at each position. A short sequence is a sequence in which

at most three successive spaces are different from {0}. We then write

0 −→ E
A−→ F

B−→ G −→ 0

Remark 1.16 Let F be a Fréchet space and E be a closed subspace of F . Then

E and F/E are likewise Fréchet spaces (see e.g. [27]). If j : E −→ F is the

inclusion and q : F −→ F/E is the quotient map, then

0 −→ E
j−→ F

q−→ F/E −→ 0

is a short exact sequence of Fréchet spaces.

Definition 1.17 A seminorm p on a K-vector space E is called a Hilbert semi-

norm, if there exists a semi-scalar product 〈., .〉 on E with p(x) =
√
〈x, x〉 for all

x ∈ E.

A Fréchet-Hilbert space is a Fréchet space which has a fundamental system

of Hilbert seminorms.

The folowing theorem of D. Vogt from [27] is fundamental in the structure theory

of Fréchet spaces.

Theorem 1.18 (Splitting theorem) Let E, F and G be Fréchet-Hilbert spaces and

let

0 −→ F
j−→ G

q−→ E −→ 0

be a short exact sequence with continuous linear maps. If E has the property (DN)

and F has the property (Ω), then the sequence splits, ie., q has a continuous linear

right inverse and j has a continuous linear left inverse.
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M. Tidten used the splitting theorem for the proof of the next theorem which tells

that the extension property of K is equivalent to the property (DN) of E(K).

Theorem 1.19 [41] A compact set K has the extension property iff the space

E(K) has the property (DN).

Let us make a sketch of the proof. For the proof of the sufficiency part assume

that E(K) has the property (DN) and let L be a cube such that K ⊂ Lo. Now

consider the short exact sequence

0 −→ F(K,L)
i−→ D(L)

q−→ E(K) −→ 0

where D(L) = C∞
0 (L) is the space of infinitely differentiable functions on L that

vanish on the boundary of L together with all their derivatives, and F(K, L) =

{f ∈ D(L) : f |K ≡ 0}.

By [41] we have that F(K,L) has property (Ω) ∀ compact K ⊂ Lo. Hence

we can apply the splitting theorem. This means that there exists an operator

ψ, a continuous linear right inverse of q, ψ : E(K) −→ D(L) where obviously

(ψf)|K = f for f ∈ E(K), that is the operator ψ is an extension operator.

On the other hand if there exists an extension operator ψ, then q ◦ψ = IdE(K)

and ψ ◦ q is a continuous projection of D(L) onto E(K). We know that D(L) is

isomorphic to s, hence E(K) is a complemented subspace of s, therefore E(K)

has (DN), since the property (DN) is inherited by subspaces.

1.4 Polynomial interpolation

If one decides to approximate a function f ∈ C[a, b] by a polynomial

p(x) =
n∑

i=0

cix
i, a ≤ x ≤ b,

one has the problem of specifying the coefficients {ci : i = 0, 1, ..., n}. The most

straightforward method is to calculate the value of f at (n + 1) distinct points
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{xi : i = 0, 1, ..., n} of [a, b], and to satisfy the equations

p(xi) = f(xi), i = 0, 1, ..., n. (1.8)

In this case p is called the interpolating polynomial to f at the points {xi : i =

0, 1, ..., n}. We note that there are as many conditions as coefficients, and the

following well-known theorem shows that they determine p ∈ Pn uniquely, where

Pn denotes the set of all polynomials of degree n.

Theorem 1.20 Let {xi : i = 0, 1, ..., n} be any set (n+1) distinct points in [a, b],

and let f ∈ C[a, b]. Then there is exactly one polynomial p ∈ Pn that satisfies the

equation (1.8).

For k = 0, 1, ..., n, let lk be the polynomial

lk(x) =
n∏

j=0
j 6=k

(x− xj)

(xk − xj)
, a ≤ x ≤ b. (1.9)

We note that lk ∈ Pn and that the equations

lk(xi) = δki, i = 0, 1, ..., n,

hold, where δki has the value

δki =

{
1, k = i,

0, k 6= i.

Clearly,

p =
n∑

k=0

f(xk)lk (1.10)

is in Pn and satisfies the required interpolation conditions (1.8).

We remark first that if we put

w(x) = (x− x0)(x− x1) · · · (x− xn),
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then the fundamental polynomials lk(x) = lnk (x) can be written as

lk(x) =
w(x)

(x− xk)w′(xk)
, k = 0, 1, ..., n.

This method is called the Lagrange interpolation formula. We write as

Lnf(x) =
n∑

k=0

f(xk)lk(x).

The uniqueness property allows us to regard the interpolation process as an

operator from C[a, b] to Pn, which depends on the choice of the fixed points

{xi : i = 0, 1, ..., n}. The operator is a projection, and since the functions lk

(k = 0, 1, ..., n) are independent of f , equation (1.10) shows that the operator is

linear.

The Lagrange interpolation formula provides some algebraic relations that are

useful in later work. They come from our remark that the interpolation process

is a projection operator. In particular, for 0 ≤ i ≤ n, we let f be the function

f(x) = xi, a ≤ x ≤ b,

in order to obtain from expression (1.10) the equation

n∑

k=0

xi
klk(x) = xi, a ≤ x ≤ b.

The value i = 0 gives the identity

n∑

k=0

lk(x) = 1, a ≤ x ≤ b.

The choice of the interpolation points is very important for having the error

function

e(x) = f(x)− p(x), a ≤ x ≤ b,

of smallest modulus. One of the most important interpolation points for the

interval are the Chebyshev interpolation points, and they are found by making

use of Chebyshev polynomials.

For the range 0 ≤ θ ≤ π, the Chebyshev polynomial of degree n is the function

Tn that satisfies the equation

Tn(cos θ) = cos(nθ),
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which is equivalent to the equation

Tn(x) = cos(n cos−1 x), −1 ≤ x ≤ 1.

Chebyshev polynomials have many applications in approximation theory. The

zeros of Tn(x) are the points

ξj = ξ
(n)
j = cos

2j − 1

n

π

2
.

We see that they are all distinct and lie in the interval [−1, 1].

Now, if we take zeros of the Chebyshev polynomial of degree n as the inter-

polation points, then we have

|lnj (x)| ≤ 4

π
, x ∈ [−1, 1], j = 0, ..., n

(see e.g. [36]). This is an effective bound in the sense that

lim
n→∞

max{|lnj (x)| : x ∈ [−1, 1]} =
4

π
.

In the case of equally spaced points the bound depends on the number of the

interpolation points and

lim
n→∞

max{|lnj (x)| : x ∈ [−1, 1]} = ∞.

1.5 Divided differences

Let {xi : i = 0, ..., n} be any (n + 1) distinct points of [a, b], and let f be a

function in C[a, b]. The coefficient of xn in the polynomial p ∈ Pn that satisfies

the interpolation conditions

p(xi) = f(xi), i = 0, ..., n,

is defined to be a divided difference of order n for the function f , and we use the

notation [x0, ..., xn]f for its value. We note that the order of a divided difference

is one less than the number of arguments in the expression [., ..., .]f . Hence [x0]f
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is a divided difference of order zero, which by definition has the value f(x0).

Moreover, when n ≥ 1, it follows from equation (1.10) that the equation

[x0, ..., xn]f =
n∑

k=0

f(xk)∏n
j=0,j 6=k(xk − xj)

=
n∑

k=0

f(xk)

w′(xk)

is satisfied. We see that the divided difference is linear in the function values

{f(xi) : i = 0, ..., n}.

It is often convenient to represent the divided difference [x0, ..., xn]f as a value

of the n-th derivative of the function f divided by the factor n!.

Theorem 1.21 (see e.g. [35]) Let f ∈ Cn[a, b] and let {xi : i = 0, ..., n} be a set

of distinct points in [a, b]. Then there exists a point ξ, in the smallest interval

that contains the points {xi : i = 0, ..., n}, at which the equation

[x0, ..., xn]f = f (n)(ξ)/n!

is satisfied.

Another important theorem that justifies the name divided differences is the

following:

Theorem 1.22 The divided difference [xj, xj+1, ..., xj+k+1]f of order (k + 1) is

related to the divided differences [xj, xj+1, ..., xj+k]f and [xj+1, xj+2, ..., xj+k+1]f

of order k by the equation

[xj, xj+1, ..., xj+k+1]f =
[xj+1, xj+2, ..., xj+k+1]f − [xj, xj+1, ..., xj+k]f

(xj+k+1 − xj)
.

For the proof see e.g. [35].
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Asymptotics of Green’s Function

for C∞ \K(α)

2.1 Cantor type sets

Let α be given such that 1 < α < 2. Let the sequence (lk)
∞
k=0 be such that l0 = 1,

lα−1
1 < 1

2
and

lk+1 = lαk

for k ≥ 1. Let {Ik}∞k=0 be a family of subsets of [0, 1] such that I0 = [0, 1] and Ik+1

i obtained from Ik by deleting the open concentric subinterval of length lk−2lk+1

from each interval of Ik.

K = K(α) =
∞⋂

k=0

Ik

Then every set Ik consists of 2k subintervals Ik,1, ..., Ik,2k of length lk each.

As another notation the subintervals of Ik can be named as I1,k, ..., I2k,k. In

Chapter 3 this notation is preferred.

21
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2.2 Green’s function

Let C∞ denote the extended complex numbers.

Definition 2.1 For an open subset G of C∞ a Green’s function is a function

g : G×G → (−∞,∞] having the following properties:

(a) for each a in G the function g(z) = g(z, a, G) is positive

and harmonic on G \ {a};
(b) for each a 6= ∞ in G, z → g(z, a) + log |z − a| is harmonic

in a neighborhood of a; if ∞ ∈ G, z → g(z,∞)− log |z|
is harmonic in a neighborhood of ∞;

(c) g is the smallest function from G×G into (∞,∞] that satisfies

properties (a) and (b).

Definition 2.2 If G is an open subset of C, a function u : G → [−∞,∞)

is subharmonic if u is upper semicontinuous and, for every closed disk B̄(a; r)

contained in G, we have the inequality

u(a) ≤ 1

2π

∫ 2π

0

u(a + reiθ)dθ.

A set Z is a polar set if there is a non-constant subharmonic function u on C
such that Z ⊂ {z : u(z) = −∞}.

Green’s function with a pole at infinity can also be defined with polynomials. For

G ⊂ C∞ let K = C∞ \G, then

gK(z) := g(z,∞, G) = sup

{
ln |p(z)|
deg p

: p ∈ Π, |p|K ≤ 1

}
, (2.1)

where Π here denotes the set of all polynomials. In fact, from the Bernstein

theorem (see e.g.[45]) we have that gK(z) ≥ sup{ ln |p(z)|
deg p

: p ∈ ∏
, |p|K ≤ 1}. On

the other hand, let us choose for every n ∈ N a monic polynomial pn(z) of degree

n such that the set {z ∈ C : |pn(z)| ≤ 1} contains K. Then Green’s function for

the set C∞ \ {z ∈ C : |pn(z)| > 1} is gn(z) = n−1 ln |p(z)|. We can choose the
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sequence of polynomials (pn)∞n=1 such that the intersection of the corresponding

level domains gives the set K. Then, using Proposition 9.8 of [11] we can conclude

that (2.1) holds.

For Cantor-type sets we have the following theorem from [11].

Theorem 2.3 Let {Ik} be the sequence of compact sets formed of 2k subintervals

of length lk and K = ∩kIk is the Cantor-type set defined as in section 2.1. Then

the set K is polar if and only if

∞∑

k=1

1

2k
log l−1

k = ∞

By use of this theorem, we see that the Cantor set K(α) is non-polar if and only

if 1 < α < 2. So, Green’s function for K(α) is undefined when α ≥ 2.

2.3 Polynomial inequalities

When a compact set is given, could the derivative of a polynomial on the compact

set be estimated by the norm of it on the compact set? This question was first

answered by A. A. Markov in 1889 for the set I = [−1, 1] as follows

sup
x∈I

|p′(x)| ≤ (deg p)2 sup
x∈I

|p(x)|.

As a generalization of this, any compact K set is defined to have Markov property

(or is a Markov set) if there exist positive constants M, m such that

sup
x∈K

|∇p(x)| ≤ M(deg p)m sup
x∈K

|p(x)|

for all p ∈ Π. The Markov property is crucial for the method of PawÃlucki and

Pleśniak to construct a linear continuous extension operator. This method will

be considered in the next section.

Markov property is related with the Hölder continuity of the Green function

for the set in R. Green’s function of C∞ \K is defined to be Hölder continuous
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when there exist constants C, µ satisfying

gK(z,∞) ≤ Cδµ for dist (z, K) ≤ δ ≤ 1.

By Cauchy’s integral formula, it can be proved that Hölder Continuity (HCP) of

Green’s function gK implies Markov property of the compact set K. The problem

of the inverse implication is still open.

Next inequality about polynomials is from the so called Bernstein theorem

[45]. Let K ∈ C be a non-polar compact set (i.e. cap K > 0). Then for any

polynomial p of degree n, we have for z ∈ C,

|p(z)| ≤ exp(n · gK(z,∞))|p|K .

From this inequality we see that an upper bound for Green’s function will give

us a direct relation between the value of the polynomial in a neighborhood of a

compact set and the norm of it. Moreover, by using Cauchy’s integral formula,

we can reach a Markov type inequality.

Theorem 2.4 Suppose there exists a constant C > 0, and a continuous invertible

function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0, such that for Green’s function we

have gK(z,∞) ≤ C ·ϕ(δ) where δ = dist(z, K). Then for any polynomial we have

|p′|K ≤ C1 · φ(deg p)|p|K

for a constant C1 > 0, and the function φ(x) = 1/ϕ−1( 1
x
).

Proof: Let z ∈ K and let p be a polynomial of degree n, then by the Cauchy’s

integral formula

p′(z) =
1

2πi

∮

Γ

p(ζ)

(ζ − z)2
dζ

where Γ = {ζ ∈ C : |ζ − z| = δ}. Then, by using the Bernstein theorem

|p′(z)| ≤ 1

2π

∮

Γ

|p(ζ)|
δ2

dζ ≤ 1

2πδ2

∮

Γ

exp[n · gK(ζ)]|p|Kdζ ≤ 1

δ
exp[n · Cϕ(δ)]|p|K

Now, choose δ so that ϕ(δ) = 1/n and the result of the theorem follows. 2
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Corollary 2.5 (HCP) of Green’s function gK(z) implies Markov property of the

set K.

The simplest example of sets without Markov property is the point. Any set

with isolated points has no Markov property. The closure of a plain domain

with a sharp cusp is the first non-trivial example of non-Markov set (Zerner,

[54]). Other non-trivial examples of sets without Markov property could be given

by Cantor type type sets or set of intervals tending to a point. The classical

Cantor set is constructed from a segment by successive deleting subintervals with

a constant quotient of their lengths. Consider Cantor type sets with arbitrary

ratio of lengths. Let (lk)k=0,1,... be a given sequence such that for every k ≥ 1

lk <
1

2
lk−1 and l0 = 1.

Let {Ek}k=0,1,... be a family of subsets of [0, 1] such that every set Ek consists of

2k intervals Ik,1, ..., Ik,2k of length lk each, E0 = [0, 1] and Ek+1 is obtained by

deleting the open concentric subinterval of length lk − 2lk+1 from each interval

Ik,n, n = 1, ..., 2k. Then the set

E =
∞⋂

k=0

2k⋃
n=1

Ik,n

is called a generalized Cantor set. Examples of Cantor type sets without Markov

property were given by Pleśniak [34], Bialas [8] and Jonsson [22]. Examples for

sets formed of intervals tending to point, without Markov property were given by

Goncharov [15], [16]. For Cantor-type sets we have the following theorem from

[8].

Theorem 2.6 If there exists a limit (finite or infinite) of the sequence

(lk/lk+1)k=0,1,... and E is a generalized Cantor set associated with (lk)k=0,1,..., then

the following conditions are equivalent

(i) E satifies (HCP),

(ii) E satifies Markov property,

(iii) the limit of the sequence (lk/lk+1)k=0,1,... is finite.
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Some more general form of Cantor set is when each interval of Ek includes nk

intervals of Ek+1. In [4] such Cantor sets were considered for the geometric

characterization of extension property.

Examples for sets formed of intervals tending to point, without Markov prop-

erty were given by Goncharov [15], [16]. Let K = {0} ∪ ⋃∞
k=1 Ik such that

K ⊂ [0, 1]. Ik = [ak, bk]. Let δk = 1
2
(bk − ak), hk = ak − bk+1. 2δk ≤ hk and

δk ↓ 0, ak ↓ 0. Let bk ≤ Cδk where C is a constant. Let R > 1 such that

δk+1 ≥ δR
k . For these sets, it is given in [18] an explicit form of extension operator

by use of the basis elements of E(K). In Chapter 3 we give an explicit form of

an extension operator for generalized Cantor type sets without Markov property.

And in Chapter 4 we give an explicit form of an extension operator for sets formed

of intervals tending to a point, having no Markov property.

Another important inequality related to polynomials is given by the following

theorem of Jackson (e.g. [43]).

Theorem 2.7 Let f defined on the finite segment I = [a, b] and has an q-th

continuous derivative, then for n > q

distI(f,Pn) ≤ Mq

(
b− a

n

)q

w(f (q);
b− a

n
)

where Mq is a constant depending only on q and w is the modulus of continuity.

2.4 Green’s function of domains complementary

to Cantor-type sets

We want to find an upper bound for Green’s function of the set C∞ \K(α) with a

pole at infinity, in the case Green’s function exists (1 < α < 2). The lower bound

for Green’s function can be obtained from the representation (2.1). To find the

upper bound we will use the local interpolation of polynomials. The upper bound

will lead us to a Markov-type inequality for the set K(α).
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Let K(α) be defined as in the section 2.1. Every set Ik consists of 2k subinter-

vals Ik,1, ..., Ik,2k of length lk each. Let tk,j = min{t : t ∈ Ik,j}. Let LNk,1
j (z) be

the Lagrange fundamental polynomials corresponding to t(N+1)k,1, ..., t(N+1)k,2Nk ∈
Ik,1 ∩K. For j = 1, 2, ..., 2Nk let

LNk,1
j (z) =

2Nk∏

n=1,n6=j

(
z − t(N+1)k,n

t(N+1)k,j − t(N+1)k,n

)

It is easy to see that these points are the left endpoints of the intervals

I(N+1)k,1, ..., I(N+1)k,2Nk which can be obtained from Ik,1 after Nk steps. Here

N is supposed to be positive rational number with denominator k. In a similar

way define LNk,2
j (z) to be Lagrange fundamental polynomials corresponding to the

next 2Nk points, which are {t(N+1)k,2Nk+1, t(N+1)k,2Nk+2, ..., t(N+1)k,2·2Nk} ⊂ Ik,2∩K.

And so in general for 1 ≤ i ≤ 2k, LNk,i
j (z) are Lagrange fundamental polynomials

corresponding to the points from Ik,i ∩K.

Let

M = d ln 2

ln(2/α)
e,

where for any x ∈ R, dxe denotes the least integer that is larger than x.

Lemma 2.8 Given k ∈ Z+, and i such that 1 ≤ i ≤ 2k let lM(k+1) < dist(z, K ∩
Ik,i) ≤ lMk for z ∈ C. Then

|LNk,i
j (z)| ≤ exp[2(N+1−M)k−1 + 2Nk+1−αk−1

+ 2 · 2Nk−(α−1)αMk−2

] · lA1 ,

where A = −[α−1
2−α

]αMk−12(N+1−M)k − αMk−1 + [ 1
2−α

]α(N+1)k−1.

Proof: Without loss of of generality let i = 1. Suppose N + 1 > M

LNk,1
j (z) =

2Nk∏

n=1,n6=j

(
z − t(N+1)k,n

t(N+1)k,j − t(N+1)k,n

)

Since dist(z,K ∩ Ik,i) ≤ lMk we have
∣∣∣∣∣∣

2Nk∏

n=1,n6=j

(
z − t(N+1)k,n

)
∣∣∣∣∣∣
≤
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(lMk + l(N+1)k−1)(lMk + l(N+1)k−2)
2...(lMk + lMk)

2(N+1−M)k−1

...(lMk + lk)
2Nk−1

and ∣∣∣∣∣∣

2Nk∏

n=1,n6=j

(
t(N+1)k,j − t(N+1)k,n

)
∣∣∣∣∣∣
≥

(l(N+1)k−1 − 2l(N+1)k)(l(N+1)k−2 − l(N+1)k−1)
2...(lk − 2lk+1)

2Nk−1

.

Then

(lMk + l(N+1)k−1)(lMk + l(N+1)k−2)
2...(lMk + lMk+1)

2(N+1−M)k−2

= l
[1+2+...+2(N+1−M)k−2]
Mk (1 +

l(N+1)k−1

lMk

)...(1 +
lMk+1

lMk

)2(N+1−M)k−2

≤ l
αMk−1[2(N+1−M)k−1−1]
1 (1 + lα

(N+1)k−2−αMk−1

1 )...(1 + lα
Mk−αMk−1

1 )2(N+1−M)k−2

≤ l
αMk−1[2(N+1−M)k−1−1]
1 (1 +

1

2α(N+1)k−2−αMk−1
)...(1 +

1

2αMk−αMk−1 )2(N+1−M)k−2

.

Since l1 < 1/2 and 1 + ε < exp ε, we get

(lMk + l(N+1)k−1)(lMk + l(N+1)k−2)
2...(lMk + lMk+1)

2(N+1−M)k−2

≤ l
αMk−1[2(N+1−M)k−1−1]
1 exp[2αMk−1−α(N+1)k−2

+ 2αMk−1−α(N+1)k−3+1 + ...

... + 2αMk−1−αMk+(N+1−M)k−2]

≤ l
αMk−1[2(N+1−M)k−1−1]
1 exp[2αMk−1−αMk+(N+1−M)k−1] (2.2)

Similarly we have

(lMk + lMk)
2(N+1−M)k−1

...(lMk + lk)
2Nk−1

= 22(N+1−M)k−1

l2
(N+1−M)k−1

Mk (1 +
lMk

lMk−1

)2(N+1−M)k

l2
(N+1−M)k

Mk−1 ...(1 +
lMk

lk
)2Nk−1

l2
Nk−1

k

= 22(N+1−M)k−1

l
[αMk−12(N+1−M)k−1+αMk−22(N+1−M)k+...+αk−12Nk−1]
1 ·

·(1 + lα
Mk−1−αMk−2

1 )2(N+1−M)k · · · (1 + lα
Mk−1−αk−1

1 )2Nk−1

≤ 22(N+1−M)k−1

l
αk−12(N+1−M)k−1[ 2

(M−1)k+1−α(M−1)k+1

2−α
]

1 ·
·(1 +

1

2αMk−1−αMk−2 )2(N+1−M)k · · · (1 +
1

2αMk−1−αk−1 )2Nk−1

≤ 22(N+1−M)k−1

l
αk−12(N+1−M)k−1[ 2

(M−1)k+1−α(M−1)k+1

2−α
]

1 .

. exp[2αMk−2−αMk−1+(N+1−M)k + ... + 2αk−1−αMk−1+Nk−1]

≤ 22(N+1−M)k−1

l
αk−12(N+1−M)k−1[ 2

(M−1)k+1−α(M−1)k+1

2−α
]

1 ·
· exp[2αMk−2−αMk−1+Nk] (2.3)
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and in a similar way

(l(N+1)k−1 − 2l(N+1)k)...(lk − 2lk+1)
2Nk−1

= l
αk−1[ 2

Nk−αNk

2−α
]

1 (1− 2lεα
(N+1)k−2

1 )...(1− 2lεα
k−1

1 )2Nk−1

≥ l
αk−1[ 2

Nk−αNk

2−α
]

1 (1− 2

2α(N+1)k−2
)...(1− 2

2αk−1 )2Nk−1

≥ l
αk−1[ 2

Nk−αNk

2−α
]

1 exp−[21−α(N+1)k−2

+ 22−α(N+1)k−3

+ ... + 2Nk−αk−1

]

≥ l
αk−1[ 2

Nk−αNk

2−α
]

1 exp[−2Nk+1−αk−1

] (2.4)

Combining (2.2),(2.3) and (2.4) we have

|LNk,1
j (z)| ≤ l

−[α−1
2−α

]αMk−12(N+1−M)k−αMk−1+[ 1
2−α

]α(N+1)k−1

1 · 22(N+1−M)k−1 ·
· exp[2Nk+1−αk−1

+ 2αMk−1−αMk+(N+1−M)k−1 + 2αMk−2−αMk−1+Nk]

≤ l
−[α−1

2−α
]αMk−12(N+1−M)k−αMk−1+[ 1

2−α
]α(N+1)k−1

1 ·
· exp[2(N+1−M)k−1 + 2Nk+1−αk−1

+ 2 · 2Nk−(α−1)αMk−2

]

Let now N + 1 ≤ M , then dist(z, K ∩ Ik,i) ≤ lMk ≤ l(N+1)k and we have

∣∣∣∣∣∣

2Nk∏

n=1,n6=j

(
z − t(N+1)k,n

)
∣∣∣∣∣∣
≤

≤ (lMk + l(N+1)k−1)(lMk + l(N+1)k−2)
2...(lMk + lk)

2Nk−1

= l
[α(N+1)k−2+2α(N+1)k−3+···+2Nk−1αk−1]
1 ·
·(1 +

lMk

l(N+1)k−1

)(1 +
lMk

l(N+1)k−2

)2 · · · (1 +
lMk

lk
)2Nk−1

≤ l
αk−1[ 2

Nk−αNk

2−α
]

1 (1 +
1

2αMk−1−α(N+1)k−2
) · · · (1 +

1

2αMk−1−αk−1 )2Nk−1

≤ l
αk−1[ 2

Nk−αNk

2−α
]

1 exp[2α(N+1)k−2−αMk−1

+ · · ·+ 2Nk−1+αk−1−αMk−1

]

≤ l
αk−1[ 2

Nk−αNk

2−α
]

1 exp[2Nk+αMk−2−αMk−1

]

In this case, where N+1 ≤ M the term (l(N+1)k−1−2l(N+1)k)...(lk−2lk+1)
2Nk−1

will

not be effected. Hence, using (2.4) we reach to the same bound for N + 1 ≤ M .

2
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Theorem 2.9 We have the following upper bound for Green’s function of the

Cantor set K with a pole at infinity.

gK(z) ≤ C

(
ln

1

δ

)1−M−1
M

·[ ln 2
ln α ]

for some constant C > 0 depending only on K.

Proof: Take p ∈ Pn such that |p|K ≤ 1. Given z ∈ C such that δ := dist(z, K) ≤
lM . Choose k ∈ N so that lM(k+1) < δ ≤ lMk. We choose i from {1, ..., 2k} such

that δ = dist(z,K∩Ik,i). And let N be a rational number such that Nk is integer

satisfying 2Nk−1 ≤ n < 2Nk. Then

p(z) = LNk,ip(z) =
i2Nk∑

j=(i−1)2Nk+1

p(t(N+1)k,j)L
Nk,i
j (z).

Since |p|K ≤ 1 we have |p(t(N+1)k,j)| ≤ 1 for all j that appears in the sum. Hence

by use of the lemma

|p(z)| ≤ 2Nkl
−[α−1

2−α
]αMk−12(N+1−M)k−αMk−1+[ 1

2−α
]α(N+1)k−1

1 ·
· exp[2(N+1−M)k−1 + 2Nk+1−αk−1

+ 2 · 2Nk−(α−1)αMk−2

].

Then we have

ln |p(z)|
deg p

≤ Nk + 2(N+1−M)k−1 + 2Nk+1−αk−1
+ 2Nk+1−(α−1)αMk−2

2Nk−1
+

+

[(
α−1
2−α

)
αMk−12(N+1−M)k + αMk−1 − (

1
2−α

)
α(N+1)k−1

]
ln 1

l1

2Nk−1

After some cancellations the inequality above can be written in the following

form.

ln |p(z)|
deg p

≤ Nk +
[
αMk−1 − (

1
2−α

)
α(N+1)k−1

]
ln 1

l1

2Nk−1
+

+2(1−M)k + 22−αk−1

+ 22−(α−1)αMk−2

+

(
α− 1

2− α

)
αMk−12(1−M)k+1 ln

1

l1
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The first summand on the right is negative for large enough N . Let N0 ∈ N
be the number such that for N ≥ N0 this negativity occurs. Then for N ≥ N0

we have

ln |p(z)|
deg p

≤ 2(1−M)k + 22−αk−1

+ 22−(α−1)αMk−2

+

(
α− 1

2− α

)
αMk−12(1−M)k+1 ln

1

l1

Here the last term is the effective when k is large (or δ is small). Hence there

exists a constant C0 such that

ln |p(z)|
deg p

≤ C0α
Mk2(1−M)k ln

1

l1

We have lM(k+1) < δ ≤ lMk, from this relation it will not be so difficult to

reach the following inequality for k.

k ≤ 1

M


 ln

(
ln δ
ln l1

)

ln α
+ 1


 ≤ k + 1

Then using the right part of this inequality we have

ln |p(z)|
deg p

≤ C0

(
αM

2M−1

) 1
M

"
ln( ln δ

ln l1
)

ln α
+1

#
−1

ln
1

l1
≤ C0

α

"
ln( ln δ

ln l1
)

ln α

#
α1−M

2
M−1

M
·
"

ln( ln δ
ln l1

)
ln α

#
2

M−1
M

+1−M

ln
1

l1

≤ C0

(
ln δ
ln l1

)
α1−M

2
M−1

M
·
"

ln( ln δ
ln l1

)
ln α

#
2

M−1
M

+1−M

ln
1

l1
= C0

α1−M

2
M−1

M
·
"

ln( ln δ
ln l1

)
ln α

#
2

M−1
M

+1−M

ln
1

δ
.

Hence there exists a constant C1 such that

ln |p(z)|
deg p

≤ C1 ln
1

δ
2
−M−1

M
·
"

ln( ln δ
ln l1

)
ln α

#
= C1 ln

1

δ

(
ln δ

ln l1

)−M−1
M

·[ ln 2
ln α ]

.

We can write this last expression as a function of only δ then we will have

ln |p(z)|
deg p

≤ C2

(
ln

1

δ

)1−M−1
M

·[ ln 2
ln α ]
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where C2 is a constant depending only on l1 and α. We see that this last inequality

does not depend on the interval which z is closest to. Also it does not depend to

the degree of the polynomial except it is great enough. Now using the form of

the Green function (2.1) which is defined by polynomials, we get

gK(z) ≤ C2

(
ln

1

δ

)1−M−1
M

·[ ln 2
ln α ]

.

2

Corollary 2.10 Let p be any polynomial of degree n. Then, there exist constants

C, µ > 0 such that

|p′|K ≤ C · exp[nµ] · |p|K .

Proof: By using Theorem 2.3 we have

|p′|K ≤ C · exp[n1/(M−1
M

·[ ln 2
ln α ]−1)] · |p|K .

2



Chapter 3

Extension by means of local

interpolation

In [29] (see also [32], [33]) PawÃlucki and Pleśniak suggested an explicit construc-

tion of the extension operator for a rather wide class of compact sets preserving

Markov’s inequality. In [15] and later in [18] compact sets K were presented

without Markov’s Property, but such that the space E(K) admits the extension

operator. Here we deal with the generalized Cantor-type sets K(α), that have the

extension property for 1 < α < 2 by [18], but are not Markov sets for any α > 1

due to Pleśniak [33] and BiaÃlas [8]. The extension operator in [29] was given in

the form of a telescoping series containing Lagrange interpolation polynomials

with the Fekete-Leja system of knots. This operator is continuous in the Jackson

topology τJ , which is equivalent to the natural topology τ of the space E(K), pro-

vided that the compact set K admits Markov’s inequality. Here, following [20],

we interpolate the functions from E(K(α)) locally and show that the modified

operator is continuous in τ .

33



CHAPTER 3. EXTENSION BY MEANS OF LOCAL INTERPOLATION 34

3.1 Jackson topology

For a perfect compact set K on the line, E(K) denotes the space of all functions

f on K extendable to some f̃ ∈ C∞(R). The space E(K) can be identified with

the quotient space C∞(I)/Z, where I is an interval containing K ( let I = [0, 1] )

and Z = {F ∈ C∞(I) : F |K ≡ 0}. By the Whitney theorem ([48]) the quotient

topology τ can be given by the norms

‖ f ‖ q = |f | q + sup
{|(Rq

yf)(k)(x)| · |x− y|k−q; x, y ∈ K, x 6= y, k = 0, 1, ...q
}

,

q = 0, 1, ..., where |f | q = sup{|f (k)(x)| : x ∈ K, k ≤ q} and Rq
yf(x) = f(x) −

T q
y f(x) is the Taylor remainder.

Following Zerner [54], Pleśniak [32] introduced in E(K) the following semi-

norms

d−1(f) = |f | 0, d0(f) = E0(f), dk(f) = sup
n≥1

nk En(f)

for k = 1, 2, · · · . Here Ek(f) denotes the best approximation to f on K by

polynomials of degree at most k. For a perfect set K ⊂ R the Jackson topology

τJ , given by (dk), is Hausdorff. By the Jackson theorem the topology τJ is well-

defined and is not stronger than τ .

The characterization of analytic functions on a compact set K in terms of (dk)

was considered in [5]; for the spaces of ultradifferentiable functions see [12].

We remark that for any perfect set K the space (E(K), τJ) has the dominating

norm property:

∃p ∀q ∃r, C > 0 : d2
q(f) ≤ C dp(f) dr(f) for all f ∈ E(K).

In fact, let nk be such that dk(f) = nk
k Enk

(f). Then, dp(f) ≥ np
q Enq(f) and

dr(f) ≥ nr
q Enq(f), so we have the desired condition with r = 2 q.

Tidten proved in [41] that the space E(K) admits an extension operator if and

only if it has the property (DN). Clearly, the completion of the space with the

property (DN) also has the dominating norm. Therefore, the Jackson topology is
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not generally complete. Moreover, it is not complete in the cases of compact sets

from [15],[18] in spite of the fact that the corresponding spaces have the (DN)

property. Indeed, by Th.3.3 in [32] the topologies τ and τJ coincide for E(K) if

and only if the compact set K satisfies the Markov Property (see [29]-[33] for the

definition) and this is possible if and only if the extension operator, presented in

[29], [32] and [33] is continuous in τJ . We do not know the distribution of the

Fekete points for Cantor-type sets, therefore we can not check the continuity of

the PawÃlucki and Pleśniak operator in the natural topology. Instead, following

[20], we will interpolate the functions from E(K) locally.

3.2 The PawÃlucki and Pleśniak extension

operator

Following [29] let us explain the PawÃlucki and Pleśniak extension operator for the

(UPC) compact subsets of Rn.

Definition 3.1 A subset X on R is said to be uniformly polynomially cuspidal

(UPC) if there exists positive constants M and m and a positive integer d such

that for each point x ∈ X̄, one may choose a polynomial map hx : R → Rn of

degree at most d satisfying the following conditions.

(i) hx((0, 1]) ⊂ X and hx(0) = x,

(ii) dist(hx(t),Rn −X) ≥ Mtm ∀x ∈ X and t ∈ (0, 1].

When X is a (UPC) compact subset of Rn, then Siciak’s extremal function of X

has (HCP). Siciak’s extremal function [39] is the generalized Green’s function for

the multidimensional case. So we also have Markov property for (UPC) compact

sets.

Let the set of monomials e1, ..., emk
be a basis of the space Pk where mk =(

n+k
k

)
. Let t(k) = {t1, ..., tk} be a system of k points of Rn. Consider the Vander-

monde determinant

V (t(k)) = det[ej(ti)]
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where i, j ∈ {1, ..., k}. If V (t(k)) 6= 0 we have

lj(x, t(k)) = V (t1, ..., tj−1, x, tj+1, ..., tk)/V (t(k))

as the lagrange fundamental polynomials and we get the following Lagrange in-

terpolation formula [39]. If p ∈ Pk and t(mk) i a system of mk points of Rn such

that V (t(mk)) 6= 0, then

p(x) =

mk∑
j=1

p(tj)lj(x, t(mk))

for x ∈ Rn. Let X be a compact subset of Rn. A system t(k) of k points

t1, ..., tk of X is called Fekete-Leja system of extremal points of X of order k if

V (t(k)) ≥ V (s(k)) for all systems s(k) = {s1, ..., sk} ⊂ X. Observe that if t(k) is a

system of extremal points of X such that V (t(k)) 6= 0, then

lj(x, t(k)) ≤ 1

on X for j = 1, ..., k. Let

Lkf(x) =

mk∑
j=1

f(tj)lj(x, t(mk)),

which is the Lagrange interpolation polynomial of f of degree k.Suppose f is

continuous on X. Let pk be any polynomial of degree k such that |f − pk|X =

distX(f,Pk). Then we have

|f − Lkf |X ≤ |f − pk|+ |Lkf − Lkpk|X
≤ (mk + 1)|f − pk|X ≤ 4kndistX(f,Pk)

Now, let X be a (UPC) compact subset of Rn. Let ε0 = 1 and for each

k ≥ 1, set εk = (1/(C1k))1/µ, where the constants C1 and µ are chosen so that

Siciak extremal function satisfies (HCP) and C1 ≥ 1. For k = 0, 1, ..., define

C∞ functions uk on Rn such that uk = 1 in a neighborhood of X, uk = 0 if

dist(x,X) ≥ εk, and for all x ∈ Rn and α ∈ Zn
+, |Dαuk(x)| ≤ Cαε

−|α|
k , with some

constants Cα depending only on α. Given f ∈ C∞(X), the extension operator is

defined by PawÃlucki and Pleśniak as follows:

Lf = u1L1f +
∞∑

k=1

uk(Lk+1f − Lkf)
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This is a C∞ function on Rn where the restriction to X is equal to f . If α ∈ Zn
+,

then by using (HCP) and Markov property we get

|DαLf |Rn ≤ |Dα(u1L1f)|Xε1 +
∞∑

k=1

∑

β≤α

(
α

β

)
|DβukD

α−β(Lk+1f − Lkf)|Xεk

≤ C2|f |X +
∞∑

k=1

∑

β≤α

(
α

β

)
Cβε

−|β|
k (1 + C1ε

µ
k)k|Dα−β(Lk+1f − Lkf)|X

≤ C2|f |X +
∞∑

k=1

∑

β≤α

(
α

β

)
Cβ(C1k)|β|/µ(1 + 1/k)kCkr|α−β||(Lk+1f − Lkf)|X

≤ C2|f |X + C3

∞∑

k=1

ks|α|+ndist(f,Pk)

≤ C2d−1(f) + C4ds|α|+n+2(f),

where s = max(1/µ, r) and the constants C2, C3, C4 depend only on α, X and n.

Now, the continuity of the operator follows from the equivalence of the topologies

τ and τJ for Markov sets.

3.3 Extension operator for E(K(α))

Let (ls)
∞
s=0 be a sequence such that l0 = 1, 0 < 2ls+1 < ls , s ∈ N. Let K

be the Cantor set associated with the sequence (ls) that is K =
⋂∞

s=0 Es, where

E0 = I1,0 = [0, 1], Es is a union of 2s closed basic intervals Ij,s of length ls and

Es+1 is obtained by deleting the open concentric subinterval of length ls − 2ls+1

from each Ij,s , j = 1, 2, ...2s.

Fix 1 < α < 2 and l1 with 2lα−1
1 < 1. We will denote by K(α) the Cantor

set associated with the sequence (ln), where l0 = 1 and ln+1 = lαn = ... = lα
n

1 for

n ≥ 1. In this case K(α) has no Markov property by Theorem 2.6, so we can not

see if the PawÃlucki-Pleśniak extension operator [29] is continuous or not.

In the notations of [4] we consider the set K
(α)
2 . The construction of operator

for the case K
(α)
n with α < n is quite similar, so we can restrict ourselves to n = 2.

Let us fix s, m ∈ N and take N = 2m − 1. The interval I1,s covers 2m−1



CHAPTER 3. EXTENSION BY MEANS OF LOCAL INTERPOLATION 38

basic intervals of the length ls+m−1. Then N +1 endpoints (xk) of these intervals

give us the interpolating set of Lagrange interpolation polynomial LN(f, x, I1,s) =∑N+1
k=1 f(xk) ωk(x), corresponding to the interval I1,s. Here ωk(x) = ΩN+1(x)

(x−xk)Ω′N+1(xk)

with ΩN+1(x) = ΠN+1
k=1 (x− xk). In the case 2m < N + 1 < 2m+1 we use the same

procedure as in [20] to include new N + 1 − 2m endpoints of the basic intervals

of the length ls+m into the interpolation set. The polynomials LN(f, x, Ij,s),

corresponding to other basic intervals, are taken in the same manner.

Given δ > 0, and a compact set E we take the C∞− function u(·, δ, E) with

the properties: u(·, δ, E) ≡ 1 on E, u(x, δ, E) = 0 for dist(x,E) > δ and |u|p ≤
cp δ−p, where the constant cp depends only on p. Let (cp) ↑ .

Fix ns = [s log2 α] for s ≥ log 4/ log α, ns = 2 for the previous values of s

and δN, s = ls+[log2 N ] for N ≥ 2. Here [a] denotes the greatest integer in a.

Let Ns = 2ns − 1 and Ms = 2ns−1−1 − 1 for s ≥ 1,M0 = 1. Consider the

operator from [20]

L(f, x) = LM0(f, x, I1, 0) u(x, δM0+1, 0, I1, 0 ∩K)

+
∞∑

s=0

〈 2s∑
j=1

Ns∑
N=Ms+1

[LN(f, x, Ij,s)− LN−1(f, x, Ij,s)] u(x, δN, s, Ij,s ∩K)

+
2s+1∑
j=1

[LMs+1(f, x, Ij,s+1)− LNs(f, x, I[ j+1
2

], s)] u(x, δNs, s, Ij, s+1 ∩K)
〉
.

We call the sums
∑Ns

N=Ms+1 · · · the accumulation sums. For fixed j (without loss

of generality let j = 1) we represent the term in the last sum in the telescoping

form

−
2ns−1∑

N=2ns−1

[LN(f, x, I1,s)− LN−1(f, x, I1,s)] u(x, ls+ns−1, I1,s+1 ∩K) (3.1)

and will call this the transition sum. Here the interpolation set for the polynomial

LN(f, x, I1,s) consists of all endpoints of the basic subintervals of the length ls+ns−1

on I1,s+1 and some ( from 0 for N = 2ns−1 − 1 to all for N = 2ns − 1) endpoints

of the basic subintervals of the same length on I2,s+1 .
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Clearly, the operator L is linear. Let us show that it extends the functions

from E(K(α)).

Lemma 3.2 For any f ∈ E(K(α)), x ∈ K(α) we have L(f, x) = f(x).

Proof : By telescoping effect

L(f, x) = lim
s→∞

LMs(f, x, Ij,s), (3.2)

where j = j(s) is chosen in a such way, that x ∈ Ij,s.

We will denote temporarily ns−1 − 1 by n. Then Ms = 2n − 1. Arguing as in

[20], for any q, 1 ≤ q ≤ Ms, we have the bound

|LMs(f, x, Ij,s)− f(x)| ≤ || f || q
2n∑

k=1

| x− xk| q |ωk(x) |. (3.3)

For the denominator of |ωk(x) | we get

|xk−x1| · · · | xk−xk−1| · | xk−xk+1| · · · | xk−xMs+1| ≥ ln+s−1 (ln+s−2−2 ln+s−1)
2·

(ln+s−3 − 2 ln+s−2)
4 · · · (ls − 2 ls+1)

2 n−1

= ln+s−1 · l 2
n+s−2 · · · l2

n−1

s · A,

where A = Πn−1
k=1 (1− 2 ls+k

ls+k−1
)2n−k

.

Clearly, ln A > −∑n−1
k=1 2n−k+2 ls+k

ls+k−1
for large enough s. Since ls+k

ls+k−1
< ls+k−1

ls+k−2

and 2n ≤ 1
2
αs−1 , we have ln A > −2n+2 lα−1

s > −1.

On the other hand, the numerator of |ωk(x) | multiplied by |x − xk| q gives

the bound

|x− xk| q−1 Π2n

1 |x− xk| ≤ l q−1
s · ln+s · ln+s−1 · l2n+s−2 · · · l 2n−1

s .

Hence, the sum in (3.3) may be estimated from above by e 2n ln+s l q−1
s , which

approaches 0 as s becomes large. Therefore, the limit in (3.2) exists and equals

to f(x). 2
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3.4 Continuity of the operator

Theorem 3.3 Let 1 < α < 2. The operator L : E(K(α)) −→ C∞(R), given in

Section 3.3, is a continuous linear extension operator.

Proof : Let us prove that the series, representing the operator L, uniformly con-

verges together with any of its derivative.

For any p ∈ N let q = 2v − 1 be such that (2/α)v > p + 4. Given q let s0

satisfy the following conditions: s0 ≥ 2v + 3 and αm ≥ m for m ≥ ns0−1.

Suppose the points (xk)
N+1
1 are arranged in ascending order. Let us write the

divided difference [x1, · · · , xN+1]f in the form

[x1, · · · , xN+1]f =

N−q+1∑

k=1

A
(q+1)
k [xk, · · · , xk+q]f.

By using the recurrence relation given in Theorem 1.22, we can easily see that

there are
(

N−q
k−1

)
different ways to obtain [xk, · · · , xk+q]f from [x1, · · · , xN+1]f .

And so we have the inequality

|A(q+1)
k | ≤

(
N − q

k − 1

)
max

N−q∏
m=1

|xa(m) − xb(m)|−1.

Therefore using Theorem 1.21 we have the following bound :

| [x1, · · · , xN+1]f | ≤ 2N− q ||f || q (min ΠN−q
m=1|xa(m) − xb(m)| )−1, (3.4)

where min is taken over all 1 ≤ j ≤ N + 1 − q and all possible chains of strict

embeddings [xa(0), · · · , xb(0)] ⊂ [xa(1), · · · , xb(1)] ⊂ · · · ⊂ [xa(N− q), · · · , xb(N− q)]

with a(0) = j, b(0) = j + q, · · · , a(N − q) = 1, b(N − q) = N + 1; here given

a(k), b(k) we take a(k + 1) = a(k), b(k + 1) = b(k) + 1 or a(k + 1) = a(k) −
1, b(k + 1) = b(k). The length of the first interval in the chain is not included in

the product in (3.4), which we denote in the sequel by Π.

For s ≥ s0 and for any j ≤ 2s we consider the corresponding term of the

accumulation sum. By the Newton form of interpolation operator we get

LN(f, x, Ij,s)− LN−1(f, x, Ij,s) = [x1, · · · , xN+1]f · ΩN(x),
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where ΩN(x) = ΠN
1 (x − yk) with the set (yk)

N
1 consisting of all points (xk)

N+1
1

except one.

Thus we need to estimate | [x1, · · · , xN+1]f | ·|( ΩN ·u(x, δN, s, Ij,s∩K))(p)| from

above. Here Ms+1 ≤ N ≤ Ns, that is 2m−1 ≤ N < 2m for some m = ns−1, · · · , ns

and δN, s = ls+m−1. The interpolation set (xk)
N+1
1 consists of all endpoints of the

basic intervals of length ls+m−2 (inside the interval Ij,s) and some (possibly all for

N = 2m − 1) endpoints of the basic intervals of length ls+m−1. For simplicity we

take j = 1. In this case x1 = 0, x2 = ls+m−1, x3 = ls+m−2− ls+m−1 or x3 = ls+m−2,

etc.

Since dist(x, I1,s∩K) ≤ ls+m−1, we get |Ω(i)
N (x) | ≤ N !

(N−i)!
ΠN

k=i+1(ls+m−1 +yk).

Therefore, | (ΩN · u)(p)| ≤ ∑p
i=0

(
p
i

)
cp−i l

i−p
s+m−1 N i ΠN

k=i+1(ls+m−1 + yk) ≤

2p cp l−p
s+m−1 ΠN

k=1(ls+m−1 + yk) · maxi≤p Bi, with B0 = 1, B1 = N, B2 =

N 2/2, · · · , Bi = N 2/2 · (N ls+m−1)
i−2 (ls+m−1 +y3)

−1 · · · (ls+m−1 +yi)
−1 for i ≥ 3.

To estimate B3, we note that ls+m−1 + y3 ≥ ls+m−2, N ls+m−1 < 2m lαs+m−2 ≤
ls+m−2, as 2m lα−1

s+m−2 = 2m l
(α−1)αm

s−2 < 2m l
(α−1)αm

1 < 2m(1
2
)αm ≤ 1, due to the

choice of s0. Therefore, B3, and all the more Bi for i > 3, is less than B2. On the

other hand, ls+m−1 + yk < yk+1, k ≤ N − 1, as ls+m−1 is a mesh of the net (yk)
N
1 ,

and ls+m−1 + yN < 2ls. This implies that,

| (ΩN · u)(p)| ≤ 2p cp N2 l−p
s+m−1 ls ΠN

k=2yk ≤ 2p cp N2 l−p−1
s+m−1 ls ΠN+1

k=2 xk. (3.5)

To apply (3.4), for 1 ≤ j ≤ N + 1 − q we consider q + 1 consecutive points

(xj+k)
q
k=0 from (xk)

N+1
1 . Every interval of the length ls+k contains from 2m−k−1+1

to 2m−k points xk. Therefore the interval of the length ls+m−v−1 contains more

than q + 1 points. In order to minimize the product Π, we have to include

intervals containing large gaps of the set K(α)in the chain [xj, · · · , xj+q] ⊂ · · · ⊂
[x1, · · · , xN+1] as late, as possible, that is all q+1 points must belong to Ij,s+m−v−1

for some j. By the symmetry of the set K(α) we again can take j = 1. The interval

of the length ls+m−v contains at most 2v points, whence for any choice of q + 1

points in succession, all values that make up the product Π, are not smaller

than the length of the gap hs+m−v−1 := ls+m−v−1 − 2 ls+m−v. Therefore, Π ≥
hJ−q−1

s+m−v−1 ΠN+1
J+1 xk, where J, J ≤ 2v+1, is the number of points xk on I1,s+m−v−1.
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Further, J − q − 1 ≤ 2v and

xq+2 · · ·xJ

hJ−q−1
s+m−v−1

≤ ( ls+m−v−1

ls+m−v−1 − 2 ls+m−v

)2v

< exp (2v 4lα−1
s+m−v−1). (3.6)

Since lα−1
s+m−v−1 = l

(α−1)(s+m−v−2)
1 < 2−s+v, we see that the fraction above

is smaller than 2, due to the choice of s0. It follows that Π ≥ 1
2
ΠN+1

q+2 xk and

| [x1, · · · , xN+1]f | ≤ 2N− q−1 ||f || q (xq+2 · · · xN+1)
−1.

Combining this with (3.5) we have

| [x1, · · · , xN+1]f | · |( ΩN · u)(p)| ≤ cp N2 2N ls l−p−1
s+m−1 Πq+1

k=2xk.

Our next goal is to evaluate Πq+1
k=2xk in terms of ls+m−1. Estimating roughly

all xk, k > 2, that are not endpoints of the basic intervals of length ls+m−2, from

above by ls+m−v−1, we get

Πq+1
k=2xk ≤ ls+m−1 ls+m−2 l2s+m−3 · · · l2

v−2

s+m−v l2
v−1−1

s+m−v−1 = lκs+m−1

with κ = 1 + 1
α

+ 2
α2 + · · ·+ 2v−1

αv − 1
αv > (2/α)v − 1.

Therefore,

| [x1, · · · , xN+1]f | · |( ΩN · u)(p)| ≤ cp N2 2N l2s+m−1,

since κ + α−m+1 − p− 1 > 2, due to the choice of q.

On the one hand, 2N ls+m−1 < 22m
lα

s+m−2

1 < 22ns−αs ≤ 1, as m ≥ 2 and

l1 < 1/2. On the other hand, the accumulation sum contains Ns − Ms < Ns

terms. Therefore,

| (
Ns∑

N=Ms+1

· · · )(p)| ≤ cp N3
s ls,

which is a term of convergent with respect to s series, as is easy to see. We neglect

the sum with respect to j, because for fixed x at most one term of this sum does

not vanish.

The same proof works for terms of the transition sums. The sum (3.1) does

not vanish only for x at a short distance to I1,s+1 ∩ K. For this reason the
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arguments of the estimation of |Ω(i)
N (x)| remain valid. On the other hand, if

we want to minimize the product of lengths of intervals, constituent the chain

[xj, · · · , xj+q] ⊂ · · · ⊂ [x1, · · · , xN+1], then we have to take xj, · · · , xj+q in the

interval I1,s+1. Therefore the bound (3.6) and the followings still go. Thus the

operator L is well-defined and continuous. 2

Remark. It is a simple matter to find a sequence of functions divergent

in τ that converges in the Jackson topology. It is interesting that the same

sequence can destroy the Markov inequality. Given s ∈ N let N = 2s and

PN(x) = (ls−1 · l2s−2 · · · l2s−1

0 )−1 ΠN
j=1(x − cj,s), where cj,s is a midpoint of the

interval Ij,s. Then 1
s

ln(|P ′
N(0)|/|PN |0) → ∞ as s → ∞, contrary to the Markov

property. On the other hand, En(PN) ≤ |PN |0 for n < N . Then for any k we get

dk(PN) ≤ Nk |PN |0 ≤ 2s k ls → 0, as s → ∞. But P ′
N(0) 9 0, so the sequence

(PN) diverges.



Chapter 4

Extension for another model case

Here we consider a compact set of the form of a sequence of closed intervals

convergent to a point. The spaces of Whitney functions on compact sets of this

type were considered in [15], [16], [19]. For ultradifferentiable classes of functions

on such sets, an extension operator was given by Beaugendre [6]. Under suitable

choice of parameters, these sets are the first examples of compact sets without

Markov property, but with the extension property. So, in such cases the PawÃlucki-

Pleśniak extension method can not be applied.

Let K ⊂ R be a perfect compact set. E(K) is the space of infinitely differen-

tiable Whitney functions on K. Let the norms (|| · ||q)∞q=1 be given as in section

3.1.

For any set S ⊂ R, let

|f |S = sup{|f(x)| : x ∈ S},

and for ε ≥ 0 let Sε denote the set {x ∈ R : dist(x, S) ≤ ε}.

Let K = {0} ∪ ⋃∞
k=1 Ik such that K ⊂ [0, 1]. Ik = [ak, bk]. Let δk = 1

2
(bk −

ak), hk = ak − bk+1. 2δk ≤ hk and δk ↓ 0, ak ↓ 0. Let bk = Bkδk where B is a

constant. Let R > 1 such that δk+1 = δR
k . Then by [19] K has the extension

property, we will see below that the set has no Markov property. In [16] for

compact sets formed of intervals converging to a point, under some conditions for

44
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the parameters, a basis was given for the Whitney functions on such sets, and

an extension operator was constructed by use of extensions of the basis elements.

We can see that, the set K does not satisfy the conditions of having a basis in

[16]. So, for E(K), we do not have any information about the basis, and the

extension could not be given by using basis elements. Here, we give explicit form

of an extension operator for E(K) by using local interpolation of functions by

polynomials.

Let

lNj (x, Ik) =
N+1∏

i=1,i6=j

(
x− tkN,i

tkN,j − tkN,i

)

j = 1, ..., N + 1 and

lNj (x, Ik, 0) =
N∏

i=0,i 6=j

(
x− tkN−1,i

tkN−1,j − tkN−1,i

)

j = 0, ..., N where {tkN,1, ..., t
k
N,N+1} are the Chebyshev zeros of order N +1 of the

interval Ik and tkN,0 = 0 for all k, N ∈ N. Define

LIk
N f(x) =

N+1∑
j=1

f(tkN,j)l
N
j (x, Ik).

which is the Lagrange interpolation polynomial of f of degree N of the points

{tkN,1, ..., t
k
N,N+1}.

Let Jk = [0, bk] and Kk = K ∩ Jk and define

LJk
N f(x) =

N∑
j=o

f(tk−2
N−1,j)l

N
j (x, Ik−2, 0).

which is the Lagrange interpolation polynomial of f of degree N of the points

{tk−2
N−1,0, ..., t

k−2
N−1,N}.

We have the following [36] upper bound for |lNj (x, Ik)|.

|lNj (x, Ik)| ≤ 4

π

for x ∈ Ik, k ≥ 1 and j ∈ {1, 2, ..., N + 1}. We will use the integer bound 2

instead of 4
π
. Next lemma gives an upper bound for |lkj (x, Ik−2, 0)|.
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Lemma 4.1 There exists a constant C1 > 0 such that |lkj (x, Ik−2, 0)| ≤ C1 for

x ∈ Jk for all k ≥ 3 and j ∈ {0, 1, ..., k}.

Proof: Suppose j = 0, then

|lk0(x, Ik−2, 0)| =
∣∣∣∣∣

k∏
i=1

(
x− tk−2

k−1,i

0− tk−2
k−1,i

)∣∣∣∣∣ =
k∏

i=1

(
1− x

tk−2
k−1,i

)

and hence |lk0(x, Ik−2, 0)| ≤ 1 for x ∈ Jk.

Now, suppose 1 ≤ j ≤ k. Then

|lkj (x, Ik−2, 0)| =
k∏

i=0,i6=j

∣∣∣∣∣
x− tk−2

k−1,i

tk−2
k−1,j − tk−2

k−1,i

∣∣∣∣∣ =
k∏

i=1,i6=j

∣∣∣∣∣
x− tk−2

k−1,i

tk−2
k−1,j − tk−2

k−1,i

∣∣∣∣∣ ·
∣∣∣∣∣

x

tk−2
k−1,j

∣∣∣∣∣

≤ bk−1
k−2

2( δk−2

2
)k · |T ′

k,k−2(t
k−2
k−1,j)|

· bk

ak−2

≤ bk−1
k−2

( δk−2

2
)k−1 · k

· bk

ak−2

≤ (2Bk)k−1

k
· Bkδk

δk−1

≤ Bk(2k)k−1δ
(R−1)Rk−2

1

using the fact that |T ′
k,k−2(t

k−2
k−1,j)| > k

δk−2
. The last expression above goes to zero

as k goes to infinity. 2

We have the following inequality by the Hölder continuity property of Green’s

function for domains complementary to closed intervals. Let I = [x0 − δ, x0 + δ],

then for some constant C > 0:

|pn|Iε ≤
[
1 + C

( ε

δ

) 1
2

]n

|pn|I

for any polynomial pn ∈ Pn.

Define LNf(x) = LIk
N f(x) for x ∈ Ikδk for 1 ≤ k < N , LNf(x) = LJN

N f(x) for

x ∈ JNδN and LNf(x) = 0 elsewhere.

Let εNk = δk(
1

N2 ). Let uN = uN1 + · · · + uNN where uNk is a C∞ function

such that for k < N uNk = 1 for x ∈ Ik, uNk ≡ 0 for dist(x, Ik) > εNk and
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|uNk|p ≤ Dpε
−p
Nk. And uNN = 1 for x ∈ JN , uNN ≡ 0 for dist(x, JN) > εNN and

|uNN |p ≤ Dpε
−p
NN . Let here the constants Dp be of increasing order.

On the interval I = [x0 − δ, x0 + δ] any polynomial pn ∈ Pn satisfies the

following Markov inequality as a generalization of the Markov inequality for the

interval [-1,1].

|p′n|I ≤
1

δ
n2|pn|I .

Let f ∈ C∞(I) where I = [x0 − δ, x0 + δ], then by Jackson’s theorem [43] for

any n > q the following holds:

distI(f,Pn) ≤ Mq

(
2δ

n

)q

w(f (q);
2δ

n
)

where Mq is a constant depending only on q. Since f (q) is differentiable, for the

modulus of continuity w we have

w(f (q);
2δ

n
) ≤ 2δ

n
|f (q+1)|I .

Hence we have

distI(f,Pn) ≤ Mq

(
2δ

n

)q+1

|f (q+1)|I .

Lemma 4.2 Let f ∈ C∞(I) where I = [x0−δ, x0+δ], and S be any closed subset

of I, then for any q ∈ N such that for n ≥ q the following holds:

distS(f,Pn) ≤ (2δ)q||f ||Sq

Proof: For any y ∈ S we have

distS(f,Pn) ≤ distS(f,Pq) ≤ |Rq
yf(x)|S ≤ (2δ)q||f ||Sq

2

4.1 Extension operator for E(K)

Define the operator as

Lf = u1L1f +
∞∑

N=2

uN(LNf − LN−1f). (4.1)
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Lemma 4.3 Lf(x) = f(x) for any f ∈ E(K) and x ∈ K.

Proof:

Lf(x) = lim
N→∞

LNf(x)

Suppose x ∈ Ik for some k ∈ N. Let N > k, choose pN ∈ PN such that

|f − pN |Ik = distIk
(f,PN). Then we have

|LNf(x)− f(x)| = |LIk
N f(x)− f(x)|

≤ |LIk
N f(x)− pN(x)|+ |pN(x)− f(x)|

≤ |LIk
N (f − pN)(x)|+ distIk

(f,PN)

≤ 2
N+1∑
j=1

|f(tkN,j)− pN(tkN,j)|+ distIk
(f,PN)

≤ (2N + 3)distIk
(f,PN).

Here using the Jackson theorem we get to

|LNf(x)− f(x)| ≤ Mq(2N + 3)

(
2δk

N

)q+1

|f |q+1

for any q and for any N ≥ q. Hence limN→∞ |LNf(x)− f(x)| = 0 for x > 0. For

x = 0 we have by definition LNf(0) = f(0) for all N . 2

4.2 Continuity of the operator

Theorem 4.4 The operator L : E(K) −→ C∞(R), defined in (4.1) is continuous.

Proof: For given p ∈ N let q = 2dR3ep + 3, then

(Lf)(p) = (u1L1f)(p) +
∞∑

N=2

p∑
i=0

(
p

i

)
u

(p−i)
N · (LNf − LN−1f)(i).

Hence

|(Lf)(p)| ≤ |(u1L1f)(p)|J1ε11+

∞∑
N=2

p∑
i=0

(
p

i

)
max

{
|u(p−i)

N · (LNf − LN−1f)(i)|A : A ∈ AN

}
(4.2)
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for AN = {I1εN1, ..., IN−1εNN−1, JNεNN}.

For k ≤ N − 2

|(LNf − LN−1f)(i)|IkεNk = |(LIk
N f − LIk

N−1f)(i)|IkεNk

≤
[
1 + C

(
εNk

δk

) 1
2

]N

|(LIk
N f − LIk

N−1f)(i)|Ik

≤
[
1 + C

(
εNk

δk

) 1
2

]N

δ−i
k N2i|LIk

N f − LIk
N−1f |Ik

≤ eCδ−i
k N2i|LIk

N f − LIk
N−1f |Ik .

Choose pN−1 ∈ PN−1 such that |f − pN−1|Ik = distIk
(f,PN−1), then

|LIk
N f − LIk

N−1f |Ik ≤ |LIk
N f − pN−1|Ik + |pN−1 − LIk

N−1f |Ik

≤ |LIk
N (f − pN−1)|Ik + |LIk

N−1(f − pN−1)|Ik

≤ 2(2N + 1)distIk
(f,PN−1).

Hence for k ≤ N − 2

|u(p−i)
N · (LNf − LN−1f)(i)|IkεNk ≤ Dp−iδ

−(p−i)
k N2(p−i)6eCδ−i

k N2i+1distIk
(f,PN−1)

≤ 6Dpe
Cδ−p

k N2p+1distIk
(f,PN−1).

Let N > q + 1, then

|u(p−i)
N · (LNf − LN−1f)(i)|IkεNk ≤ 6Dpe

Cδ−p
k N2p+1Mq

(
2δk

N − 1

)q+1

|f |q+1

≤ 24Dpe
CMq2

2qN−2|f |q+1.

Similarly

|(LNf − LN−1f)(i)|JN εNN ≤
[
1 + C

(
2εNN

bN

) 1
2

]N

(
bN

2
)−iN2i|LJN

N f − L
JN−1

N−1 f |JN

≤
[
1 + C

(
εNN

δN

) 1
2

]N

δ−i
N N2i|LJN

N f − L
JN−1

N−1 f |JN

≤ eCδ−i
N N2i(2N + 1)C1distKN−3

(f,PN−1)

≤ 3C1e
Cδ−i

N N2i+1distKN−3
(f,PN−1).
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Then for N ≥ q + 1 we have

|u(p−i)
N · (LNf − LN−1f)(i)|JN εNN ≤ Dpδ

−(p−i)
N N2(p−i)3C1e

Cδ−i
N N2i+1distKN−3

(f,Pq)

≤ 3C1e
CDpδ

−p
N N2p+1distKN−3

(f,Pq)

≤ 3C1e
CDpδ

−p
N N2p+1bq

N−3||f ||q
≤ 3C1e

CDpδ
−R3p
N−3 N2p+1(B(N − 3)δN−3)

q||f ||q
≤ 3C1e

CDpB
qδ

(q−R3p)RN−4

1 N q+2p+1||f ||q

Hence there exists an integer N0 such that for N ≥ N0:

|u(p−i)
N · (LNf − LN−1f)(i)|JN εNN ≤ 1

N2
||f ||q.

And for k = N − 1 we have

|(LNf − LN−1f)(i)|IN−1εN(N−1) ≤
[
1 + C

(
εN(N−1)

δN−1

) 1
2

]N

δ−i
N−1N

2i|LIN−1

N f − L
JN−1

N−1 f |IN−1

≤ eCδ−i
N−1N

2i[2(N + 1) + C1N ]distKN−3
(f,PN−1)

≤ (4 + C1)e
Cδ−i

N−1N
2i+1distKN−3

(f,PN−1).

Therefore, similarly we can conclude that there exist an integer N1 such that for

N ≥ max{N1, q + 1}:

|u(p−i)
N · (LNf − LN−1f)(i)|IN−1εN(N−1) ≤ 1

N2
||f ||q.

Now, let N2 = max{q + 1, N0, N1}. Dividing the sum in (4.2) into two parts

we have

|(Lf)(p)| ≤ C2|f |0 +

N2−1∑
N=2

+
∞∑

N=N2

for some constant C2 > 0. For the first sum there exists a constant C3 > 0 such

that
N2−1∑
N=2

≤ C3||f ||q.
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For the second sum

∞∑
N=N2

≤ ||f ||q+1

∞∑
N=N2

p∑
i=0

(
p

i

)
max

{
1

N2
, 24Dpe

CMq2
2q 1

N2

}

≤ ||f ||q+124Dpe
CMq2

2q+p

∞∑
N=N2

1

N2

≤ C4||f ||q
for some constant C4 > 0. Hence, the operator (4.1) is continuous. 2

Following the idea from [16](Proposition 1) we can prove the following theo-

rem.

Theorem 4.5 Let the constants R ≥ 2 and B ≥ 6, then the compact set K does

not have the Markov property.

Proof: Without loss of generality, let δk = exp(−Rk), k ∈ N. Fix m ∈ N.

Consider the polynomial

P (x) = x ·
m∏

k=1

γk · T̃nk,k(x)

where γk = T̃nk,k(0). Take nm = 1, nk = Rm+(m−1)+···+(k+1) for k ≤ m− 1.

Then P ′(0) = 1 and deg P = 1 +
∑m

k=1 nk < Rm2
. We will show that

|P (x)| ≤ bm, x ∈ K.

This implies the absence of Markov property for K since

1 ≤ CRµm2

m exp(−Rm), m →∞

is a contradiction for fixed C, µ.

Fix x ∈ K. If x ≤ bm, then |γk · T̃nk,k(x)| ≤ 1, k = 1, 2, ...,m, and the desired

bound for |P (x)| is obvious. Consider now x ∈ Ij, 1 ≤ j ≤ m− 1. Then

|P (x)| ≤ bj|γj|
m∏

k=j+1

|γk · T̃nk,k(x)|,
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since all other terms of the product are less than 1.

To estimate the remaining terms, we use the following bound from [28].

2n−1(∆k/δk)
n < |T̃n,k(x)| < 2n−1(∆k/δk + 2)n, n > 0,

∆k = dist(x, Ik). Therefore,

|γk · T̃nk,k(x)| ≤ (
bj

ak

)nk =

(
Bjδj

(Bk − 2)δk

)nk

and

|γj| < 2(2Bj − 4)−nj .

Hence,

|P (x)| < 2Bj exp(−Rj)(2Bj − 4)−nj exp
m∑

k=j+1

nk[R
k −Rj + ln(

Bj

Bk − 2
)].

We have

Rj ≥ R > ln
4

3
> ln(

Bj

Bj + B − 2
) > ln(

Bj

Bk − 2
).

Using the relations

2 exp(−Rj) < 1, nkR
k = nK−1,

we have

ln(|P (x)|/bm) < ln(Bm) · [Rm − nj ln(2Bj − 4) +
m−1∑

k=j

nk]. (4.3)

Using the estimates

Rm +
m−1∑

k=j

nk ≤ 2nj, ln(2Bj − 4) > 2

it follows the expression on the right of (4.3) is negative and |P |K ≤ bm. Hence

K does not have the Markov property. 2



Chapter 5

Extension property of Cantor

sets in Rn

There are several results about the existence of the extension property of compact

sets in R. In the multidimensional case only a few results are known. In [29] (see

also [31], [33]) PawÃlucki and Pleśniak suggested an explicit construction of the

extension operator for a rather wide class of compact sets. For example if K is

the closure of a domain with Hölder type boundary then it has the extension

property (see e.g.[41]). On the other hand if K has a thin cusp then K does not

have the extension property (see e.g. [17]).

In this chapter we will consider Cantor sets in Rn . In the one-dimensional case

perfect sets of class α were considered by Tidten [42] and he proved as a corollary

that the classical Cantor set K has the extension property. Later Goncharov [18]

gave necessary and sufficient conditions for the extension property of generalized

Cantor sets of class α. In Rn we will show that some similar conditions can

be given for the Cantor set which is formed by taking cross product of the one

dimensional generalized Cantor sets (This chapter mostly contains some results

of the M.S. thesis of the applicant).

In what follows we consider only C∞-determining compact sets. Let K be a

C∞-determining compact set in Rn. Then E(K) is the space of Whitney functions

53
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with the topology defined by the norms

||f ||q = |f |q + sup

{
|(Rq

yf)(k)(x)|
|x− y|q−|k|

: x, y ∈ K, x 6= y, |k| ≤ q

}
,

|k| = k1 + ... + kn,

q = 0, 1, ..., where |f |q = sup{|f (k)(x)| : x ∈ K, |k| ≤ q} and

Rq
yf(x) = f(x)− T q

y f(x) = f(x)−
∑

|k|≤q

f (k)(y)

k1!...kn!
(x1 − y1)

k1 ...(xn − yn)kn

is the Taylor remainder. Let K(α) be as in section 3.3.

Theorem 5.1 [18] For 1 < α, α 6= 2, the Cantor set K(α) has the

extension property if and only if α < 2.

5.1 Cantor type sets in Rn and the extension

property

We see that the critical value of the parameter α for the one dimensional Cantor

sets is α = 2. We want to find the critical values for the set K(α1)×K(α2)× ...×
K(αn). Let for i ≤ n K [α1,...,αi] denote the set K(α1) × K(α2) × ... × K(αi). For

simplicity we will use the following notations:

‖f‖(i)
q denotes the qth norm of f ∈ E(K [α1,...,αi]), i ∈ {1, 2, ..., n}.
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For x = (x1, ..., xn) ∈ K [α1,...,αn] and k = (k1, ..., kn) ∈ Nn let

~x = (x1, ..., xn)

~xi = (xi, ..., xn)

x̄i = (x1, ..., xi)

k! = k1!...kn!

xk = xk1
1 ...xkn

n

~x ≥ ~y ⇔ xi ≥ yi ∀i ≤ n

~x = ~y ⇔ xi = yi ∀i ≤ n

~x > ~y ⇔ ~x ≥ ~y and ~x 6= ~y

Lemma 5.2 Let f ∈ E(K [α1,...,αn]). For n ≥ 2 fix c ∈ K [α2,...,αn] and let fc(x) =

f(x, c), x ∈ K(α1). Then

‖f‖(n)
q ≥ ‖fc‖(1)

q .

Lemma 5.3 Let f ∈ E(K [α1,...,αn]). For n ≥ 2 fix c ∈ K(αn) and let f
(i)
c (y) =

∂i

∂xi
n
f(y, c), i ∈ {1, 2, ..., n− 1}, y ∈ K [α1,...,αn−1]. Then

‖f‖(n)
q ≥ ‖f (i)

c ‖(n−1)
q−i .

The proofs of these lemmas are straightforward.

Theorem 5.4 K [α1,...,αn] has the extension property for 1 < αi < 2, i = 1, ..., n.

Proof: We will prove by induction on n. We know the statement is true for

k = 1. Now suppose the statement is true for k ≤ n− 1. Then take

z0 = (x0, y0) ∈ K [α1,...,αn]

where x0 ∈ K [α1,...,αn−1] and y0 ∈ K(αn).

Fix q, fix f ∈ E(K [α1,...,αn]). Fix k2 ≤ q. Let g1(x) := f (~0,k2)(x, y0). Then

g1(x) ∈ E(K [α1,...,αn−1]).
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Therefore by proposition 1.15 and by our induction assumption

∀R > 0 ∃r, C > 0 : |g1|(n−1)
q ≤ tR|g1|(n−1)

0 +
C

t
‖g1‖(n−1)

r , t > 0 .

So ∀~k1 ∈ Nn−1 s.t. |~k1| ≤ q − k2 we have

|f ( ~k1,k2)(z0)| ≤ tR sup
x∈K[α1,...,αn−1]

|f (~0,k2)(x, y0)|+ C

t
‖g1‖(n−1)

r , t > 0 . (5.1)

Now let g2(y) := f(x, y) then g2(y) ∈ E(K(αn)). Using our assumption again,

if we fix x we will have

|f (~0,k2)(x, y0)| ≤ dR sup
y∈K(αn)

|f(x, y)|+ C

d
‖g2‖(1)

r , d > 0 ,

then

(sup
x∈K

[α1,...,αn−1] |f (~0,k2)(x,y0)|) ≤ (sup
x∈K

[α1,...,αn−1] (d
R sup

y∈K(αn) |f(x,y)|+C
d
||g2||(1)r ))

≤ (dR sup(x,y) |f(x,y)|+C
d

supx ||g2||(1)r )

for all d > 0. By Lemma 5.2

‖g2‖(1)
r ≤ ‖f‖(n)

r ,

and by Lemma 5.3

||g1||(n−1)
r ≤ ||f ||(n)

r+k2
≤ ||f ||(n)

2r .

Then by (5.1)

|f ( ~k1,k2)(z0)| ≤ tRdR|f |0 + tR
C

d
‖f‖2r +

C

t
‖f‖2r .

Now let d = tR+1 then

|f ( ~k1,k2)(z0)| ≤ tR
2+2R|f |0 +

2C

t
‖f‖2r ∀t > 0 .

2

The proof of the following lemma is not so difficult, but we decided to present

at least one of the proofs of the lemmas given in this chapter.

Lemma 5.5 Let f ∈ E(K [α1,...,αn]) s.t. f(x) = f(x1, ..., xn) = F (x1), F (x1) ∈
E(K(α1)) that is, f depends only on the first variable. Then ‖f‖(n)

q = ‖F‖(1)
q .
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Proof: Since F (k1,~k2)(x1) = 0 for ~k2 > 0 we trivially have

|f |(n)
q = |F |(1)

q .

On the other hand we have

F (i1,~i2)(x1)−
∑

j≥i,|j|≤q

F (j1,~j2)(y1)

(j1 − i1)!...(jn − in)!
(x1 − y1)

j1−i1 ...(xn − yn)jn−in = 0

for ~i2 > 0 and F (j1,~j2)(x1) = 0 for ~j2 > 0. Therefore

Sn
q (f) = sup

x,y,i

{
|(R

q
yf)(i)(x)

|x− y|q−|i| | : x, y ∈ K [α1,...,αn], x 6= y, |i| ≤ q

}

= sup




|F (i1,~i2)(x1)−

∑
j≥i,|j|≤q

F (j1,~j2)(y1)
(j−i)!

(x− y)j−i|
|x− y|q−|i|





= supx,y,i1

{
|F (i1)(x1)−Pj1≥i1,~j2≥~0,|j|≤q

F (j1,~j2)(y1)

(j1−i1)!~j2!
(x1−y1)j1−i1 (~x2−~y2)

~j2 |
|x−y|q−i1

}

for i1 ≤ q

= sup




|F (i1)(x1)−

∑ F (j1)(y1)
(j1−i1)!

(x1 − y1)
j1−i1|

(
√

(x1 − y1)2 + ... + (xn − yn)2)q−i1
: x 6= y, i1 ≤ q





= sup

{
|F (i1)(x1)−P F (j1)(y1)

(j1−i1)!
(x1−y1)j1−i1 |

|x1−y1|q−i1
: x1, y1 ∈ R, x1 6= y1, i1 ≤ q

}

= S1
q (F ) .

Hence we get ‖f‖(n)
q = ‖F‖(1)

q . 2

Theorem 5.6 K [α1,...,αn] does not have the extension property if at least one of

the αi’s is greater than 2.

Proof: Suppose without loss of generality α1 > 2 . By the proof of Theorem 2

in [18] we have

∀p ∃ε ∃q ∀r > q ∃(fm) ⊂ E(K(α1)) :
‖fm‖(1)

p ‖fm‖(1)ε
r

‖fm‖(1)1+ε
q

−→ 0
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as n −→ ∞. Now define gm(x1, ..., xn) = fm(x1). By Lemma 5.5 ‖gm‖(n)
q =

‖fm‖(1)
q . Hence we have

∀p ∃ε ∃q ∀r > q ∃(gm) ⊂ E(K [α1,...,αn]) :
‖gm‖(n)

p ‖gm‖(n)ε
r

‖gm‖(n)1+ε
q

−→ 0

as n −→∞, which shows the negation of (1.5). 2
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