
A Tool Framework for Deriving the Application Architecture
for Global Software Development Projects

Bu�ra M. Yildiz
Department of Computer Engineering

Bilkent University
Ankara, Turkey

e-mail: bugra@cs.bilkent.edu.tr

Bedir Tekinerdogan
Department of Computer Engineering

Bilkent University
Ankara, Turkey

e-mail: bedir@cs.bilkent.edu.tr

Semih Cetin
Cybersoft Information Technologies,

METU Technopolis,
Ankara, Turkey

e-mail: semih.cetin@cs.com.tr

Abstract – In order to meet the communication, coordination
and control requirements of distributed Global Software
Development (GSD) teams, it is necessary to define a proper
software architecture. Designing a GSD architecture, however,
involves a multitude of design decisions that are related in
different ways. As such, it is not trivial for the architect to
design a system that meets the different GSD concerns. To
assist the architect in designing a suitable GSD architecture we
propose the tool framework Global Architect. The tool
framework is based on a common meta-model for GSD and a
question framework, which includes a predefined set of
questions that are related to abstract design rules for designing
GSD systems. Based on the answers provided to the questions
of the question framework, the tool automatically selects and
instantiates the necessary rules and generates the GSD
architecture. Global Architect has been applied to design the
GSD architecture for a real industrial project of Cybersoft, a
leading GSD company in Turkey.

Keywords-component; Architecture Modeling, Global
Software Development, Model-Driven Development, Question
framework

I. INTRODUCTION
Software architecture for a program or computing

system consists of the structure or structures of that system,
which comprise elements, the externally visible properties
of those elements, and the relationships among them [12].
Software architecture forms one of the key artifacts in the
entire software development life cycle since it embodies the
earliest design decisions and includes the gross-level
components that directly impact the subsequent analysis,
design and implementation [14].

It is generally accepted that software architecture design
plays a fundamental role in coping with the inherent
difficulties of the development of large-scale and complex
software. Research on architecture design in the last two
decades has resulted in different useful techniques and
approaches. Yet, in the software architecture design
community the endeavor of software architecting seems to
have been mainly focused on architecting in single systems.
However, current trends in software engineering show that
large software projects have to operate with teams that are
working in different locations. The reason behind this
globalization of software development stems from clear

business goals such as reducing cost of development,
solving local IT skills shortage, and supporting outsourcing
and offshoring. There is ample reason that these factors will
be even stronger in the future, and as such we will face a
further globalization of software development. Global
Software Development (GSD) is a relatively new concept in
software engineering that can be considered as the
coordinated activity of software development that is not
localized and central but geographically distributed.
Designing a proper architecture for GSD is important to
meet the requirements for the communication, coordination
and control of distributed GSD teams. Unfortunately, the
global software engineering community seems to have less
focused on these problems from a technical software
architecting perspective.

In this paper, we present Global Architect, a tool
framework for assisting the GSD architect in designing a
proper architecture that meets the concerns of a global
setting. Herewith, we define a GSD architecture as the
gross-level structure of a software project that develops
software across distributed sites. The GSD architecture, as
such, embodies all the architectural elements and the
relationships among them that together form the GSD
project structure. We provide a meta-model that represents
the key concepts of GSD. The tool framework is based on
this meta-model for GSD and a corresponding question
framework that aims to identify and derive the concerns of a
GSD project. The question framework includes a set of
predefined questions that can be used to provide an
instantiation of the meta-model. Each instance of the meta-
model is called an application architecture (GSD
architecture). Both the meta-model and the question
framework have been derived after a thorough analysis of
the related GSD literature. Based on the answers provided to
the questions of the question framework Global Architect
automatically derives the related instance of the meta-model
and, as such, provides the application architecture. The tool
framework can be used to analyze different alternatives of
application architecture for GSD projects.

The remainder of the paper is structured as follows.
Section II describes the key concerns for architecting GSD.
Section III describes the approach for deriving GSD
application architecture. Section IV describes the meta-

2012 IEEE Seventh International Conference on Global Software Engineering

978-0-7695-4787-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICGSE.2012.12

94

model for GSD and section VI the question framework.
Section VI explains the tool framework, Global Architect,
used for generating application architectures. Section VII
gives a real case on which the approach is applied. Section
VIII describes the related work and finally section IX
concludes the paper.

II. ARCHITECTING GSD
Figure 1 shows the conceptual architecture for Global
Software Development systems. GSD architecture usually
consists of several nodes, or sites, on which different teams
are working to develop a part of the system. The teams could
include development teams, testing team, management team
etc. Usually each site will also be responsible for following a
particular process. In addition, each site might have its own
local data storage.

Figure 1. Conceptual Architecture for GSD

Different authors in the GSE community have identified
communication, coordination, control and development as
important concerns in GSD settings [1][4][10]. We explain
these concerns in more detail below:

Development - the software development activities
typically using a software development process. This
includes activities such as requirements analysis, design,
implementation and testing. Each project development site
will typically address a subset of these activities.

Communication – communication mechanisms within
and across sites. Typically different sites need to adopt a
common communication protocol.

Coordination – coordination of the activities within and
across sites to develop software according to the
requirements. Coordination will be necessary to align the
workflows and schedules of different sites. An important
goal could be to optimize the development using appropriate
coordination mechanisms.

Control – systematic control mechanisms for analyzing,
monitoring and guiding the development activities. This does
not only include controlling whether the functional
requirements are performed but also which and to what
extent quality requirements are addressed.

In fact, each of these concerns requires further in-depth
investigation and has also been broadly discussed in the GSD
community. Within the context of this paper we are
interested in the impact of these concerns on the architecture
of the GSD. Designing a proper architecture for GSD
systems is important to meet the requirements for the
communication, coordination and control of distributed GSD
teams. However, designing the GSD architecture involves
many different concerns and usually is not a trivial process.
The GSD architecture will need to be different for different
parameters such as team size, data storage, adopted
processes, migration of the teams, and communication
protocols, etc. Unfortunately, no systematic and dedicated
approach exists in assisting the GSD architect to derive the
GSD architecture.

III. APPROACH FOR DERIVING THE APPLICATION
ARCHITECTURE

GSD architecture can be described as a model that is
instantiated from a common GSD meta-model. For deriving
an architecture the architect will be supported by a question
framework. Figure 2 shows the more detailed relations
among the concepts that explain this process.

Figure 2. Conceptual Model defining the relation between question

framework meta-model and application architecture

In this context, an application architecture can be
considered as a representation of an instance of a meta-
model. In practice, different multiple instances can be
derived from a meta-model based on the project
requirements. To capture these project requirements, we
adopt the use of Question Framework which includes a set of
Question Sets. Question Sets include the expected answers
for which related design actions are defined. The design
actions can be used to derive an instance of the meta-model
and later on map this to the application architecture.

Based on the model in Figure 2, the process consists of
two basic steps, the domain engineering phase and the
application engineering phase. In the domain engineering
phase, based on a thorough literature study, first the meta-
model for GSD architecture is defined. The meta-model
defines a reference architecture for application architecture

95

that can be derived from it. The meta-model itself consists of
several units. In addition to the meta-model, the question
framework is defined to support the derivation of the
application architecture. The question framework includes a
number of question sets that include questions. Typically a
question set is defined for each unit of the meta-model. For
each question in the question set the expected set of answers
is defined. Finally, the set of reference design actions are
defined.

In the application engineering phase the set of answers
based on expected answers are derived. Using the application
answers and the reference design actions the set of
application design actions are defined. These design actions
are used to instantiate the GSD meta-model and subsequently
derive the GSD application architecture. The complete
process is given in Figure 3.

Figure 3. Process for deriving application architecture

IV. META-MODEL FOR GLOBAL SOFTWARE
DEVELOPMENT

Based on the literature of GSD, we have defined a meta-
model for GSD that defines the concepts and their relations
to derive application architecture. Since the meta-model is
quite large we have decomposed it into six meta-model units.
Each of these meta-model units includes semantically close
entities and addresses the four concerns that have been
defined in section 2. The meta-model units are also
overlapping; the meta-model elements with the same name in
different units refer to the same meta-model elements. The
meta-model units are Deployment, Process, Data,
Communication, Tool and Migration. We explain these units
below.

1. Deployment Unit

Deployment Unit concerns the deployment of the teams
to different sites. The meta-model (abstract syntax) of this
unit is shown in Figure 4.

Figure 4. GSD Meta-model: Deployment Unit

Team is the primary essential entity in the complete
meta-model and is defined as a group of persons that work
together to achieve a particular goal. A Team may be
organized in a temporary way that it will be dismissed after
its function is complete. Team is allocated at a particular
Site. Site may to a country, city or a building where a Team
works at. Location attribute determines where Site is placed
in the world. Time zone shows the local time of Site. Teams
may belong to different types of Organizations, such as
commercial organizations, subcontractors or non-profitable
organizations such as open source communities. Teams can
be from different countries and depending on the society
they are in, they may have different Social Cultures. Like
Social Culture, Team’s background including work
experience, the time that members work together, their
habits are captured by Work Culture entity.

Expertise Area, Team and Site can be further
decomposed into sub-parts. For example, a Software Team
may consist of sub-Teams each responsible for Design,
Implementation, Testing and Integration.

2. Process Unit

Process Unit concerns the different kind of processes in
GSD. The meta-model (abstract syntax) of this unit is
shown in Figure 5.

Process is defined as a planned set of activities that aims
to provide some service. Teams participate in Process in
order to provide some service. Service is defined with
Function. A Function can be any service during software
development process that requires some Expertise Areas
such as software development, architecture design, business
management, requirements elicitation and so on.
Coordination is also a Function that should be provided for
coordinating several Teams’ activities. A Process consumes
or uses several different Data Entities and also creates other
Data Entities for providing targeted Functions. For
supporting activities defined in Process, Teams need to

96

communicate with each other. These Communications
support Process. Process concept is further specialized into
Workflow, Business Process and Development Process (not
shown in figure).

Figure 5. GSD Meta-model: Process Unit

3. Data Unit
Data Unit is for representing ownership and physical

deployment of software development data. The meta-model
is shown in Figure 6.

Data Entity is the fundamental entity of this viewpoint.
It represents any piece of data: digital, textual or informal
piece of information such as notes taken by developers,
telephone calls that are usually not recorded. Data Entity
has size whose unit is defined by size type; for example, a
120-page report, 6 minutes of voice record, 2 gigabyte of
digital data. Creation date and last update date show the
history of Data Entity. Data Entity has Actual Type where
Actual Format can be one of predefined formats (video,
sound, text, picture and complex-Data Entity) or some
designer defined format. If Data Entity is digital, then in
addition to Actual Format, it has a Digital Format. Data
Entity may be implemented in one or more Languages.

Data Entity is stored in Data Storage. Data Storage
corresponds to any object in the real world that can store
information. For example, some textual document is stored
in paper form, or it is stored in a voice record, or it is stored
digitally in the format of some text editor. Data Storage has
ability to store some Actual Types and if it can store digital
data then it can support some Digital Types also. A Data
Storage instance is owned by one or more Teams and it can
be located in one Site or may be distributed over several
Sites like distributed databases.

Figure 6. GSD Meta-model: Data Unit

4. Communication Unit
Communication Unit focuses on the representation of

both formal and informal communication activities between
Teams. The meta-model is shown in Figure 7.

Figure 7. GSD Meta-model: Communication Unit

Communication is done over Communication Platform
in the context of Process and it can be an instance of
sudden/event-based communication activity like a telephone
call or a continuous communication channel such as a
discussion forum. Type attribute is for representing in which
way Communication takes place such as email, phone call,
face-to-face chat and so on. Suggested time period is an
important attribute for GSD since Teams work in different
time zones, some Communication channels can be used
effectively in a defined time period. For example, phone
calls should be done during the hours when both sides are in
or around their work hours.

Communication has two sides which are caller and
receiver. Generally speaking, caller starts communication
and receiver is the one who is dialed by the caller. For
example, an email sender is classified as caller and receiver
is the one who receives email. Sometimes, there can be
multiple callers such as video conferences or there can be
multiple receivers such as discussion forums. It is also

97

possible that caller and receiver are the same such as a
planned meeting. For all cases, caller and receivers are
considered as Teams in this viewpoint. While Teams
communicate, one or more Data Entities are carried in the
context of Communication.

5. Tool Unit

Tool Unit captures the details of tools used by Teams for
communication and providing Functions. The meta-model is
shown in Figure 8.

Figure 8. GSD Meta-model: Tool Unit

Tool is compatible with one or more Actual Format and
Digital Format. Platform is the set of Tools used by Teams
for communication or providing some functions. Depending
on the purpose, the platform is defined as Function Platform
or Communication Platform.

6. Migration Unit

Migration Unit concerns the migration and traveling of
the teams during GSD activities. These travels are especially
needed in the first and final phases of the projects to ease
and support coordination and integration. The meta-model is
shown in Figure 9.

Migration is executed by one or more Teams from Site
to Site at a particular date. In a Migration, Teams may carry
Data Storage such as documents, digital data containers and
so on. Migration is executed in the context of Process.

Figure 9. GSD Meta-model: Migration Unit

V. DEFINING THE QUESTION FRAMEWORK FOR GSD
In order to support the derivation of application

architecture, we have defined a question framework
dedicated for GSD. The question framework is divided into
six question sets. Each set corresponds to one of the six
meta-model units as described in the previous section. Like
meta-model units, question sets also have intersecting
concepts. The questions are numbered in a particular order
to guide the proper derivation of the application
architecture. As an example the question set for the
deployment meta-model unit is shown in Table 1.

A question set consists of a number of questions. For
example for the Deployment Unit we have identified 19
questions related to the elements in the corresponding meta-
model unit. Each question is defined as a tuple consisting of
the index number of the question, the question itself, the
expected answer and the related design action.

The expected answers are specific to the questions and
might include values of primitive data types (such as
integer) or require more complicated descriptions. Each
expected answer can trigger one or more design actions. A
design action defines a CRUD (create, read, update and
delete) action to create, read, update or delete the elements
of a model representing the application architecture. The
actions on which these CRUD operations can apply are in
principle Model, Model Attribute, Model Operation, and
Association. Based on this we have defined all the possible
combinations for CRUD operations. For example, we have
defined the following types of design actions:

• Create Model Instance
• Read Model Instance
• Delete Model Instance
• Update Model Instance
• Create Association
• Read Association
• Delete Association
• Update Association -
• Etc.

The design action is defined as a tuple consisting of
<operation><model element>. The <operation> part
represents one of the four CRUD operations. The part
<model elements> represents the model or model elements.
For example, the design action related to the first question
of Table 1 is defined as <Create Model><Site> which
implies the creation of the Model Site. Similarly, the
description <Create Association><Site Site> of question 3
denotes the creation of an association between Site model
elements.

98

Table 1. Question Set for Deployment Meta-Model Unit

No Question Expected Answer Design Action

1
How many Sites are
there in this GSD
project?

Positive integer. <Create Model>
<Site>

2 Enter Site details.

Name, description and
location are given in free
text format. Time zone is
selected from time zones
in the world.

<Update Model-Attribute>
<Site>.

3 Select parent Site
for each Site.

A defined Site or null
value is selected for each
Site.

<Create Association>
<Site Site>

4 Which Languages
are used?

Selections are done from
languages spoken in the
world.

<Create Model>
<Language>

5 What are
Organization types?

Free text. Ex: Comercial,
Open Source
Development, etc.

<Guide>
Determine the list of types

for Organizations.

6

How many
Organizations are
there in this GSD
project?

Positive integer. <Create Model>
<Organization>

7 Enter Organization
details.

Name and description are
given in free text format.
Type is chosen from the
values given in Question
6’s answer.

<Update Model-Attribute>
<Organization>

8 Define Social
Cultures.

Name and description for
each instance that is
wanted to be created are
given in free text format.

<Create Model>
<Social Culture>

9 Define Work
Cultures.

Name and description for
each instance that is
wanted to created are
given in free text format.

<Create Model>
<Work-Culture>

10

How many
Expertise Areas are
there in this GSD
project?

Positive integer. <Create Model>
<Expertise Area>

11 Enter Expertise
Area details.

Name and description are
given in free text format.

<Update Model-Attribute>
< Expertise Area>

12

Select parent
Expertise Area for
each Expertise
Area.

A defined Expertise Area
or null value is selected as
parent for each Expertise
Area.

<Create Association>
<Expertise Area
Expertise Area>

13
How many Teams
are there in this
GSD project?

Positive integer. <Create Model>
<Team>

14 Enter Team details.

Name and description are
given in free text format.
isTemporary and isVirtual
attributes are given in
boolean values.

<Update Model-Attribute>
<Team>

15
Select Site and
Organization for
each Team.

A defined Organization
and Site or null value is
selected for each Team
instance.

<Create Association>
<Team-Site

Team-Organization>

16
Select Work and
Social Cultures for
each Team.

At least one defined Work
Culture and Social Culture
are selected for each
Team.

<Create Association>
< Team-Work Culture>;
 <Create Association>

< Team-Social Culture>

17
Select Languages
that each Team able
to speak.

At least one defined
Language defined before
is selected for each Team.

<Create Assocication>
<Team-Language>

18
Select Expertise
Areas for each
Team.

At least one defined
Expertise Area is selected
for each Team.

<Create Association>
<Team-Expertise>

19 Select parent Team
for each Team.

A defined Team or null
value is selected as parent
for each Team.

<Create Association>
<Team-Team>

Once the questions are answered and the related design
actions are collected we can derive the application
architecture. In principle, it is possible to create an
application architecture by using the meta-model and the
question framework manually. However, answering all the
questions and keeping track of the required design actions
can be a cumbersome and error-prone activity. In addition,
since the relation among question, expected answers and
design actions are precisely defined, we have provided
automated support for the approach in the tool framework,
Global Architect. We explain this tool in the next section.

VI. THE TOOL FRAMEWORK: GLOBAL ARCHITECT

We have developed the tool framework Global Architect
that implements the meta-model and the question
framework described in the previous sections. The tool is
implemented in the Java environment. A snapshot of the
tool is shown in Figure 10. The menu bar at the top provides
basic functionality such as creating, importing/loading,
exporting or editing architectural models. The architect
creates a new model or imports an existing model before
answering the related questions of the question framework.
The tool includes 6 question sets of the question framework.
These question sets are shown as tabs in the snapshot. The
questions related to each question set are shown on the left
panel. The architect can navigate through each of these
questions. The tool itself defines the required ordering to
answer questions for satisfying the question dependencies.
The selected question with the answer fields are shown in
the middle panel.

The answers to the questions result in an update of the
current model, which is an instance of the meta-model that
we have defined in the previous sections. The view on the
partial model is shown on the right panel. In the snapshot,
the question relates to the structure of teams in GSD, and
likewise the Team hierarchy part of the model is shown in
the right panel.

Each answer to a question triggers a design action that
updates the underlying model of the architecture. Global
Architect keeps track of the answers given to the questions
and manages the dependencies among questions. An answer
to a question can impact multiple views because the same
model element might need to be changed. The tool keeps
track of these changes on overlapping entities of different
views and, as such, the consistency among views is ensured.
As an example, the teams are defined in the model by
answering the question 14 and the tool limits the architect to
use these defined teams in later questions. Similarly, the
architect is forced to use these teams while answering other
question sets since Team is a common entity in different
views.

After answering the questions the architect can export
the model of the application architecture in a XML-like
textual form that we specifically defined. An (partial)
example textual representation of the application
architecture is given in Figure 11.

99

Figure 10. Snapshot of Global Architect Tool

For the generation of visual models of the application
architecture from these textual representations, we have
adopted model-driven development techniques. The model-
transformation pattern we applied for this procedure is
shown in Figure 12.

Figure 11. Example Textual Application Architecture derived using GSD
Global Architect Tool

The source of the transformation consists of the textual
model file that has been derived after answering the
questions and triggering of the design actions in the Global
Architect tool. For the target language we have developed a

UML deployment meta-model. The transformation
definition in Figure 12 defines the mapping of the GSD
model elements to the elements of the deployment model.
The mapping is developed as an Eclipse plug-in [8] in
which we have used the Eclipse Graphical Modeling
Framework (GMF) [7] for developing the graphical
representation. After the automatic generation of
deployment diagram, the user can modify the diagram
manually.

Figure 12. Model transformation pattern for mapping textual model to

UML deployment view

VII. CASE STUDY
The question framework and the concepts behind this

work have been tested on a real case at Cybersoft. The
company is the leading software house in Turkey having
dedicated branches in Ankara and Istanbul. Both of these
branches are conducting enterprise scale software projects
on their own. However, during past two years the company
is urged to have distributed teams that have to contribute to
the other branch’s work. The distribution of work between

100

different branches required re-modeling of the distributed
software development architecture.

The GSD project chosen concerns the development of a
banking and insurance system that is distributed over two
countries Turkey and Azerbaijan. Global Architect has been
used to derive the GSD architecture for this distributed
software development project at Cybersoft. For this the
project managers and the architects of the project have
answered the questions of the question framework in Global
Architect. For example, the answers to questions for
Deployment Unit revealed the need of creation of vertical
teams for different expertise areas. The company’s
headquarters is located in Ankara where the implementation
and testing teams work. The architecture design process is
executed by another team of the company located in
Istanbul branch. Specific to this project, the company
allocated a requirement advocation team that is working in
Baku, Azerbaijan. The tool framework is used to answer the
questions of the deployment question set and the textual
representation of the architectural model is produced by the
tool given in Figure 11. The textual model has been
provided as an input to the model generator as shown in
Figure 12. The derived generated visual architecture is
presented in Figure 13.

Figure 13. Generated Deployment Architecture for the Cybersoft case

Answering the questions for Process Unit created new
process definitions such as synchronization of the test cases
between sites, multi-site release management, and
distributed work item management, all of which do not exist
during single site development.

As Data Unit related questions are answered, the tool
introduced wiki-based distributed requirement store,

teleconference voice records, and digitized paper document
repository all of which are newly brought by the distributed
way of working.

 The answers to Communication Unit questions yielded
several new communication channels such as voice links,
wiki, forums and knowledge-based cheat sheets. Moreover,
these answers also introduced new communication-based
processes such as mapping requirements to voice records or
version management based on the changes on wiki items.
They do not exist in the conventional way of working at
Cybersoft.

The questions for Tool Unit have been answered and this
leads to the introduction of new tools such as wiki, Web-
based teleconference managers, Web-based instant screen
snapshot replicatiors, all of which do not exist before the
distributed way of working.

Figure 14. Generated Migration Architecture for the Cybersoft case

The answers to Migration Unit questions created brand

new tasks to manage the mobilization of teams from time to
time. During these face-to-face communication sessions,
new data units such as wiki synchronization reviews, work
redistribution logs, and distributed team efficiency statistics
are all introduced which do not exist before the distributed
way of working. The face-to-face communication sessions
required to travel of the teams working in different branches
to the other cities for completing some processes. The
architect and the requirement advocation teams travel
between Istanbul and Baku to clarify the requirements of the
system to be developed. It is also needed for the architect

101

team to visit Ankara branch in order to transfer the system
architecture and architectural decisions to the lead
developers working in the headquarters. In the final phase of
the project, the test team needs to go from Ankara to Baku
for executing the acceptance tests. These travels are shown
in Figure 14. The figure represents the visual model of the
migration architecture derived using the tool framework and
the text-to-visual model transformation pattern.

The project managers and the architects have derived a
variety of application architectures with different
perspectives by answering the question sets considering
several concerns. By comparing these alternatives, they
realized different needs. The results from the case study
showed that Global Architect is useful in terms of the
representation and derivation of the application architecture
from different perspectives. In addition the tool helped to
reveal the needs in different GSD concerns for the project
and derive different architecture alternatives.

VIII. RELATED WORK
Notably, architecting in GSD has not been widely

addressed. The key research focus in the GSE community
seems to have been in particular related to tackling the
problems related to communication, coordination and
control concerns. Clerk et al. [6] report on the use of so-
called architectural rules to tackle the GSD concerns.
Architectural rules are defined as “principles and statements
about the software architecture that must be complied with
throughout the organization”. They have defined four
challenges in GSD: time difference and geographical
distance, culture, team communication and collaboration,
and work distribution. For each of these challenges they list
possible solutions and describe to what extent these
solutions can be expressed as architectural rules. The work
of Clerk et al. aims to shed light on what kind of
architectural rules are necessary to guide the GSD. We
consider our work complementary to this work. In our work
the design actions that relate to the expected answers of
questions are defined as design actions.

In our work the notion of question framework plays an
important role to develop the architecture. The notion of
question framework has been addressed before by several
authors. To the best of our knowledge question frameworks
have only been used as a means for evaluating architectural
descriptions, and not for supporting the development of the
architecture. For example, in [9] Hämäläinen and Markkula
have introduced a question framework for evaluating quality
of architectural descriptions. The quality evaluation question
framework is organized based on stakeholder and purpose
orientation, content quality, presentation and visualization
quality, and management of documents. The stakeholder
and purpose orientation, is defined for evaluating how well
documents are focused on their purpose and on the
stakeholders using them. The content quality is used to
evaluate the quality of the information included in the

documents. The presentation and visualization quality, is
used for evaluating how well information is presented in the
documents. Finally, the management of documents is used
for evaluating architecture description quality, from the
point of view of processes and practices. Similarly, Nord et
al. [15] propose a structured approach for reviewing
architecture documentation (AD) which also builds on
question frameworks. The approach is centered on the
stakeholders of the artifact, and aims to engage and guide
them to assure that the architecture documentation meets
their quality concerns.

A common practice is to model and document different
architectural views for describing the architecture according
to the stakeholders’ concerns [5][11][12][13]. An
architectural view is a representation of a set of system
elements and relations associated with them to support a
particular concern. Having multiple views helps to separate
the concerns and as such support the modeling,
understanding, communication and analysis of the software
architecture for different stakeholders. Architectural views
conform to viewpoints that represent the conventions for
constructing and using a view. An architectural framework
organizes and structures the proposed architectural
viewpoints. Different architectural frameworks have been
proposed in the literature. Examples of architectural
frameworks include the Kruchten’s 4+1 view model [13],
the Siemens Four View Model [11], and the Views and
Beyond approach (V&B) [5]. In our work we derive an
application architecture that represents the deployment view
of the system. This view appeared to be one of the most
useful views since it is able to depict the multi-site character
of GSD. However, we could easily consider other views
such as decomposition view or uses view. In that case we
need to provide new implementations for mapping between
the meta-model instance and the target view.

Tool support has been named as one of the important
challenges for GSD since it requires making software
development tools and environments more collaborative
[16]. Booch and Brown have introduced the vision for
Collaborative Development Environment (CDE), which is
defined as “a virtual space wherein all the stakeholders of
the project – even if distributed by time or distance – may
negotiate, brainstorm, discuss, share knowledge, and
generally labor together to carry out some task, most often
to create an executable deliverable and its supporting
artifacts” [1]. A number of efforts have been carried out to
support the idea of CDEs. Collab.net [3] is a commercial
provider of CDEs, offering facilities for configuration
management, bug tracking, task management and
discussions. Spanjers et al. [17] discuss the system SoftFab,
which automates the build and test processes in the context
of multi-site projects. Caroll et al. [4] define the tool Jazz
which supports rich synchronous communication, and
promotes mutual awareness of coding activities within a
development team.

102

In the context of tool support, Whitehead [18] has
presented a survey on existing collaboration support tools in
software engineering. Whitehead distinguishes among four
broad categories of tool support to support collaboration in
software engineering: Model-based collaboration tools for
representing the adopted models; Process support tools for
representing software development process; Awareness
tools for informing developers about the ongoing work of
others and to avoid conflicts; Collaboration infrastructure
to support data and control integration and likewise support
interoperability.

Despite the clear need and benefits of the existing CDE
tools, it appears that most of the work on CDE has focused
on the collaboration concern and less on the development
part. Further the tools that address development primarily
focus on collaborative coding and relatively little attention
has been paid to architecture design. There seems to be a
general agreement that more research is needed in this
domain. Our approach and tool can be considered as part of
the efforts for enhancing CDE for design of GSDs.

IX. CONCLUSION
Different challenges have been identified to set up a

Global Software Development environment. Our literature
study on GSD showed that in particular the challenges of
development, communication, coordination, and control of
GSD are addressed in the GSD community but less focus
has been provided on the modeling, documentation and
analysis of architecture for GSD. In this paper we have
focused on the architecture design of GSD. Designing
architecture for single systems is hard. Designing
architecture for GSD is even more difficult due to the
additional concerns for communication, coordination and
control of distributed GSD teams.

To support the architect in designing a proper GSD
architecture we have provided a tool framework based on a
question framework which has the purpose of identifying
and deriving the concerns of a GSD project. The question
framework includes important questions related to concerns
for designing the architecture. Despite traditional usage of
question frameworks as evaluation tools, we have defined
and used the question framework to derive the application
architecture for GSD. For this we have defined the possible
design actions for the expected answers of the questions in
the question framework. The answers to the questions
triggers design actions which make updates on the
architectural model. The model conforms to a meta-model
that we defined for GSD based on a thorough literature
study. The meta-model captures the key concerns of GSD
architectures including deployment, process, data,
communication, tool and migration. For each of these
concerns we have defined a dedicated question set that is
organized in the overall question framework. To support
the question framework we have developed the tool Global
Architect, builds on the defined meta-model and implements

the question framework. The tool framework has been
validated in a real industrial case study. Using Global
Architect we were not only able to generate the architecture
but also able to reason about different alternatives.

In our future work, we plan to extend the functionality of
the tool framework by providing online help, supplementary
tutorials and consolidated visualization of the final complete
architecture. Also we aim to apply Global Architect for
other GSD projects.

REFERENCES
[1] P. J. Ågerfalk , B. Fitzgerald, Introduction, Communications of the

ACM, v.49 n.10, October 2006 .
[2] G. Booch and A. Brown. Collaborative Development Environments.

Advances in Computers Vol. 59, Academic Press, August, 2003.
[3] Collab.net, http://www.collab.net, http://sourceforge.net.
[4] M. Carroll and S. Sprenkle. Coven: Brewing Better Collaboration

through Software Configuration Management. ACM SIGSOFT
Foundations of Software Engineering, pp. 88-97, 2000.

[5] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.
Merson, R. Nord, J. Stafford. Documenting Software Architectures:
Views and Beyond. Second Edition. Addison-Wesley, 2010.

[6] V. Clerc, P. Lago, H. van Vliet. Global Software Development: Are
Architectural Rules the Answer? In: Proc. of the 2nd International
Conference on Global Software Engineering, pp. 225–234. IEEE
Computer Society Press, Los Alamitos, 2007.

[7] Eclipse Graphical Modeling Framework, http://www.eclipse.org/gmf/,
accessed February 2012.

[8] Eclipse official web site, http://www.eclipse.org, accessed 2011.
[9] N. Hämäläinen & J. Markkula. Quality Evaluation Question

Framework for Assessing the Quality of Architecture Documentation.
In: Proceedings of International BCS Conference on Software Quality
Management. University of Tampere, SQM, 2007.

[10] J.D. Herbsleb and D. Moitra. Global Software Development. IEEE
Software, March/April, p. 16- 20, 2001.

[11] C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture.
Addison-Wesley, NJ, USA.

[12] [ISO/IEC 42010:2007] International Organization for Standardization
& International Electrotechnical Commission. Systems and software
engineering—Recommended practice for architectural description of
software-intensive systems (ISO/IEC 42010). (identical to ANSI/IEEE
Std1471–2000), July 2007.

[13] P. Kruchten. The 4+1 View Model of Architecture. IEEE Software,
12(6):42–50, 1995.

[14] A.J. Lattanze. Architecting Software Intensive Systems: A
Practitioner’s Guide, Auerbach Publications, 2009.

[15] R. Nord, P. Clements, D. Emery, R. Hilliard. A Structured Approach
for Reviewing Architecture Documentation, Technical Note,
CMU/SEI-2009-TN-0302009, SEI-CMU, 2009.

[16] B. Sengupta, S. Chandra, V. Sinha. A research agenda for distributed
software development, In Proceedings of the 28th international
conference on Software engineering, pp. 731-740, 2006.

[17] H. Spanjers, Ter, B. Graaf, M. Lormans, D. Bendas, R. V. Solingen.
Tool Support for Distributed Software Engineering, in Proc of:
International Conference on Global Software Engineering, 2006.
ICGSE '06., pp. 187-198, 2006.

[18] J. Whitehead, Collaboration in Software Engineering: A Roadmap, In
FOSE '07: 2007 Future of Software Engineering, pp. 214-225, 2007.

103

