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Abstract—Closed-form Green’s function (CFGF) representa-
tions for cylindrically stratified media, which can be used as the
kernel of an electric field integral equation, are developed. The
developed CFGF representations can safely be used in a method
of moments solution procedure, as they are valid for almost all
possible source and field points that lie on the same radial dis-
tance from the axis of the cylinder (such as the air—dielectric and
dielectric—dielectric interfaces) including the axial line (p = p’
and ¢ = ¢’), which has not been available before. In the course
of obtaining these expressions, the conventional spectral domain
Green’s function representations are rewritten in a different form
so that i) we can attack the axial line problem and ii) the method
can handle electrically large cylinders. Available acceleration
techniques that exist in the literature are implemented to perform
the summation over the cylindrical eigenmodes efficiently. Lastly,
the resulting expressions are transformed to the spatial domain
using the discrete complex image method with the help of the
generalized pencil of function method, where a modified two-level
approach is used. Numerical results are presented in the form of
mutual coupling between two current modes to assess the accuracy
of the final spatial domain CFGF representations.

Index Terms—Closed-form Green’s functions, discrete complex
image method (DCIM), generalized pencil of function (GPOF)
method, method of moments (MoM).

1. INTRODUCTION

HE use of closed-form Green’s functions (CFGF) ob-
T tained using the discrete complex image method (DCIM)
is very common for the rigorous analysis of printed circuit ele-
ments or printed antennas in planar multilayer media [1]-[5]. In
general, the structures of interest are open geometries; hence,
an integral equation (IE) is usually set up and CFGF is used
as the kernel of this IE. The IE is solved using method of
moments (MoM) based algorithms. Unfortunately, the cylin-
drical counterpart of the outlined procedure is rare because
of the limitations on the available CFGF representations for
cylindrically stratified media.
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A number of studies regarding the Green’s functions in cylin-
drically stratified media have been reported before [6]-[23].
More references on the conventional spectral domain and
asymptotic Green’s function representations, particularly for
single-layer dielectrics deposited on a perfectly conducting
cylinder, can be found in [13] and [14]. However, a vast ma-
jority of the above-mentioned Green’s function representations
(derived for cylindrically stratified media) are not in closed
form. In addition, convergence of these expressions becomes
an important issue from the accuracy and efficiency points of
view for antenna and/or mutual coupling problems. On the
other hand, most of the studies on the subject of CFGF for
cylindrically stratified media have the CFGF expressions that
are valid when the source and observation points are on dif-
ferent radial distances from the axis of the cylinder [15]-[19].
Therefore, these expressions are useful for radiation/scattering
problems, provided that the current distribution on the radiating
structure is known, but cannot be used in conjunction with an
MoM-based algorithm to solve antenna input impedance and
mutual coupling problems. In [20], a closed-form solution for
cylindrically conformal microstrip antennas is given. However,
provided closed-from expressions are for the impedance matrix
elements and the elements of the voltage vector (using entire
domain basis functions) rather than the Green’s functions.
Reference [21] has presented CFGF expressions to be used
in the mixed potential integral equation (MPIE). Although,
these CFGF expressions (provided in [21]) are valid when the
source and the observation points are located at the same radial
distance from the axis of the cylinder, the final expressions are
not valid along the axial line (defined as p = p’ and ¢ = ¢')
of the cylinder.

In this paper, we provide the CFGF expressions that can
be used as the kernel of an electric field integral equations
(EFIEs) to be used in MoM-based codes to treat antenna
input impedance and mutual coupling problems. Our approach
starts by expressing the conventional spectral domain Green’s
function representations in a different form so that possible
overflow/underflow problems in the numerical calculations
of special cylindrical functions such as Bessel and Hankel
functions can be completely avoided. As a result, the method
can handle both electrically small and large cylinders. More
importantly, the axial line problem can be attacked easily.
Then, the summation over the cylindrical eigenmodes n is
performed in the spectral domain. Large n values that will
appear in the orders of special functions (Hankel and Bessel
functions), especially for electrically large cylinders, do not
create numerical problems due to the aforementioned way of
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expressing the spectral domain Green’s functions. However,
acceleration techniques that are presented in [21] are imple-
mented to further increase the efficiency of this summation.
Once the summation over the cylindrical eigenmodes is per-
formed, the Fourier integral over k. is taken using DCIM with
the help of the generalized pencil of function (GPOF) method
[24], where a modified two-level approach is used. Such a
modification (compared to ones presented in [15], [16], [23])
in the implementation of GPOF is critical in order to obtain
accurate results in particular along the axial line. Thus, the
accuracy range (defined as the distance between the source
and observation points) of the CFGF expressions proposed
in this study is significantly wider than that of the previously
available CFGF representations. Briefly, in addition to cases
where source and observation points are located at different
radial distances from the axis of the cylinder, the proposed
CFGF expressions are valid for almost all possible source and
field points that lie on the same radial distance (such as the
air—dielectric and dielectric—dielectric interfaces). The latter
region includes the situation where both the source and field
points are located on the axial line (p = p’ and ¢ = ¢’) of the
cylinder, and valid CFGF expressions for this situation have
not been available before. Furthermore, the proposed CFGF
expressions work fairly well for relatively large cylinders.
Consequently, they can safely be used in conjunction with
MoM-based codes to investigate all aspects of printed antennas
(current distribution, input impedance, radiation, etc.) and
mutual coupling problems for arrays.

In Section II, the geometry and the detailed derivation of the
CFGF representations are presented, which includes the modi-
fied spectral domain expressions at p = p’, how the summation
over the cylindrical eigenmodes is performed, solution to the
axial line problem, and the implementation of GPOF with the
modified two-level approach. In Section III, numerical results
are given to assess the accuracy of the method. An e/“* time de-
pendence, with w being the angular frequency, is assumed and
suppressed throughout this paper.

II. FORMULATION

A. Geometry

The geometry for a multilayer cylindrically stratified media
is illustrated in Fig. 1. The structure is assumed to be infinite
in the z-direction. A perfect electric conductor (PEC) cylin-
drical ground plane, denoted by the subscript 7 = 0, forms
the innermost region with a radius ag, and material layers, de-
noted by the subscripts j 1,2,..., surround the PEC re-
gion coaxially, as shown in Fig. 1 (subscript 7 = 1 denotes the
substrate layer; subscript 7 = 2 denotes the superstrate layer,
and subscript ;7 = 3 denotes the air layer in this figure). Each
layer has a permittivity, permeability, and radius denoted by ¢,
j, and a;, respectively. Furthermore, current modes, denoted
by P'(p’,¢',2") and P(p, d, z), are depicted in Fig. 1. A tan-
gential current source is defined at an air—dielectric (or dielec-
tric—dielectric) interface and has a dimension of 2z, by 2/, (with
lo = a;¢,) along the z— and ¢—directions, respectively. On the
other hand, if the current mode is normal to an interface (exci-
tation via a probe), it is usually located inside a layer, behaves
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Fig. 1. Geometry of the problem. Current modes on a multilayer cylindrical
structure together with cross-sectional view from the top.

like a point source in terms of z and ¢ coordinates, and has a
certain thickness along the radial (i.e., p) direction. Therefore,
in finding the voltage vector in a MoM-based code, usually p
and p’ are not equal to each other. The same is true for normal
components of the fields due to tangential sources located at
an interface. Consequently, the CFGF derivation procedure de-
scribed in the following sections is not applied to current modes
that are normal to interfaces. In Fig. 1, s denotes the geodesic
distance between the two current modes (or between the source
and observation points for the CFGF expressions) and « is the
angle between the geodesic path and the ¢-axis.

B. Spectral Domain Green’s Function Expressions When
p#p

In an MoM-based cylindrical microstrip antenna analysis, en-
tries of the MoM impedance matrix require accurate represen-
tations of tangential components of the dyadic Green’s function
(due to tangential sources) for arbitrary source and field points
that lie at the same interface. However, this is the main problem
in the aforementioned CFGF expressions available in the lit-
erature. Thus, the derivation of our CFGF expressions starts
with the tangential components of the spectral domain dyadic
Green’s function G due to the tangential current sources. For
an elementary tangential electric current source P'(p’, ¢, 2’),
the tangential components of G for the field point P(p, ¢, 2)
are given by ([16])

~ 1 « / k2j
G.. =—5 ;KTL cos[n(dp—¢")] e—pjfrltl M

éd)z _ _] e . / n 11 kpjjwll’j af"%l

K__Enzz:lsm[n(ﬁb—d)ﬂ [E]_pf" +W8(Tmp)
(2)

e = ml . dwks  Of?

v __%;sm[n(gb— ¢ )]Ljp/fn - TW
(3)
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where x,, = 0.5 for n = 0 and 1, otherwise. However, since
the p related components might be important for applications
involving an excitation via a probe, for the sake of completeness,
these components are also given by [15]
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However, as explained in Section II-A, p and p’ are not equal to
each other in (5)—(8). Therefore, although the CFGF expressions
due to these components [i.e., (5)—(8)] are found using the mod-
ified two-level GPOF method from the efficiency point of view,
the CFGF derivation procedure, described in the following sec-
tions for (1)—(4), is not applied to p related components. In ad-
dition, the methodology presented in [16] can also handle them
[i.e., (5)—(8)].

In (1)=(8), £1, £12, 21, and f22 are the entries of F,, (su-
perscripts indicate entries), which is a 2 X 2 matrix given by

<, Inlkp,p) =
F,= HT(L2)(kPjp)J (kpg pl) I+ 7[)]Rj j+1]
H (ky, p)
< HP (k) 5
M, |I P2 R 9
A AP ®

where kpj = 4 /ka» — k2, with k; being the wave number of the
medium (k; = ,/€-ko). The expression 1\:/Ij+ in (9) contains

nw Of%
€5 8(kpjp)(kpjpl) +7a(kpj/)) )] '
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the 2 x 2 generalized reflection and transmission matrices R
and T, respectively, all of which are explicitly given in [12] and
[16]. I is the 2 x 2 identity matrix, and components that are odd
functions of k, are divided to k. to make the final expression an
even function of &, .

On the other hand, note that when F,,, given by (9), is used
in (1)—(8), these Green’s function components become valid for
p > p, and both source and field points are in the same layer.
Alternative expression for F',, that can replace (9) for p’ > p can
be found in [15] and [16]. However, obviously, when p — p/,
p' > pand p > p’ cases are equal and constitute the p = p’
problem, which is the main subject of this paper.

C. Spectral Domain Green’s Function Expressions at (p = p')

The Green’s function expressions given by (1)—(4) together
with (9) yield accurate results only when the source and field
points are at different radial distances from the axis of the
cylinder (i.e., p # p') (the same is true for the p’ > p ex-
pressions). Thus, in this section, we provide expressions valid
when p = p’. Note that in the provided expressions, p and p’
are kept distinct to avoid possible confusion in explaining the
methodology, in particular when handling the derivatives with
respect to p and p’, separately.

As the first step, the spectral domain Green’s function com-
ponents Guo (u = 2z or ¢, v = z or ¢), given by (1)—(4) are
modified for p = p’ case and rewritten in the following form:

=i [0 W E )

X fun(n.2)e" 9] (10)

where A¢p = ¢ — ¢/, and foruv = zz: p=0,q = 1,1 = 0, for
w=¢z:p=1,q=0,l=1,foruv=2¢:p=1,¢q =0, =
1, and for uwv = ¢¢p: p = 2,q = 0,1 = 0. The key term in (10)
is fuw(n, k), explicitly given by

11
fzz(nakz) ==L (11)
€5
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1 Jwk,,
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P

11 21 12 p12 22 : :
where f.7, f5, f.5, fr3, [% are the corresponding entries

(each superscript indicates the corresponding entry) of F,.1.F,o,
F,3, and F,.4 linked to F,, as

_ 1 _
Frl = F”

H (b, p)Tu(ky, )
1 OF,
nH® (kp,0)Tn(kp, p") A(kp, p)

15)

F.o= (16)
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. O an
nHy (kpjp)‘]n(kpjpl) 8(/€p]p)
= 1 0°F,,
Fry= . (18)
2D (ky p) (ko) Ok, 09k 0)

More explicit expressions for F,1, FT27 F,3, and F,, are given
in Appendix A [see (A.1)-(A.4)].

In (10) [together with (A.1)-(A.4)], all special cylindrical
functions are expressed in the form of ratios. This procedure
starts by modifying generalized reflection coefficient matrix as

~ Jn k A5 ~
Rj,j — % riio1 (19)
H (k‘ aj 1)
- H (k, a;) =
Rjj+1= mRﬁ j+1 (20)
n Pi

where all the Hankel and Bessel functions in Rrj,j_l and
Rr; j+1 are in the form of ratios. A similar modification is

performed for T and, consequently, for 1\7Ij+. Furthermore,
for large n values, Debye representations [25] of the ratios are
found in closed form and used during the summation over n.
As a result of this step, we have achieved the following.

i) The accuracy of the summation over n, which exhibits

convergence problems when p = p’ particularly for rela-
tively large cylinders, is improved since possible numer-
ical overflow/underflow problems for large n values are
avoided.
Since the ratios that use Debye representations are in
closed form, the efficiency of the summation is also im-
proved, in particular for large cylinders, as they require
more terms to be summed.

iii) The form of (10) is very suitable to attack the axial
line problem, which will be addressed in the following
section.

To further improve the accuracy and efficiency of the sum-
mation over n, an envelope extraction method with respect to n
is applied to (10). Briefly, the limiting value of fy,(n,k.) for
very large n values is numerically determined as

ii)

lim f’zl,v(n; kz) ~ Cu'u(kz) (21)

which is actually constant with respect to n. Then, recognizing
the series expansion of Héz)(kp]. |p = 7'|), given by

(oo}

>

n=—0oo

H(2)

n

Ju(kp,p)e" 2% = Hi (k,,|1p— p']) (22)

PJ

Cuw (k) is subtracted from (10) and added as a function of
H (k,,|p — 7)) (e, Fio[-]) with the aid of (22). In (22),
p = ppand p’ = p'p’, where 5’ and p are unit vectors in cylin-
drical coordinates defined from the central axis of the cylinder
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Fig. 2. Imaginary part of G versus NV, using (10) and (23) for A¢ = 0.05
and k. = 0. The cylinder parameters are @y = 3Ao, a1 = 3.06Aq, and
€, = 3.25.

in the direction of source and field points, respectively. As a re-
sult, (10) becomes

éUU 1 -
T T aw { > (k) P HP (K, p) T (kg ')
X [fuu(n, kz) - C’uu(kz)]ejn‘ﬁ(z>

+ Cunlk) (R2,) By [HE (k|7 - 7

)] } (23)

with
F7Z [HG (ko 1p— 0'l)] = H (ko= 01) (24)
FY~ [Ho (kﬂj|p —p |)] F1z¢ [Ho ( ;10— ﬁlm
OHG (Kl = 7')
¢
H'(Q) E lp— o
_ a H j )5 - )5/
FY? [HE (ko o= 7))] = —— Ea¢fa|¢f ) (26)

After taking the derivatives in (26), its right-hand side can be
written explicitly as

FYP[H (ky, 10— 7'])]
p'p / 2k 15— 5
———-cos(¢p — ¢ )k, Hy "' (kp,|p— ')
lp— 7'l
B p/2 2

= p,|2sm (¢ — g/))k2

p/2p2
lp—p'?

o Dk, 15— 7))

- sin® (¢ — ¢ Vkp, Hy”) (i, 15— 1) 27)
where / and " denote the first and second derlvatlves respec-
tively, with respect to the argument of H ( p—7']). Asa
result of this step, the modified summation glven by (23) con-
verges very rapidly; hence, the limits of the infinite summation

can be truncated at relatively small values N; (i.e., Y - _ —

n=—oo

ZNt _n,) even for relatively large cyhnders This is illustrated
in Fig. 2, where the imaginary part of G.. versus Ny is plotted



1162

for A¢p = 0.05 and k., = 0 using (10) and (23) (real parts of
both summations converge rapidly) for a dielectric coated PEC
cylinder with ag = 3o, a1 = 3.06\¢ (A =free-space wave-
length), €, = 3.25.

Because the spatial domain Green’s function G, is related to
the spectral domain Green’s function éu,,, by an inverse Fourier
transform (IFT) over k., given by

o / " G,

Guv = o

(28)

the final spectral domain expression (23) should not pose any

problems for integration variable k.. However, the following
three problems have to be resolved.

i) Branch-point and pole singularities. The remedy for this

is deforming the integration path as shown in Fig. 3 [15],

[16]. Details of this path deformation will be given later.

ii) For small A¢ values (but not necessarily A¢ = 0),
the integrand of the k. integral converges for very
large k. values. Unfortunately, for large values of
k., the imaginary part of (23) poses numerical prob-
lems (i.e., it becomes oscillatory and large). This is
mainly due to the second term of (23) (i.e., due to
Cluw (k) (k2,1 F [HSP (|5 — 7/ |)]). The remedy for
this problem is performing a second envelope extraction
with respect to k., as explained below.

iii) The axial line problem, which manifests itself for all k,
values. It is related with the argument of H, éz) (ko,1p—=0"])
such that along the axial line (i.e., when p = p’ and ¢ =
1)) HSZ)(k-p] |7 — p’|) becomes singular. This singularity
is k. independent and must be treated properly.

The treatment of the axial line problem is explained in the
next subsection after item ii) is resolved. Therefore, as the next
step to resolve item ii), another envelope extraction method with
respect to k, (similar to the one performed in [21]) is applied to
(23). Briefly, for asymptotically large k. value (i.e., k., — o0
denoted as k..) on the deformed integration path I's in Fig. 3,
the value of C,,,, (k. ), represented by Cl,, (koo ), is found. Then,
the product —(1/4w)Cluu (ko) (2, )1 F [HS (Kp, 15 — 7))
is subtracted in the spectral domain from (23) and its Fourier
transform is added to the final spatial domain Green’s function
representation as a function of (e~7%i!"="'l /| — #|) using the
relation

e—Jk;|F—7]
h==7

_7] / Hg (k16— p)e™ "= dk..  (29)

Consequently, the resultant expression for the spatial domain
Green’s function becomes

. l Il
_(J0 1 [ [ Gu 1 . 2 \g
Cuw = (az> {27r /_oo ( it g ko) ()

Fim) |:H(()2)<kp] |p— _ p—/|):| ) e—jk:(z_z/)dkz

4w

j A
= 7 Ou(kac0) (kj + @) F3[n] (30)
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In arriving at (31)—(33), in addition to (29), the following two
relations are used:

= [T @ 1~ k(=2 . 9N

— k, H\" (k,.|p— p'|)e” dk, = 7——

L[ kPl ) S
(34)

. 00 2

—Jj 2 " 1= k(a2 . 07

— ks H k,.|p— J dk, = ————.

2 [m p;~ "0 ( P_7|p P |)€ 8|,5_,5/|2
(35)

Although the spatial domain Green’s function representation
given by (30) is not in closed form, the integrand is now fast de-
caying with respect to k. even for very small A¢ values except
the axial line (i.e., A¢ = 0). This is illustrated in Fig. 4, where
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versus real k. for different A¢ (in radians) values for the same cylinder param-
eters given in Fig. 2.

Fig. 4. The imaginary parts of (a) G..in (23) and (b) the integrand of (30)

the imaginary part of (23) and the imaginary part of the inte-
grand of (30) are plotted versus real k. for different A¢ values
for the aforementioned cylinder (ag = 3Ag, a1 = 3.06)\, €,
3.25). As seen in Fig. 4, while (23) becomes problematic for
large k. values [see Fig. 4(a)], especially when A¢ = 0.005,
the integrand of (30) is well behaved and converges to zero as
desired [see Fig. 4(b)]. Note that again, the real parts of (23) and
integrand of (30) do not pose any difficulty.

D. Solution to the Axial Line Problem

The axial line problem manifests itself particularly for G,
and G, components. The Héz)(k'p] |p — p'|) related terms in
(30) yield singularity problems along the axial line since the
argument of the Hankel function becomes zero. Although the
same is true for Gy, = G, components, the value of them
along the axial line is actually zero since they possess a sin(2«)
type variation ([26]), where « is shown in Fig. 1.

The problematic terms in the integrand of (30) for uv = zz
and uv = ¢¢ are (24), (26), and (27), respectively, since the
former one has Hg(k,,|p — p'|) and the latter one contains
its derivatives with respect to both ¢ and ¢’. Therefore, for
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uv = zz, first we use the small argument approximation of
Hi(k,,|p — p']) given by

o 2 Vhp, 1P = 7|
Hg (kp]. lp— p'|) ~1-— ];10g (pf (36)

where v = 1.781. Then, considering that we are working along
the axial line, where p = p’, ¢ — ¢’ (and hence, sin(A¢) =
A¢), and making use of the properties of the log function, we
rewrite the small argument approximation of H§ (k,,|p—p'|) as

.2 .2 A
H§ (ky;10—7') ~ 1=~ log vk, p) =5~ log <7¢) 37)

As seen in (37), the last term —j(2/m)log(A¢/2) is a loga-
rithmic singularity that is responsible from the problems along
the axial line and is &, independent. Because we are seeking to
find accurate CFGF expressions to be used in conjunction with
an MoM code, the logarithmic singular part converges to zero
during the mutual impedance calculations [as defined in (44)] in
a Galerkin-type MoM procedure due to performing the integrals
over the surface areas of basis and testing current modes. As a
result, with the aid of mutual impedance calculations, accurate
solution along the axial line is achieved.

A similar approach is followed for the G 44 component. How-
ever, it is noticed that starting with the right-hand side of (27)
leads to a singularity, which is not integrable as opposed to the
G .. component. Therefore, our starting point for the G4y com-
ponent is to use (26) in the mutual impedance calculations along
the axial line. Then, in a Galerkin-type MoM procedure, first
selecting the basis and testing functions differentiable with re-
spect to ¢ and ¢, and performing an integration by parts twice,
the derivatives acting on Hg (k,,|p — p'|) are transferred to the
basis and testing functions. As a result, the problematic term in
the integrand of (30) for uv = ¢¢ is again H(k,,|p — 7'|),
which leads to a logarithmic singularity along the axial line.
Therefore, one can repeat the same steps performed for the G, .
component and can show that in the mutual impedance calcula-
tions, the singular term will converge to zero. Consequently, an
accurate solution for the G54 component is achieved along the
axial line.

E. Closed-Form Representations in the Spatial Domain

In this section, we present how the final CFGF expressions
in the spatial domain are obtained by evaluating the integral
part of (30) in closed form [making use of (37) along the axial
line] using the DCIM with the aid of the GPOF method. Our
two-level GPOF implementation presented here partially differs
from what [15], [16], and [23] have presented. Therefore, in ad-
dition to a brief discussion on how GPOF is implemented in
[15], [16], and [23] with some numerical problems they may
experience when p = p’, this section includes some remarks on
the accuracy range of the final spatial domain CFGF expressions
as well as how nonspherical waves affect this accuracy range.

The first step in any GPOF implementation is to sample the
spectral domain Green’s functions on a path that is free from
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singularities. Considering the fact that the integrand of the in-
tegral part of (30) is an even function of £, the IFT integral is
folded to a zero to oo integral given by

1 [ .
GEPOF — — / GEPOF coslk.(z — 2)dk.
0

uv T
1 é“”+ 1
A KL 4w

Flu,'u I:Héz) (kpj |ﬁ_ p_l|):|> COS[kz (Z — ZI)]de (38)

Cunlhece) (K2,)

and similar to [16], the original path is deformed as shown in
Fig. 3 to overcome the effects of the pole and branch-point
singularities. The parameters that define the deformed integra-
tion path are as follows. On the first path named as I'y, for
0 <ty < Ty, k. is defined as
NS
k= ko(1+jT1) = (39)
T

on the second path named as ', for 0 < to < Ty — 11, k. is
defined as

. ) t
ke = ky [1 + 4Ty + <,/1+T22—1—yT1> TZ_ZTJ (40)

and on the third path named as I's, for 0 < t3 < T3 — T, k, is
defined as

t
k. = k. {\/1+T§+(\/1+T32— \/1+T22> T jTQ] 41)

where k is the wave number of the source layer.

The two-level GPOF implementation in [15] and [16] is very
similar to that presented in [4] and [5]. Briefly, the spectral do-
main Green’s functions are sampled uniformly on I's, approxi-
mated in terms of complex exponentials via GPOF, and the cor-
responding CFGFs in the spatial domain are found with the aid
of the large argument approximation of the zeroth-order Hankel
function and the Sommerfeld identity. Then, the approximated
spectral domain Green’s functions are subtracted from the orig-
inal spectral domain Green’s functions, and resulting expres-
sions are uniformly sampled on I'; and I's, approximated in
terms of complex exponentials via GPOF and transformed to
the spatial domain in closed-forms. Addition of the two steps
constitutes the final CFGF expressions in the spatial domain.
However, this approach yields inaccurate results due to numer-
ical problems when the value of the spectral domain Green’s
functions on I's is large, which is usually the case when p = p/,
particularly along the paraxial region (i.e., A¢ — 0) of the
cylinder. On the other hand, in [23], a one-level GPOF imple-
mentation is used, which requires again taking samples and ap-
proximating the spectral domain Green’s functions on I's. Such
an implementation may lead to numerical problems as well as
inaccuracies when source and observation points are well sep-
arated (3)\g — 4)\g). As explained before, performing the enve-
lope extraction with respect to &k, helps us to obtain small-valued
spectral domain Green’s functions on I's but requires a modifi-
cation in the approach.

Therefore, in our two-level GPOF implementation, first we
notice that the spectral domain samples of G'(u}f OF on I'y are
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very small and almost constant. Denoting this term as GSGPOFs |
we subtract G’Sf OFz from éfjf OF "and the resulting expression
éSfOF - GS’EO& is sampled uniformly on I'; and I by taking
N; and N> samples, respectively. Then, the sampled Green’s
functions are approximated in terms of M; and M, complex

exponentials of k. via the GPOF method, resulting
M,

M,
Gl 2D bn, @™t Y by e
n=1 m=1

-+ contribution (C:‘SUP OF3)

M, M,

k.sn k:sm
= E bp, €7k + E b€
n=1 m=1

+ contribution (GGPOF3> .

uv

(42)

Transforming éf}v into the spatial domain via

GEPOF — 1 / G*: cosl[k.(z — 2')]dk.  (43)
T Jri4T,

and performing the integral given by (43) in closed form,

GSPOF which is originally given by (38), is obtained in closed

form. The final CFGF expressions in the spatial domain then

become the addition of GSFOF and the closed-form part of

(30) given by —(j/47w)Cun (k=0 ) (k3 + (92 /022))1F3 [ 11].

In (42), the last term, contribution(GSPOFs), represents the
contribution coming from I's. Unlike the previously published
works ([15]-[19] and [21]-[23]), its contribution is not taken
in this paper. The main reason is that after the envelope ex-
traction with respect to k., the contribution coming from I';
is not large even for relatively small %k, values. Furthermore,
by choosing the 7 parameter for I'; relatively large with re-
spect to the same (or similar) parameter chosen in [15]-[19]
and [21]-[23], GEPOF on I's becomes negligible. It should be
noted that there is, however, an additional cost for this imple-
mentation: both the number of samples taken on I's and the
corresponding number of approximating complex exponentials
are increased. One can reduce the value of T5, which in turn
shortens the path T'y. In this case, although GGPOF on T's is not
large (because of the envelope extraction with respect to k), it
is not negligible. Thus, such an implementation requires one to
approximate GS’UP OF in terms of complex exponentials on this
path. The latter situation was tried but abandoned in this work
because of the efficiency and accuracy problems.

Lastly, we find it useful to add a brief discussion on the accu-
racy range (defined as the distance between the source and ob-
servation points) and effects of nonspherical waves to this accu-
racy range of the final spatial domain CFGF expressions. First,
because the derived CFGF expressions constitute the kernel of
the EFIE, they experience a relatively severe singularity when
the source and observation points overlap with each. However,
at present, such a singularity (in the proposed CFGF represen-
tations) is not an integrable singularity. Hence, in an MoM-
based code, alternative Green’s function representations (un-
fortunately not available in closed-form) must be used for the
entries of the MoM impedance matrix that represent the self
and overlapping terms. On the other hand, it is well known that
(see, for example, the explanations in [5]) in the course of ob-
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Fig. 5. Magnitude and phase of the mutual impedance Z,, , between - and ¥-directed current sources for the coated cylinder with the parameters given in

Fig. 2. (Solid line) eigenfunction solution; (circles) CFGF solution.

taining CFGF expressions, the approximating functions repre-
sent spherical waves with complex distances. Therefore, types
of waves that are different in nature than the spherical waves,
such as surface waves and/or lateral waves, are not properly ac-
counted and should be treated explicitly if it is desired to accu-
rately include their effects. Inaccurate inclusion of their effects
leads to some limitations in the accuracy range of the final CFGF
expressions. For planar cases, it has been shown that [3]-[5] if
GPOF is implemented correctly, results are very accurate up to a

few free-space wavelengths. Beyond this separation, where sur-
face-wave contributions start to dominate, explicit treatment of
surface waves might be necessary. However, treatment of sur-
face waves does not affect the robustness of the method, and re-
sults are still in closed form. In this paper, we have not treated the
surface waves explicitly and, as will be shown in the numerical
results, our EFIE-related CFGFs are accurate up to 6Ag — 7\g
(or even more for some components). Similar to the planar case,
explicit treatment of surface waves can be performed.
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Fig. 6. Real and imaginary parts of the mutual impedance (Z12..) between
two identical Z-directed current sources versus separation when o = 90° (axial
line) for the coated cylinder with the parameters given in Fig. 2.

III. NUMERICAL RESULTS

To assess the accuracy of this method, some numerical results
in the form of mutual impedance between two tangential, non-
touching electric current modes .J;,, and J,, are obtained using
the proposed CFGF expressions and compared with a standard
eigenfunction solution in the spectral domain (used as a refer-
ence solution) for a dielectric coated circular PEC cylinder with
ag = 3Xg, a1 = 3.06)g, ¢, = 3.25. The mutual impedance
Z12,, between the current modes is simply given by

212, :/ By, s, ds
JSa

wv

(44)

where F, is the field due to the current mode J;, and Sy is
the area occupied by the current mode Jo . The current modes
are defined by a piecewise sinusoid along the direction of the
current and by a constant along the direction perpendicular to
the current [26]. Each element has dimensions of 0.1\ (along
the direction of the current) by 0.04\. This particular choice
of current modes guarantees the convergence of the eigenfunc-
tion solution, even though the rate of convergence is very slow.
In Fig. 5, the magnitude (in dB) and phase of mutual imped-
ances Zi2__, Z12¢z ,and an versus « for various s values are
shown. The parameters are chosen the same as in [27] and [28],
yielding a duplication of the results presented previously in [27]
and [28]. Very good agreement is obtained between the eigen-
function solution and the new CFGF expressions.

The next set of results are presented to show the accuracy of
our CFGF expressions along the axial line, which has been re-
maining as a problematic region in the previous studies. There-
fore, in Figs. 6 and 7, the real and imaginary parts of the mu-
tual impedance between two identical z- and ¢-directed current
modes versus separation for o = 90° are depicted, respectively.
Similar to the previous numerical example, the parameters are
chosen the same as in [29]. While there is a very good agreement
between the eigenfunction solution and the proposed CFGF ex-
pressions along the axial line, the disagreement seen in Fig. 7
after 5\ is due to the convergence problems of the eigenfunc-
tion solution. Note that the proposed CFGF expressions are ac-
curate for distances more than 6-7 ) (tested with the high-fre-
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Fig. 7. Real and imaginary parts of the mutual impedance (Z1244) between
two identical ¢-directed current sources versus separation when o« = 90° (axial
line) for the coated cylinder with the parameters given in Fig. 2.
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Fig. 8. Real and imaginary parts of the mutual impedance (Z12. ) between
a ¢- and a Z-directed current source versus separation when o« = 85° (nearly
axial line) for the coated cylinder with the parameters given in Fig. 2.

quency based asymptotic solutions). In a similar fashion, Fig. 8
illustrates the mutual impedance between a 2- and a ¢-directed
current source versus separation for « = 85°. Keeping in mind
that since this component possesses a sin(2«)-type variation as
seen in Fig. 5(c), the mutual impedance is zero along the axial
direction. Therefore, for this particular case, the angle « is set
to 85°.

Lastly, for the generation of all these CFGF results, the fol-
lowing parameters are used. The path, shown in Fig. 3, is formed
by defining 77 = 0.1, T = 20 and 73 = 22. On I'; and I's,
N; = 30 and N, = 250 spectral domain samples are used, re-
spectively. These samples are approximated in terms of My = 5
and M, = 7 complex exponentials in the spatial domain. Fur-
thermore, approximately 15 kg a; (5 belongs to the larger radius,
ko = 2m/Ag) terms are used for the summation over the cylin-
drical eigenmodes in the spectral domain. This number is actu-
ally quite larger than what is necessary for the convergence of
the summation but chosen as is to leave a safety margin. How-
ever, this summation is still one of the main bottlenecks of the
method. Some work is in progress to further accelerate the sum-
mation as well as to optimize the parameters Ny, No, My, M.
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IV. CONCLUSION

CFGF expressions, which constitute the kernel of an EFIE
for cylindrically stratified media, are developed. Because these
CFGFs are very accurate for almost all possible source and field
points, they can be used in conjunction with MoM-based codes
to investigate microstrip structures such as antennas and arrays
that are printed on several layers of cylindrically stratified
media. Such an investigation might be radiation/scattering from
a printed antenna/array on a coated cylinder, input impedance
of a microstrip antenna (isolated or in the presence of other
elements), or mutual coupling among various printed array
elements.

Besides the fact that the validity range of the developed
CFGFs is significantly improved compared to all CFGF expres-
sions available in the literature for cylindrically stratified media,
several analytical and numerical techniques presented before
are implemented 1) to accelerate the method and ii) to avoid
possible numerical problems, in particular due to cylindrical
special functions. Therefore, printed elements on electrically
large cylinders that are in general analyzed with high-frequency
based methods can also be handled with the proposed CFGFs.
The proposed CFGFs are not valid in the region where the
source region and field points overlap, and they become less
accurate when distances between the source and field points
are very large where only surface-wave contributions are dom-
inant. The former one is due to the fact that kernels of EFIE
are always more singular compared to other integral equations,
and the latter one is due to the fact that surface waves are not
represented properly.

Proper inclusion of surface wave contributions and develop-
ment of alternative (approximate) CFGF representations to be
used when the source region and field points overlap are cur-
rently being investigated.

APPENDIX

A. Explicit Expressions for Fr1,Fr2, 1_7‘,,3, and F .,

H? (kp,a5) Jn(kp,p)

Frl ﬁ,?" 1 M,
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