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ABSTRACT

ALGORITHMS FOR STRUCTURAL VARIATION
DISCOVERY USING MULTIPLE SEQUENCE

SIGNATURES

Arda Söylev

Ph.D. in Computer Engineering

Advisor: Can Alkan

September 2018

Genomic variations including single nucleotide polymorphisms (SNPs), small

INDELs and structural variations (SVs) are known to have significant phenotypic

effects on individuals. Among them, SVs, that alter more than 50 nucleotides

of DNA, are the major source of complex genetic diseases such as Crohn’s,

schizophrenia and autism. Additionally, the total number of nucleotides affected

by SVs are substantially higher than SNPs (3.5 Mbp SNP, 15-20 Mbp SV). To-

day, we are able to perform whole genome sequencing (WGS) by utilizing high

throughput sequencing technology (HTS) to discover these modifications unimag-

inably faster, cheaper and more accurate than before. However, as demonstrated

in the 1000 Genomes Project, HTS technology still has significant limitations.

The major problem lies in the short read lengths (<250 bp) produced by the cur-

rent sequencing platforms and the fact that most genomes include large amounts

of repeats make it very challenging to unambiguously map and accurately char-

acterize genomic variants. Thus, most of the existing SV discovery tools focus on

detecting relatively simple types of SVs such as insertions, deletions, and short

inversions. In fact, other types of SVs including the complex ones are of crucial

importance and several have been associated with genomic disorders. To better

understand the contribution of these SVs to human genome, we need new ap-

proaches to accurately discover and genotype such variants. Therefore, there is

still a need for accurate algorithms to fully characterize a broader spectrum of

SVs and thus improve calling accuracy of more simple variants.

Here we introduce TARDIS that harbors novel algorithms to accurately char-

acterize various types of SVs including deletions, novel sequence insertions, in-

versions, transposon insertions, nuclear mitochondria insertions, tandem dupli-

cations and interspersed segmental duplications in direct or inverted orientations

using short read whole genome sequencing datasets. Within our framework, we

make use of multiple sequence signatures including read pair, read depth and
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split read in order to capture different sequence signatures and increase our SV

prediction accuracy. Additionally, we are able to analyze more than one possible

mapping location of each read to overcome the problems associated with repeated

nature of genomes. Recently, due to the limitations of short-read sequencing tech-

nology, newer library preparation techniques emerged and 10x Genomics is one

of these initiatives. This technique is regarded as a cost-effective alternative to

long read sequencing, which can obtain long range contiguity information. We

extended TARDIS to be able to utilize Linked-Read information of 10x Genomics

to overcome some of the constraints of short-read sequencing technology.

We evaluated the prediction performance of our algorithms through several

experiments using both simulated and real data sets. In the simulation experi-

ments, TARDIS achieved 97.67% sensitivity with only 1.12% false discovery rate.

For experiments that involve real data, we used two haploid genomes (CHM1

and CHM13) and one human genome (NA12878) from the Illumina Platinum

Genomes set. Comparison of our results with orthogonal PacBio call sets from

the same genomes revealed higher accuracy for TARDIS than state of the art

methods. Furthermore, we showed a surprisingly low false discovery rate of our

approach for discovery of tandem, direct and inverted interspersed segmental du-

plications prediction on CHM1 (less than 5% for the top 50 predictions). The

algorithms we describe here are the first to predict insertion location and the

various types of new segmental duplications using HTS data.

Keywords: Structural variation, high throughput sequencing, combinatorial algo-

rithms.



ÖZET

ÇOKLU DİZİ SİNYALLERİ KULLANARAK YAPISAL
VARYASYON KEŞFİ İÇİN ALGORİTMALAR

Arda Söylev

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: Can Alkan

Eylül 2018

Tek nükleotid polimorfizmi (TNP), baz çifti ekleme/çıkarma (Indel) ve yapısal

varyasyon (YV) gibi genetik varyasyonların canlılar üzerinde önemli fenotipik

etkileri vardır. Bunların içinde 50’den fazla baz çiftini etkileyen YV’ler, Crohn

Hastalığı, şizofreni ve otizm gibi çeşitli kalıtsal hastalıkların da temel sebebidir.

Ayrıca YV’lerin etkilediği baz çifti sayısı TNP’lere göre çok daha fazladır (3,5

Mbp TNP, 15-20 Mbp YV). Bugün, yeni nesil dizileme (YND) teknolojisini kul-

lanarak tam genom hizalama (WGS) yapabiliyor ve bu tip varyasyonları çok daha

hızlı, ucuz ve yüksek doğrulukla keşfedebiliyoruz. Ancak 1000 Genom Projesi’nde

de gördüğümüz gibi, YND teknolojisinin bazı yetersizlikleri vardır. En önemli

sorun şu an kullanılan YND platformlarının ürettiği kısa okuma (<250 bp) boyut-

ları ve genomların çok tekrarlı bölgeler barındırması sebebiyle bu kısa okumaların

yüksek doğrulukla hizalanmasını zorlaştırmasıdır. Bu durum, keşfedilen genomik

varyasyonların doğruluk oranını da etkilemektedir. Bu sebeple, bugüne kadar

geliştirilmiş algoritmalar ekleme, silinme ve kısa inversiyonlar gibi görece olarak

daha basit YV’leri karakterize edebilmesine rağmen birçok genetik hastalıkla

bağdaştırılan daha karmaşık varyasyonları göz ardı etmiştir. Bu tip YV’lerin

insan genomuna etkilerini gözlemlemek için daha farklı yaklaşımlar kullanan,

yüksek doğruluk oranına sahip yeni algoritmalar gerekmektedir.

Bu tezde, YND teknolojisiyle kısa okumaları kullanarak bir canlının geno-

mundaki YV’leri bulan TARDIS algoritmasını tanıtıyoruz. TARDIS; silinme,

yeni dizi ekleme, inversiyon, transpozon ekleme, mitokondriyal ekleme, ardışık

kopya ve ters/düz ayrışık kopya gibi birçok YV’yi karakterize edebilmekte-

dir. Bu varyasyonların yüksek doğrulukta keşfi için okuma çiftleri, okuma de-

rinliği ve ayrık okumalar gibi farklı sinyalleri birarada kullanmaktadır. Ayrıca

TARDIS, genomun tekrarlı yapısı sebebiyle aynı okumanın birden çok yere ben-

zer doğrulukta hizalanmasından dolayı oluşan hataları göz önünde bulundurarak,

tüm hizalanma lokasyonlarını da kullanabilme özelliğine sahiptir. Son zamanlarda
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kısa okumaların barındırdığı kısıtlamalar sebebiyle yeni kütüphane hazırlama pro-

tokolleri geliştirilmiştir. 10x Genomics de bunlardan biridir. Bu teknik, düşük

maliyetle uzun mesafeli bitişiklik bilgisi (Long range contiguity) sağlayan, yüksek

maliyetli uzun okumalara alternatif bir yöntemdir. TARDIS, kısa okumaların

sebep olduğu kısıtlamaların önüne geçebilmek için 10x Genomics’in bağlantılı

okumalarını da kullanabilmektedir.

Geliştirdiğimiz algoritmaların doğruluk oranlarını simülasyon ve gerçek veriler

kullanarak değerlendirdik. Simülasyonlarda TARDIS %97,67 hassasiyet ve %1,12

hatalı tahmin oranını yakaladı. Gerçek veri deneyleri için de iki haploid (CHM1

ve CHM13) ve bir diploid (NA12878) insan genomu kullandık. Sonuçları PacBio

veri setleriyle karşılaştırdığımızda TARDIS’in literatürdeki en başarılı metotlara

göre daha yüksek doğruluğa sahip olduğunu gördük. Ayrıca CHM1 genomu için

TARDIS’in ardışık ve ayrışık kopya varyasyonlarında çok düşük hata oranına

sahip olduğunu gösterdik (En iyi 50 tahmininde hata oranı %5’den azdır). Son

olarak belirtmeliyiz ki burada tanıttığımız algoritmalar YND teknolojisini kulla-

narak ayrışık yapısal varyasyonları karakterize edebilen ilk algoritmalardır.

Anahtar sözcükler : Yapısal varyasyon, yeni nesil dizileme, kombinatorik algorit-

malar.
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Elif Sürer for their insightful comments and encouragements, which allowed me

to widen my research from various perspectives.

Besides, I would like to thank our collaborators Iman Hajirasouliha, Camir

Ricketts, Thong Minh Le, Baraa Orabi, Ezgi Ebren, Fatih Karaoğlanoğlu and all
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Chapter 1

Introduction

To expose the mysteries of genome, various biological studies had been conducted

in the past by researchers. With computational approaches today, we are able

to make progress much more rapidly than before. Human Genome Project and

1000 Genomes Project are two milestones in biological research executed in the

last 20 years, although they are not the only ones. With the introduction of

high-throughput sequencing, the results of genomics became more valuable as

this platform opened tremendous research opportunities to researchers.

1.1 DNA and Computational Genomics

The first clues of heredity in living organisms became evident in 1865 when Gregor

Mendel explained how traits passed down from parent to child. A few years

later, Friedrich Miescher identified “nuclein” in white blood cells of human, which

is what we know as deoxyribonucleic acid today. Although the importance of

Miescher’s findings was not realized for many years, Franklin, Watson and Crick’s

description of the double helix structure of DNA [10] opened a new era in the

field of genetics.

Today, we know that DNA (deoxyribonucleic acid) is found within nearly every
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cell of living organisms. It has two long sequences of nucleic acids made up of

four bases; Adenine (A), Thymine (T), Guanine (G) and Cytosine (C). These

sequences are attached together by chemical bonds and are called base pairs; A

pairs with T and C pairs with G on complementary strands.

DNA of an organism is packaged into structures called chromosomes inside

the nuclei of cells. Human genome includes 46 chromosomes; 22 autosome pairs

and two sex chromosomes that can be either XX or XY, for females and males

respectively. The total length of these chromosomes is around 3 km in length and

contains nearly 3.2 billion base-pairs (bp) with the addition of mitochondrial DNA

(mtDNA) present inside the mitochondria that represents only a small fraction of

the total DNA. These chromosomes and mtDNA contain the genes that code for

proteins and human genome contains 20,000 to 25,000 of them. The combination

of all the genes or the genetic makeup of an organism is what we call genome.

Human Genome Project (HGP) was launched in 1990 with the aim to sequence

whole human genome and released the first results in 2001 [11]. This is a near

complete human genome sequence created from the genomes of a few individuals

and is called the “reference genome”. The project was completed in 2004 [12],

but is still being updated. HGP attempt led to various new projects in the

field of genomics [13, 14, 15, 16, 17, 18, 19, 20, 21], therefore the amount of

data increased tremendously. With this increase, researchers were forced to rely

on computational methods and subsequently new techniques and tools emerged.

This can be regarded as the second birth of computational genomics area in the

intersection of genomics and computer science.

1.2 Genomic Variation: Changes in DNA Se-

quence

Genomic variation is defined as the genomic differences between individuals. It

has been shown that 99.9% of any two copies of human genomes are identical
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(approximately 1 variant per 1,000 bases) [22, 23]. This minor variation causes

biological differences between individuals and is what makes each unique. On the

other hand, some of these variations are the causes of genetic diseases such as

psoriasis [24], Crohn’s disease [25], renal disease [26], diabetes [26], AIDS sus-

ceptibility [27], neurodevelopmental diseases (e.g., epilepsy, intellectual disability,

autism, and schizophrenia) [28, 26, 29, 30] and many more. Thus, studying ge-

nomic variations is crucial not only for most of the branches in molecular biology

and genetics but also for medical sciences.

Genomic variations can be broadly classified into four groups based on their

sizes; (1) Single Nucleotide Polymorphisms (SNPs) are the point mutations i.e.,

changes in one nucleotide of the genome; (2) INDELs are small insertions and

deletions up to 50 bps and short tandem repeats (STR) are repeated small seg-

ments up to approximately 171 bps; (3) Structural Variations are the genomic

changes that affect more than 50 bps to several megabases; (4) Chromosomal

changes that affect the whole chromosome i.e., trisomy or monosomy. The fre-

quency of these variations are inversely proportional to their sizes.

In 2008, 1000 Genomes Project was launched to sequence the genomes of at

least one thousand humans to create a catalog of human genetic variations using

newer sequencing technologies. They launched the initial results in 2010 [14] and

2012 [18]. With the completion of the project in 2015 [20, 21], genomes of 2,504

individuals from 26 different populations were sequenced using predominantly

Illumina technology, an integrated map of 84.7 million SNPs, 3.6 million INDELs,

and > 65, 000 SVs were publicly reported. The project also revealed that a typical

genome differs from the reference at around 4 million sites where more than 99.9%

of these are SNPs or small INDELs and 2,100 to 2,500 of them are SVs.

There are also other genome sequencing projects [31, 32, 33, 34, 7] and among

these Turkey has started a new project where the aim is to sequence and analyze

100,000 Turkish genomes in three years.
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1.2.1 SNPs, INDELs and STRs

In 2001, The International SNP Map working group revealed 1.42 million SNPs

in human genome [23] and in 2002, Intenational HapMap Project was initiated

with the goal of determining the common patterns of DNA sequence variations in

human genome by characterizing sequence variants, their frequencies and correla-

tions among them [13]. In phase 1 of the project, 1.3 million SNPs and in phase

2, a further 2.1 million SNPs were genotyped and phased using 270 individuals

from diverse populations [35, 36]. Thus, having these associations led to more

accurate, faster and cheaper Genome Wide Association (GWAS) studies.

On the other hand, INDELs have not been studied as broadly as SNPs but

they comprise 16% to 25% of all sequence polymorphisms in human genomes

[37]. INDELs are known to cause phenotypic changes and diseases like cystic

fibrosis [38] and fragile X syndrome [39]. There are some methods that dis-

cover and genotype INDELs using high throughput sequencing datasets such as

SPLITREAD [40] and Scalpel [41].

Finally, Short Tandem Repeats (STRs) are repetitive DNA motifs that consist

of micro, mini, beta and alpha satellites that are utilized frequently in forensics,

population genetics, and genetic genealogy [42]. They are also known to play an

important role in genetic diseases such as various types of neurological disorders

including Huntington’s disease [43]. Although detection of these events with

computational approaches is very challenging, there are still some methods such

as lobSTR [44] and hipSTR [45] that discover STRs.

1.2.2 Structural Variations

Structural Variations (SVs) are genomic rearrangements that affect >50 bps in

the sequence of a genome including insertions, deletions, duplications, inversions,
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mobile element transpositions and translocations [46, 47, 48, 49, 2, 50] (Fig-

ure 1.1). Among these, copy number variations (CNVs) are referred to as un-

balanced structural variants that change the number of base pairs in the genome

including insertions, deletions and duplications, whereas balanced rearrangements

include inversions and translocations [51].

Figure 1.1: Structural Variations (SV) types of deletion, insertion, inversion,
mobile element insertion (MEI), interspersed segmental duplication with direct
and inverted orientations, tandem duplication and translocation are depicted.

There are various studies that associate SVs with genetic diseases ranging from

neurological and neurocognitive disorders to autism, obesity, bipolar disorder,

schizophrenia [52, 53, 54, 55, 56, 57] and cancer [58, 59]. Therefore the discovery

and genotyping of SVs are of crucial importance in understanding their affects

on human health.

The approaches to detect SVs can be broadly categorized into two

groups; hybridization-based microarrays and sequencing-based computational ap-

proaches.
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1.2.2.1 Hybridization-based microarrays

Microarrays have traditionally been used for multiple purposes in molecular biol-

ogy; gene expression, fusion gene profiling, alternative splicing, etc. Before high

throughput sequencing, they were the main instruments for SNP, INDEL and

CNV detection and genotyping [46, 47, 60, 61]. There are mainly two different

methods; SNP microarrays and array comparative genomic hybridization arrays

(arrayCGH) and they are both based on hybridization.

In arrayCGH, reference and test DNA samples are labeled with fluorescent

tags and are hybridized to target genomic arrays (long oligonucleotides, bacterial

artificial chromosome (BAC) clones are used for this purpose). After hybridiza-

tion, the signal ratio reveals copy-number differences between the DNA samples.

[62, 51].

On the other hand, SNP microarrays are used to find CNVs and single nu-

cleotide polymorphisms in spite of the fact that their probe designs are specific to

SNPs. They were mainly used in HapMap project to find millions of SNPs. Un-

like arrayCGH, hybridization is performed on a single sample per microarray in

SNP microarrays. Hybridization intensities and allele frequencies are compared

with average values, which indicate a change in copy number.

In general, microarrays are cheap and fast, however, they have drawbacks; poor

breakpoint resolution, always specific to a reference individual, not able to detect

transposon insertions, novel sequence insertions and balanced rearrangements,

i.e., inversions and translocations. They are also unreliable within segmental

duplications.

There are additional approaches like polymerase chain reaction (PCR) used

for SNPs, quantitative real-time PCR (qRT-PCR) for CNVs and fluorescent in

situ hybridization (FISH) used for larger events [63, 64].
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1.2.2.2 Sequencing-based computational approaches

DNA sequencing is the process of determining the order of nucleotides in a DNA

molecule. This is a challenging task since there is currently no machine that takes

a genome as input, reads it from start to end, and outputs the entire sequence.

First attempts to sequence a genome involved breaking the DNA into many

small pieces, sequencing them and assembling them again. As Figure 1.2 shows,

DNA is cut into multiple fragments or inserts randomly where each fragment is

sequenced using clones (Plasmids carry 3-7 Kbps, Fosmids carry ∼40 Kbps and

BACs carry ∼150 - 200 Kbps). However, as entire clone cannot be sequenced,

only some number of bases (∼1000) are sequenced and these are called “reads”.

Sequencing can be done from rightmost, leftmost or both ends. Paired-end se-

quencing is the process when the sequencer sequences from both left and right

ends. It should be noted that the number of reads are redundant in order to

reconstruct the original genome. As the redundancy increases, accuracy also in-

creases and restoring the original genome becomes easier. This is called depth of

coverage indicating the average number of reads that cover each base pair.

The history of DNA sequencing goes back to Gilbert [65] and Sanger [66]

methods in 1977, where the first one is based on chemical sequencing and the

latter on chain termination sequencing and both generate labeled fragments of

varying lengths that are further electrophoresed. However, Sanger method gained

more popularity and was used as the main sequencing tool in Human Genome

Project.

Briefly, Sanger Sequencing relies on ddNTP, which is a modified nucleotide that

can stop replication. As the DNA polymerase copies a DNA strand, when one of

four dideoxy nucleotides (ddATP, ddGTP, ddCTP, or ddTTP), which lack a 3’

hydroxyl group, became incorporated instead of a dNTP, synthesis terminates. So

four different test tubes containing a template DNA strand and a primer attached

to it, a DNA polymerase, dNTPs and a few ddNTPs of the same type are used.

Then, by using capillary gel electrophoresis, the molecules ending with ddNTPs

with various different lengths are separated by size and then fluorescent tag on
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each ddNTP are read in order to determine the nucleotides.

Figure 1.2: Sequencing approach employed by the first generation sequencers,
i.e., Sanger Sequencing. Briefly, DNA is cut into multiple fragments randomly
and each fragment is sequenced using clones.

Thus, Sanger sequencing allows long stretches of DNA fragments to be se-

quenced (∼ 1000) with high accuracy using clone libraries, which can be used

in further processing. However, this technology is very expensive and slow.

Also, building and storing clone libraries is difficult and time consuming. With

the introduction of next-generation sequencing (NGS), or currently called high-

throughput sequencing (HTS), the field of genomics has been revolutionized.

However, we should also note that the methods such as read-depth [67], read-

pair [2] and split read [37] that we utilize with HTS technology today were first

developed and used with Sanger sequencing technology.

1.3 High Throughput Sequencing

1.3.1 Short-read sequencing

Before 2005, Sanger sequencing, considered as the first generation sequencing

platform, was the most feasible approach to sequence a genome harboring long
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read length and high accuracy. However, newer sequencing platforms have

emerged and changed genomics entirely as they are much faster and cheaper.

Figure 1.3 shows the change of costs to sequence a genome between 2001 - 2017.

The sudden decrease in 2008 displays the transition from Sanger sequencing to

HTS [1]. It is noteworthy that sequencing a genome was around ∼ $100 million

in 2001 and is only ∼ $1, 200 in 2017, a decrease of five orders of magnitude.
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$100M
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o
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Year

Cost	to	Sequence	a	Genome

Figure 1.3: The change of cost to sequence a genome between years 2001 - 2017.
Rapid decrease in 2007-2008 demonstrates the transition to HTS platforms. Data
is retrieved from [1].

Main differences between the short-read sequencing and traditional Sanger se-

quencing is that it produces up to billions of reads in parallel, which are much

shorter (35 − 250 bps depending on the platform). Nevertheless, it has higher

error rate and possesses bias against high and low GC contents. HTS platforms

commonly utilize three main steps but differ in how they handle them; (1) tem-

plate preparation; (2) sequencing and imaging; (3) data analysis [68]. Indeed,

the fundamental difference between the commercial HTS sequencers is in terms

of sequencing technology they utilize; 454 Life Sciences is based on pyrosequenc-

ing, Illumina uses sequencing by synthesis and AB SOLiD employs sequencing

by ligation.
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There are two main approaches to analyze the reads of short-read sequencers:

read mapping and de novo assembly. As both of these methods are highly complex

and difficult to achieve, coupled with short nature of the reads, the problem gets

even more difficult. Consequently, a combination of Sanger sequencing (longer

read lengths) and HTS platform (faster and cheaper) was needed. 3rd generation

sequencing (also known as long-read sequencing, single molecule sequencing or

next-next generation sequencing) can be regarded as the result of this demand.

1.3.2 Long-read sequencing

Single molecule DNA sequencing was launched in 2008 with Helicos Biosciences

[69], then Pacific Biosystems (PacBio) with Single Molecule Real-Time (SMRT)

sequencing [70] and Oxford Nanopore Techniques (ONT) with nanopore sequenc-

ing [71]. In contrast to 2nd generation sequencing, there is no clonal amplifica-

tion step in library preparation as they are able to detect single molecule in real

time, i.e., the optics of these systems are very sensitive such that they can detect

incorporation of one fluorescently labeled nucleotide [72].

Thus, 3rd generation sequencers have reduced PCR based errors, they have

much longer read length (10-15 Kbps for PacBio and 6 Kbps for Oxford Nanopore)

and they do not suffer from GC bias. Additionally, they are not slow either

[73, 74, 75]. However, compared to short-read sequencers, their error rates are

higher (0.1% for Illumina, 5−20% for Oxford Nanopore and 10−15% for PacBio)

and they are much more expensive [76, 77, 78].

Currently, these sequencers are mostly utilized in de novo assembly algorithms

such as FALCON [79], HGAP [80] and MHAP [81] and there are relatively few

algorithms such as PBHoney [82], SMRT-SV [83], Sniffles [84] and HySA [85]

for reference based SV detection.
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1.3.3 Linked-Read sequencing

Recently, to overcome the limitations of short and long read sequencers, a new

approach called Linked-Read sequencing developed by the 10x Genomics (10xG)

company has been introduced. According to this approach, short reads are gen-

erated with additional long range information producing Linked-Reads of tens

of Kbs originating from the same haplotype [86, 87], obtaining high sequence

coverages with the cost of generating moderate coverage data.

This new technology works by first partitioning large DNA molecules (typi-

cally 10-100 Kbps) into partitions called GEMs or pools, that contain ≤ 0.3×
copies of the genome (2-30 large molecules) with unique barcodes, which are then

sequenced using Illumina sequencer. Looking at the barcode information of each

read-pair, long range information can be deduced; sequences derived from the

same molecule shares the same barcode, thus they are linked [88].

There are currently a few algorithms that use Linked-Reads to identify SVs.

LongRanger [89] is one of the pioneering approaches developed by 10x Genomics,

which is a comprehensive package capable of doing both sequence alignment and

SV detection using barcoded reads. On the other hand GROC-SVs [90] focus on

cancer genomes using Linked-Reads and is also able to detect complex SV events

employing local assembly. ZoomX [91], another algorithm that uses Linked-

Read sequencing, is able to identify complex genomic rearrangements (>200 Kbp)

in somatic and germline cells. Finally VALOR [92] characterizes large (>500

Kbp) inversions using “split molecule” signature, which is a similar approach

to traditional split reads, but having the additional advantage of spanning over

repetitive regions.
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1.4 Reference Based Analysis

1.4.1 Read mapping

Read mapping or read alignment is the process of aligning reads onto the ref-

erence genome, only if available, in order to detect which part of the genome

they likely originated from and expose genomic variations. However this problem

is very challenging. First, ∼ 50% of the human genome is repetitive [93, 94]

and it is impossible to know which copy of the repeat the read should belong

to (ambiguity). Second, alignments may contain mismatches, which may be due

to sequencing errors, genuine differences (SNPs, INDELs) between reference and

query organisms, or both [95]. Indeed, in order to achieve higher accuracy, a

confidence score (mapping quality) is needed for the alignments [96]. Finally,

due to the huge number of reads, memory consumption will be very high and

the speed of the algorithm will decrease. Therefore an optimal alignment (i.e.,

Smith-Waterman local alignment [97] algorithm) is not possible, so read map-

ping algorithms apply heuristics. There are two main approaches; (1) hash based

seed-and-extend aligners such as mrFAST [98], BFAST [99], mrsFAST [100],

SHRIMP 2 [101], FASTHash [102], NovoAlign [103]; (2) Burrows-Wheeler Trans-

form & Ferragina-Manzini Index based aligners PatternHunter 2 [104], Bowtie

[95], BWA [105], Bowtie 2 [106].

Hash based aligners initially partition the reference genome into overlapping,

equal sized k −mers and index them in a lookup table (i.e., hash table). When

searching for the position of the reads, each read is also cut into k −mers sim-

ilarly and these k-mers are used as keys to look up the matching positions in

the reference. Once a match is found, it is extended to align the entire read.

Although this approach is sensitive, it is very costly in terms of memory and it

is computationally slow. Indeed, most of the time, more than 90% [107, 108], is

spent in the verification step that is based on edit distance. Algorithms such as

Levenshtein’s edit distance [109], Smith-Waterman [97] or Needleman-Wunsch

[110] are used for this purpose [111].
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On the other hand, Burrows-Wheeler Transformation (BWT) is a data com-

pression method that is used to compress the genome, which can be used to reduce

memory load. Utilizing this strategy, second type of aligners store a memory-

efficient representation of the reference genome and use Ferragina-Manzini index

data structure that retains the suffix array’s ability for rapid subsequence search

[112]. Then, each read is aligned character by character against the transformed

string [113]. By this way, hits can be found very quickly in a memory efficient

manner with reduced sensitivity.

There are also other approaches that apply different strategies to map long

reads such as LAST [114], BLASR [115], BWA-MEM [116], DALIGNER [117],

GraphMap [118], MECAT [119], LAMSA [120], Minimap 2 [121] and NGMLR

[84].

1.5 De novo Assembly

De novo assembly involves assembling the reads to reconstruct the original

genome. However, this is currently an expensive task, comprising many chal-

lenges. Shown in Figure 1.4, fragments are randomly sheared and expected to

be overlapping with each other. Theoretically, entire genome can be assembled

using the similarities of the overlapping parts inside the fragments and larger

contiguous sequences called contigs, can be obtained [122]. The first challenge is

the repetitive nature of the genome (∼ 50% of the human genome is repetitive).

This becomes even more difficult with shorter read sizes; when the repeat element

is larger than the read length, the algorithm cannot distinguish between the two

copies. This results in gaps or missing sequence information.

Second, due to the heterozygosity of the genomes (human genome is diploid; 2

alternates of each locus), two inherited copies will have differences and both copies

should ideally be constructed by the assembler. Third, because of the double helix

structure of the DNA, reverse and complemented forms of the strings should be

considered and sequencing errors need to be handled properly. Finally, similar
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Figure 1.4: Whole Genome Shotgun (WGS) sequencing. Firstly, DNA is frag-
mented randomly and then each fragment is sequenced from both left and right
ends using a sequencer. These are called paired-end reads. The number of base-
pairs that the sequencer reads called read length depends on the sequencing ma-
chine used. Finally, the reads; (a) can be assembled into contigs when a reference
genome is not available or (2) can be mapped to a reference genome

to most of the bioinformatics problems, size of the data is huge and there are

billions of reads, therefore proper memory management is crucial.

First attempts to solve de novo assembly problem were formulized as shortest

common superstring problem (SCS), which is known to be NP-Complete [123].

Given a collection of strings S = {s1, s2, ..., sn}, SCS asks to find the shortest

string s that contains all the substrings in S. Various heuristics or approximation

algorithms for either SCS or its reductions to other NP-Complete problems such

as Traveling Salesman and Hamiltonian path have been devised. Today three

main approaches are being used: (1) Construction of contigs greedily (TIGR

[124], PHRAP [125]); (2) Overlap-Layout-Consensus (OLC) (ARACHNE [126],
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Phusion [127], PCAP [128], BOA [129]); (3) De-Bruijn Graphs (DBG) (EULER-

SR [130], Velvet [131], EULER-USR [132], ABySS [133], Ray [134], SOAP-

denovo [135], ALLPATHS-LG [136], [137], Meraculous [138], Cortex [139],

SPAdes [140], HipMer [141]).

In the greedy approach, best matching prefix-suffix pairs are merged into longer

sequences iteratively in a greedy manner. Most algorithms use overlap graphs or

lists to keep the overlaps but generally these algorithms does not scale well with

repeats (not appropriate for eukaryotic genomes, can be used for some bacterial

or viral genomes).

OLC is composed of three main steps; in the “overlap” step, an overlap graph

with prefix-suffix matches of all pairs of reads is created. The second step, called

“layout”, consists of building contigs by passing over each node exactly once using

Hamiltonian path or Traveling Salesman Path, which is NP-Hard. Finally, in

the “consensus” step, consensus sequence is determined using multiple sequence

alignment of overlapping contigs created in the second step. The main drawback

of OLC is the huge and slow-to-build overlap graphs, which is inappropriate for

2nd generation sequencers that have billions of reads. They were mostly used for

Sanger sequencing and currently have applications to 3rd generation sequencers

[142].

De Bruijn graph (DBG) assembly is considered as the most appropriate

approach for short-read sequencing. Formally, given a set of reads S =

{s1, s2, . . . , sn} and an integer k, we define De Bruijn graph as G(S, k), where

the verticies are substrings of length k. There exists a directed edge between any

two vertices u and v if and only if the last k−1 characters of u is equal to the first

k − 1 characters of v. Thus, the paths in the graph are the reads and a solution

to the assembly problem is an Eulerian path that includes all reads as subpaths

[143]. The assembler constructs the contigs using Eulerian walks in O(|E|) time

where E is the number of edges. However, DBG also has drawbacks; sequencing

errors (gaps, etc) or uneven coverage can make the graph non-Eulerian. Even if

not, genomic repeats produce many possible walks (i.e., fragmented assemblies)

[144].
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All these assemblers create thousands to millions of contigs depending on the

data. To help improve assembly contiguity, scaffolding algorithms are used that is

the process of ordering and orienting these contigs with respect to each other using

various data such as paired-ends. Usually assembler have scaffolding feature but

there are also standalone scaffolding algorithms such as SSPACE [145], Opera

[146], SCARPA [147], BESST [148] and LINKS [149].

1.6 Structural Variation Discovery Signatures

To detect structural variations, ideally two assembled genomes are needed; a

genome that we seek to detect SVs (donor) and a second genome with no vari-

ation (the reference). This way, a direct comparison of these two genomes will

reveal the genetic variations trivially. However, because of the limitations of the

current technology, we only have the reference genome correctly assembled (not

100% though) and chunks of the donor genome aligned to it (billions of reads).

Therefore, we need to rely on signatures to detect structural variations. As Fig-

ure 1.4 shows, sequencing machines generate two reads from both ends (start and

end) of a fragment and these reads are called mate-pairs or paired-end reads. The

distance between these two mates, called “insert size”, is the major data we have

in order to utilize the sequence signatures in general.

There are four main signatures used to find SVs; (1) read-pair, (2) read-depth,

(3) split read, (4) assembly; and all of these methods are based on the principle

of aligning billions of reads to a reference genome and identifying potential SV

events [150, 151]. However, there are complications with respect to specificity

and sensitivity. The main problem lies in the repeated nature of the human

genome. It comprises long segmental duplications and repeats where most of the

potential SVs intervene with them. When using unique mapping of the reads,

sensitivity decreases, whereas ambiguous mappings increases the false positive

count. Additionally, incompleteness of the reference genome causes more prob-

lems in accurate detection since these missing portions are mostly duplications.

Second, many SVs are complex with many rearrangements at the same site. In
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addition, tight breakpoint resolution is often difficult to achieve with specific se-

quence signatures, besides, most of the smaller SVs (50 bp to 1 Kbp in length)

cannot be resolved with short read sequencing [9]. Finally, short read sequencing

approaches suffer from the GC bias (regions with elevated G plus C bases have

higher read depth [152]).

First attempts to detect structural variations relied on similar approaches used

in capillary sequencing [2, 153] and were able to detect only some basic types

of SVs such as insertions, deletions, inversions and tandem duplications by using

one of the sequence signatures. The following algorithms are some of the earlier

approaches; (1) Read-pair signature based; VariationHunter [154], PEMer [155],

BreakDancer [156], MoDIL [157], SVDetect [158], GASV [159] (2) Read depth

signature based; CNVnator [160], EWT [161], mrCaNaVaR [98] (3) Split read

signature based; Pindel [162], AGE [163] (4) Assembly based; NovelSeq [164],

Cortex [139], SOAPdenovo [135].

On the other hand, newer approaches mostly utilize more than one sequence

signatures to detect SV events and some are also able to characterize more com-

plex variations. Table 1.1 shows state-of-the-art short-read sequencing algorithms

that use Illumina platform to detect SVs by tracking multiple SV discovery sig-

natures.

1.6.1 Read-pair

Read-pair (RP) method is the most widely employed approach and was first intro-

duced in [153] for bacterial artificial chromosome end sequences generated from

the breast cancer cell line MCF-7. Later, it was applied to discover germline

genetic variation using fosmid paired-end sequencing [2]. Then, with the intro-

duction of NGS, it was applied to short-read sequencing with 454 FLX platform

[176] and then to Illumina.

The general strategy is based on aligning the paired-end reads to the reference

genome and observing the distance, called “insert size”, between the pairs as
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Table 1.1: SV discovery algorithms that use short reads.

Signatures
SV Types

DEL INS INV MEI NUMT TRA
Duplication

TDUP ISP ISP-INV
CNVer(2010) [165] RP, RD X X X X X X X X X
inGAP-sv(2011) [166] RP, RD X X X X X X X X X
DELLY(2012) [167] RP, SR X X X X X X X X X
GASVPro(2012) [168] RP, RD X X X X X X X X X
PeSV-Fisher(2013) [169] RP, RD X X X X X X X X X
LUMPY(2014) [170] RP, RD, SR X X X X X X X X X
Manta(2015) [171] RP, SR X X X X X X Xcannot distinguish
SV-BAY(2016) [172] RP, RD X X X X X X X X X
Pamir(2017) [173] RP, SR, AS X X X X X X X X X
TARDIS(2017) [174] RP, RD, SR X X X X X X X X X
SvABA(2018) [175] RP, SR, AS X X X X X X Xcannot distinguish

State-of-the art short-read sequencing algorithms that use Illumina platform are summa-
rized in the table. We limit the algorithms to the ones tracking more than one sequence
signature as none of the algorithms that use a single signature is comprehensive and newer
approaches employ multiple signatures to increase sensitivity and specificity. Thus, for
each algorithm, we give the sequence signatures it utilizes (RP, RD, SP, AS denote read-
pair, read-depth, split read and assembly, respectively) and whether it is able to discover
SV types of deletion (DEL), insertion (INS), inversion (INV), mobile element insertion
(MEI), nuclear mitochondria insertion (NUMT), translocation (TRA), tandem duplica-
tion (TDUP), interspersed segmental duplication in forward (ISP) and reverse (ISP-INV)
directions.

shown in Figure 1.5. Figure 1.6 shows the distribution of insert sizes (or span

sizes) for NA11930 genome. If the insert size of a paired-end read is below the

expected distance (∼ 170 bp in this example), there is a high possibility of an

insertion event and larger insert size relative to the expected threshold (∼ 500

bp) is an indication of a deletion event relative to the reference genome.

In broad terms, algorithms that use read-pair sequencing use the term “discor-

dant” for read-pairs whose insert size is smaller/larger than the expected interval

when mapped to the reference genome. Also, “concordant” read-pairs are those

having expected insert size, i.e., when the distance between the aligned reads is

within the expected range. Therefore the algorithms that make use of read-pair

method mostly deal with the discordant read-pairs as they indicate possible SV

loci.

In addition to observing the insert size, if one of the pairs has an unexpected

orientation, it’s likely the result of an inversion [2] and these read-pairs are also
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Figure 1.5: Read-pair signatures of each SV event is shown. Reads are mapped to
the reference genome and the distance between the mate-pairs or the orientation
of the mapped reads determine whether a potential SV is implied or not.

classified as discordant. Note that reads should typically map in forward-reverse

(+/−) orientation, which is considered correct mapping, i.e., the left mate is

mapped to the “+” strand, and the right mate is mapped to the “−” strand.

However, for inversions, one of the ends has flipped orientation, so +/+ or −/−
mappings are tracked.

In case of tandem duplications, both ends map in everted (−/+) orientation.

For mobile element insertions, the approach is different; if one of the mate pairs

fall inside the annotated transposons, we see a potential mobile element insertion

event. Finally, for interspersed segmental duplications, two types of mappings

should be detected; +/− and −/+ for direct and +/+, −/− for inverted seg-

mental duplications. However, these signals might not be enough for detecting

interspersed segmental duplications as they are very similar to other types of SV

events, so different types of signals or post-processing based on a likelihood model

19



0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600

N
u
m

b
er

o
f

M
at

e-
Pa

ir
s

Span Length (bp)

Statistics:
Mean: 335,44
Stdev: 41,27

DeletionInsertion

Figure 1.6: Span size distribution of read-pairs sampled from NA11930 genome.
When the read-pairs are mapped to the reference genome, distance between them
is a possible indication of a genomic variation. If the distance is below or above
the expected cut-off values; min = mean − (4 × stdev) = 170, max = mean +
(4× stdev) = 500 in this case; then these read-pairs are called “discordant” and
they are the ones considered as potential SVs [2].

might be needed.

1.6.2 Read-depth

Read-depth (RD) signature was first applied to old capillary sequencing data in

order to identify duplications in human genome by [67]. It was later applied

to HTS data to define rearrangements in cancer [177, 178] and then segmental

duplication and absolute copy-number maps in human genomes [98, 179]. The

general idea is simple and depends on the assumption that number of reads

mapping to any region follows a Poisson distribution. Thus, by analyzing the

divergence from this distribution reveals deletions or duplications in the sample.

As displayed in Figure 1.7, deleted regions will have lower read-depth, whereas

duplicated regions will have higher read-depth compared to regions of diploid

nature.
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Figure 1.7: Read-depth signatures of SV events are shown. When reads are
mapped a region, divergence from the distribution implies a deletion (decrease in
read-depth) or a duplication (increase in read-depth) event.

The accuracy of this method is highly correlated to the coverage of the dataset;

with lower coverages, accurate SV detection will not be possible. Compared

to read-pair approach, detection of larger SVs are possible with this approach,

although smaller events that RP is able to detect with lower coverages might

not be detected by RD signals [150]. As expected, breakpoint resolution of the

method is poor. Finally, RD approach is highly affected by the sequencing bias

of HTS technology, as some regions are over or under sampled mostly due to the

GC bias.

1.6.3 Split read

The first application of split read (SR) signature was based on Sanger sequencing

[37], and Pindel [162] was the first to apply it to HTS data. According to this

method; when a read maps to a reference genome, there are some chunks of the

read, mostly at the beginning or at the end, called soft clips, that cannot be

mapped correctly. Split read approach involves remapping these chunks into the

reference with gaps indicating a possible SV event (Figure 1.8).

This approach depends on read-length and is more successful when the reads

are longer because they will be more likely to span SV breakpoints. Additionally,

remapping of each split will be more accurate when read length increases as the

difficulty of the alignment decreases.
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1.6.4 Assembly

As described in Section 1.5, by assembling reads into DNA fragments (contigs),

one can detect any type of genomic variations by comparing them directly to the

reference genome. However, assembly (AS) is a hard problem such that the human

genome is highly repetitive and consists of too many duplications [180, 181],

which results in low-quality contigs. Thus, these drawbacks are prohibitive for

using assembly to detect structural variations, although there are some assemblers

that characterize SVs using de novo assembly, local or reference guided.

1.7 Contributions

In this dissertation, we present TARDIS (Toolkit for automated and rapid dis-

covery of structural variants) that uses high-throughput sequencing technology

to detect various types of genomic variations. TARDIS harbors novel algorithms

to accurately characterize both simple and complex SV types including deletions,

novel sequence insertions, inversions, transposon insertions, nuclear mitochondria

insertions, tandem duplications and interspersed segmental duplications in direct

or inverted orientations using short read whole genome sequencing datasets. Our

algorithms make use of multiple sequence signatures including read-pair, read-

depth and split read to find near-exact loci of each variation while resolving

ambiguities among various putative SVs: 1) at the same locations signaled by

different sequence signatures, and 2) in different locations signaled by the same

mapping information. Additionally, TARDIS is able to analyze more than one

possible mapping location of each read to overcome the problems associated with

repeated nature of genomes. Finally, we extended TARDIS to be able to utilize

Linked-Read information of 10x Genomics to overcome some of the constraints of

short-read sequencing technology. TARDIS is the first method to predict insertion

locations of complex SV events including tandem, direct and inverted interspersed

segmental duplications. Using simulated and real data sets, we showed that it

outperforms state-of-the-art methods in terms of specificity and demonstrates
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comparable sensitivity for all types of SVs, and achieves considerably high true

discovery rate for segmental duplications.

Before giving the details of our approach in the following chapters, we briefly

describe two other state-of-the-art SV discovery tools, namely DELLY [167] and

LUMPY [170] that we used to compare our results with. DELLY uses read-

pair and split read signatures to characterize deletions, inversions, tandem du-

plications and translocations. It utilizes an undirected graph based paired-end

clustering, where each node in the graph denotes a paired-end read. The edges

between the nodes indicate that both paired-end reads support the same SV and

the edge weights denote the difference between the predicted SV sizes of the map-

ping locations. It assumes that the graph contains one fully connected component

for each SV and it could thus be identified by computing the connected compo-

nents of the graph. However, this is an ideal condition, which is not possible in

most cases, thus they identify maximum cliques heuristically in the components.

In order to fine map the genomic rearrangements at single-nucleotide resolution,

they utilize this information as input to their split read analysis.

LUMPY, on the other hand, has a module based probabilistic framework,

which is able to discover deletions, inversion, tandem duplications and transloca-

tions. It harbors read-pair, split read and a generic module to convert SV signals

from each alignment to probability distributions assuming that they reflect the

uncertainty in the reference genome that can be a potential end of a breakpoint,

i.e., the split read module maps the output of a split read sequence alignment

algorithm. The algorithm simply maps the evidences from the alignment signals

to breakpoint intervals and the overlapping ones are put into the same cluster

by integrating their probabilities. Finally, breakpoint regions with sufficient ev-

idence is returned as SV predictions (If the alignments are not given as input,

they utilize SAMBLASTER [182] to detect discordant reads and split reads using

the input BAM file). Sites of known variants can also be provided to LUMPY as

prior knowledge in order to improve sensitivity.

In this chapter, we briefly surveyed the field of computational genomics by
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describing genomic variations, technologies of the past and the present, and ap-

proaches used to detect genomic variations. Finally, we outlined our contributions

shortly. In Chapter 2, we give an overview of our approach to the problem of

structural variation discovery with TARDIS. In Chapter 3, details of structural

variations and our approach to characterize them are given in detail. We present

our results in Chapter 4 and finally conclude the dissertation by exploring poten-

tial future research directions throughout Chapter 5.
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Figure 1.8: Split read signatures of SV events are displayed. Here, unmapped
reads are split and each fragment is remapped to the reference genome to observe
potential SVs.
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Chapter 2

Overview of TARDIS: Toolkit for

Automated and Rapid Discovery

of Structural Variants

2.1 Introduction

2.1.1 Motivation

Genomic variations are known to be the prominent source of genetic diseases.

These variations range from single nucleotide polymorphisms (SNPs) that affect

a single nucleotide as substitution, to small insertions/deletions (INDELs) up to

50 bp, structural variations that affect more than 50 bp and larger chromosomal

alterations that alter the whole chromosome.

Beginning with the introduction of high throughput sequencing platforms, and

later 1000 Human Genome Project (1000GP), several researchers focused on char-

acterizing SVs in human genome. Thus a plenty of algorithms have been devel-

oped. Compared to the previous approaches to detect SVs that involved using
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BAC arrays, oligonucleotide array comparative genomic hybridization, SNP mi-

croarrays and finally Sanger sequencing, speed and cost of HTS platforms are

unimaginably low and they are able to detect plenty of SVs. As a matter of fact,

with the completion of 1000GP, over 65, 000 SVs [20, 21] were reported, which

was made possible with the algorithms that utilize HTS platforms.

However, these algorithms have considerable drawbacks as well; first, although

they possess acceptable sensitivity, they have many false predictions. Second,

they are able to discover only simple types of SVs such as insertions, deletions

and short inversions as they cannot accurately characterize complex SV events.

Indeed, this is one of the reasons for lower specificity they possess.

Earlier algorithms rely on using only one of the possible sequence signatures

(read pair, read depth, split read or assembly). This results in fewer detectable SV

types since each signature is capable of detecting only some specific SV classes.

Additionally, using a single sequence signature reduces the precision of the al-

gorithms as they have no way of verifying detected SVs by taking advantage of

multiple evidence. On the other hand, newer approaches combine more than

one sequence signature, however the second signature is mostly used as a post-

processing approach for verification. Thus, since they aim to characterize only a

few types of SVs, they do not try to resolve conflicting SVs within the same loci.

Another weakness of these algorithms is that most of them consider only high

confidence alignments and dismiss reads with lower quality alignments or reads

with multiple possible mapping locations. Considering the repetitive nature of

human genome, this naturally decreases the sensitivity of the algorithms within

the repeated segments.

2.1.2 Our approach

Here we introduce TARDIS, a toolkit for automated and rapid discovery of SVs

using both whole genome sequencing data (WGS) generated by Illumina platform

and Linked-Read sequencing of 10x Genomics (10xG) [87]. However it can easily
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be extended to support long read sequencing such as PacBio or Oxford Nanopore.

The general framework to using paired-end reads to detect SVs between a

reference and a donor genome was first formulated by [153] and [2]. It was

based on a simple idea with two steps; (1) Mapping the paired-end reads to the

reference genome; (2) Observing the orientations and distance of the discordant

mappings.

When the read pairs are mapped to the reference genome, there are two signs

that we track; span size and orientation of the pairs. First, the distance be-

tween the pairs, called insert size or span size, is expected to be in some range

[δmin, δmax]. Read pairs within this range are categorized as concordant and the

ones that are below or above are called discordant. Indeed, discordant read-pairs

suggest potential SV regions where larger or smaller insert sizes indicate deletions

or insertions respectively. Second, orientation of the read-pairs are expected to

be correct, i.e., +/− is the correct orientation for Illumina platform. Accordingly,

the read-pairs with unexpected orientation are also designated as potential SVs

such that −/− or +/+ are inversions and −/+ are tandem duplications.

Similar to most modern SV callers, TARDIS integrates multiple sequence sig-

natures including read-pair, read-depth and split-read to accurately characterize

both simple variants such as novel insertions, deletions, inversions, mobile element

insertions, nuclear mitochondria insertions; and complex variants such as tandem

duplications, direct and inverted interspersed segmental duplications (SDs) ac-

curately. Besides, it resolves ambiguities such as; (1) Two or more SVs reported

to be at the same location but signaled by different signatures; (2) Two or more

SVs in different locations signaled by the same mapping information. However,

current SV callers are incapable of characterizing several forms of complex SVs

such as tandem or interspersed segmental duplications (SDs) [183, 184] with

the exception of read-depth based methods that can only identify the existence

of SDs [98, 179], but cannot detect breakpoints. TARDIS, on the other hand,

is the first method to characterize insertion locations of segmental duplications

using HTS data.
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In this chapter we describe our approach to the problem of structural vari-

ation discovery using HTS and leave the details of SV discovery to Chapter 4.

The next section elucidates how we handle the mapping information (all possi-

ble mappings of the reads to the reference vs. unique mappings) given as input

to TARDIS. Then the details of the Maximum Parsimony Structural Variation

approach (MPSV), adapted from [154, 185, 186] are given. Finally, we describe

our approach using Linked-Read data.

Before proceeding, we give a brief description of the MPSV approach; It is a

two-step process, where the first involves creating clusters with paired-end reads

that suggest the same potential SV. Then in the second step, final alignments of

each read-pair are determined by eliminating read-pairs from the clusters step-

by-step. This is similar to the classical Set-Cover problem that is known to be

NP-Complete, however [154] provides a greedy algorithm with an approximation

factor of O(logn) using only the read-pair signature. TARDIS builds upon this

approach, using the same objective function, but it also includes methodologi-

cal and heuristic novelties; (1) incorporates split-read signature and adds novel

paired-end reads to the clusters; (2) uses a probabilistic model that makes use of

read-depth signature to assign a likelihood score to each potential SV.

We should also note that TARDIS is implemented in C using HTSlib and it is

suitable for cloud use. Source code is also freely available at https://github.

com/BilkentCompGen/tardis.

2.2 Read Mapping

In order to discover genomic alternations in a genome, the initial step constitutes

mapping the reads belonging to a donor genome to the reference. Therefore, one

can observe the variations from the reference genome. This preliminary step is

achieved by using a read mapping algorithm. There are currently a vast amount

of read mappers, which can be categorized based on various aspect such as the

data structures they utilize, their output types, etc. Indeed, for SV discovery
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algorithms, there is an important distinction between these read mappers. Some

of them report only the best or an arbitrary mapping of the reads in case of a

tied map locations such as MAQ [96], BWA [116], Bowtie [95] and some report

all possible map locations such as mrFAST [98] and mrsFAST [100].

As we already know that most SVs lay within the repeated regions, consider-

ing all possible mapping locations of the reads is of crucial importance. There

are currently some algorithms that utilize this information [187, 154, 188, 168].

Therefore the number of hits they have increase, although their specificity de-

creases proportionally as some of these map locations might be incorrect. In

addition to this, running time of these type of algorithms inherently increase, as

searching for multiple map locations is a costly operation in terms of memory

consumption.

In TARDIS, we possess two distinct modes of operation where the “Quick

Mode” works only with the best mappings of each read-pair and “Sensitive Mode”

deals with all the potential mappings.

2.2.1 Quick Mode

In order to interpret the mappings produced by a read mapper, TARDIS re-

quires the mapper to utilize the well-known and most-widely used Sequence Align-

ment/MAP (SAM) format and it needs the compressed and indexed BAM version

[189] as input. The BAM file is composed of an optional header, that contains

information about the reference that the individual has been mapped to, and an

alignment section consisting of the actual alignments. Quick Mode of TARDIS

utilizes the mapping information produced by BWA [116] or a similar aligner

as input. It works by reading each mapping sequentially and deciding whether

the mapping is a potential SV or not. Additionally read count and read-depth

information is retained for read-depth analysis and yet, soft-clipped reads are

manipulated for split reads.

We should note that BWA also reports a few alternative mapping locations
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of some of the reads in XA tag of BAM file. In TARDIS, we have an option to

analyze these locations. However, this mode naturally increases the false positive

count in parallel to true positives.

2.2.2 Sensitive Mode

TARDIS is able to resolve all potential mappings of the dataset, so the sec-

ond mode employed by TARDIS is called Sensitive Mode. This mode makes

use of mrFAST [98] (or mrsFAST [100], which supports multi-threaded run)

for read mapping purpose. As TARDIS runs in Quick Mode by default, invok-

ing “–sensitive” parameter is enough to enable the Sensitive Mode. We have

built in functions to run mrFAST within TARDIS, or it can be run seperetaly.

mr/mrsFAST typically reports all the potential mapping locations of discordant

paired-end reads in a seperate file. Table 2.1 describes all the field available in

the DIVET file produced by mr/mrsFAST and how TARDIS handles them.

Table 2.1: Mandatory fields of mrFAST output and how TARDIS handles them.

Field Description

readN Distinct name of the read
chroN Chromosome name where the read is mapped
ML1,L Left-side mapping location of the first pair
ML1,R Right-side mapping location of the first pair
OR1 Orientation of the first pair

chroN2 Chromosome name where the read’s pair is mapped
ML2,L Left-side mapping location of the second pair
ML2,R Right-side mapping location of the second pair
OR2 Orientation of the second pair

SVtype Type of variation the mapping of paired-end suggests INS, DEL, INV
ED Total edit distance of this paired-end (left-end plus right-end)

AvgPhred Average Phred Score of this mapping used to prune some mappings
ProbBasedPhred Prob. of the mapping solely based on Phred Score and edit distance

Although reporting all possible mapping locations of paired-end reads is time-

consuming [98], it is an offline process that needs to be done once per BAM file.

It should be noted that in order to resolve the read depth and read count of the

dataset, Sensitive Mode still requires the BAM file along with the DIVET.
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2.3 SV Discovery via Maximum Parsimony

Briefly, TARDIS aims to minimize the total number of SVs gathered from all the

discordant read-pairs and split-reads. To formulate the problem formally, let the

discordant read-pairs/split reads be represented as;

D = {rp1, rp2, . . . , rpn}, (2.1)

where rpi corresponds to a discordant read-pair or split-read. Each of these rpi

have more than one mappings in the reference genome when multiple mapping is

enabled (i.e., Sensitive Mode) and these are represented with

rpi = {a1rpi, a2rpi, . . . , anrpi} (2.2)

Each of these mappings anrpi is a 5-tuple that keeps map locations and orien-

tation;

anrpi = (rpi, (Ll(anrpi), Lr(anrpi)), (Rl(anrpi), Rr(anrpi)), or(anrpi)), (2.3)

where (Ll(anrpi), Lr(anrpi)) and (Rl(anrpi), Rr(anrpi)) are the start and

end locations of the left, right pairs respectively and or(anrpi) ∈
{+/−,+/+,−/−,−/+} corresponds to the orientation of the alignment as for-

mulated in [154]. As noted before, +/− mappings designate no inversion, +/+,

has right pair inverted, −/− has left pair inverted and −/+ has both pairs in-

verted.
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2.3.1 Building clusters

We cluster the alignments, anrpi, that support the same particular potential SV

in terms of loci and type as:

V CLUSi = {ai′1rpi1 , ai′2rpi2 , . . . , ai′lrpil} (2.4)

These are also called “valid clusters”, where all the mappings in V CLUSi sup-

port the same particular SV and each discordant mapping satisfies a set of rules

based on the type of SV it supports such as insertion, deletion, inversion, MEI,

NUMT, tandem duplication, interspersed segmental duplication, inverted inter-

spersed segmental duplication. The details of these rules are given in Chapter 3.

Similar to the valid cluster formulation, a “maximal valid cluster”, is a valid

cluster where no valid superset exists [190, 154, 185, 164, 186]. This can be

computed in polynomial time as formulated initially by [154]:

1. Let MPOS = {MPOS1,MPOS2, . . . ,MPOSn}, a collection of maximal

intersecting intervals where the interval (Ii,j = [l(anrpi), r(anrpi)]) corre-

sponds to each read-pair/split-read alignment anrpi. Then the maximal

intersecting interval is computed as follows; after sorting the intervals, scan

them from left to right, adding each interval, that intersects with all the

previously added intervals, to MPOS1. Proceeding with MPos2, include

the members of MPos1, except the one that has the leftmost right end and

iterate. At each step i, eliminate MPosi if it ends up to be a proper subset

of MPosi−1.

2. For interspersed duplications, we employ a further step to join mappings in

both +/+ and −/− (+/− and −/+ for inverted duplications) orientations

inside the same sets.

3. For each maximal overlapping set MPOSi found in Step 1, create all the

overlapping maximal subsets MPOSi1 ,MPOSi2 , etc. that the insertion
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size they suggest is overlapping (Necessary for detecting inversions and in-

terspersed duplications only).

4. Among all the discovered sets, remove any set that is a proper subset of

another chosen set.

This way, final clusters have been formed, which are the main data source for

the set-cover phase.

2.3.2 Set-Cover approximation to find putative SVs

The second phase of TARDIS utilizes set-cover approximation to find putative

SVs. It uses a similar objective function with the set-cover combinatorial problem

that is known to be NP-Complete. Given a universe U = {u1, u2, . . . , un} and

a collection of subsets of U as S = {s1, s2, . . . , sn}, the set-cover problem asks

to find the smallest subset of S whose union covers all the elements (ui ∈ U)

of U. Similarly in TARDIS, we have clusters given as input that are made up

of read-pairs that signal the same particular SV and our aim is to cover all the

reads in each cluster. More formally, we want to compute a unique mapping for

each discordant read-pairs such that the total number of SVs is minimized, or

similarly the average number of read-pairs that support an SV is maximized, such

that each paired-end read maps to a location in at most one selected valid cluster

[154].

Since the set-cover problem is NP-Complete, an O(logn) approximation to the

optimal solution is suggested such that in each iteration, a cluster consisting of

maximum number of uncovered read-pairs is selected until all the read-pairs are

covered [154, 191].

However, occasionally a read-pair may signal two different SVs, i.e., same

read-pair in different clusters, because read-pair signatures of some SV events are

exactly the same as depicted in Figure 2.1. On the other hand, deletions and

duplications should be verified using a read depth signature as for deletions, a
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decrease in read depth and for duplications, an increase in read depth similar to

Figure 1.7 should be observed.
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Figure 2.1: Read-pair sequence signatures of some SV events are the same such
as inversions, interspersed inverted duplications and gene conversions. Similarly
deletions, interspersed direct duplications and gene conversions also show the
same signature.

To overcome these issues, we developed a probabilistic model that makes use

of read-depth signature to assign a likelihood score to each putative SV.
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2.3.2.1 Read Depth based likelihood model to improve TARDIS calls

To score each potential SV, we use a probabilistic model based on read depth

signature. These scores, called CNV scores, are utilized in cluster selection. So,

in the set-cover phase of TARDIS, we utilize an iterative approach; (1) at each

step, we select the cluster with the best CNV score since their likelihood of being

a true SV event is higher, (2) we assign the relative discordant paired-end reads

to the selected SV and remove them from all the other clusters. This iterates

until all the paired-end reads are covered.

Before proceeding to our probabilistic model, we should define the information

that TARDIS keeps track of for each maximal valid cluster Si for 1 ≤ i ≤ n in

the set SV = {S1, S2, . . . , Sn}:

• observed read depth and read pair (di, pi), where di is the total observed

read depth, and pi is the number of discordantly mapped read pairs.

• potential duplicated, deleted or inverted regions (αi, βi).

• potential breakpoints γi.

• potential SV type.

Assuming observed read depth and number of discordant read pairs follow a

Poisson distribution [192], λ > 0,

Poisson(λ, x) =
λxe−λ

x!
(2.5)

where, λ is the expected read depth or the number of read pairs, and x is

the observed read depth or the number of read pairs respectively. However, we

assume that the expected read depth or read pairs for some SV events might be

zero, so we approximate this probability by,

Poisson(0, x) = εx (2.6)
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for a small ε > 0 (e.g. ε = 0.01 for read pairs and ε = 0.001 for read depth).

For each cluster Si, we define a random variable statei ∈ {0, 1, 2} where the

state of Si is homozygous if statei = 2, heterozygous if statei = 1, and no event

if statei = 0. We also define a random variable typei, which represents the SV

type for Si.

Given statei = k and typei = δ, the likelihood of Si can be calculated as:

Li(δ, k) = P (Si | δ, k)

= P ( read depth of Si | δ, k) · P ( read pairs of Si | δ, k)

= Poisson(di, λd) · Poisson(pi, λp)

=
λdid e

−λd

di!
·
λpip e

−λp

pi!
(2.7)

where λd is the expected read depth of Si given typei = δ, statei = k and λp is

the expected read pairs of Si given typei = δ, statei = k.

λd is calculated based on (typei, statei) and the expected read depth within the

region (αi, βi) normalized with respect to its GC% content using a sliding window

of size 100 bp, denoted by Ed[(αi, βi)]. Note that read depth normalization is a

necessity for short read sequencers like Illumina, since they have bias within the

regions with elevated GC content (proportion of bases G + C) as these regions

have higher read depth [152]. We calculate λp based on the (typei, statei) and

the expected number of discordantly mapped read pairs around the potential

breakpoint γi, denoted by Ep[γi].

For instance, if an SV event is categorized as homozygous deletion, read depth

inside the potential deleted region (αi, βi) is expected to be ∼ 0 and the expected

number of discordantly mapped read-pairs is approximately close to the expected

number of reads containing the potential breakpoint, i.e Ep[γj]. On the other

hand, for heterozygous deletions, read depth and the number of discordantly

mapped read pairs is assumed to be half the expected value. For the values when
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there is no event at the potential SV region, read-depth is supposed to be equal

to expected and number of discordantly mapped read-pairs close to zero.

Similar approach is applied for the values λd, λp of inversions, insertions, MEIs

and duplications. Table 2.2 displays the values of λd, λp for each (typei, statei)

using Ed[(αi, βi)] and Ep[γi]. Note that even though the formulations for λd, λp

look the same for all types of duplications, the likelihood score will be different

since the potential regions (αi, βi) are different based on the categorized type of

the event being considered. Furthermore, the read-pair support and signature

will be distinct for each type of duplications, which is the key in resolving the

particular duplication type.

Table 2.2: Formulation for λd and λp for maximum valid cluster Si

SV Type State λd λp

Deletion
homozygous 0.0 Ep[γi]
heterozygous 0.5 · Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.0

Inversion
homozygous Ed[(αi, βi)] Ep[γi]
heterozygous Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.0

Insertion
homozygous Ed[(αi, βi)] Ep[γi]
heterozygous Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.0

Transposon Insertion (MEI)
homozygous Ed[(αi, βi)] Ep[γi]
heterozygous Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.0

Nuclear Mitochondria Insertion (NUMT)
homozygous Ed[(αi, βi)] Ep[γi]
heterozygous Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.0

Inverted Duplication
homozygous 2 · Ed[(αi, βi)] Ep[γi]
heterozygous 1.5 · Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.0

Direct Duplication
homozygous 2 · Ed[(αi, βi)] Ep[γi]
heterozygous 1.5 · Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.0

Tandem Duplication
homozygous 2 · Ed[(αi, βi)] Ep[γi]
heterozygous 1.5 · Ed[(αi, βi)] 0.5 · Ep[γi]
no event Ed[(αi, βi)] 0.0
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2.3.2.2 SV weights

For each potential SV, we calculate a score to represent how likely the SV pre-

diction is correct given the observed signature considering the homozygous state

and heterozygous state (i.e., 1/1 or 0/1 respectively) separately. Then we select

the larger value to approximate the likelihood of that prediction being correct.

We define the score as log likelihood ratio of the putative SV being true given

the observed data over it being false. Note that we use log function to avoid

numerical errors. The score of potential SV Si is defined as follows:

score(Si) =
max (logLi(δi, k = 1), logLi(δi, k = 2))

logLi(δi, k = 0)
(2.8)

where δi is the potential SV type of Si. Again, k = 0, 1, 2 implies that the

state of Si is no event, heterozygous, homozygous respectively.

Finally, the normalized weight of each cluster can be calculated as:

weight(Si) =
score(Si)

Ep[γi]
(2.9)

2.4 Using Linked-Read Information

Currently, the most widespread approach to overcome the limitations of short-

read sequencing, with a cost-effective alternative to single molecule long-read

sequencing, is called Linked-Read sequencing or 10xG. This approach involves mi-

crofluid partitioning of large DNA molecules (typically 10-100 Kbp) into roughly

106 pools (or GEMs) that contain fragments of the large DNA molecules (each

GEM will receive 1/6000 of the genome, which is ∼500 Kb), where the pools have

unique barcode information and the fragments inside the pools have the same bar-

codes. These reads are then sequenced using Illumina platform, retaining long
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range information with short-reads as illustrated in Figure 2.2.

Figure 2.2: Details of 10x technology. Each step of 10x pipeline is briefly depicted.
Firstly, 1 ng of high molecular weight DNA is extracted from the sample and
distributed to approximately 106 pools, where they are barcoded and subjected
to priming and polymerase amplification. After the library preparation process,
they undergo Illumina sequencing process.

TARDIS has an option to use linked-reads for SV detection triggered with

“–10x” option.

The approach we use in 10x mode of TARDIS is similar to that of Common-

LAW’s (Common Loci structural Alteration Widgets) [186], comparing multiple

individuals against the reference genome simultaneously to increase the accuracy

of SV discovery. Traditionally, to perform comparative studies involving multiple

individuals, a two step process is utilized; each individual is compared with the
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reference genome and the list of SVs are compared against each other. Com-

monLaw, on the other hand, simultaneously compares each genome against the

reference to increase the accuracy. The method involves generalizing the MPSV

problem to multiple genomes; creating a set of maximal SV clusters based on

maximum parsimony. For each SV, if the support coming from multiple donor

genomes is higher, then the SV is more likely to be correct. This approach is

shown to increase the SV discovery especially among related genomes such as

family trios or ethic groups.

In order to formulate our approach to the problem; given the discordant paired-

end reads in Equation 2.1, each rpi is assigned a barcode bi. We align the reads

using mrFAST to allow multiple mappings for each rpi as given in Equation 2.2.

Our aim is to find the most parsimonious assignment of barcoded discordant

reads to the SV clusters. Note that, clusters of discordant paired-end reads that

support the same SV breakpoints may have reads with different barcodes.

We previously defined the notion of SV weight utilized in TARDIS (Chap-

ter 2.2); We give a SV score to each maximal cluster using a probabilistic model

based on read depth signature and the type of SV. On the contrary, when using

Linked-Reads of 10xG, the score of the clusters are not only dependent on our

likelihood model but also on what we call the homogeneousness score of a cluster.

Similar to the chi-squared test for identifying and measuring heterogeneity, we

define a homogeneousness score for a given SV cluster s. Let s contain n reads

with a total of m barcodes {b1, b2 . . . , bm} where m ≤ n and let Bi be the subset

of reads in s all with the barcode bi.

We define h(s), the homogeneousness score of s as follows:

h(s) =
1

n2

∑
i|Bi|, (2.10)

where |Bi| is the size of the set Bi.
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Thus, modified SV weight becomes

weight(s) = w(s) · h(s), (2.11)

where w(s) is the previously calculated weight of cluster s that ignores the

barcode information and h(s) is the homogeneousness score of cluster s.

As the barcoded reads are given as input to TARDIS in BAM format, the

mappings suggested are the best (unique) mappings produced by the read mapper

of 10x Genomics, Long Ranger [89]. LongRanger outputs a BAM file, containing

position-sorted, aligned reads and attaching the barcode information to each read

with a tag field of BX. This tag is composed of nucleotides with exactly 16 digits

long, i.e., AGAATGGTCTGCATCG.

Our Linked-Read approach also works in Sensitive Mode that utilizes multiple

mapping locations of the reads in order to increase the accuracy. Thus, we use

mrFAST or mrsFAST to remap the linked-reads to the reference genome in order

to obtain all possible mapping locations of the reads. Since mr/mrsFAST does not

have the capability to input barcode information, we hide the barcode information

for each read by appending it to the read name as follows; As the barcode is

exactly 16 nucleotides long, they fit in the first 4 bytes of unsigned long, so the

unsigned long value is appended to the read name with width of 20 digits, zero

padded, i.e., < read− name >< zero− padding >< encoded− barcode >.

Once all FASTQ files are created and sorted, TARDIS runs mr/mrsFAST for

each pair of FASTQ files and creates a DIVET file in the end that contains the

barcode information appended to each read. By using a reverse-engineering, we

decode the barcodes of each read and utilize them in set-cover phase of TARDIS.
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Chapter 3

Structural Variation Discovery

with TARDIS

3.1 Introduction

Before the advent of sequencing technologies, the methods to detect genetic

variations involved microscopic observations that are ∼3 Mb or more in size,

which included aneuploidies, rearrangements, heteromorphisms and fragile sites

[193]. Since then, with the advances in experimental molecular biology techniques

and sequencing-based approaches, the spectrum of genetic variations have been

broadened. These variations involved single nucleotide changes (SNPs), small

insertions/deletions (INDELs), repetitive elements that include mini and macro

satellites (STRs) and larger variations such as cytogenetic alterations. However,

intermediate level, so called submicroscopic variations that range from 50 bp up

to 5 Mb in size have been underestimated until the development of BAC arrays

such as arrayCGH [194] and ROME [195]. Furthermore, with the help of NGS

techniques, the amount of discovered SVs have been increased tremendously and

breakpoint resolutions have been improved.

Currently there are several resources that provide a catalog of SVs in human
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genome such as 1000 Genomes Project (1000GP) [20, 21], Database of Genomic

Variants (DGV) [196], Human Polymorphic Inversion Database (InvFEST) [197],

DECIPHER [198]. These databases mostly report all the calls that are detected

by some algorithms. However, some recent project such Genome in a Bottle

(GIAB) [199, 200] also report high confidence call sets, produced based on mul-

tiple platforms such as short-read sequencing, long-read sequencing, etc.

In this chapter, for each distinct SV type that TARDIS can characterize, we

give a brief overview and then describe the approach we utilize in order to detect

the variation in the clustering phase of TARDIS.

3.2 Characterizing Various Types of SV

3.2.1 Discovering deletions and insertions

It is known that most of the structural variations in human genome involves

deletions or insertions, indeed they are currently the best characterized SV types

[2, 62]. According to the results of 1000GP, the median number of deletion

alleles per human genome is 2, 788, estimated with 88% sensitivity. There are

several phenotypic disorders caused by deletions; Williams-Beuren syndrome [201,

202], Smith-Magenis syndrome [203, 204], Carney complex [205], Miller-Dieker

lissencephaly syndrome [206], Hereditary neuropathy with pressure palsies [207],

cri du chat syndrome [208], Prader-Willi syndrome [209], Crohn’s disease [25],

developmental delay [210], autism [28, 26, 29, 30] and by insertions; Charcot-

Marie-Tooth neuropathy [211], Tay-Sachs disease [212].

In Figure 3.1, we show a sample deletion event discovered by TARDIS. The

figure depicts that paired-end reads are mapped to the reference genome where

they span the SV event. It is also shown that the read depth is decreased within

the breakpoint intervals.

As mentioned before, a valid cluster is a set of alignments of discordant read
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Figure 3.1: Figure shows the IGV [3, 4] visualization of a deletion event predicted
by TARDIS within 19:8,231,867-8,256,118 for CHM1 genome [5, 6]. Absence or
decrease of read-depth within the breakpoint is an indication of a deletion.

pairs and/or split reads that signal the same particular SV event denoted by;

V Clusi = {akrpi1 , akrpi2 , ..., akrpin} (3.1)

where the read pair akrpi is aligned to the reference sequence and clustered

in ith cluster (k denotes that rpi has k different alignments for the cases where

multiple alignment is used). Note that read pairs are allowed to be included

in other clusters also. This is limited by an upper bound parameter where the

default value is decided to be 10 (higher values have the risk of increasing memory

consumption enormously for some data sets). Figure 3.2 shows the insertion and

deletion signatures of read pairs when mapped to the reference genome.

PosL and PosR shows left and right breakpoints respectively, L(rpi) andR(rpi)

are the mappings of left (RPL) and right (RPR) ends and we assume that the

fragment sizes are in the range [δmin, δmax]. We note that δmin and δmax are

calculated using the following formulations:
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A

B

Figure 3.2: Read pairs mapped to the reference genome A) insertion signature,
B) deletion signature.

concordantmin = mean− (4× stdev)

concordantmax = mean+ (4× stdev)

δmin = concordantmin − (2 ∗ readLength)

δmax = concordantmax − (2 ∗ readLength)

(3.2)

where the mean is calculated using the span size distribution of the read-pairs

mapped to the reference genome as depicted in Figure 1.6 and read-length is the

length of the reads in the BAM file.

We scan the genome from beginning to end and consider each position as a

potential breakpoint denoted as PBr to create maximum sets of overlapping inter-

vals. We evaluate all sets of read-pairs where the mates map in +/− stands both
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for deletions and insertions. For deletions, we cluster the read-pairs within the

interval [PBr− δmax, PBr] and for insertions within [PBr− (R(rpi)−L(rpi)), PBr].

More formally, we require the following conditions to be satisfied for insertion:

L(rpi) ≤ PosL

R(rpi) ≥ PosR

δmin − InsLen < R(rpi)− L(rpi) < δmax − InsLen

(3.3)

and the following conditions for deletion:

L(rpi) ≤ PosL

R(rpi) ≥ PosR

δmin +DelLen < R(rpi)− L(rpi) < δmax +DelLen

(3.4)

Once we have the set of reads (a new element must be added in order to denote

it as a newer cluster), we follow the steps described in Section 2.3.1.

3.2.2 Characterizing inversions

In contrast to copy number variations such as deletions, insertions and duplica-

tions, inversions do not cause any gain or loss of genetic material but they change

the orientation of genomic segments. Therefore, this type of variations are known

as balanced rearrangements. Detection of inversions is made possible with the

introduction of paired-end sequencing since the array-based approaches are only

able to detect copy number differences. Thus, inversions were poorly studied be-

fore 2005 [62]. [2, 213, 214] and [215] are among the first approaches to detect

inversions in human genome utilizing the human genome assembly. Today, with

the introduction of HTS, the number of detected inversions increased, however,

they are not characterized as well as the other SV events. Indeed, Phase 3 of

1000GP [20] suggests 37 inversions per individual with only 32% sensitivity. On

the other hand, InvFEST database [197], which harbors inversions reported in
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the literature, currently has 86 validated inversions. The reason behind the draw-

backs of inversion discovery lies in the fact that breakpoints usually lie within

repeated regions and they are not subject to read-depth signature as balanced

rearrangements do not alter read-depth [92]. There are many studies revealing

the association between inversions and phenotype such as Hemophilia A [216],

Hunter syndrome [217] and disruption of the emerin gene in Emery-Dreifuss

muscular dystrophy [218]. On the other hand, most of the studies show that

inversions have no effect on the individual but increases the risk of diseases re-

lated to further rearrangements in the offspring such as microdeletions [219, 193].

Some of these phenotypes that are observed in the offspings of a parent carrying

an inversion are Williams-Beuren syndrome [220], developmental delay [221],

Sotos Syndrome [222], Angelman Syndrome [193], etc.

Figure 3.3 shows an inversion event detected by TARDIS where the green

arrows show +/+ mappings and blue arrows show −/− mappings as they are the

signatures for an inverted segment within the genome as given in Figure 3.4.

Figure 3.3: Figure shows the IGV output of an inversion event predicted by
TARDIS within 3:44,740,482-44,743,019 for CHM1 genome.

Similar to deletions and insertions, we scan the genome from beginning to

end and consider each position as a potential breakpoint denoted as PBr. We

evaluate all sets of read-pairs where the mates map in +/+ or −/− stands and
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Figure 3.4: Inversion signature of the read pairs mapped to the reference genome.

cluster the read-pairs within the interval [PBr−δmax, PBr] for +/+ mappings and

[PBr, PBr + δmax] for −/− mappings, so we cluster inversions within the range

SV len− δmax ≤ R(akrpi)− L(akrpi) ≤ SV len+ δmax.

Finally, there are some conditions to be satisfied for inversions:

L(rpi) ≤ PosL ≤ R(rpi) and or(rpi) = +/+

PosR ≥ R(rpi) and or(rpi) = +/+

L(rpi) ≤ PosR ≤ R(rpi) and or(rpi) = −/−

PosL ≤ L(rpi) and or(rpi) = −/−

(3.5)

3.2.3 Transposon insertions

Transposable genetic elements (TEs), also known as transposons or mobile el-

ement insertions (MEIs), are repetitive or movable DNA segments that occupy

nearly half (∼ 44%) of the human genome [11, 223]. Most of these elements are

currently inactive but the active ones (< 0.05%) including Alu, L1 and SVA fam-

ilies, still contribute to genetic diversity among individuals by generating novel

insertions. Studies reveal that mobile element insertions are also related to vari-

ous diseases such as cancer [224], hemophilia A [225], muscular dystrophy [226]
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and are also related to the creation [227] and expansion of interspersed segmen-

tal duplications [228]. 1000GP results suggest 1, 218 mobile element insertion

sites per individual in human genome (mostly Alu insertions) [20]. There is also

a database of repetitive elements in eukaryotic genomes called Repbase [229],

which contains 46, 248 MEI sequences as of the end of 2017.

In this section, we present our approach utilized in TARDIS to discovering

mobile element insertions inside the genome. Briefly, we try to characterize MEIs

including Alu, L1 and SVA (any type of MEI can be detected by TARDIS given

necessary annotation) in the genome where a segment of DNA is copied to another

location inter or intra chromosome. With this approach we do not only detect

MEIs but also decrease our false negative calls as some of the mobile element

insertions might mistakenly be categorized as other forms of SVs. The alignment

on the left of Figure 3.5 seems to be a deletion event, however this is shown

to be a false prediction when the duplicated region in the donor genome is not

considered, thus, this event should be categorized as a transposon insertion.

Figure 3.5: An example of a false SV prediction is depicted in the figure. There
is a deletion event in the left mapping when the duplication in the genome is
not considered. We need to check wheter any of the pairs hit the annotated
transposon interval in order to make a correct prediction since the MEI insertions
can be underestimated.

MEI clustering is slightly different from the clustering approach we utilize for

other types of SVs. Here, we check whether any of the ends for each paired-end

read is inside the annotated transposons. We iterate through the genome from

start to end considering each PBr as a potential breakpoint and group the reads

within the intervals of [PBr−δmax, PBr+δmax], where PBr denotes the locus where
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the transposon insertion occurs. Figure 3.6 shows a representation of the MEI

clustering.

Figure 3.6: The figure depicts the overview of MEI clustering approach we utilize
in TARDIS. (A) We first check the paired-end reads where one end maps to an
annotated transposon and the other to elsewhere within the genome. (B) For
such cases, we cluster the pairs that map to elsewhere in the the genome based
on their orientations within an interval. Then we bring forward and reverse pairs
together inside the same cluster and treat them as paired-end reads in order to
detect the insertion breakpoints.

As the figure shows, we make use of two distinct heaps for reads in forward

and reverse orientations. These reads are obtained from read-pairs where one of

the ends map to an annotated transposon and the other end maps to any location

inside the reference genome. Thus, our aim is to bring the reads in forward and

reverse orientations into the same cluster as if they are novel paired-end reads

that span the insertion breakpoints.
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It should also be noted that [185] is the first to formulate MEIs as depicted

in Figure 3.7 for direct and in Figure 3.8 for inverted orientations. These cases

are categorized based on the position of PBr and the orientation of the annotated

genomic segment. Figures 3.7 and 3.8 show that the genomic segment between

PosL and PosR is inserted into PBr in direct and inverted orientations respec-

tively. It should be noted that any one of these conditions should hold for a

transposon insertion event.

Figure 3.7: There are four different cases for mobile elements (copy events) in
direct orientation. The cases are based on the position of PBr, and orientation of
the mappings.

3.2.4 Nuclear mitochondria (NUMT) insertions

It is known that there is an ongoing transfer of genetic information from the mi-

tochondrial DNA into the nuclear genome of eukaryotes [230, 231] at a rate of

5.1− 5.6× 10−6 per germ cell per generation [232]. These insertions are related
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Figure 3.8: There are 4 different cases for mobile elements (copy events) in in-
verted orientation. The cases are based on the position of PBr, and orientation
of the mappings.

to various genetic disorders such as Pallister-Hall syndrome [233], mucolipido-

sis IV [234], and they are related to mitochondrial diseases [235] and hetero-

plasmy [236]. Furthermore, they harbor some footprints regarding the genetic

history of humans. We also note that Phase 3 of 1000GP reports 5.3 NUMTs per

individual [20].

With TARDIS we are able to detect mitochondria insertions in the nuclear

genomes with varying sizes and it is the only SV caller with such capability

except dinumt [237], which is the specific to NUMT insertion detection using HTS

technology. Figure 3.9 briefly depicts our approach for NUMT insertion detection.

Similar to MEI discovery, we check whether any of the pairs for each paired-end

read map to mitochondria. We cluster end reads that map in forward or reverse

strands elsewhere in the genome within the intervals of [PBr − δmax, PBr + δmax].

Here, PBr denotes the locus where the NUMT insertion occurs. Our aim is to

gather forward and reverse mapped reads inside the same cluster and treat them
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as novel paired-end reads.

Figure 3.9: For NUMT insertion, we check whether any of the pair maps to
mitochondria. Such cases is an indication of NUMT insertions within the genome.

3.2.5 Duplications

Segmental duplications are forms of copy number variations where a segment

spanning 1 Kb to 6 Mb of a DNA is duplicated and copied elsewhere in the

genome and still retains > 90% sequence similarity to the original copy. If the

segment is placed adjacent to the original copy, it is categorized as a tandem

duplication event. If positioned elsewhere, it is called interspersed duplication as

shown in Figure 1.1 [67]. ∼ 5% of the human genome is covered with SDs [193])

and that plays an important role in genomic differences such as gene duplications

among species that results in phenotypic variations or diseases. Furthermore,

duplications are the major source of evolution as duplicated segments create di-

versity and new genes are formed over time where the short term consequences are

the genetic diseases [238], but also adaptive evolution [239]. There are numer-

ous diseases related to duplications such as schizophrenia, epilepsy, intellectual

disability, development delays [240].

The approaches to detect duplications are based on experimental methods such

as FISH, array-CGH and sequencing based computational methods. However,

there is a lack of SV detection tools that distinguish duplications such as tandem
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or interspersed. Phase 3 of 1000GP [7] provides a catalog of SVs that primarily

focused on characterizing deletions, insertions, and mobile element transpositions,

however, it also generated a set of inversion calls. A careful analysis shows that a

substantial fraction of the predicted inversions are in fact complex rearrangements

that include duplications, inverted duplications and deletions within an inverted

segment (Figure 3.10). This is because the read pair signatures that signal such

complex SVs are exactly the same with simple SVs as shown in Figure 2.1.

54%

20%

14%

7%
5%

Simple inversion

Inverted duplication

Inversion and deletion
Multiple deletions 
and inversion

Highly complex

Figure 3.10: Relative abundance of complex SVs among the inversion calls re-
ported in the 1000 Genomes Project [7]. 54% of predicted inversions are in fact
inverted duplications and only 20% are correctly predicted as simple inversions.

In this section we describe novel algorithms to accurately characterize complex

SVs such as tandem or interspersed segmental duplications. Note that TARDIS

is the first method to distinguish duplications as tandem or interspersed in direct

or inverted orientations.

3.2.5.1 Tandem Duplications

Tandem duplication is the duplication of a DNA segment that is copied adjacent

to the original copy. These SVs are easier to detect than interspersed SDs by short

read sequencing approaches as the duplicated and original copies are adjacent to

each other, which creates a −/+ orientation signature that is distinct among the

other types of events. Figure 3.11 depicts the IGV visualization of a tandem

duplication discovered by TARDIS. The orientations of the read pairs (shown in
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green) clearly demonstrate the tandem duplication signature that we seek. It

should be noted that the read depth is decreased within the breakpoint intervals

as described in Figure 1.7.

Figure 3.11: Figure shows the IGV output of a tandem duplication event pre-
dicted by TARDIS within 3:1,216,580-1,217,848 for CHM1 genome.

Clustering of these read-pairs are similar to deletions. We first fetch each

alignment in the BAM file and store the discordant paired-end reads and split-

reads that are in −/+ orientation. Then we scan the genome from start to

end by considering each position as a potential breakpoint denoted as PBr to

create maximum sets of overlapping intervals. The clusters we create for tandem

duplications are within the interval [PBr − δmax, PBr]. Figure 3.12 shows the

detailed description of the sequence signature that we utilize in TARDIS. Note

that PosL is the left and PosR is the right end of the duplicated segment and

Ll(akrpi), Lr(akrpi) are the kth mapping of the left and right end of read-pair (rpi)

respectively. Similarly Rl(akrpi) and Rr(akrpi) are the left and right mappings

of the right read-pair.
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Figure 3.12: Tandem duplication signature of the read pairs mapped to the ref-
erence genome.

3.2.5.2 Interspersed Segmental Duplications

Unlike tandem duplications, the duplicated segment for interspersed duplications

are placed away from the original copy in direct or inverted orientation (we use

inverted duplication and interspersed inverted segmental duplication interchange-

ably throughout the text).

Figure 3.13 shows the IGV visualization of interspersed segmental duplications

in (A) direct and (B) inverted orientations. Due to the fact that the sequence

signatures of inversions and inverted duplications are exactly the same, charac-

terization of such events using paired-end read signatures simultaneously is very

challenging (Likewise deletion/tandem duplication and direct duplication signa-

tures are also the same). Therefore it is easy to make false predictions. TARDIS

is the first approach to characterize these complex SV events.

3.2.5.2.1 Inverted duplications: We assume the fragment sizes for read

pairs are in the range [δmin, δmax], and we denote the insertion breakpoint of

the duplication as PBr and the locus of the duplicated sequence is [PosL, PosR]

(Figure 3.14A). Similar to the approach we utilize for the other SV events, we scan

57



the genome from beginning to end, and we consider each position as a potential

duplication insertion breakpoint PBr.

We consider all sets of read pairs where both mates map in the same strand

(i.e., +/+ and −/−) within interval [PBr − δmax, PBr] and [PBr, PBr + δmax] re-

spectively as clusters that potentially signal an inverted duplication.

3.2.5.2.2 Interspersed direct duplications: We create the valid clusters

in a way similar to the inverted duplications with the exception of the required

read mapping properties. For direct duplications we require each mate of a read

pair to map in opposing strands (i.e., +/− and −/+).

The clusters for inverted duplication encompasses both +/+ and −/− map-

pings as the signature for this event involves both types of mappings. Similarly,

we gather the read-pairs of +/− and −/+ inside the same cluster since only one

signature is not enough to decide the type of SV event. Separating inversions

from inverted duplications or deletions and tandem duplications from direct du-

plications is done with the probabilistic approach we utilize in the set-cover step

described previously.

3.3 Incorporating Split Read Information To

Improve SV Calls

Split reads can be defined as the reads that are split into multiple segments and

partially mapped to the reference genome. Therefore, it is evident that detection

of split-reads begin during the read mapping step where the mapping information

is produced.

We formally define the read mapping problem as follows. Given a read R

and a reference genome S, our aim is to detect all or the best mappings of R

within S with some error threshold. This problem is called “approximate string
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matching problem” as most read mappers allow some gaps and mismatches that

are caused due to genetic mutations or sequencing errors up to some threshold

based on a metric such as Hamming distance. As given in Figure 3.15, some reads

are aligned to the reference genome with multiple alignments/mappings allowed.

Among these mappings, some of them are exact, where all the nucleotides exactly

match, and some are partial, where some nucleotides do not match. The score

of exact matches are higher than the partial mappings, so read mappers aim to

find these higher scoring alignments.

We utilize CIGAR, one of the mandatory fields of SAM/BAM format, as the

main source of data for split read detection. More precisely, when the reads are

mapped to the reference genome, due to some INDELs, gaps, etc, mappings are

not exact and CIGAR string indicates the details of the mapping (Figure 3.16).

Note that clipped reads involve sequences whose ends are clipped-off as they

are not aligned to the reference genome. There are two types of clippings; (1) Soft

clipping, where the clipped part is not aligned to the reference but the unaligned

sequence is present in the mapping; (2) Hard clipping, where the clipped part is

not aligned too however, clipped segment is also not available in the mapping.

In summary, split reads suggest potential SV breakpoints when the unmapped

(clipped) segment of the read is remapped to somewhere else and the distance

between the main read and the remapped segment spans the putative structural

variation event.

3.3.1 Detection and clustering of split reads

As described above, in order to detect structural variations, where the reads span

the putative SV breakpoints, checking the split-read signature is currently the

most relevant way. Furthermore, the accuracy of the approach increases with

larger reads because they will more likely to span SV breakpoints.

As TARDIS works independently for each chromosome, detection of split-reads
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for an arbitrary chromosome can be described as follows:

1. Read the reference sequence: The first step involves reading the DNA

sequence of the chromosome into the memory to create a hash index. The

collision-free hash table whose size is 4k is used to store overlapping k-mers

of 10 bps from the reference sequence using a linked list structure. The

function uses a simple two-bit encoding scheme.

2. Store the soft-clips using the mapping information: As we iterate

through each mapping in TARDIS, we check whether the read includes

an unmapped segment at the beginning or at the end. This is the soft-clip

information that resides within the CIGAR string of the mapping (A match

is denoted by M and a soft clip is denoted by S). We keep these mappings

in a linked list structure for further processing in the following steps.

3. Remapping soft-clips to the reference genome: In this step, we utilize

the mappings that harbor soft-clipped segments that are collected in Step

2. The split coming from the soft-clipped chunk of the original read is

remapped to the reference genome in order to create the second pair of

the mapping. Inherently, the first pair is the original read excluding the

soft-clipped chunk. This is shown in Figure 3.17.
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Figure 3.17: Mapping soft-clips to the reference genome.

In order to map the split to the reference genome, we have a requirement

such that the distance between the split and the original read is within some

predefined range +/− 100,000 bps. We believe that this bound is enough

to detect potential SV regions because most events happen within such a

range and larger values will likely to increase false positives.

Briefly, we initially hash the first k nucleotides of the split using the same

approach that we use to hash the k-mers of the reference genome. Once we

locate the linked list of the hash value within the hash table, we compare the

split with the reference by using the Hamming distance metric. Here, we

don’t search for exact matches only, but we also allow for some mismatches.

Note that we use the same procedure to search for the reverse mapping of

the split, i.e., 3’ to 5’. Finally we return up to 11 distinct mapping locations

of the split.

4. SV Type Resolution Once we have obtained the possible mapping loca-

tions of the split, the tricky part is to decide the type of SV event that these

novel paired-end reads suggest. To make this decision, we consider a bunch

of signatures as illustrated in Figure 3.18. These signatures are dependent
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on, (1) The orientation of the original read and split; (2) Mapping location

of the split, i.e., before or after the original read, (3) The location of the

soft-clip, i.e., at the beginning or at the end of the read.

We finally add a wrong-map-window to the start and end locations of

the reads and utilize them in the clustering in conjunction with the other

paired-end reads.

3.3.2 Runtime and memory usage of split reads

Split read operation is memory intensive because it involves a read mapping step,

i.e., multiple mappings. Therefore, TARDIS needs to keep the reference chromo-

some’s DNA sequence and the related hash table in memory. While keeping the

reference sequence for chromosome 1 takes around 250 MB of memory, the hash

table, which keeps each 10 bp k-mers in a linked list require around 2,5 GB of

memory.

The most intensive operation involves comparing the split with the original

genome sequence using Hamming distance. The reason for this is that each split’s

first 10 bps is hashed and the value of the hash is compared with the k-mers of the

reference genome, which is stored in a linked list structure. Because of possible

collisions, the linked list grows exponentially and comparison operation requires

high amounts of computation.
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A

B

Figure 3.13: IGV visualization of interspersed SD in A) direct orientation and
B) inverted orientation. It should be clear that the signature in (A) is +/− and
−/+, in (B) −/− and +/+. The first one is exactly the same as the signature
of deletion and tandem duplication, the second one as inversion.
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Figure 3.14: The sequence signatures for interspersed SDs in (A) inverted (B)
direct orientations.
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Figure 3.15: Figure shows some reads mapped to the reference genome with mul-
tiple mappings allowed. We also show how the reads align with some mismatches
allowed. The nucleotides in red color are the mismatches.

Figure 3.16: When aligning a read to a reference genome, some bases match, some
don’t. SAM/BAM specification outputs this information in a CIGAR string. The
position of the read aligned to the reference is 0-based starting position of the
alignment.
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Figure 3.18: Split read signatures used by TARDIS to characterize SV types of
deletion, novel sequence insertion, transposon insertion, inversion, tandem dupli-
cation and interspersed segmental duplication in direct and inverted orientations.
Briefly, when a read is mapped to the reference genome, the SV is hidden inside
the read and this is resolved by splitting the read into two segments.
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Chapter 4

Results

In this chapter, we analyze the performance of TARDIS by utilizing both simula-

tion and real data experiments in order to benchmark the accuracy for deletion,

inversion, mobile element insertion, nuclear mitochondria insertion, tandem du-

plication and interspersed segmental duplication discovery. These experiments

involve comparison against other state-of-the-art SV discovery tools, namely

LUMPY [170] and DELLY [167]. To validate our results using real data, we

mostly utilized long reads generated with single molecule real time (SMRT) tech-

nology (i.e. PacBio) to be able to cross-validate and compare our predictions with

an orthogonal technology. These call sets can be regarded as the gold standard

for us.

In the following two sections, we present the results for simulation and real

data experiments using Quick mode of TARDIS. Then in Section 4.3, we evaluate

the performance of Sensitive Mode compared to Quick Mode. Next, the results

involving Linked-Read data of 10xG is presented and finally we analyze the time

and memory requirements of the each tool in Section 4.5.
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4.1 Simulation

In order to evaluate the performance of TARDIS, we developed a new simulator

called CNVSim to simulate five types of SVs including deletions, inversions, tan-

dem duplications, inverted duplications and interspersed direct duplications. We

simulated a deletion by removing a segment from the reference genome, an inver-

sion by replacing a segment by its reverse complement and a tandem duplication

by replacing a segment by two copies of itself. Finally, an interspersed duplica-

tion is placed by inserting a copy of itself either to the left or to the right of the

original segment (For interspersed inverted duplications, the copy is inserted in

reverse direction).

We simulated SVs of random lengths selected uniformly between 500 bps and

10 Kbp. For interspersed duplications, the distance from the new paralog to the

original copy is chosen uniformly random between 5,000 bps and 50 Kbp. All

segments are sampled randomly from the well-defined (i.e., no assembly gaps)

regions in the reference genome, and guaranteed to be non-overlapping. Each

simulated SV can be in homozygous or heterozygous state.

Based on the human reference genome (GRCh37), we simulated total of 1,200

SVs including 400 deletions, 200 inversions, 200 tandem duplications, 200 in-

verted duplications and 200 interspersed direct duplications. We then simu-

lated WGS data at four depth of coverages 10X, 20X, 30X, 60X using wgsim

(https://github.com/lh3/wgsim). We mapped the reads back to the human

reference genome (GRCh37) using BWA-MEM [116]. Finally we obtained struc-

tural variation call sets using TARDIS, DELLY [167] and LUMPY [170].

Table 4.1 shows the true positive rate (TPR) and false discovery rate (FDR) of

TARDIS compared to DELLY and LUMPY on the simulated data. The sensitiv-

ity of TARDIS is comparable to others for deletions and inversions, but TARDIS

achieved a substantially higher TDR for duplications as the other tools are not

able to characterize interspersed duplications. Additionally, TARDIS suffered

very low FDR compared to the other tools we tested.
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Table 4.1: Summary of simulation predictions by TARDIS, LUMPY and DELLY.

SV Type Cov.
TARDIS DELLY LUMPY

#Predicted FDR TPR #Predicted FDR TPR #Predicted FDR TPR

Deletion

10X 373 0.063 0.933 383 0.312 0.958 316 0.315 0.790
20X 380 0.036 0.950 387 0.329 0.968 377 0.327 0.943
30X 384 0.047 0.960 389 0.330 0.973 379 0.328 0.948
60X 386 0.052 0.965 391 0.330 0.978 383 0.329 0.958

Inversion

10X 194 0.025 0.970 197 0.482 0.985 189 0.000 0.945
20X 196 0.011 0.980 197 0.495 0.985 193 0.000 0.965
30X 199 0.003 0.995 198 0.495 0.990 194 0.000 0.970
60X 199 0.009 0.995 198 0.495 0.990 194 0.000 0.970

Duplication

10X 560 0.004 0.933 300 0.204 0.500 245 0.202 0.408
20X 576 0.010 0.960 309 0.202 0.515 299 0.205 0.498
30X 580 0.004 0.967 309 0.204 0.515 301 0.202 0.502
60X 582 0.018 0.970 311 0.205 0.518 301 0.206 0.502

We show the true positive rate/recall and false discovery rates (TPR and FDR) of TARDIS,
LUMPY, and DELLY at different depths of coverage from 10X to 60X for Deletions,
Inversions, and Segmental Duplications. Total number of SVs are 1,200; 400 deletions, 200
inversions, 600 duplications. Note that LUMPY and DELLY can not predict interspersed
segmental duplications, therefore these tools miss such events. TARDIS consistently shows
low FDR with comparable sensitivity. In our simulation, the length of each SV is generated
uniformly random between 500 bp and 10 Kbp.

Furthermore, TARDIS can classify duplications into tandem, interspersed di-

rected duplication and inverted duplication. However, DELLY and LUMPY are

not designed to characterize interspersed segmental duplications, therefore we

cannot provide comparisons. Table 4.2 shows the TDR, FDR, and the exact

count of the number of True/False predictions for each type of segmental dupli-

cation.

4.2 Real Data Experiments

In addition to simulations, we also conducted experiments by utilizing real data

and decided on using CHM1, CHM13 [5, 6] for haploid genomes and NA12878 for

diploid genome. These datasets were sequenced using both the Illumina platform

at higher depths and long reads generated with single molecule real time (SMRT)

technology (i.e. PacBio). Our motivation behind this was to be able to cross-

validate and compare our predictions with an orthogonal technology.

69



Table 4.2: Characterization of different types of segmental duplications using
TARDIS on simulated data.

Duplication Type Coverage Total SVs #Missed #True TPR #True FDR

Inverted Interspersed Duplication

10X 200 10 190 0.950 2 0.010
20X 200 7 193 0.965 4 0.019
30X 200 7 193 0.965 2 0.009
60X 200 7 193 0.965 14 0.047

Direct Interspersed Duplication

10X 200 18 182 0.910 1 0.004
20X 200 8 192 0.960 1 0.003
30X 200 7 193 0.965 1 0.003
60X 200 6 194 0.970 2 0.006

Tandem Duplication

10X 200 16 184 0.920 14 0.057
20X 200 11 189 0.945 15 0.050
30X 200 8 192 0.960 6 0.017
60X 200 6 194 0.970 11 0.028

TARDIS can classify duplications into tandem, interspersed directed duplication and in-
verted duplication. However, DELLY and LUMPY are not designed to characterize these
complex SVs. This table shows the true positive rate (recall) and false discovery rate (TPR
and FDR respectively) of TARDIS for each type of duplication.

For haploid genome analysis, we downloaded short read HTS data generated

from two haploid cell lines, namely CHM1 and CHM13. We mapped the reads to

human reference genome (GRCh37) using BWA-MEM [116]. We also obtained

call sets generated with PacBio data from the same genomes [183], which we use

as the true call set to compare with our predictions. Similar steps were applied

to the diploid NA12878 genome.

First, in Table 4.3, we show the properties of these datasets.

4.2.1 Deletions

First, we compared deletion predictions of TARDIS in CHM1, CHM13 and

NA12878 genomes against the call sets generated by DELLY [167] and

LUMPY [170]. We restricted the SV size to be >100 bp and required > 50% re-

ciprocal overlap for two deletions to be considered the same using BEDTools [241].

We assume that the PacBio data sets [9] are the gold standard for our compari-

son as shown in Table 4.4. The results suggest that TARDIS employs the lowest
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Table 4.3: Properties of the datasets we utilized in our eperiments.

Genome Mean Stdev Read-length Cov. #Reads #Concordant #Discordant #Libraries

CHM1 321 108 100 bp 42x 950,737,331 947,692,059 3,045,272 1
CHM13 356 119 150 bp 42x 655,538,698 646,895,477 8,643,221 23
NA12878 319 81 100 bp 54x 1,351,332,053 1,347,464,192 3,867,861 1

Properties of the genomes that we used in our experiments are given. We decide
whether a read is concordant or discordant based on mean and standard
deviation of the dataset. Each dataset has one or more libraries corresponding to
the number of different lanes that the genome is sequenced. Thus each library
has specific mean, standard deviation and read-length (They mostly have very
close values, thus we give the average values for mean and standard deviation of
CHM13 genome, which has 23 libraries). Finally, coverage (Cov.) refers to the
average depth of reads. We should note that the accuracy and cost of sequencing
increases parallel to the coverage.

FDR among the three tools with comparable sensitivity overall.

Table 4.4: Comparison of deletion accuracy between TARDIS, LUMPY and
DELLY using CHM1, CHM13 and NA12878 data sets

CHM1 CHM13 NA12878
#True #False Precision Recall F-score #True #False Precision Recall F-score #True #False Precision Recall F-score

TARDIS 1279 304 0.81 0.32 0.46 1595 655 0.71 0.40 0.51 2218 622 0.78 0.60 0.68
LUMPY 1518 1063 0.59 0.38 0.46 1401 457 0.75 0.35 0.48 2344 1456 0.62 0.63 0.62
DELLY 1651 1488 0.53 0.41 0.46 1794 1865 0.49 0.45 0.47 2536 2703 0.48 0.69 0.57

We compared deletion accuracy (>100 bp) of TARDIS, LUMPY and DELLY using CHM1,
CHM13 and NA12878 data sets. Assuming that PacBio calls are the gold standard, we
compared the result with [9] for CHM1 and CHM13, and with MT Sinai callset (data
available in GIAB repository) for NA12878. The total number of calls for CHM1, CHM13
and NA12878 are 4016, 3946 and 3698 respectively. Precision is calculated as TP

TP+FP and

recall as TP
TP+FN , where TP = true positive, FP = false positive, FN = false negative.

Finally, we calculated F-score with 2× Precision×Recall
Precision+Recall formulation.

Additionally, we provide a comparison of TARDIS and LUMPY predictions

for the diploid NA12878 genome given in Figure 4.1a and a size distribution

histogram given in Figure 4.1b. The peaks at 300 bp and 5,900 bp corresponds

to Alu and L1 mobile element deletions respectively.
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Figure 4.1: Comparison of deletion accuracy (>100 bp) between TARDIS and
LUMPY using NA12878 genome (a). We also provide a deletion length histogram
(b) exhibiting the expected peaks at 300 bp and 5,900 bp for ALU and L1 deletions

4.2.2 Inversions

For the case of inversions >100 bp, Figure 4.2(a) and (b) shows ROC curves

by utilizing the predictions on CHM1 and CHM13 genomes. It is obvious that

TARDIS achieves better area under the curve (AUC) statistics. Additionally, we

evaluated the 50 highest scoring set of inversion predictions of each tool generated

for CHM1 genome. Briefly, we used a reference-guided assembly of PacBio reads

generated from the same genome [183] and mapped the contigs to the loci of

interest (Figure 4.2) (c)). Compared to LUMPY and DELLY, TARDIS again

achieves better AUC here, however, we note that the main reason for DELLY

and LUMPY curves being closer to that of TARDIS for low number of false calls

is because there were several predictions for which corresponding contigs did not

exist in the assembled genome, therefore omitted from this plot.

Similar to CHM1/13 results, for diploid NA12878 genome, TARDIS outper-

formed state-of-the-art methods for inversion predictions given in Figure 4.3.
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Figure 4.2: Receiver operator characteristic (ROC) curve for the comparison of
inversion predictions on CHM1 and CHM13 datasets. Overall, TARDIS achieves
better area under the curve (AUC) statistics compared to the other tools. (a),
(b) comparison of CHM1 and CHM13 predicted inversions using PacBio reads
based on BLASR mappings. (c) validation of top predicted inversion of different
tools using local assembly of the PacBio reads of CHM1.

4.2.3 Duplications

In Table 4.5, we provide the full set of the 50 highest scoring segmental duplica-

tions that TARDIS predicts in CHM1 genome together with in silico validation

using the corresponding PacBio-based assembly. Almost all of the predicted du-

plications, except one, were validated using long reads. Note that in most cases

TARDIS assigned the correct subtype of duplications (inverted, direct or tandem

duplication) to the prediction. It only gives one false call and three interspersed

duplications that are wrongly assigned to tandem duplications. As expected, the

highest number of segmental duplications in the top 50 were tandem duplications
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Figure 4.3: Comparison of top inversion prediction on NA12878 sample against
predicted and validated set of inversion of the same samples using PacBio data
from [8]

(> 50% of all duplications).

We should also state that TARDIS discovered a large inverted duplication

in NA12878 genome validated by PacBio data that is generated from the same

sample shown in Figure 4.4. The interesting point about this inverted duplication

is that it is larger than 10 Kbp and the distance between locus of insertion and the

duplicated region is also larger, which shows a potential start of a new segmental

duplication.

4.2.4 Insertions

To evaluate the mobile element insertion discovery performance of TARDIS, we

utilized CHM1 and CHM13 genomes and compared our results with the orthog-

onal PacBio predictions given in Figure 4.5. We should emphasize that the ad-

ditional calls discovered by TARDIS and missing in PacBio data might actually

be real and simply false negatives in the PacBio predictions. When we compared

74



Table 4.5: 50 highest scoring segmental duplications predicted by TARDIS in the
CHM1 genome.

Duplication TARDIS Validation Duplication TARDIS Validation
Insertion Locus Dup. Type Score (PacBio) Insertion Locus Dup. Type Score (PacBio)

chr11 63,698,518 - 63,702,043 Direct 0.000139 True chr2 37,928,244 - 38,101,822 Tandem 0.000073 N/A
chr3 194,542,832 - 194,546,551 Direct 0.000147 True chr20 60,032,847 - 60,033,402 Tandem 0.000118 True
chr5 143,512,368 - 143,515,435 Direct 0.000189 True chr1 207,097,488 - 207,097,792 Tandem 0.000143 True
chr4 190,606,509 - 190,610,728 Direct 0.000356 True (Tandem) chr5 3,323,854 - 3,324,308 Tandem 0.000150 N/A
chr20 2,359,601 - 2,360,962 Direct 0.000418 True chr7 2,554,438 - 2,554,794 Tandem 0.000157 True
chr9 112,285,745 - 112,286,960 Direct 0.000422 True chr12 110,099,331 - 110,099,745 Tandem 0.000164 True
chr19 4,511,103 - 4,511,949 Direct 0.000453 True (Tandem) chr6 168,052,169 - 168,052,467 Tandem 0.000164 True
chr17 46,615,511 - 46,617,628 Direct 0.000466 True chr16 86,008,690 - 86,009,146 Tandem 0.000174 True
chr18 69,711,699 - 69,713,216 Direct 0.000469 True chr10 127,513,387 - 127,513,671 Tandem 0.000181 True
chr6 160,877,581 - 160,956,646 Direct 0.000484 N/A chr14 106,049,119 - 106,049,358 Tandem 0.000181 True
chr2 10,825,652 - 10,827,218 Inverted 0.000118 True chr17 80,317,606 - 80,318,018 Tandem 0.000181 N/A
chr3 43,834,994 - 43,836,299 Inverted 0.000123 True chr20 62,720,019 - 62,720,214 Tandem 0.000181 True
chr2 125,051,481 - 125,053,239 Inverted 0.000127 True chr9 132,158,786 - 132,159,087 Tandem 0.000181 N/A
chr14 67,169,917 - 67,171,999 Inverted 0.000146 True chr10 132,974,718 - 132,975,317 Tandem 0.000190 True
chr2 72,440,066 - 72,441,647 Inverted 0.000159 True chr12 13,164,410 - 13,164,785 Tandem 0.000190 True
chr10 127,190,469 - 127,197,324 Inverted 0.000190 True chr8 2,215,816 - 2,216,235 Tandem 0.000201 N/A
chr9 107,816,536 - 107,817,623 Inverted 0.000200 True chr6 44,012,337 - 44,012,939 Tandem 0.000211 True
chr17 36,350,020 - 36,407,396 Inverted 0.000208 False chr9 34,681,543 - 34,681,898 Tandem 0.000266 True
chr12 71,532,693 - 71,534,000 Inverted 0.000318 True chr6 35,754,611 - 35,766,730 Tandem 0.000273 True
chr1 114,645,854 - 114,654,623 Inverted 0.000334 True chr20 59,567,846 - 59,590,250 Tandem 0.000287 True
chr18 11,508,829 - 11,511,479 Inverted 0.000353 True chr20 62,123,611 - 62,124,191 Tandem 0.000355 True
chr5 115,346,294 - 115,351,084 Inverted 0.000390 True chr18 77,831,328 - 77,831,783 Tandem 0.000369 N/A
chr7 31,586,823 - 31,590,394 Inverted 0.000437 True chrX 417,957 - 418,352 Tandem 0.000369 True
chr19 15,785,635 - 15,888,539 Inverted 0.000485 True (Tandem) chr20 42,325,185 - 42,325,572 Tandem 0.000399 True

chr10 127,940,156 - 127,940,689 Tandem 0.000452 True
chr3 197,117,149 - 197,117,806 Tandem 0.000463 N/A

Here we list the insertion locations of the top 50 scoring segmental duplications in CHM1
genome. All predictions are sorted by the SV score (lower is better). If the validation is
N/A, that means the incorrect prediction from PacBio data, which will be skipped in the
comparison. TARDIS only gives one false call and three interspersed duplications that
are wrongly assigned to tandem duplications.

these calls with the polymorphic MEIs in dbRIP, we found out that over 30% of

them are indeed correct calls. Moreover, our further analysis revealed that most

of the MEI events discovered by PacBio that TARDIS missed were found within

other repeats, which makes it very challenging to accurately map short reads.

For NUMT insertions, we assessed the performance of TARDIS using CHM1

and NA12878 genomes. It is known that most of the NUMT insertions oc-

cur within similar loci throughout the genomes. Dayama et al. [237] analyzed

999 individuals from 1000 HGP [18] and Human Genome Diversity Project

(HGDP) [242] to create a map of these polymorphic insertions. In total, there

are 256 NUMT insertion locations for these 999 individuals and TARDIS achieves

very high precision; 100% (3 out of 3) of CHM1 and 87.5% (7 out of 8) of NA12878

NUMT insertions predicted by TARDIS hits one of those loci.
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Figure 4.4: a) Illumina signature for an inverted duplication, b) PacBio validation.

We should state that novel sequence insertions are very difficult to detect with

short-read sequencing technology. TARDIS is able to characterize these SVs, but

because the span-size distribution of read-pairs is not uniform (mostly skewed to

the left) and insert-size of read-pairs suggesting an insertion event is small, these

read-pairs may also be classified as concordant. Therefore most of the read-pairs

suggesting an insertion event are not considered for clustering. Thus, the number

of insertion SVs that TARDIS discovers is relatively small. To overcome this

limitation, de novo assembly such as Pamir [243] will be the genuine solution.

4.3 Sensitive Mode

In order to evaluate the performance of TARDIS in Sensitive Mode, we utilized

the simulation dataset that we presented in Section 4.1. We also conducted real

data experiments by using the haploid CHM1 genome that we used in Quick

Mode experiments.
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Figure 4.5: Alu insertion predictions in CHM1 and CHM13 datasets, compared
against PacBio calls [9].

The importance of Sensitive Mode is that TARDIS searches for almost all po-

tential mapping locations (we allow a read to map up to 500 distinct locations)

of each read in the reference genome (Quick Mode utilizes a single mapping lo-

cation; best or an arbitrary mapping). Since the number of ambiguous mappings

naturally increases, we utilize a pruning step based on Phred Quality Score [244]

that involves dividing the Phred Score of a read to sum of the Phred Scores of all

reads and prune the ones <0.001. We should also note that Sensitive Mode does

not have the split read mapping capability, it only uses read pair and read depth

signatures. The SV types that this mode discovers are also limited to deletions,

novel sequence insertions, inversions, tandem duplications and mobile element

insertions.

Table 4.6: Comparison of simulation predictions for Sensitive and Quick Mode of
TARDIS.

SV Type Total SVs
Sensitive Mode Quick Mode

#True #Miss #False #True #Miss #False
Deletion 400 388 12 202 384 16 19
Inversion 200 198 2 1 199 1 1

Tandem Duplication 200 194 6 201 192 8 6

We show the number of true, false and missed predictions of TARDIS for deletions, inver-
sions and tandem duplications in Sensitive and Quick Modes.

The results given in Table 4.6 show that both modes yield similar true dis-

covery rates, nevertheless there is only a minor advantage of Sensitive Mode in
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deletions and tandem duplications. However, the number of false predictions in

deletions and tandem duplications is higher for the Sensitive Mode compared to

the Quick Mode. The reason behind this is that the signatures for interspersed

duplications, deletions and tandem duplications are the same. Moreover, Sen-

sitive Mode does not utilize interspersed duplication clustering, so TARDIS in

Sensitive Mode mispredicts some of the interspersed duplications as deletions

and tandem duplications.

Finally, we compared Quick and Sensitive Modes using real data sets of CHM1

for deletion and inversion predictions as given in Table 4.7.

As opposed to the simulations, Quick mode achieves better recall and precision

rate for deletion. On the other hand, Sensitive Mode exhibits better precision for

inversion predictions.

Table 4.7: Comparison of real data (CHM1 genome) predictions for Sensitive and
Quick Modes of TARDIS.

SV Type Total SVs
Quick Mode Sensitive Mode

Precision Recall Precision Recall
Deletion 4016 0.81 0.32 0.73 0.24
Inversion 75 0.11 0.27 0.24 0.13

We present precision and recall rates of TARDIS for deletions and inversions in Sensitive
and Quick Modes for CHM1 genome.

4.4 Linked-Reads

TARDIS is also able to use Linked-Read information by utilizing 10x Genomics

data. In this section, we evaluate the performance of TARDIS in 10x mode by

using simulation and real data sets.

For simulation, we used VarSim [245] to create 2,852,839 SNPs, 194,250 IN-

DELs, 1,755 deletions, 2,245 insertions, 459 inversions, 584 tandem duplications

and 150 direct, 110 inverted interspersed segmental duplications. Note that SV

lengths are within 50 bp and 6 Mbp. Since VarSim does not generate interspersed

duplications, we randomly changed a subset of simulated tandem duplications to
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interspersed duplications in the simulated VCF file, a generic format for storing

variant data [246], outputted by VarSim. We then generated Illumina WGS reads

at 40X depth of coverage with ART [247] and 10xG Linked-Reads at 50X coverage

with LRSim [248]. Finally, we mapped the reads to reference genome (GRCh37)

using BWA-MEM [116] for WGS and Long Ranger [89] for Linked-Read data.

The results for deletions and inversions are given in Table 4.8.

Table 4.8: Evaluation of Linked-Read performance of TARDIS.

Deletion Inversion
#True #False #Miss #True #False #Miss

TARDIS-Sensitive-10x 1539 369 236 398 7 61
TARDIS-Quick 1589 1724 186 383 88 76

TARDIS-Quick-10x 1590 1802 185 383 80 76
DELLY 1767 8204 8 458 4382 1

In order to evaluate deletion and inversion performance of TARDIS with Linked-Reads,
we compared TARDIS in Sensitive (TARDIS-Sensitive-10x) and in Quick (TARDIS-Quick-
10x) modes by utilizing 10x functionality against DELLY and TARDIS without the 10x
functionality (TARDIS-Quick). We omitted the results of TARDIS Sensitive because it
yielded almost the same results with the 10x mode.

As shown in the table, we compared the performance of TARDIS using 10x

data in both Sensitive and Quick Modes against DELLY (operates only with WGS

data) and TARDIS without utilizing 10xG data. We should note that there was

no improvement in TARDIS Sensitive with 10xG compared to TARDIS Sensitive

without 10xG, therefore we omitted those results from the table.

In general, results suggest that there is only a small improvement with 10x

in Quick Mode both for inversions and deletions, yet with increased number of

false calls. As the Sensitive mode does not have the capability of characterizing

interspersed duplications, we disabled that function for the Quick Mode in our

experiment in order to make the comparison equally likely. This is the reason

behind the high number of false calls that TARDIS presents in Quick Mode

compared to the Sensitive Mode. Those false calls are characterized correctly as

interspersed duplication when the interspersed duplication clustering is utilized.

Also it is noteworthy that the number of false calls in Sensitive Mode is very low

since TARDIS Sensitive Mode was able to classify these calls correctly.

Next, we assessed the performance of TARDIS with real data and used
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NA12878 [199], NA24385 Ashkenazi son of 10x Genomics dataset that is avail-

able under the GIAB FTP repository and CHM1 genome generated with 10xG

Linked-Reads. Additionally, in order to compare our results with true call sets,

we utilized high confidence deletion call set generated by GIAB for NA24385, MT

Sinai for NA12878 and PacBio callsets for CHM1 genome [183].

The number of true calls increased, by approximately 3%, 2% and 1% for

NA24385, NA12878 and CHM1 respectively when 10x mode is utilized. However,

our false prediction count also increased by ∼ 2% for NA24385 and ∼ 10% for

NA12878. On the other hand, we observed no increase with CHM1 dataset.

4.5 Time and Memory Consumption

Finally, we compared time and memory consumption of TARDIS, LUMPY and

DELLY (Table 4.9). We benchmarked each tool on the same dataset generated

from the CHM1 genome, which possesses 42X coverage and mapped to the ref-

erence human genome (GRCh37). Results show that TARDIS is substantially

faster than the other tools, however it requires much more memory when used

with split-read mapping (TARDIS-SC). Further inspection revealed that much of

the memory requirement was caused by interspersed duplication clustering.

We also benchmarked Sensitive Mode of TARDIS using 32 threads and ob-

served that it requires much more memory and running time compared to Quick

Mode. The reason behind this is the read mapping step performed with mrFAST

prior to the SV discovery. SV discovery step only requires 1h 50m requiring 10GB

of memory.

Note that the speed and memory requirements were calculated using the same

computing server 1.

1Intel(R) Xeon(R) CPU E7- 4830 @ 2.13GHz : 4 CPUs * 8 cores each = 32cores total 512
GB RAM
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Table 4.9: Performance comparison in terms of time and memory.

CPU time Peak memory usage(GB)
TARDIS-noSC 1h 40m 7 GB
TARDIS-SC 2h 28m 16 GB
LUMPY 8h 41m 7 GB
TARDIS-Sensitive 26h 77 GB
DELLY 32h 19m 0.3 GB

Comparison of performance for TARDIS, LUMPY and DELLY for SV
discovery in CHM1 genome (42X depth of coverage). TARDIS-SC and
TARDIS-noSC denotes TARDIS with split-read mapping enabled (default)
and not enabled (–no-soft-clip parameter is invoked) respectively.
TARDIS-Sensitive is the Sensitive Mode utilized in TARDIS that harbors
read mapping with mrFast.
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Chapter 5

Conclusion and Discussion

In this dissertation we introduce novel algorithms to structural variation discov-

ery problem using high-throughput sequencing technology. For this reason, we

developed a new tool called TARDIS. The novelty of our approach can be sum-

marized as follows; (1) We integrate multiple sequence signatures including read-

pair, read-depth and split-read to identify and cluster potential SV regions for

various types of SVs (deletions, novel sequence insertions, inversions, tandem and

interspersed segmental duplications, mobile element insertions and nuclear mito-

chondria insertions) under the assumption of maximum parsimony; (2) TARDIS

is the first method to distinguish complex SV events including tandem, direct

and inverted interspersed segmental duplications; (3) Using simulated and real

data sets, we showed that TARDIS outperforms state-of-the art methods in terms

of specificity and demonstrates comparable sensitivity for all types of SVs, and

achieves considerably high true discovery rate for segmental duplications. (4)

TARDIS is able to utilize Linked-Read data of 10x Genomics to overcome the

limitations of short-read sequencing technology.

We compared our experimental results against DELLY and LUMPY algo-

rithms. These approaches do not use read depth signature, thus their performance

within deletion regions are lower (LUMPY has the option to utilize read depth

information determined by an external tool and given it as an input). Similarly,
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duplication performance of these tools are highly affected by the lack of read

depth signature analysis and interspersed duplication characterization. Thus,

these weaknesses not only increase their FDR for tandem duplications but they

are also not able to distinguish duplications into subtypes. Additionally, TARDIS

is able utilize transposon annotations to discover MEIs and inhibits false predic-

tions within these regions. Similarly, we use repeat and gap annotations in order

not to utilize reads mapping to these regions. Therefore, our FDR is significantly

lower compared to these tools as they totally dismiss these information. As a

result, although the number of true calls predicted by TARDIS is relatively low

compared to DELLY and LUMPY, our FDR is significantly lower than these

tools in general and we have the highest F-score in general. We should also note

that increasing the number of true calls is always possible within our framework

by utilizing multiple mapping information of a read, however, our concerns are

based on increased FDR. Thus, TARDIS achieves highest precision overall and

comparable recall with these algorithms and that’s what we expect to see.

Based on the simulation results, TARDIS achieved lowest FDR overall against

LUMPY and DELLY with similar sensitivity for each type of SV. Additionally,

TARDIS is the only method to classify duplications as tandem, interspersed di-

rect and interspersed inverted with >90% true discovery rate for various depth of

coverages. With real data, TARDIS still possessed lowest FDR among the other

tools for deletion predictions in general with the highest F-score. It also achieved

highest AUC statistics for inversion in CHM1/13 genomes. For the case of du-

plications, we compared our predictions against the orthogonal PacBio callsets

since no other method is able to distinguish duplications as tandem or inter-

spersed segmental duplication in direct and inverted orientations. We observed

that in most cases TARDIS assigned the correct subtype of duplications to the

prediction. For mobile element insertions, we were able to verify most of our pre-

dictions with PacBio call set and the rest with dbRIP. We also discerned that the

MEIs discovered by PacBio and we miss are within other repeats which makes it

almost impossible to detect with short-reads. Additionally, we discovered NUMT

insertions in CHM1 and NA12878 genomes with high precision. Lastly, for novel

sequence insertions, we saw that short-read sequencing seems impractical and de
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novo assembly is required since most of the read-pairs suggesting an insertion

event is classified as concordant based on the distribution of read pairs. However,

TARDIS still detects some novel insertions accurately.

We also assessed the performance of Sensitive Mode. The difficulty here is

in handling excess amount of mappings where most of them are ambiguous. In

spite of this, TARDIS still achieves high precision although our recall is lower

compared to Quick Mode for real data experiments. Simulation results are more

promising, possessing relatively higher TDR than the Quick mode for deletions

and inversions. On the other hand, deletions and inversions suffer from high false

predictions, which is caused by the lack of segmental duplication clustering in

Sensitive Mode.

We have an option to utilize Linked-Reads in both Sensitive and Quick

Modes. For simulations on Linked-Reads, Sensitive Mode showed no improve-

ment whereas Quick Mode has minor advantage. On the other hand, Quick

Mode showed better improvement in terms of true discovery rate when we ran

it with 10xG for real data experiments. However it still needs enhancements to

decrease the false prediction count and increase recall.

Finally, we performed a comparison in terms of run time and memory con-

sumption. TARDIS Quick Mode was substantially faster than the other tools,

however it required much more memory. With further analysis, we saw that this

consumption is due to split read mapping and interspersed segmental duplication

clustering that need further improvements.

5.1 Future Work

We developed TARDIS as a structural variation discovery tool that is able to

characterize most of the existing SV types including the complex ones. However

there are still potential improvement opportunities.
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First, due to the nature of short-read sequencing technology, detection of spe-

cific SV types is very challenging including novel sequence insertions and large

inversions. Integrating de novo assembly to TARDIS will increase our discovery

rate for novel sequence insertions. Additionally, local de novo assembly signature

will help it achieve better accuracy. For the case of inversions, TARDIS achieves

better accuracy among the other algorithms however, false prediction rates are

still too high compared to other types of SVs. Presence of large inversions inside

the genomes is one of the reasons for this. In order to solve this problem, our

linked-read approach can be enhanced to characterize such events and this will

likely increase our accuracy for inversions.

Second of all, although simulation experiments demonstrated potential efficacy

of TARDIS in segmental duplication predictions, those that are generated from

real genomes need to be experimentally verified to fully understand the power

and shortcomings of our algorithms. We can then apply TARDIS to thousands of

genomes that were already sequenced as part of various projects, such as the 1000

Genomes Project to advance our understanding of the SV spectrum in human

genomes.

Third, multiple mapping strategies of TARDIS that include Sensitive Mode

or by utilization of XA tag in BWA need improvements. A way to solve the

ambiguous mappings will boost our recall and precision. In addition to this, inter-

chromosome mobile element insertion, nuclear mitochondria insertion and most

importantly clustering interspersed segmental duplications need to be integrated

to our Sensitive Mode approach.

Fourth, algorithms to detect somatic structural variation discovery can be

developed and integrated to TARDIS. Given a structural variation, we want to

know if that SV is a somatic variant (i.e., it appears in tumor tissue and not in

normal tissue) using variant allele frequency (VAF). We can then apply this to

cancer genomes.

Finally, third generation sequencing technologies including PacBio and Oxford

Nanopore that have larger read lengths and higher accuracy can to be utilized
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in our framework. Algorithms that use a combination of short-read technology

that have high coverage and long-reads data can be developed. This type of

formulation will allow us to predict broader range of SV types with much higher

accuracy.
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[123] K.-J. Räihä and E. Ukkonen, “The shortest common supersequence prob-

lem over binary alphabet is NP-complete,” Theoretical Computer Science,

vol. 16, no. 2, pp. 187–198, 1981.

[124] G. G. Sutton, O. White, M. D. Adams, and A. R. Kerlavage, “TIGR as-

sembler: A new tool for assembling large shotgun sequencing projects,”

Genome Science and Technology, vol. 1, no. 1, pp. 9–19, 1995.

[125] M. de la Bastide and W. R. McCombie, “Assembling genomic dna sequences

with phrap,” Current Protocols in Bioinformatics, pp. 11–4, 2007.

[126] S. Batzoglou, D. B. Jaffe, K. Stanley, J. Butler, S. Gnerre, E. Mauceli,

B. Berger, J. P. Mesirov, and E. S. Lander, “ARACHNE: a whole-genome

shotgun assembler,” Genome Res, vol. 12, pp. 177–189, Jan 2002.

[127] J. C. Mullikin and Z. Ning, “The phusion assembler,” Genome Res, vol. 13,

pp. 81–90, Jan 2003.

[128] X. Huang, J. Wang, S. Aluru, S.-P. Yang, and L. Hillier, “PCAP: a whole-

genome assembly program,” Genome Res, vol. 13, pp. 2164–2170, Sep 2003.

[129] E. W. Myers, “The fragment assembly string graph,” Bioinformatics,

vol. 21 Suppl 2, pp. ii79–ii85, Sep 2005.

[130] M. J. Chaisson and P. A. Pevzner, “Short read fragment assembly of bac-

terial genomes,” Genome Res, vol. 18, pp. 324–330, Feb 2008.

[131] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read

assembly using de Bruijn graphs,” Genome Res, vol. 18, pp. 821–829, May

2008.

[132] M. J. Chaisson, D. Brinza, and P. A. Pevzner, “De novo fragment assembly

with short mate-paired reads: Does the read length matter?,” Genome Res,

vol. 19, pp. 336–346, Feb 2009.

[133] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. M. Jones,

and I. Birol, “ABySS: a parallel assembler for short read sequence data,”

Genome Res, vol. 19, pp. 1117–1123, Jun 2009.

103



[134] S. Boisvert, F. Laviolette, and J. Corbeil, “Ray: simultaneous assembly of

reads from a mix of high-throughput sequencing technologies,” J Comput

Biol, vol. 17, pp. 1519–1533, Nov 2010.

[135] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan,

K. Kristiansen, S. Li, H. Yang, J. Wang, and J. Wang, “De novo assembly

of human genomes with massively parallel short read sequencing,” Genome

Res, vol. 20, pp. 265–272, Feb 2010.

[136] S. Gnerre, I. Maccallum, D. Przybylski, F. J. Ribeiro, J. N. Burton, B. J.

Walker, T. Sharpe, G. Hall, T. P. Shea, S. Sykes, A. M. Berlin, D. Aird,

M. Costello, R. Daza, L. Williams, R. Nicol, A. Gnirke, C. Nusbaum,

E. S. Lander, and D. B. Jaffe, “High-quality draft assemblies of mammalian

genomes from massively parallel sequence data,” Proc Natl Acad Sci U S

A, vol. 108, pp. 1513–1518, Jan 2011.

[137] P. Medvedev, S. Pham, M. Chaisson, G. Tesler, and P. Pevzner, “Paired de

Bruijn graphs: a novel approach for incorporating mate pair information

into genome assemblers,” J Comput Biol, vol. 18, pp. 1625–1634, Nov 2011.

[138] J. A. Chapman, I. Ho, S. Sunkara, S. Luo, G. P. Schroth, and D. S. Rokhsar,

“Meraculous: de novo genome assembly with short paired-end reads,” PloS

one, vol. 6, no. 8, p. e23501, 2011.

[139] Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean, “De novo

assembly and genotyping of variants using colored de Bruijn graphs,” Nat

Genet, vol. 44, pp. 226–232, Feb 2012.

[140] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S.

Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V.

Pyshkin, A. V. Sirotkin, N. Vyahhi, G. Tesler, M. A. Alekseyev, and P. A.

Pevzner, “SPAdes: a new genome assembly algorithm and its applications

to single-cell sequencing,” J Comput Biol, vol. 19, pp. 455–477, May 2012.
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A. Nicolas, O. Delattre, and E. Barillot, “Svdetect: a tool to identify

genomic structural variations from paired-end and mate-pair sequencing

data,” Bioinformatics, vol. 26, no. 15, pp. 1895–1896, 2010.

[159] S. Sindi, E. Helman, A. Bashir, and B. J. Raphael, “A geometric approach

for classification and comparison of structural variants,” Bioinformatics,

vol. 25, pp. i222–i230, June 2009.

[160] A. Abyzov, A. E. Urban, M. Snyder, and M. Gerstein, “Cnvnator: an

approach to discover, genotype, and characterize typical and atypical cnvs

from family and population genome sequencing,” Genome research, vol. 21,

no. 6, pp. 974–984, 2011.

[161] S. Yoon, Z. Xuan, V. Makarov, K. Ye, and J. Sebat, “Sensitive and accurate

detection of copy number variants using read depth of coverage,” Genome

Res, vol. 19, pp. 1586–1592, Sep 2009.

[162] K. Ye, M. H. Schulz, Q. Long, R. Apweiler, and Z. Ning, “Pindel: a pattern

growth approach to detect break points of large deletions and medium sized

insertions from paired-end short reads,” Bioinformatics, vol. 25, pp. 2865–

2871, Nov 2009.

[163] A. Abyzov and M. Gerstein, “Age: defining breakpoints of genomic struc-

tural variants at single-nucleotide resolution, through optimal alignments

with gap excision,” Bioinformatics, vol. 27, no. 5, pp. 595–603, 2011.

[164] I. Hajirasouliha, F. Hormozdiari, C. Alkan, J. M. Kidd, I. Birol, E. E. Eich-

ler, and S. C. Sahinalp, “Detection and characterization of novel sequence

insertions using paired-end next-generation sequencing,” Bioinformatics,

vol. 26, pp. 1277–1283, May 2010.

[165] P. Medvedev, M. Fiume, M. Dzamba, T. Smith, and M. Brudno, “Detect-

ing copy number variation with mated short reads,” Genome Res, vol. 20,

pp. 1613–1622, Nov 2010.

107



[166] J. Qi and F. Zhao, “ingap-sv: a novel scheme to identify and visualize

structural variation from paired end mapping data,” Nucleic acids research,

vol. 39, no. suppl 2, pp. W567–W575, 2011.

[167] T. Rausch, T. Zichner, A. Schlattl, A. M. Stütz, V. Benes, and J. O. Korbel,
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Appendix A

Data and Code Availability

TARDIS is available under BSD 3-clause license at https://github.com/

BilkentCompGen/tardis, and the CNVSim simulator is available at https:

//github.com/LeMinhThong/CNVSim.

Data sets for short-read sequencing: NA12878 WGS data set can be down-

loaded from the Illumina Platinum Genomes Project at https://www.illumina.

com/platinumgenomes.html. SRA IDs for CHM1 and CHM13 are SRP044331

and SRP080317, respectively. GenBank assembly accession numbers for CHM1

and CHM13 assemblies are GCA 000306695.2 and GCA 000983455.2.

Data sets for 10x Genomics Platform is available via the Genome in a Bot-

tle Project FTP site at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

AshkenazimTrio/HG002_NA24385_son/10XGenomics/ for Ashkenazim trio son

(HG002), at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/

10Xgenomics_ChromiumGenome_LongRanger2.1_09302016/NA12878_hg19/ for

NA12878 and the CHM1 genome generated with 10xG Linked-Reads is avail-

able at https://support.10xgenomics.com/de-novo-assembly/datasets/2.
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