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Abstract: The skew Toeplitz approach is one of the well developed methods to
design H∞ controllers for infinite dimensional systems. In order to be able to
use this method the plant needs to be factorized in some special manner. This
paper investigates the largest class of SISO time delay systems for which the
special factorizations required by the skew Toeplitz approach can be done. Reliable
implementation of the optimal controller is also discussed. It is shown that the
finite impulse response (FIR) block structure appears in these controllers not only
for plants with I/O delays, but also for general time-delay plants.
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1. INTRODUCTION

There are many well-developed techniques for find-
ing H∞ optimal and suboptimal controllers for sys-
tems with time delays. In particular, when the plant
is a dead-time system: e−hsP0(s) where P0 is a ra-
tional SISO plant, the optimal H∞ control problem
is solved by (Zhou and Khargonekar, 1987), (Foias
et al., 1986), using operator theoretic methods; see
also (Smith, 1989), (Özbay, 1990) and their references.
State-space solution to the same problem is given
in (Tadmor, 1997), and (Meinsma and Zwart, 2000).
Notably, (Meinsma and Zwart, 2000) used J-spectral
factorization approach to solve the MIMO version of
the problem. Moreover they showed the finite impulse
response (FIR) structure appearing in the reliable im-

1 This work was supported in part by the European Commission
(contract no. MIRG-CT-2004-006666) and by TÜBİTAK (grant
no. EEEAG-105E065).

plementation of the H∞ controllers for dead-time sys-
tems. (Meinsma and Mirkin, 2005) extended this result
to the multi-delay dead-time systems (input/output
delay case).

A closed-form controller formula is obtained by
(Kashima and Yamamoto, 2003) for the sensitivity
minimization problem involving pseudorational plants.
For more general infinite dimensional plants a solu-
tion is given by (Foias et al., 1996). Their approach
needs inner-outer factorization of the plant. (Toker and
Özbay, 1995) simplified this method and brought into
a compact form.

(Kashima, 2005) obtained an expression for the opti-
mal H∞ controller for the plants that can be expressed
as a cascade connection of a finite-dimensional general-
ized plant and a scalar inner function. As it was done by
(Mirkin, 2003), the solution is reduced to solving two
algebraic Riccati equations and an additional one-block
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problem. Moreover, (Kashima, 2005) gave the inner-
outer factorizations of stable pseudorational systems.

In our study, we determine the largest class of time-
delay systems (TDS) for which the Skew-Toeplitz ap-
proach of (Foias et al., 1996) is applicable. In order
to use this method it is necessary to do inner-outer
factorizations of the plant. An additional assumption
is that the infinite dimensional plant has finitely many
unstable zeros or poles. In this paper, we give necessary
and sufficient conditions for TDS to have finitely many
unstable zeros or poles. We classify the TDS and give
conditions such that the desired factorization is possi-
ble. For admissible plants, the factorization is given and
optimal H∞ controller is obtained. The unstable pole-
zero cancellation in the optimal controller expression
of (Toker and Özbay, 1995) is eliminated. This way
we establish the link between (Toker and Özbay, 1995)
and (Meinsma and Zwart, 2000) by showing the FIR
structure appearing in H∞ controllers for not only
dead-time plants, but also for more general TDS.

2. PRELIMINARY DEFINITIONS AND RESULTS

In (Foias et al., 1996; Toker and Özbay, 1995), it is
assumed that the plant is in the form

P̂ (s) =
m̂n(s)N̂o(s)

m̂d(s)
(1)

where m̂n(s) is inner, infinite dimensional and m̂d(s)
is inner, finite dimensional and N̂o(s) is outer, possi-
bly infinite dimensional. The optimal H∞ controller,
Ĉopt, stabilizes the feedback system and achieves the
minimum H∞ cost, γ̂opt:

γ̂opt =
∥

∥

∥

∥

[

Ŵ1(1 + P̂ Ĉopt)−1

Ŵ2P̂ Ĉopt(1 + P̂ Ĉopt)−1

]

∥

∥

∥

∥

∞
(2)

where Ŵ1 and Ŵ2 are finite dimensional weights of the
mixed sensitivity minimization problem.

Recently, the optimal H∞ control problem is solved
by (Gümüşsoy and Özbay, 2004) for systems with in-
finitely many unstable poles and finitely many unstable
zeros by using the duality with the problem (2). In this
case, the plant has a factorization

P̃ (s) =
m̃d(s)Ño(s)

m̃n(s)
(3)

where m̃n is inner, infinite dimensional, m̃d(s) is finite
dimensional, inner, and Ño(s) is outer, possibly infinite
dimensional. For this dual problem, the optimal con-
troller, C̃opt, and minimum H∞ cost, γ̃opt, are found
for the mixed sensitivity minimization problem

γ̃opt =
∥

∥

∥

∥

[

W̃1(1 + P̃ C̃opt)−1

W̃2P̃ C̃opt(1 + P̃ C̃opt)−1

]

∥

∥

∥

∥

∞
. (4)

In this paper we consider general delay systems:

P (s) =
rp(s)
tp(s)

=
∑n

i=1 rp,i(s)e−his

∑m
j=1 tp,j(s)e−τjs

(5)

satisfying the assumptions
A.1 (a) rp,i(s) and tp,j(s) are polynomials with real

coefficients;
(b) hi, τj are rational numbers such that 0 ≤ h1 <

h2 < . . . < hn, and 0 ≤ τ1 < τ2 < . . . < τm,
with h1 ≥ τ1;

(c) define the polynomials rp,imax and tp,jmax

with largest polynomial degree in rp,i and
tp,j respectively (the smallest index if there
is more than one), then, deg{rp,imax(s)} ≤
deg{tp,jmax(s)} and himax ≥ τjmax where
deg{.} denotes the degree of the polynomial;

A.2 P has no imaginary axis zeros or poles;
A.3 P has finitely many unstable poles or zeros, or

equivalently rp(s) or tp(s) has finitely many zeros
in C+;

A.4 P can be written in the form of (1) or (3).
Conditions stated in A.1 are not restrictive. In most

cases A.2 can be removed if the weights are chosen
in a special manner. The conditions A.3 − A.4 come
from the Skew-Toeplitz approach. It is not easy to
check assumptions A.3−A.4, unless a quasi-polynomial
root finding algorithm is used. We will give a necessary
and sufficient condition to check the assumption A.3 in
section 2.1 and give conditions to check the assumption
A.4 in section 3.1.

By simple rearrangement, P can be written as,

P (s) =
R(s)
T (s)

=
∑n

i=1 Ri(s)e−his

∑m
j=1 Tj(s)e−τjs

(6)

where Ri and Tj are finite dimensional, stable, proper
transfer functions. The assumptions A.1−A.4 and rear-
rangement of the plant are illustrated on the following
example. Consider the system

ẋ1(t) = −x1(t− 0.2)− x2(t) + u(t) + 2u(t− 0.4),
ẋ2(t) = 5x1(t− 0.5)− 3u(t) + 2u(t− 0.4),
y(t) = x1(t). (7)

whose transfer function is in the form

P (s) =
rp(s)
tp(s)

=
∑2

i=1 rp,i(s)e−his

∑3
i=1 tp,i(s)e−τis

,

=
(s + 3)e−0s + 2(s− 1)e−0.4s

s2e−0s + se−0.2s + 5e−0.5s
. (8)

Note that rp,i and tp,j are polynomials with real
coefficients, delays are nonnegative with increasing
order. By imax = 1 and jmax = 1, h1 = 0 ≥
τ1 = 0 and deg{rp,1(s)} = 1 ≤ deg{tp,1(s)} = 2.
Therefore, assumption A.1 is satisfied. The plant, P
has no imaginary axis poles or zeros (assumption
A.2). The denominator of the plant, tp(s) has finitely
many unstable zeros at 0.4672 ± 1.8890j, whereas
rp(s) has infinitely many unstable zeros converging to
1.7329 − (5k + 2.5)πj as k → ∞. Therefore, plant
has finitely many unstable poles satisfying assumption
A.3. One can show that the plant can be factorized as
(1). In this example we have

P =
R

T
=

∑2
i=1 Ri(s)e−his

∑3
i=1 Tj(s)e−τis

(9)

where

Ri(s) =
rp,i(s)

(s + 1)2
, and Tj =

tp,j(s)
(s + 1)2

are stable proper finite dimensional transfer functions.
Below we give conditions such that A.3 − A.4 can be
checked easily.
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2.1 Time Delay Systems with Finitely Many Unstable
Zeros or Poles

Definition 2.1. Consider R(s) =
∑n

i=1 Ri(s)e−his where
each Ri is a rational, proper, stable transfer function
with real coefficient, and 0 ≤ h1 < h2 < . . . < hn. Let
relative degree of Ri(s) be di, then
(i) if d1 < max {d2, . . . , dn}, then R(s) is a retarded-

type time-delay system (RTDS),
(ii) if d1 = max {d2, . . . , dn}, then R(s) is a neutral-

type time-delay system (NTDS),
(iii) if d1 > max {d2, . . . , dn}, then R(s) is an

advanced-type time-delay system (ATDS).

Note that if R and T are ATDS, plant has always
infinitely many unstable zeros and poles which is not
a valid plant for Skew-Toeplitz approach. It is well-
known that RTDS has finitely unstable zeros on the
right-half plane, (Bellman and Cooke, 1963). There-
fore, we will give a necessary and sufficient condition to
check whether a NTDS has finitely many or infinitely
many unstable zeros with the following lemma:

Lemma 2.1. Assume that R(s) is a NTDS with no
imaginary axis zeros and poles, then the system, R,
has finitely many unstable zeros if and only if all the
roots of the polynomial, ϕ(r) = 1 +

∑n
i=2 ξir

h̃i−h̃1 has
magnitude greater than 1 where

ξi = lim
ω→∞Ri(jω)R−1

1 (jω) ∀ i = 2, . . . , n,

hi =
h̃i

N
, N, h̃i ∈ Z+, ∀ i = 1, . . . , n.

Proof. Since delays are rational numbers, there exist
positive integers N and h̃i. If R is a NTDS, there is no
root with real part extending to infinity, i.e.,

∣

∣

∣

∣

R(s)eh1s

R1(s)

∣

∣

∣

∣

σ→∞
≥ 1− lim

σ→∞

n
∑

i=2

|ξi|e−(hi−h1)σ > 0

where s = σ+jω. Therefore, NTDS may have infinitely
many unstable zeros extending to infinity in imaginary
part with bounded positive real part, see (Bellman and
Cooke, 1963). R has finitely many unstable zeros if and
only if R(σ + jω) has finitely many zeros as ω → ∞
and 0 < σ < σo < ∞. Equivalently, R(σ + jω) has
finitely many unstable zeros if and only if

lim
ω→∞

R(s)
R1(s)e−h1s

∣

∣

∣

∣

s=σo+jω

= 1 +
n

∑

i=2

ξir
h̃i−h̃1 (10)

has finitely many unstable zeros where r = e−(σ+jω
N ).

Let r0 is the root of (10). Then,
|ro| = e−σ/N , σ = −N ln |ro|.

Therefore, the system R has finitely many unstable
zeros if and only if all the roots of the polynomial
(10) has magnitude greater than one. Note that if
there exists a root ro of (10) with |ro| ≤ 1, then there
are infinitely many unstable zeros of R converging to
ro,k = − ln |ro|

N − jN(∠ro +2πk) as k →∞ where k ∈ Z

and ∠ro is the phase of the complex number ro. �

Corollary 2.1. The time-delay system R has finitely
many unstable zeros if and only if R is a RTDS or
R is a NTDS satisfying Lemma 2.1.

A time delay system with finitely many unstable
zeros will be called an F -system. We define the
conjugate of R(s) =

∑n
i=1 Ri(s)e−his as R̄(s) :=

e−hnsR(−s)MC(s) where MC is inner, finite dimen-
sional whose poles are poles of R. For the above exam-
ple, we have

R(s) =
s + 3 + 2(s− 1)e−0.4s

(s + 1)2

where h1 = 0, h2 = 0.4 and MC(s) =
(

s−1
s+1

)2

. So, the
conjugate of R(s) can be written as,

R̄(s) =
2(s + 1) + (s− 3)e−0.4s

(s + 1)2
. (11)

Corollary 2.2. The time-delay system R̄ has finitely
many unstable zeros if and only if R is a ATDS or
R is a NTDS with R̄ satisfying Lemma 2.1.

The system R whose conjugate R̄ has finitely many
unstable zeros is an I-system. Using Corollary 2.1,
an equivalent condition for assumption A.3 is the
following.

Corollary 2.3. Plant (6) has finitely many unstable
zeros or poles if and only if R or T is an F -system.

Using Corollary 2.3, it is easy to check whether the
plant has finitely many unstable or zeros. After putting
the plant in the form (6), if R or T is RTDS, then
assumption A.3 is satisfied; if R or T is NTDS and
Lemma 2.1 is satisfied at least for one of them, then
assumption A.3 holds.

It is well known that, since R ∈ H∞, functions in
the form R admit inner outer factorizations

R = mnNo (12)
where mn is inner and No is outer. To illustrate this
first assume that R is an F -system. By Corollary 2.1,
it has finitely many unstable zeros. Define an inner
function MR whose zeros are unstable zeros of R. Note
that MR is finite dimensional, rational function. Then,
R can be factorized as in (12) where mn = MR and
No = R

MR
. Note that unstable zeros of R are cancelled

by zeros of MR, therefore No is outer and mn is inner
by construction of MR. Similarly, if R is an I-system,
By Corollary 2.2, R̄ has finitely many unstable zeros.
Define an inner function MR̄ whose zeros are unstable
zeros of R̄. Using this result, R can be factorized as in
(12) where mn = R

R̄
MR̄ and No = R̄

MR̄
.

Corollary 2.4. The plant P = R
T satisfies A.3 − A.4 if

one of the following conditions are valid:
i) R is I-system and T is F -system (IF plant),
ii) R is F -system and T is I-system (FI plant),
iii) R is F -system and T is F -system (FF plant).

Proof. The TDS (6) should have finitely many unstable
zeros or poles to apply Skew-Toeplitz approach. By
Corollary 2.1, R or T should be a F -system which
covers all the cases except R and T are I-systems.
Recall that P (6) can be factorized as
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P =
R

T
=

mn,RNo,p

mn,T No,T
=

mn,R

mn,T
No

where No = No,R

No,T
is outer function. Note that when R

is F or I-system, mn,R is finite or infinite dimensional
respectively. Similarly, when T is F or I-system, mn,T

is finite or infinite dimensional respectively. Therefore,
the plant (6) can be factorized as (1) or (3). �

Remarks:
(1) By Corollary 2.4, it is easy to check whether

assumptions A.3 − A.4 are satisfied or not. For
the plant (9) in the example, T is a RTDS, by
Corollary 2.1, T is an F -system. R is a NTDS
and R̄ satisfies Corollary 2.2, therefore, R is a I-
system, i.e., ϕ(r) for R̄ (11) is 1 + 1

2r and root of
the polynomial has magnitude greater than 1.

(2) One can show that R or T has infinitely many
imaginary-axis zeros if and only if corresponding
ϕ(r) has a root with magnitude 1 in Lemma 2.1.
Since by assumption A.2, P has no imaginary
axis poles or zeros, this possibility is eliminated.
In fact, if plant P does not have infinitely many
imaginary-axis poles or zeros, the magnitude of
roots of ϕ(r) is never equal to 1.

(3) For a given system R, if magnitudes of all roots
of ϕ(r) in Lemma 2.1 are smaller than one, then
R is an I-system.

(4) R is an F -system ⇐⇒ R̄ is an I-system.

2.2 FIR Part of the Time Delay Systems

We now show a special structure of time delay
systems. This key lemma is used in the next section.

Lemma 2.2. Let R be as in Lemma 2.1 and MR be
a finite dimensional system whose zeros are included
in the zeros of R. Let S+

z be the set of common C+

zeros of R and MR. Then R
MR

, can be decomposed as
R

MR
= HR(s) + FR(s), where HR is a system whose

poles are outside of S+
z and the impulse response of

FR has finite support (by a slight abuse of notation we
say FR is an FIR filter).

Proof. For simplicity assume that z1, z2, . . . , znz ∈
S+

z are distinct. We can rewrite R
MR

as R
MR

=
∑n

i=1
Ri

MR
e−his, and decompose each term by partial

fraction, Ri

MR
= Hi + Fi where the poles of Fi are

elements of S+
z and define the terms HR and FR as,

HR(s) =
n

∑

i=1

Hi(s)e−his, FR(s) =
n

∑

i=1

Fi(s)e−his.

where Fi is strictly proper and FR(zk) is finite ∀ i =
1, . . . , nz. The lemma ends if we can show that FR

is FIR filter. Inverse Laplace transform of FR can be
written as,

fR(t) =
∑nz

k=1

[

∑n
i=1 Res{Fi(s)}

∣

∣

∣

s=zk

ezk(t−hi)uhi(t)
]

where uhi(t) = u(t− hi), u(t) and Res(.) are unit step
function and the residue of the function respectively.
For t > hn, we have

fR(t) =
∑nz

k=1 ezkt

[

∑n
i=1 Res{Fi(s)}

∣

∣

∣

s=zk

e−hizk

]

.

Since, Res{Fi(s)}
∣

∣

∣

s=zk

= Ri(zk)Res{MR(s)}
∣

∣

∣

s=zk

,

fR(t) =
∑nz

k=1

[

ezktRes{MR(s)}
∣

∣

∣

s=zk

R(zk)
]

≡ 0

for t > hn using the fact {zk}nz

k=1 are the zeros of R.
Therefore, we can conclude that FR is a FIR filter with
support [0, hn]. Note that the above arguments are also
valid for common zeros with multiplicities in S+

z . �

Note that this decomposition eliminates unstable
pole-zero cancellation in R

MR
and brings it into a

form which is easy for numerical implementation.
Lemma 2.2 explains the FIR part of the H∞ con-
trollers as shown below. Assume that R is defined
as in Definition 2.1 and R0 is a bi-proper, finite di-
mensional system. By partial fraction, Ri

R0
= Ri,r +

Ri,0 ∀i = 1, . . . , n, where the Ri,0 is strictly proper
transfer function whose poles are same as the zeros of
R0. Then, the decomposition operator, Φ, is defined as,

Φ(R, R0) = HR + FR

where HR =
∑n

i=1 Ri,re
−his and FR =

∑n
i=1 Ri,0e

−his

are infinite dimensional systems. Note that if the zeros
of R0 are also unstable zeros of R, then FR is a FIR
filter by Lemma 2.2.

3. MAIN RESULTS

In this section, we construct the optimal H∞ con-
troller for the plant P , (6), satisfying assumptions
A.1 − A.4. By Corollary 2.4, the plant, P = R

T , is
assumed to be either IF, FI or FF plant.

For each case, we will find optimalH∞ controller and
obtain a structure where there is no internal unstable
pole-zero cancellation in the controller.

3.1 Factorization of the Plants

In order to apply the Skew- Toeplitz approach, we
need to factorize the plant as in (1) or (3).
3.1.1. IF Plant Factorization Assume that the plant
in (6) satisfies A.1 − A.4, and R is I-system and T is
F -system. Then P is in the form (1), where

m̂n = e−(h1−τ1)sMR̄

{eh1sR}
R̄

, m̂d = MT ,

N̂o =
R̄

MR̄

MT

{eτ1sT } . (13)

where MR̄ is an inner function whose zeros are the
unstable zeros of R̄(s). Since R is I-system, conjugate
of R has finitely many unstable zeros, so MR̄ is well-
defined. Similarly, zeros of MT are unstable zeros of T .
Note that m̂n and m̂d are inner functions, infinite and
finite dimensional respectively. N̂o is an outer term.

3.1.2. FI Plant Factorization Let the plant (6) sat-
isfy A.1 − A.4 (with h1 = τ1 = 0), and assume R is
F -system and T is I-system. Then the plant P can be
factorized as in (3),

m̃n = MT̄

T

T̄
, m̃d = MR(s), Ño =

R

MR

MT̄

T̄
.

The zeros of MR are right half plane zeros of R. The
unstable zeros of T̄ (s) are the same as the zeros of
MT̄ . Similar to previous section, conjugate of T has
finitely many unstable zeros since T is an I-system.
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The right half plane pole-zero cancellations in m̃n and
Ño will be eliminated in Section 3.2.2 by the method
of Section 2.2.

3.1.3. FF Plant Factorization Let P = R/T satisfy
A.1−A.4, with R and T being F -systems. In this case
P is in the from (1),

m̂n = e−(h1−τ1)sMR, m̂d = MT (s),

N̂o =
{eh1sR}

MR

MT

{eτ1sT } (14)

where MR and MT are inner functions whose zeros
are unstable zeros of R and T respectively. Note that
when h1 = τ1 = 0, m̂n is finite dimensional. Then,
exact unstable pole-zero cancellations are possible in
this case (except the ones in N̂o).

3.2 Optimal H∞ Controller Design

Optimal H∞ controllers for problems (2) and (4) are
given in (Toker and Özbay, 1995) and (Gümüşsoy and
Özbay, 2004) for the plants (1) and (3) respectively.
Given the plant and the weighting functions, the opti-
mal H∞ cost, γopt can be found as described in these
papers. Then, one needs to compute transfer functions
labeled as Eγopt , Fγopt and L. Due to space limitations
we skip this procedure, see (Toker and Özbay, 1995)
and (Gümüşsoy and Özbay, 2004) for full details. In-
stead, we now simplify the structure of the controllers
so that a reliable implementation is possible, i.e. there
are no internal unstable pole-zero cancellations.

3.2.1. Controller Structure of IF Plants By using the
method in (Toker and Özbay, 1995; Foias et al., 1996),
the optimal controller can be written as,

Ĉopt =
Kγ̂opt

(

eτ1sT
MT

)

R̄
MR̄

+ eτ1sRFγ̂optL
(15)

where Kγ̂opt = Eγ̂optFγ̂optMT L. In order to obtain this
structure of controller:
(1) Do the necessary cancellations in Kγ̂opt ,
(2) Partition, Kγ̂opt as, Kγ̂opt = θγ̂optθT where θγ̂opt

is a bi-proper transfer function. The zeros of θγ̂opt

are right half plane zeros of Eγ̂optMT ,
(3) By Lemma 2.2, obtain (HT , FT ), (HR1

,FR1
) and

(HR2
, FR2

) using the partitioning operator,
HT + FT = Φ(eτ1sTθT , MT ),

HR1
+ FR1

= Φ(R̄, MR̄θγ̂opt),
HR2

+ FR2
= Φ(eτ1sRFγ̂optL, θγ̂opt).

Then, the optimal controller has the form,

Ĉopt =
HT + FT

Hγ̂opt + Fγ̂opt

(16)

where HT , Hγ̂opt = HR1
+ HR2

are TDS and FT ,
Fγ̂opt = FR1

+ FR2
are FIR filters. The controller has

no unstable pole-zero cancellations.

3.2.2. Controller Structure of FI Plants After the
data transformation is done shown as shown in
(Gümüşsoy and Özbay, 2004) γ̃opt, Eγ̃opt , Fγ̃opt and L
can be found as in IF plant case. We can write the
inverse of the optimal controller similar to (15):

C̃−1
opt =

Kγ̃opt

(

R
MR

)

T̄
MT̄

+ TFγ̃optL
(17)

where Kγ̃opt = Eγ̃optFγ̃optMRL. Similar to IF plant
case, we can obtain a reliable controller structure:
(1) Do the necessary cancellations in Kγ̃opt ,
(2) Partition, Kγ̃opt as, Kγ̃opt = θγ̃optθR where θγ̃opt

is a bi-proper transfer function. The zeros of θγ̃opt

are unstable zeros of Eγ̃optMR,
(3) By Lemma 2.2, obtain (HR, FR), (HT,1,FT1

) and
(HT2

, FT2
) using the partitioning operator,

HR + FR = Φ(RθR, MR),
HT1

+ FT1
= Φ(T̄ , MT̄ θγ̃opt),

HT2
+ FT2

= Φ(TFγ̃optL, θγ̃opt).
Then, the optimal controller has the form,

C̃opt =
Hγ̃opt + Fγ̃opt

HR + FR
. (18)

where HR, Hγ̃opt = HT1
+ HT2

are TDS and FR,
Fγ̃opt = FT1

+ FT2
are FIR filters. The controller

has no unstable pole-zero cancellations. Note that the
optimal controller is dual case of IF plants, R and T
are interchanged with h1 = τ1 = 0.

3.2.3. Controller Structure of FF Plants Structure
of FF plants is similar to that of IF plants. We can
calculate γ̂opt, Eγ̂opt , Fγ̂opt , L by the method in (Toker
and Özbay, 1995; Foias et al., 1996) and write optimal
controller as:

Ĉopt =
Kγ̂opt

{eτ1 T}
MT (s)

{eh1sR}
MR

+ eτ1sRFγ̂optL
(19)

where Kγ̂opt = Eγ̂optFγ̂optMT L. The optimal H∞

controller structure can be found by following similar
steps as in IF plants. The controller structure will be
the same as in (16). Note that when h1 = τ1 = 0, since
m̂n in (14) is finite dimensional, it possible to cancel
the zeros of θγ̂opt with denominator.

4. EXAMPLE

We consider IF plant (7) and weights as W1(s) =
2s+2
10s+1 and W2(s) = 0.2(s + 1.1). After the plant is
factorized as (13), the optimal H∞ cost for two block
problem (2) is γ̂opt = 0.7203. The impulse responses
of FT and Fγ̂opt , of the controller (16), are FIR as in
Figures 1 and 2, respectively.
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5. CONCLUDING REMARKS

In this paper we have discussed general time delay
systems and defined FI, IF and FF types of plants.
We showed how assumptions of the Skew Toeplitz
theory can be checked, and illustrated numerically
stable implementations of the optimal H∞ controllers,
avoiding internal pole-zero cancellations.

We should also mention that if the plant P is written
in terms of specific time delay factors, we may still
design optimal H∞ controllers even if P is not in any
of the types we have considered (i.e. IF, FI, and FF
types). It is possible to design H∞ controller for the
following cases. Given the plant P = R

T , assume that
T is an F system and R is neither F or I system, but
it can be factorized as R = RF RI where RF is an F
system and RI is an I system. Then, we can factorize
the plant as (1),

m̂n = MRF MR̄I

RI

R̄I
, m̂d = MT ,

N̂o =
(

RF

MRF

) (

R̄I

MR̄I

)(

MT

T

)

where MRF , MR̄I
and MT are finite dimensional, inner

functions whose zeros are unstable zeros of RF , R̄I

and T respectively. By this factorization, the optimal
controller can be obtained as in (16). For the dual case,
let R be an F system and T = TF TI where TF is an F
system and TI is an I system. Now the plant is in the
form (3),

m̃n = MR, m̃d = MTF MT̄I

TI

T̄I
,

Ño =
(

R

MR

) (

MTF

TF

) (

MT̄I

T̄I

)

where MR, MT̄I
and MTF are finite dimensional, inner

functions whose zeros are unstable zeros of R, T̄I and
TF respectively. Now the optimal controller can be
obtained as in (18).

Another interesting point to note is that the follow-
ing plant is a special case of an FF system:

ẋ(t) =
nA
∑

i=1

Aix(t− hA,i) +
nb
∑

j=1

bju(t− hb,j),

y(t) =
nc
∑

k=1

ckx(t− hc,k) + du(t− hd) (20)

where Ai ∈ R
n×n, bj ∈ R

n×1, ck ∈ R
1×n and

d ∈ R. Define x(t) := [x1(t), . . . , xn(t)]T . The time-
delays, {hA,i}nA

i=1, {hb,i}nb
i=1, {hc,i}nc

i=1 are nonnegative
rational numbers with ascending ordering respectively
and hd ≥ 0. Therefore, we can design an optimal H∞

controller for the plant (20) if there are no imaginary
axis poles or zeros (or the weights are chosen in such
a way that certain factorizations in (Foias et al., 1996)
can be done).

In general to see the plant type (IF, FI, FF), the
transfer function should be obtained first, then using
R and T , one can decide the plant type by Corollary 2.1
and 2.2. The optimal H∞ controller can be found by
factorization of the plant and elimination of unstable
pole-zero cancellations.

REFERENCES
R. Bellman and K. L. Cooke, Differential-Difference Equations,

2.edn, pp. 342-348, New York: Academic Press.
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H. Özbay (1990). “A simpler formula for the singular-values of
a certain hankel operator,” Syst. & Control Lett., vol.15,
pp.381–390.
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