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Abstract 

We consider Einstein Born–Infeld theory with a null fluid in Kerr–Schild 

geometry. We find accelerated charge solutions of this theory. Our solutions 

reduce to the Plebanski solution when the acceleration vanishes and to the´ 

Bonnor–Vaidya solution as the Born–Infeld parameter b goes to infinity. We 

also give the explicit form of the energy flux formula due to the acceleration 

of the charged sources. 

PACS numbers: 04.20.Jb, 41.60.−m, 02.40.−k 

1. Introduction 

Accelerated charge metrics in Einstein–Maxwell theory have been studied in two equivalent 

ways. One way uses the Robinson–Trautman metrics [1–4] and the other way is the Bonnor– 

Vaidya approach [5] using the Kerr–Schild ansatz [6, 7]. In both cases one can generalize the 

metrics of non-rotating charged static spherically symmetric bodies by introducing 

acceleration. Radiation of energy due to the acceleration is a known fact both in classical 

electromagnetism [8, 9] and in Einstein–Maxwell theory [5]. 

Recently, we have given accelerated solutions of the D-dimensional Einstein–Maxwell 

field equations with a null fluid [10]. The energy flux due to acceleration in these solutions 

are all finite and have the same sign for all 4. It is highly interesting to study the same 

problem in nonlinear electrodynamics. 

The nonlinear electrodynamics of Born–Infeld [11] shares two separate important 

properties with Maxwell theory. The first is that its excitations propagate without the shocks 

commontogenericnonlinearmodels[12], andthesecondiselectromagneticdualityinvariance 

[13] (see also the references therein). For this reason we consider the Einstein Born–Infeld 

theory in this work. We assume that the spacetime metric is of the Kerr–Schild form [6, 7] 

with an appropriate vector potential and a fluid velocity vector. We derive a complete set 
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of conditions for the Einstein Born–Infeld theory with a null fluid. We assume vanishing 

pressure and cosmological constant. Under such assumptions we give the complete solution. 

This generalizes the Plebanski solution [14]. We also obtain the energy flux formula which´ 
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turns out to be the same as that obtained in Einstein–Maxwell theory. For the sake of 

completeness we start with some necessary tools that will be needed in the following sections. 

For conventions and details we refer the reader to [10]. 

Let zµ(τ) describe a smooth curve C in four-dimensionalMinkowski manifold M defined 

by z : I ⊂ R → M. Here τ is the arclength parameter of the curve, and I is an interval on the 

real line. For the null case, τ is a parameter of the curve. The distance  between an arbitrary 

point P (not on the curve) with coordinates xµ in M and a point Q on the curve C with 

coordinates zµ is given by 

 Let τ = τ0 define the point on the curve

 C(the retarded time). 

Then we find the following: 

 , (1) 

R ≡ z˙µ(τ0)(xµ − zµ(τ0)). (2) 

From here on, a dot denotes differentiation with respect to τ0. We then have 

, 

(3) 

where 

 zµ), .  A ≡ z¨µ(xµ

 For timelike curves we take 1. We introduce some scalars ak (k = 0,1,2,...) 

  (4) 

In what follows, we shall take . For all k we have the following property (see [10] 

for further details): 

 λµak,µ = 0. (5) 

For the flux expressions that will be needed in section 3, we take 

 , (6) 

where nµ is a spacelike vector orthogonal to ˙zµ (see [10] for more details). For the remaining 

part of this work, we always assume and take  

2. Accelerated Born–Infeld metrics 

We now consider the Einstein Born–Infeld field equations with a null fluid distribution in 

four dimensions. The Einstein equations 

 

with the fluid and Maxwell equations are given by [15, 16] 

 , (7) 
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p,ν = (J µFµσuσ)uν − (p + ρ)uµ;µuν − (p + ρ)uµuν;µ − ρ,µuµuν − J µFµν, (8) 

Fµν;ν = J µ, 

where b is the Born–Infeld parameter and 

(9) 

 , (10) 

(11) 

(12) 

When b → ∞, Born–Infeld theory goes to the Maxwell theory. We assume that the metric of 

the four-dimensional spacetime is the Kerr–Schild metric. Furthermore, we take the null 

vector λµ in the metric as the same null vector defined in (1). With these assumptions the Ricci 

tensor takes a special form. 

Proposition 1. Let gµν = ηµν −2Vλµλν and λµ be the null vector defined in (1) and let V be a 

differentiable function, then the Ricci tensor and the Ricci scalar are, respectively, given by 

Rαβ = ζβλα + ζαλβ + rδαβ + qλβλα, (13) 

, 

where 

(14) 

 , (15) 

(16) 

(17) 

and 

Let us assume that the electromagnetic vector potential Aµ is given by Aµ = Hλµ where H is a 

differentiable function. Let p and ρ be, respectively, the pressure and the energy density of a 

null fluid distribution with the velocity vector field uµ = λµ. Then the difference tensor 

 is given by the following proposition. 



 

Proposition 2. Let gµν = ηµν − 2Vλµλν,Aµ = Hλµ, where λµ is given in (1), and V and H be 

differentiable functions. Let p and ρ be the pressure and energy density of a null fluid with 

velocity vector field λµ. Then the difference tensor becomes 

 α α α α α 

 β = λ Wβ + λβW + Pδ β + Qλ λβ (18) 

where 

 (19) 

 

 

and 

. 

We shall now assume that the functions V and H depend on R and on some R-independent 

functions ci,(i = 1,2,...) such that 

 ci,αλα = 0, (22) 

for all i. It is clear that due to the property(5) of ak, all these functions (ci) are functions of the 

scalarsa andak (k = 1,2,...), andτ0. Infactwe shouldwrite this as ci = ci(τ0;a,a1,a2,...) where all the 

acceleration scalars a,a1,a2,... implicitly depend on the arclength parameter τ0. If one uses the 

Serret–Frenet frame in four dimensions, one sees that all these scalars a,ak,k = 1,2,..., are 

functions of the curvaturescalars κ1,κ2,κ3 of the curve C (see [10] for furtherdetails). We 

remarkthatthe scalarsa,a1,a2,...maynotnecessarilybeall functionally independent. We only 

want to emphasize that a ci of the form ci = ci(τ0;a,a1,a2,...) identically satisfies (22). We now 

have the following proposition. 

Proposition 3. Let V and H depend on R and functions ci (i = 1,2,...), that satisfy (22), then 

the Einstein equations given in proposition 2 reduce to the following set of equations: 

 ,

 (23) 

(24) 

 

T 
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, (26) 

where 

 ,

 (27) 

(28) 

and the prime denotes partial differentiation with respect to R. Equation (9) defines the 

electromagnetic current vector Jµ, 

 , (29) 

 . (30) 

The above equations can be described as follows. Equations (23) and (25) determine, 

respectively, the pressure and mass density of the null fluid distribution with null velocity λµ. 

Equation (24) gives a relation between the electromagnetic and gravitational potentials H and 

V. Since this relationis quite simple, when oneof them is given,one can easily solve the other. 

Equation (26) implies that there are some functions ci (i = 1,2,...) where this equation is 

satisfied. The functions ci (i = 1,2,...) arise as integration constants (with respect to the variable 

R) while determining the R dependence of the functions V and H. Assuming the existence of 

such ci, the above equations give the most general form of the Einstein Born– Infeld field 

equations with a null fluid distribution under the assumptions of proposition 2. Assuming now 

that the null fluid has no pressure and the cosmological constant vanishes, we have the 

following special case. (From now on, we set κ = 8π so that one finds the correct Einstein limit 

as one takes b → ∞ [5, 10].) 

Proposition 4. Let  

 , (31) 

 , (32) 

where 

 (33) 

, (34) 



 

 (35) 

Here e is assumed to be a function of τ only but the functions m and c which are related 
through the arbitrary function M(τ) (depends on τ only) do depend on the scalars a and ak 

. The current vector (30) reduces to the following form: 

 (36) 

for the simple choice c = c(τ,a). Here . 

Note that equation (23) with zero pressure and (24) determine the R dependence of the 

potentials V and H completely. Using proposition 3 we have chosen the integration constants 

(R independent functions) as the functions ci (i = 1,2,3) so that c1 = m , c2 = e and c3 = c, 

and   

c = c(τ,a,ak), 

where ak are defined in (4). 

e = e(τ), m = M(τ) + 8(πe)c 

Remark 1. There are two limiting cases. In the first limit one obtains the Bonnor–Vaidya 

solutions when b → ∞. In the Bonnor–Vaidya solutions the parameters m and c (which are 

related through (33)) depend upon τ and a only. In our solution, these parameters depend not 
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only on τ and a but also on all other scalars . The scalars ak are related to the scalar 

curvatures of the curve C (see [10] for further details). The second limit is the static case 

where the curve C is a straight line or ak = 0 for all k = 0,1,... . Our solution then reduces to the 

Plebanski solution [14].´ 

Remark 2. In the case of classical electromagnetism the Lienard–Wiechert potentials lead´ to 

the accelerated charge solutions [8–10]. In this case, due to the nonlinearity, we do not have 

such a solution. The current vector in (36) is asymptotically zero for the special choice c = 

−ea and e = constant. This means that J = O(1/R6) as R → ∞. Hence the solution we found here 

is asymptotically pure source free Born–Infeld theory. With this special choice the 

currentvector is identically zero in the Maxwell case [10]. Note also that the current vector 

vanishes identically when e = constant, c = c(τ) and a = 0. 

Remark 3. It is easy to prove that the Born–Infeld field equations 

∂µFµν = 0 

in flat spacetime do not admit solutions with the ansatz 

Aµ = H(R,τ,a,ak)λµ. 

Furthermore, the ansatz Aµ = H(R,τ)z˙µ is also not admissible. 

Remark 4. Note that ρ = 0 only when the curve C is a straight line in M (static case). This 

means that there are no accelerated vacuum Einstein–Born–Infeld solutions in Kerr–Schild 

form. 

3. Radiation due to acceleration 

In this section we give the energy flux due to the acceleration of charged sources in the case 

of the solution given in proposition 4. The solutions described by the functions c,e and M give 

the energy density ρ in (35). Remember that at this point c = c(τ,a,ak) are arbitrary. 

Asymptotically(as b goesto infinity) oursolutionapproachesthe Einstein–Maxwellsolutions. 

With the special choice e = constant , c = −ea our solution is asymptotically (as R goes to 

infinity) gauge equivalent to the flat space Lienard–Wiechert solution and reduces to the (as´ 

b goes to infinity) Bonnor–Vaidya solution [5]. Hence we shall use this choice in our flux 

expressions. The flux of null fluid energy is then given by 

  (37) 

and since Tf 
α

β = ρλαλβ for the special case 0 that we are examining, one finds that 

  (38) 



 

where ρ is given in (35). The flux NBI of Born–Infeld energy is similarly given by 

  (39) 

and for the solution we are examining, one finds that (as R → ∞) 

 . (40) 

Here we took e = constant and c = −ea. The total energy flux is given by 

  (41) 

for large enough R. For a charge with acceleration |z¨α| = κ1, we have (see [10]) 

 , (42) 

whereκ1 is the first curvaturescalar of C. This is exactlythe result of Bonnorand Vaidyain [5]. 

Hence with the choice of c = −ea, the linear classical electromagnetism and the Born–Infeld 

theories give the same energy flux for the accelerated charges. This, however, should not be 

surprising considering the fact that the Born–Infeld theory was originally introduced to solve 

the classical self-energy problem of an electron described by the Maxwell theory in the 

shortdistance limit [11]. For other choices of c = c(τ,a,ak), one obtains different expressions 

for the energy flux. 

4. Conclusion 

We have found exact solutions of the Einstein Born–Infeld field equations with a null fluid 

source. Physically, these solutions describe electromagnetic and gravitational fields of a 

charged particle moving on an arbitrary curve C. The metric and the electromagnetic vector 

potential arbitrarily depend on a scalar c(τ0,a,ak) which can be related to the curvatures of the 

curve C. When the Born–Infeld parameter b goes to infinity, our solution reduces to the 

Bonnor–Vaidya solution of the Einstein–Maxwell field equations [5, 10]. On the other hand, 

when the curve C is a straight line in M, our solution matches with the Plebanski solution´ 

[14]. We have also studied the flux of Born–Infeld energy due to the acceleration of charged 

particles. We observed that the energy flux formula depends on the choice of the scalar c in 

terms of the functions a,ak (or the curvature scalars of the curve C). 
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