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ABSTRACT1 

The aim of this paper is to investigate feature extraction and 

fusion of information across a number of sensors in different 

spatial locations to classify temporal events. Although the 

common feature-level fusion allows capturing spatial 

dependencies across sensors, the significant increase of feature 

vector dimensionality does not allow learning the classification 

models using a small number of samples usually available in 

practice. In decision-level fusion on the other hand, sensor-

specific classification models are trained and subsequently 

integrated to reach a combined decision. Recent work has shown 

that decision-level fusion with a global (common for all sensors) 

classification model, is more appropriate for generalized events 

that show a (weak or strong) manifestation across all sensors. 

Although we can hypothesize that the choice of scheme depends 

on the event type (generalized vs focal/local), the prior work does 

not provide enough evidence to guide on the choice of fusion 

scheme. Thus in this work we aim to compare the three data 

fusion schemes for classification of generalized and non-

generalized events using two case scenarios: (i) classification of 

paroxysmal events based on EEG patterns and (ii) classification of 

falls and activities of daily living (ADLs) from multiple sensors. 

The results support our hypothesis that feature level fusion is 

more beneficial for the characterization of heterogeneous data 

(based on an adequate number of samples), while sensor-

independent classifiers should be selected in the case of 

generalized manifestation patterns.  
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1 INTRODUCTION 

Recent advances in data collection and data storage technologies 

have made it possible to collect large amounts of multi-

dimensional time series data, which simultaneously evolve in time 

and are captured by different sensor units. A typical example of 

multi-dimensional time series is electroencephalography (EEG) 

which has been widely used for analyzing the cognitive activity of 

the brain and diagnosing potential mental and neurological health 

problems by classification of captured events [1]. Electrodes, 

which act as sensors detecting the electrical activity of the brain, 

are attached to the surface of the cerebral cortex and provide both 

spatial and temporal information. Multi-dimensional time series 

can also result from human motion monitoring applications where 

multiple sensor units including devices, such as accelerometers, 

gyroscopes and magnetometers, are placed to different body parts 

of the subject, such as the head, chest, wrist, etc., to acquire data 

useful for automated human motion identification or fall detection 

[2].  

Events classification from such multi-dimensional data is an 

important machine learning problem with a wide variety of 

applications, such as seizure classification from EEG or fall 

detection from motion sensor data. There are two main 

approaches for fusing data from different sensor units/dimensions: 

feature-level fusion and decision-level fusion [3]. In feature-level 

fusion, which is commonly used to exploit the dependencies 
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across dimensions [4][5], data are fused directly after feature 

extraction. Feature vectors from each sensor unit/dimension are 

fused and events are classified by one global classifier. On the 

other hand, in decision-level fusion, events are classified for each 

sensor unit/dimension by its local (sensor dependent) classifier 

and the results from these local classifiers are later fused in the 

decision layer [3].  

Analysis of multi-sensor data is very complex and difficult to 

summarize with a small number of variables extracted from multi-

dimensional signals. Thus, analysis is usually accompanied by 

extraction of high-dimensional feature vectors. The 

dimensionality is further increased in feature-level fusion 

approaches aiming to exploit the information across sensor 

units/dimensions, where already high-dimensional feature vectors 

from several sensor units are combined into a single large feature 

vector. The problem of high dimensionality coupled with limited 

number of samples usually available in practice, makes the 

analysis of multi-dimensional signals a challenging task. In order 

to deal with this problem an alternative decision-level fusion 

scheme was proposed in [6], which combines information from all 

sensor units to train a single classification model and thus is 

sensor-independent. This decision-level fusion scheme keeps the 

dimensionality quite low, while the incorporation of a global 

training model allows the use of more training samples (by 

combining all sensor units).  

Comparison of the three approaches in [6] showed superiority of 

the decision-level scheme with a global model for discrimination 

of paroxysmal episodes (generalized epileptic seizures [7], 

psychogenic non-epileptic seizures [8] and vasovagal syncopes 

[9]) from EEG recordings. However, such an observation cannot 

be generalized for any problem, since performance depends on the 

pattern of manifestation of the events across sensors, as well as 

the power of the data in respect to inference. Thus in this study, 

we aim to investigate the thee fusion approaches by relaxing the 

uniformity assumption of the temporal signals across channels. 

This is the case for example when the signals come from different 

modalities (e.g. accelerometer and ECG) or they come from the 

same modality but measure different quantities due to sensor 

placement in different spatial locations (e.g. accelerometer placed 

in wrist or head), or the event to be detected is local in a very 

small scale (e.g. multiple electrodes placed on the head to identify 

focal epilepsy). Αs a counter-example to previous work using 

generalized manifestation patterns of the same sensor type (i.e. 

EEG) [6], here we choose (as application data) heterogeneous 

multi-sensor recordings from different sensors, such as tri-axial 

accelerometer, gyroscope and magnetometer devices included in 

sensor units fitted to several body parts, and use them for 

classification of falls and activities of daily living.  

The rest of this paper is organized as follows. In section 2, the 

different fusion schemes for the combination of information 

across dimensions (sensor units) are reviewed and the 

experimental setup is described. In addition, details are provided 

for the data pre-processing, feature extraction and classification 

steps for each of the two application problems. In section 3, the 

evaluation protocol is presented and the obtained results are 

discussed. Finally, we conclude the paper with a short discussion 

on current limitations and future work. 

2 EXPERIMENTAL AND COMPUTATIONAL 
DETAILS 

The presented methodology performs (i) short time analysis in the 

multi-dimensional time series data (each dimension corresponds 

to data acquired by one sensor unit), (ii) fusion based on different 

schemes, and (iii) binary classification using machine learning. 

The multi-dimensional time series data are initially pre-processed 

and frame blocked to extract frames of constant length w. Thus, 

each data sample is represented by a � × � matrix, where N is the 

number of sensor units.  

After preprocessing, temporal and spectral analysis is performed 

for each frame resulting in a feature vector of fixed dimensionality 

for each of the N sensor units. During the training phase, a set of 

training data, manually annotated by a domain expert, is used to 

build a classification model. During the test phase, the newly 

acquired multi-dimensional data are preprocessed and 

parameterized with the same setup as in the training phase. Each 

produced feature vector is introduced into the trained 

classification model and a class label is assigned to each frame, 

indicating the type of event. The classification algorithms by the 

WEKA machine learning toolkit software [10] are used for 

training and testing. 

2.1 Data fusion schemes 

2.1.1 Feature-level fusion. In the feature-level fusion, data 

recorded from each one of the available sensor units from each 

frame are processed by a dedicated feature extraction algorithm. 

The estimated feature vectors from each sensor are concatenated 

into a single feature vector. Therefore, the training set is a data 

matrix � × (� ⋅ �) , where M is the number of frames in the 

training set, N is the number of sensor units, and f the number of 

features extracted from each sensor unit. The feature-level scheme 

is illustrated in Fig. 1. Such a scheme leads to a feature vector of 

high dimensionality, imposing the need either for feature selection 

before classification [11] or data transformation in a lower 

dimensional space [12]. 

 

 

Figure 1: Feature-level fusion scheme. 

2.1.2 Decision-level fusion with sensor-dependent (local) 

training models. In the decision-level fusion with local (sensor 

dependent) training models, a separate classification model is 

built for each sensor unit. Each one of the available sensor units is 
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Figure 2: Decision-level fusion scheme with sensor-dependent 
training models. 

processed by the feature extraction algorithm and the estimated 

feature vectors are used to form N training sets, one for each 

sensor unit. The data matrix of each training set is � × � here. 

For each epoch, N decisions are made by each one of the N local 

classifiers. A final decision is reached by combining the N output 

class labels using a fusion rule, such as majority voting. The 

decision-level with local training models fusion scheme is 

illustrated in Fig. 2. In decision-level fusion the dimensionality of 

the feature vector is smaller than in feature-level fusion. 

 

2.1.3 Decision-level fusion with a sensor-independent (global) 

training model. In the decision-level fusion scheme with global 

(sensor-independent) training model, a common classification 

model is used for the feature vectors extracted from the different 

sensor units [6]. The data matrix of the training set is now 

(� ⋅ �) × � and is constructed by merging all training sets from 

each sensor. The decision-level fusion approach is based on the 

assumption that the variation across dimensions is small - thus a 

global (common for all sensors) training model can be used. In 

this scheme, the number of training samples is larger since each 

data frame appears in the training set N times, one time for each 

one of the available sensor units. During the test phase, for each 

frame N decisions are taken by introducing the signature from 

each sensor unit to the global classification model. A final 

decision is reached at a score level by combining the N output 

class labels using a fusion rule (e.g., majority voting) as before. 

The scheme is illustrated in Fig. 3. Although this scheme is less 

specific, it handles better the high dimensionality, by keeping the 

size of the feature vector N-times lower than in feature-level 

fusion. It also deals better with the problem of small number of 

training instances by repeating each frame from the different 

sensor units in the data matrix and treating all of them as 

independent training samples. 

In the following, the two application studies are presented 

regarding seizure detection using EEG and fall detection based on 

multisensor recordings. 

2.3 EEG dataset and analysis framework 

The EEG data used in this study include epileptic and non-

epileptic events extracted from multi-parametric recordings of 11 

patients as part of the ARMOR project [13][14]. The recordings 

were acquired in the Department of Clinical Neurophysiology and 

 

Figure 3: Decision-level fusion scheme with a sensor-
independent training model. 

Epilepsies in St. Thomas’ Hospital in London. The epileptic group 

consisted of patients with known diagnosis of idiopathic 

generalized epilepsy, manifested clinically with generalized spike 

wave discharges (GSW) on the EEG. The non-epileptic group 

included patients that had sustained a vasovagal syncope (VVS) 

(two participants) or a psychogenic non-epileptic attack (PNES) 

(five participants). The selected EEG channels were Fp2, F8, F4, 

T4, C4, A2, P4, T6, O2, Fp1, F7, F3, A1, C3, T3, P3, T5, O1, Fz, 

Cz, Pz. Neurological experts of the King College London 

manually annotated the recordings. Only epochs (frames) during 

the seizure duration were considered for training and for testing. 

The number of epochs that were extracted for all subjects during 

the recorded episodes is � = 205  (123 GSW, 19 PNES, 63 

VVS).  

The EEG signal from each channel was pre-processed and 

parameterized as in [4][6]. In particular, pre-processing consisted 

of notch filtering, baseline correction, re-sampling (in order to 

obtain a common resolution level for all data) and frame blocking 

of the incoming EEG streams to frames of constant length with 

constant time-shift and without time-overlap between successive 

frames. After pre-processing, time and frequency-domain features 

were extracted from each frame for each one of the electrodes. 

The extracted feature vector had a dimensionality equal to 55 for 

each of the N=21 EEG channels. In our previous work [4], the 

ability of the above features to discriminate between epileptic and 

non-epileptic frames was evaluated by the examination of several 

classification algorithms implemented by the WEKA machine 

learning toolkit [11]. Since the overall highest accuracy was 

achieved by BayesNet classifier, we evaluated the previously 

described fusion schemes with respect to BayesNet classification 

[15]. The epileptic group is considered as the positive class and 

the non-epileptic group (PNES or VVS) as the negative class. 

2.4  Falls dataset and analysis framework 

With Erciyes University Ethics Committee approval, seven male 

and seven female healthy volunteers participated in the study. Six 

wireless sensor units were tightly fitted with special straps to the 

subjects’ head, chest, waist, right wrist, right thigh, and right 

ankle. Each unit comprises three tri-axial devices (accelerometer, 

gyroscope, and magnetometer/compass) with respective ranges of 

±120 m/s2, ±1200◦/s, and ±1.5 Gauss. Raw motion data were 

recorded with a sampling frequency of 25 Hz. Acceleration, rate 
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of turn, and the strength of the Earth’s magnetic field along three 

perpendicular axes (�, �, �) were recorded for each unit. A set of 

trials consists of 20 fall actions and 16 ADLs adopted from the 

work in [16] and lasted about 15 s on the average. The 14 

volunteers repeated each set five times. Thus, a considerably 

diverse dataset comprising 1400 falls 

( 20 ����� × 14 ���������� × 5 ������ ) and 1120 ADLs 

(16 ����� × 14 ���������� × 5 ������) was acquired, resulting 

in 2520 trials.  

The time series data from each sensor unit were pre-processed and 

parameterized as in [2]. Initially, the total acceleration of the waist 

accelerometer was calculated as 

�� = ���
� + ��

� + ��
� (1) 

where ��, ��, ��  are the accelerations along the �, � and �  axes, 

respectively. The time index corresponding to the peak �� value 

of the waist accelerometer in each record was identified. Then, 

two-second intervals (50 samples) before and after this point, 

corresponding to a time frame of 101 samples were extracted. The 

rest of the recording was not used. Thus each row of data is 

represented by a w-dimensional vector, where � =  101. Data 

from the remaining axes of each sensor unit were also processed 

in the same way, considering the time index obtained from the 

waist sensor as reference, therefore resulting in six 9 ⋅ 101 

measurements.  

Extracted features consist of the minimum, maximum, and mean 

values, as well as skewness, kurtosis, the first 11 values of the 

autocorrelation sequence, and the first five peaks of the discrete 

Fourier transform of the signal with the corresponding 

frequencies, resulting in 26 features for each one of the nine axes 

of the sensor unit. Thus, the signal of each sensor unit is 

represented by a single feature vector of dimensionality � = 9 ⋅

26 =  234. The discriminative power of the above features in 

respect to fall detection was evaluated in [2]. Since Support 

Vector Machines achieved a very high accuracy there, we 

examine the SMO classification algorithm [17][18] with respect to 

each fusion scheme. We consider the falls as the positive class and 

the ADLs as the negative class. 

3 RESULTS AND DISCUSSION 

Evaluation is performed in a leave-one-subject-out cross-

validation setting, that is each time one subject was left-out for 

testing, while the rest of the subjects were used for training. 

Table 1 shows the classification performance in terms of average 

accuracy, sensitivity (fraction of positive events correctly 

identified), and specificity (fraction of negative events correctly 

identified). As can be seen, the overall highest accuracy for 

classification between epileptic and non-epileptic EEG events is 

90.24% for decision-level fusion with a global training model. 

The decision-level with sensor-dependent models and feature-

level schemes follow with 88.78% and 86.34% accuracy, 

respectively. It seems that the high dimensionality of the training 

samples at the feature-level fusion 

( 55 �������� ⋅  21 �ℎ������ =  1155 ) is not appropriate for  

Table 1: Classification Performance in respect to accuracy 

(acc), sensitivity (sens) and specificity (spec) 

 
EEG Dataset 

Acc Sens Spec 

Feature level 86.34 91.87 78.05 

Decision level, sensor-dependent 88.78 95.93 78.05 

Decision level, global 90.24 94.31 84.15 

 
Falls Dataset 

Acc Sens Spec 

Feature level 99.76 99.57 100 

Decision level, sensor-dependent 99.72 99.50 100 

Decision level, global 98.41 99.00 99.11 

 

this rather small dataset (� = 205), while decision-level fusion 

with a global model (smaller dimensionality, more training 

samples), increases generalization ability.  

On the other hand, for the falls dataset, all schemes present 

comparable results with feature level fusion showing the best 

performance for all criteria. Such a result was expected since the 

sensors in the falls dataset capture very diverse information (in 

contrast to the EEG dataset where all sensors are EEG electrodes), 

thus the data cannot be sufficiently represented by a single global 

model.  

It is also worth noting that in the falls dataset, the number of 

training samples is � = 2340  ( = 13 �������� × 5 ������ ×

36 ��������� ), namely 10 times the number of features 

(� = 234). In order to provide some better insights, we examined 

the classification performance of each fusion scheme by changing 

the ratio of the number of training samples over the number of 

features 

� = �/� (2) 

This ratio was changed by pruning training samples. We used the 

largest dataset (falls dataset) for this purpose and illustrate the 

obtained results in Fig. 4. As can be seen, both decision-level 

fusion schemes perform better when training samples are less than 

four times the feature vector dimensionality. Such results support 

our hypothesis for the superiority of decision-level fusion scheme 

with global models in small datasets with limited number of 

training samples. 

4 CONCLUSIONS 

In this paper, we investigated the problem of event classification 

from multi-dimensional time series data using temporal and 

spectral analysis for feature extraction and three fusion schemes 

for the combination of information across sensors. The 

methodologies were evaluated in the case of paroxysmal events’ 

classification from EEG recordings and fall detection based on tri-

axial accelerometer, gyroscope, and magnetometer data. Although 

the presented work does not constitute a general strategy, the 

results shed some light on the selection of fusion strategies 

supporting  our hypothesis  that  the  decision-level  fusion  with 
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Figure 4: Classification accuracy as a function of � in Eq. (2). 

global training is more beneficial for generalized events with 

small number of samples, while feature level fusion is more 

suitable when the number of samples is larger or the data are 

heterogeneous. Future work is required to investigate other 

confounding factors, such as intrinsic data variability and feature 

redundancy, as well as differences in the extracted features and 

implemented classifiers. Moreover, the investigation of cross-

correlation across sensors as an indicator of the type of patterns 

(generalized versus local) will provide some initial diagnostics 

and further guidance in the selection of fusion scheme. 
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