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ABSTRACT

INTERPOLATION AND EXTRAPOLATION

OF SCATTERING RESULTS OF A

CANONICAL GEOMETRY

Mehmet R. Geden

M.S. in Electrical and Electronics Engineering

Supervisor: Dr. Levent Gürel

May 2002

It is well-known that calculation of scattered fields at high frequencies is consum-

ing too much CPU time and memory allocation. The exponential model is used

to predict the high frequency values in the radar cross section (RCS) calculation.

The Prony’s and Matrix-Pencil methods are presented to extract the parameters

of exponential model. In particular, the Matrix-Pencil method is modified to in-

crease the efficiency. Both methods are applied to a reference scatterer (a perfect

electrically conducting sphere). Also, a new modelling scheme is proposed using

the Legendre-basis functions. This approach is tested in the calculation of the

bistatic RCS values.

Keywords: Matrix-Pencil method, RCS, extrapolation
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ÖZET

KURALSAL BİR GEOMETRİNİN SAÇINIM SONUÇLARININ

İNTERPOLASYON VE EKSTRAPOLASYONU

Mehmet R. Geden

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Dr.Levent Gürel

Mayıs 2002

Saçınım alanların hesaplamalarının çok fazla bilgisayar süresini ve hafızasını

meşgul ettiği bilinen bir gerçektir. Bu tezde, üstel fonksiyonlar kullanılarak

yüksek frekanslarda radar kesit alanı (RKA) modellenmiştir. Prony ve Matris-

Pencil yöntemleri kullanılarak üstel modelin parametreleri hesaplanmıştır. Özel

olarakta, Matris-Pencil yeterliliğini arttırmak için in değişiklikler yapılmıştır. Her

iki yöntemde saçınım çözümlerinde referans kabul edilebilecek bir cisme (tam

iletken bir küreye) tatbik edilmiştir. Üstel yöntemlerden farklı olarak Legendre

fonksiyonların baz olarak kullanıldığı yeni bir yötemde önerilmiştir. Bu yöntem

bistatik RKA hesaplamalarında test edilmiştir.

Anahtar kelimeler: Matris-Pencil, RKA, açısal ekstrapolasyon.
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Chapter 1

Introduction

At high frequencies, calculation of radar cross section (RCS) values costs too

much CPU time and memory allocation. As the electrical sizes of the problems

get larger, numerical solution of the expressions become impossible.

The problem of uniform plane wave scattering by a conducting sphere is of-

ten used as a reference solution. In Chapter 2, the solution of this canonical

geometry is presented. The analytical expressions of induced currents, far-zone

scattered field components and RCS are also available in this chapter. Since the

RCS signal is highly frequency dependent, one needs to do the calculation at finer

increments of frequency to obtain an accurate representation of the frequency re-

sponse. This can be computationally intensive and for electrically large objects

it can be prohibitive despite the increased power of the present generation of

computers.

In this thesis, a frequency extrapolation and interpolation scheme is investi-

gated to predict scattered components using a model. To perform estimations

of RCS signal values at high frequencies, at lower frequencies the RCS values

are sampled with a sampling period Ts at N point. The sampled values can be

denoted x[k] where k = 0, 1, . . . , N − 1.
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Figure 1.1: Modeling an RCS signal x[k] as the response of a linear shift invariant
filter to an input v[k]. The goal is to find the H(z) coefficients that make x̂[k]
as close as possible to x[k].

Different type of models can be used to predict the signal values from its

sample values, such as a rational function as shown in Fig. 1.1,

H(z) =

q∑

k=0

bq(k)z−k

p∑

k=0

ap(k)z−k

,

where bq(k) and ap(k) are the coefficients of denominator and numerator, or a

linear combination of exponentials

x̂[k] =
M∑

i=1

Rie
[(αi+jωi)kTs], (1.1)

where

x̂[k] : the estimate of x[k]

si : coefficient of the exponent

Ri : Residue or complex coefficient

Ts : Sampling period ,

(1.2)

or a sum of sinusoidal functions, etc. As a preliminary work of this thesis, the

algorithms available in current literature to solve parameters of these models are

used with sample values of RCS signal. For example, model-based parameter

estimation (MBPE) [9] is used to determine the coefficients of rational function.

From the signal processing area, the autocorrelation, the covariance, iterative

pre-filtering and Burg’s algorithms [12] are applied to RCS signal values. The

MBPE is good at interpolation but the performance of the prediction at the

extrapolation region does not satisfy the percentage error criteria of %1. These

2



methods are all used in the solution of the rational function coefficients. Also,

there is a further comparison available at the end of Chapter 5.

According to the experience about the results of previous methods which are

designed to solve the parameters of rational function, it is decided to use an

exponential model rather than a rational function model. Once the form of the

model has been selected, the next step is to find the model parameters that pro-

vide the best approximation to the given RCS signal. Briefly, the problem is to

extract parameters of the exponential model from a set of sampled data. The

exponential model parameters are extracted by using the Prony’s [5] and the

matrix-pencil [6] (often named as GPOF or generalized-pencil-of-function [3])

methods. Once the model parameters are determined, the frequency behavior

of the RCS is extrapolated. The matrix-pencil algorithm is a general-purpose

algorithm to represent arbitrary signals. However, RCS values have some spe-

cific features. By considering these features, the matrix-pencil method can be

modified to estimate RCS at higher frequencies.

The other variables of the scattering problem, such as the induced currents

on the surface of the sphere, are also intended to represent by a more conve-

nient model rather than linear combination of exponential functions. The model

is set up by using Legendre-Basis functions. Once the parameters of model is

extracted from the sampled surface currents, current distribution can be deter-

mined all over the surface of the sphere. Furthermore, the calculation of RCS at

an arbitrary angle (bistatic RCS) is possible by the integration of surface cur-

rents.

In Chapter 3, the Prony’s method is presented to extract the parameters of

exponential model. At the end of Chapter 3, the Prony’s method is applied to the

RCS signal. The matrix-pencil method is described in Chapter 4. Relationship

between the Prony’s and the matrix-pencil method and the applications to the

RCS signal are also demonstrated in this chapter. Chapter 5, a new algorithm

is proposed based on the matrix-pencil theory to estimate RCS signal values.

3



This algorithm can predict successfully the higher frequency RCS values with

very modest sampled data and few exponentials. Also at the end of this chapter,

the extrapolation of the induced currents in the frequency dimension is demon-

strated.

In addition to the frequency dimension, calculation of the current on the

surface of the sphere is also consuming too much CPU time and memory allo-

cation. To reduce these bottlenecks, we have investigated a method to estimate

the induced current values on the surface of the sphere. The basis functions of

this method are consists of Legendre polynomials. In Chapter 6, we have pro-

posed an efficient model to represent the induced currents on the surface of the

PEC sphere. The coefficients of Legendre-basis functions are solved from the

least squares problem. This model enables angular extrapolation of the induced

currents all over the surface of the sphere from a few densely sampled data.

Furthermore, calculation of bistatic RCS values accurately at an arbitrary look

angle by integrating the set of induced current data, which are also estimated

with few densely sampled induced currents, is demonstrated.

4



Chapter 2

Scattering by a Conducting

Sphere

In scattering problems, a plane wave scattering by conducting sphere is often used

as a reference scatterer to measure the scattering problem (such as the RCS) of

the targets [1]. That’s why the interpolation and extrapolation algorithms are

applied to the RCS of a conducting sphere.

2.1 Scattered Electric Field Solutions

Let us assume that the electric field of a uniform plane wave is polarized in the x

direction and it is travelling along the z-axis as shown in Figure 2.1. The electric

field of the incident wave can be expressed as;

Ei = âxE
i
x = âxEoe

−jβz = âxEoe
−jβr cos θ (2.1)

where β is the propagation constant;

β =
2π

λ
.

5



Figure 2.1: Uniform plane wave incident on a conducting sphere

Rectangular coordinate terms in Equation (2.1) can be transformed to spherical

coordinates, as follows;

Ei = ârE
i
r + âθE

i
θ + âφE

i
φ (2.2)

where

Ei
r = Ei

x sin θ cos φ = Eo sin θ cos φe−jβr cos θ = Eo
cos φ

jβr

∂

∂θ
e−jβr cos θ (2.3a)

Ei
θ = Ei

x cos θ cos φ = Eo cos θ cos φe−jβr cos θ (2.3b)

Ei
φ = −Ei

x sin φ = −Eo sin φe−jβr cos θ (2.3c)

e−jβz = e−jβr cos θ =
∞∑

n=0

anjn(βr)Pn(cos θ)

an = j−n(2n + 1)
(2.4)

6



We can rewrite the (2.3a) through (2.3c) using expansion in Eq. (2.4) of ex-

ponential function e−jβz with spherical Bessel and Legendre functions. We get

Ei
r = Eo

cos φ

jβr

∞∑

n=0

j−n(2n + 1)jn(βr)
∂

∂θ
[Pn(cos θ)] (2.5a)

Ei
θ = Eo cos φ cos θ

∞∑

n=0

j−n(2n + 1)jn(βr)Pn(cos θ) (2.5b)

Ei
φ = −Eo sin φ

∞∑

n=0

j−n(2n + 1)jn(βr)Pn(cos θ) (2.5c)

Since spherical Bessel functions are replaced with special kind of spherical

functions, the relation is

jn =
1

βr
Ĵn(βr) (2.6)

and

∂Pn

∂θ
= P 1

n(cos θ)

P 1
0 = 0

(2.7)

we can write equation set 2.5 as

Ei
r = −jEo

cos φ

(βr)2

∞∑

n=1

j−n(2n + 1)Ĵn(βr)
[
P 1

n(cos θ)
]

(2.8a)

Ei
θ = Eo

cos φ cos θ

βr

∞∑

n=0

j−n(2n + 1)Ĵn(βr)
[
P 0

n(cos θ)
]

(2.8b)

Ei
φ = −Eo

sin φ

βr

∞∑

n=0

j−n(2n + 1)Ĵn(βr)
[
P 0

n(cos θ)
]

(2.8c)

The incident and scattered fields by the sphere can be expressed as a super-

position of TEr and TMr where

E = −1

ε
∇× F +

1

jωµε
∇×∇× A (2.9a)

H =
1

jωµε
∇×∇× F +

1

µ
∇× A. (2.9b)
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The TEr fields are constructed by letting the vector potentials A and F equal

to A=0 and F = ârFr(r, θ, φ) in Eq. (2.9). The TMr fields are constructed

when A = ârAr(r, θ, φ) and F=0. For example, the incident radial electric field

component Ei
r can be obtained by expressing it in terms of TMr modes or Ai

r.

Thus using Ai
r we can write the incident electric field as

Ei
r =

1

jωµε

(
∂2

∂r2
+ β2

)

Ai
r (2.10)

Equating (2.10) to (2.8a), Ai
r takes the form of

Ai
r = Eo

cos φ

ω

∞∑

n=1

anĴn(βr)
[
P 1

n(cos θ)
]

(2.11)

where

an = j−n (2n + 1)

n(n + 1)
(2.12)

This potential component Ai
r will give the correct value of E i

r, and it will lead

to H i
r = 0.

The correct expression of the radial component of the incident magnetic field

can be obtained by following a similar procedure but using TErmodes or F i
r .

This allows us to show that

F i
r = Eo

sin φ

ωη

∞∑

n=1

anĴn(βr)
[
P 1

n(cos θ)
]

(2.13)

where an is given by (2.12). This expression leads to the correct H i
r and

to Ei
r = 0. Therefore the sum of (2.11) will give the correct E i

r, H
i
r and the

remaining electric and magnetic components.
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Since the incident electric and magnetic field components of a uniform plane

wave can be represented by TEr and TMr modes that can be constructed using

the potentials Ai
r and F i

r of (2.11) and (2.13), the scattered fields can be also be

represented by TEr and TMr modes and be constructed using potentials Ai
r and

F i
r .

The forms of As
r and F s

r similar to those of Ai
r and F i

r of (2.11) and (2.13),

and we can represent them by

As
r = Eo

cos φ

ω

∞∑

n=1

bnĤ
(2)
n (βr)

[
P 1

n(cos θ)
]

(2.14a)

F s
r = Eo

sin φ

ωη

∞∑

n=1

cnĤ
(2)
n (βr)

[
P 1

n(cos θ)
]

(2.14b)

where the coefficients bn and cn will be found using the appropriate boundary

conditions. In (2.14a) and (2.14b) the spherical Hankel function of the second

kind Ĥ
(2)
n (βr) has replaced the spherical Bessel Function Ĵn(βr) in (2.11) and

(2.13) in order to represent outward traveling waves. Thus all the components of

the total field, incident plus scattered, can be found using the below equations

Et
r =

1

jωµε

(
∂2

∂r2
+ β2

)

At
r (2.15a)

Et
θ =

1

jωµε

1

r

∂2At
r

∂r∂θ
− 1

ε

1

r sin θ

∂F t
r

∂φ
(2.15b)

Et
φ =

1

jωµε

1

r sin θ

∂2At
r

∂r∂φ
+

1

ε

1

r

∂F t
r

∂θ
(2.15c)

H t
r =

1

jωµε

(
∂2

∂r2
+ β2

)

F t
r (2.15d)

H t
θ =

1

µ

1

r sin θ

∂At
r

∂φ
+

1

jωµε

1

r

∂2F t
r

∂r∂θ
(2.15e)

H t
φ = − 1

µ

1

r

∂At
r

∂θ
− 1

jωµε

1

r sin θ

∂2F t
r

∂r∂φ
(2.15f)
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where At
r and F t

r are each equal to the sum of (2.11), (2.13), (2.14a) and (2.14b),

or

At
r = Ai

r + As
r = Eo

cos φ

ω

∞∑

n=1

[

anĴn(βr) + bnĤ(2)
n (βr)

]

P 1
n(cos θ) (2.16a)

F t
r = F i

r + F s
r = Eo

sin φ

ωη

∞∑

n=1

[

anĴn(βr) + cnĤ
(2)
n (βr)

]

P 1
n(cos θ) (2.16b)

an = j−n (2n + 1)

n(n + 1)
(2.16c)

To determine the coefficients bn and cn, the boundary conditions of

Et
θ(r = a, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π) = 0 (2.17a)

Et
φ(r = a, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π) = 0 (2.17b)

The boundary conditions of (2.17) are satisfied provided that

bn = −an
Ĵ

′

n(βa)

Ĥ
(2)′
n (βa)

(2.18a)

cn = −an
Ĵn(βa)

Ĥ
(2)
n (βa)

. (2.18b)

The scattered electric field components can be written using (2.14a) and (2.14b)

as

Es
r = −jEo cos φ

∞∑

n=1

bn[Ĥ(2)′′
n (βr) + Ĥ(2)

n (βr)]P 1
n(cos θ) (2.19a)

Es
θ =

Eo

βr
cos φ

∞∑

n=1

[

jbnĤ
(2)′
n (βr) sin θP ′1

n (cos θ) − cnĤ
(2)
n (βr)

P 1
n(cos θ)

sin θ

]

(2.19b)

Es
φ =

Eo

βr
sin φ

∞∑

n=1

[

jbnĤ
(2)′
n (βr)

P 1
n(cos θ)

sin θ
− cnĤ

(2)
n (βr) sin θP ′1

n (cos θ)

]

(2.19c)
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where ′ denotes the derivative with respect to the argument.

2.2 Far-Field Observations

The Spherical Hankel function related to the regular Hankel function by

Ĥ(2)
n (βr) =

√

πβr

2
H

(2)
n+1/2(βr) (2.20)

Since for large values of βr the regular Hankel function can be represented by

H
(2)
n+1/2(βr)

βr→∞'
√

2j

πβr
jn+1/2e−jβr = j

√
2

πβr
jne−jβr (2.21)

then the spherical Hankel function of (2.20) and its partial derivatives can be

approximated by

Ĥ(2)
n (βr)

βr→∞' jn+1e−jβr (2.22a)

Ĥ(2)′
n (βr) =

∂Ĥ
(2)
n (βr)

∂(βr)

βr→∞' −j2jne−jβr = jne−jβr (2.22b)

Ĥ(2)′′
n (βr) =

∂2Ĥ
(2)
n (βr)

∂(βr)2

βr→∞' −jn+1e−jβr (2.22c)

For far field observations (βr → large), the electric field components of (2.19a)

through (2.19c) can be simplified by using the approximations of (2.22). Since

the radial component Es
r of (2.19a) reduces with the approximations of (2.22) to

zero, then in the far zone (2.19a) through (2.19c) can be approximated by

Es
r ' 0 (2.23a)

Es
θ ' jEo

e−jβr

βr
cos φ

∞∑

n=1

jn

[

bn sin θP ′1
n (cos θ) − cn

P 1
n(cos θ)

sin θ

]

(2.23b)

Es
φ ' jEo

e−jβr

βr
sin φ

∞∑

n=1

jn

[

bn
P 1

n(cos θ)

sin θ
− cn sin θP ′1

n (cos θ)

]

(2.23c)
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where bn and cn are given by (2.18a) through (2.18b).
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2.3 Radar Cross Section

The bi-static radar cross section is,

σ(bistatic) = lim
r→∞

[

4πr2 |Es|2

|Ei|2

]

(2.24)

and it can be written using (2.1) and (2.23a) through (2.23c) as

σ(bistatic) =
λ2

π

[
cos2 φ|Aθ|2 + sin2 φ|Aφ|2

]
(2.25)

where

|Aθ|2 =

∣
∣
∣
∣
∣

∞∑

n=1

jn

[

bn sin θP ′1
n (cos θ) − cn

P 1
n(cos θ)

sin θ

]
∣
∣
∣
∣
∣

2

(2.26a)

|Aφ|2 =

∣
∣
∣
∣
∣

∞∑

n=1

jn

[

bn
P 1

n(cos θ)

sin θ
− cn sin θP ′1

n (cos θ)

]
∣
∣
∣
∣
∣

2

(2.26b)

The mono-static radar cross section can be found by first reducing the field

expressions for observations toward θ = π. In that direction the scattered electric

field of interest is the copolar component of Es
x, it can be found using (2.23a)

through (2.23c) and the transformation by evaluating both

Es
x = Es

θ cos θ cos φ|θ=π,φ=π = Es
θ |θ=π,φ=π (2.27a)

Es
x = −Es

φ sin φ|θ=π,φ=3π/2 = Es
φ|θ=π,φ=3π/2 (2.27b)

To accomplish either (2.27a) or (2.27b) we need to evaluate the associated

Legendre function and its derivative when θ = π.

−P 1
n(cos θ)

sin θ

∣
∣
∣
∣
θ=π

= −(−1)n n(n + 1)

2
(2.28a)

sin θP ′1
n (cos θ)

∣
∣
∣
∣
θ=π

= sin θ
dP 1

n

d(cos θ)
= (−1)n n(n + 1)

2
(2.28b)
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Es
θ

∣
∣
∣
∣
θ=π
φ=π

= jEo
e−jβr

βr

∞∑

n=1

jn(−1)n n(n + 1)

2
[bn − cn]

= −jEo
e−jβr

βr

∞∑

n=1

jn(−1)n n(n + 1)

2
an

[

Ĵ
′

n(βa)

Ĥ
(2)′
n (βa)

− Ĵn(βa)

Ĥ
(2)
n (βa)

]

Es
θ

∣
∣
∣
∣
θ=π
φ=π

= −jEo
e−jβr

βr

∞∑

n=1

(−1)n (2n + 1)

2

[

Ĵ
′

n(βa)Ĥ
(2)
n (βa) − Ĵn(βa)Ĥ

(2)′

n (βa)

Ĥ
(2)′
n (βa)Ĥ

(2)
n (βa)

]

(2.29)

which reduces, using the Wronskian [2] for spherical Bessel functions of

Ĵ ′

n(βa)Ĥ(2)
n (βa) − Ĵn(βa)Ĥ(2)′

n (βa) = j
[

Ĵn(βa)Ŷ ′

n(βa) − Ĵ ′

n(βa)Ŷn(βa)
]

= j

(2.30)

to

Es
θ

∣
∣
∣
∣
θ=π
φ=π

= Eo
e−jβr

2βr

∞∑

n=1

[

(−1)n(2n + 1)

Ĥ
(2)′
n (βa)Ĥ

(2)
n (βa)

]

(2.31)

Thus monostatic radar cross section can be expressed using (2.31) by

σ(monostatic) = lim
r→∞

[

4πr2 |Es|2

|Ei|2

]

=
λ2

4π

∣
∣
∣
∣
∣

∞∑

n=1

(−1)n(2n + 1)

Ĥ
(2)′
n (βa)Ĥ

(2)
n (βa)

∣
∣
∣
∣
∣

2

(2.32)
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2.4 Choice of the Number of Terms in Series

Summation

The solution of scattered electric field components contains a summation oper-

ator that goes to infinity. In order to decide on where to truncate the series,

Es
θ(r = a) and Es

φ(r = a) scattered components are compared with −E i
θ(r = a)

and −Ei
φ(r = a) incident electric field components at 30 points. These 30 points

are taken from the three primary cuts (φ = 0, φ = π/2, and θ = π/2) equally

spaced. The maximum error is bounded below 10−3 level by increasing the num-

ber of series (N) among these 30 points. At every frequency value, this operation

is repeated and the number of series versus (a/λ) plot is produced in Fig. 2.2.

The horizontal axes (a/λ) also implies the frequency values.
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interval is divided 100 points with sampling period Ts = 0.02
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2.5 Calculation of RCS by Using Scattered

Electric Fields

In the far field, we have already derived the Es
θ and Es

φ expressions in Eq. (2.23b)

and Eq. (2.23c). In those expressions, the terms are generally dependent to

the number of series (n). The number of series is directly proportional to the

frequency (a/λ). This is the main reason for the cost of computation time at

high frequency values. The information about Legendre polynomials is given at

appendix A.2. The scattered electric fields Es
θ(θ = π, φ = φ) and Es

φ(θ = π, φ =

φ) are calculated between a/λ=0 and a/λ=2 with 0.02 sampling period. The

normalized RCS values are calculated by using the Eq. (2.24) at (θ = π, φ = φ).

The results are shown in Fig. 2.3. The selected look angle exactly denotes the
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Figure 2.3: Normalized radar cross section for a conducting sphere as a function
of its radius (θ = π, φ = φ).

monostatic RCS values.

The scale of the vertical axes in Fig. 2.3 is converted to logarithmic. A plot of

monostatic RCS as a function of the sphere radius is shown in Figure 2.4. This is a

classic signature that can be found in any literature dealing with electromagnetic
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scattering. The total curve can be subdivided into three regions; the Rayleigh,

the Mie (or resonance), and the optical regions. The Rayleigh region represents

the part of the curve for small values of the radius (a ≤ 0.1λ) and the optical

region represents the RCS of the sphere for large values of the radius (typically

a ≥ 2λ). The region between those two extremes is the Mie or resonance region.

For large values, the RCS approaches the value of πa2 that is the physical area

of the cross section of the sphere.
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Figure 2.4: Normalized monostatic radar cross section for a conducting sphere
as a function of its radius. The RCS values are plotted in the logarithmic scale.
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2.6 Induced Current Distribution of the PEC

Sphere

We already know that the tangential components of the magnetic field intensity

are discontinuous next to a perfect electric conductor an amount of equal to the

induced linear current density [13].

J = n̂ × H(r = a) = âr × (âθHθ + âφHφ)

= âφHθ − âθHφ

Jθ = −Hφ

Jφ = Hθ

(2.33)

Hθ, Hφ magnetic field intensities can be derived by substituting equations At
r

(2.16a) and F t
r (2.16b) into equations (2.15e) and (2.15f), after that Hθ becomes;

Hθ

∣
∣
∣
∣
r=a

=
−Eθ sin θ

ωµa

∞∑

n=1

{

an

Ĥ
′(2)
n (βa)

[

Ĵn(βa)Ĥ(2)′
n (βa) − Ĵ ′

n(βa)Ĥ(2)
n (βa)

] P 1
n(cos θ)

sin θ

− an

Ĥ
(2)
n (βa)

[

Ĵ ′

n(βa)Ĥ(2)
n (βa) − Ĵn(βa)Ĥ(2)′

n (βa)
]

sin θP ′1
n (cos θ)

}

(2.34)

using the Wronskian [2] for spherical Bessel functions of

[

Ĵn(βa)Ĥ(2)′
n (βa) − Ĵ ′

n(βa)Ĥ(2)
n (βa)

]

= −j

with the help of Eq. (2.33), Jφ is equal to

Jφ = Hθ =
Eθ sin φ

ωµa

∞∑

n=1

an

[

P 1
n(cos θ)

sin θĤ
(2)′
n (βa)

+ j
sin θP ′1

n (cos θ)

Ĥ
(2)
n (βa)

]

(2.35)

by the same manner Jθ can be found;

Jθ =
j

η

Eθ cos φ

βa

∞∑

n=1

an

[

sin θP ′1
n (cos θ)

Ĥ
(2)
n (βa)

+ j
P 1

n(cos θ)

sin θĤ
(2)′
n (βa)

]

(2.36a)

Jφ =
j

η

Eθ sin φ

βa

∞∑

n=1

an

[

P 1
n(cos θ)

sin θĤ
(2)′
n (βa)

+ j
sin θP ′1

n (cos θ)

Ĥ
(2)
n (βa)

]

(2.36b)

The current distribution Jθ, Jφ values are calculated by sampling in the θ and φ

direction by using the number of series in Section (2.4). The magnitude of | J |
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current distribution are plotted in Fig. 2.5, Fig. 2.6 and Fig. 2.7. Notice that

in Fig. 2.6 and Fig. 2.7 are at the optical frequencies, the dark region can be

separated from the light region. Individually, the magnitude and phase values of

Jθ and Jφ components are plotted in Fig. 2.8
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Figure 2.5: Induced current distribution on the surface of the sphere. The radius
of the sphere a = λ/2. The resultant surface current is calculated (J = (| Jθ |2
+ | Jφ |2)1/2)
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Figure 2.6: Induced current distribution of the sphere when the radius (a) is equal
to 2λ. The resultant surface current is calculated (J = (| Jθ |2 + | Jφ |2)1/2)

Figure 2.7: Induced current distribution when a = 10λ. The dark and light
region can be seen easily. The magnitude of the resultant current is calculated.
| J |= (| Jθ |2 + | Jφ |2)1/2
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Figure 2.8: Induced Surface Current Distributions at a = 10λ,| Jθ | and | Jφ |
and its phases. The plot curves, 181×361 sampled matrix is used on the surface
of the sphere
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Chapter 3

Prony’s Method

Signal modeling is an important problem that arises in a variety of applications.

One application of signal modeling is in the area of signal prediction (extrapo-

lation) and signal interpolation. For example, the signal x(t) is intended to be

modelled. Sampled data x[k] = x(kTs) can be represented by a linear combina-

tion of exponentials as

x̂[k] =
M∑

i=1

| Ri | e[(αi+jωi)kTs+jθi] (3.1)

where

x̂[k] : the estimate of x[k]

αi : damping factor

ωi : Angular frequency (ωi = 2πfi)

Ri : Residue or complex coefficient (Ri = |Ri|ejθi)

θi : Phase angle

Ts : Sampling period .

(3.2)

Prony’s method [5] is a technique to solve parameters of M -term exponential

model from N complex data samples x[0], x[1], . . . , x[N − 1]. There are three

basic steps in the Prony’s method:
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1. Linear prediction parameters that fit the sampled data are determined.

2. The damping factors and angular frequencies are estimated from roots of

a polynomial formed from the linear prediction coefficients.

3. Solution of a second set of linear equations yields the estimates of complex

residues.

In case of real data samples,

x̂[k] =

M/2
∑

i=1

2|Ri|e−αikTs cos(ωikTs + θi) k = 0, 1, . . . , N − 1 (3.3)

If the number of complex exponentials M is even, then there are M/2 damped

cosines. If M is odd, then there are (M − 1)/2 damped cosines plus a single

purely damped exponential.

3.1 Simultaneous Exponential Parameter Esti-

mation

The M -exponent discrete-time function of Eq. (3.1) may be concisely expressed

in the form

x̂[k] =
M∑

i=1

Riz
k
i k = 0, 1, . . . , N − 1, (3.4)

where Ri is complex coefficient that represents a t-independent parameter,

whereas zi is a complex exponent that represents a t-dependent parameter.

Ideally, one would like to minimize the squared error over the N data values

ρ =
N−1∑

k=0

|ε[k]|2 (3.5)

where

ε[k] = x[k] − x̂[k] = x[k] −
M∑

i=1

Riz
k
i (3.6)
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with respect to the Ri parameters, the zi parameters and the number of exponents

M simultaneously. Actually, this is a difficult problem and this difficulty can be

demonstrated with a single-exponent case. Minimization of the squared error ρ

using the damped exponential model

x̂[k] = R exp (αkTs) (3.7)

is obtained by setting to zero the derivatives with respect to R and α.

∂ρ

∂R
= c1 − c2R = 0

∂ρ

∂α
= c3 − c4R = 0

(3.8)

where

c1 =
N−1∑

k=0

x[k] exp(αkTs)

c2 =
N−1∑

k=0

exp(2αkTs)

c3 =
N−1∑

k=0

(k + 1)x[k] exp(αkTs)

c4 =
N−1∑

k=0

(k + 1) exp(αkTs)

(3.9)

In this case, x̂[k], R and α are assumed real. From the first equation of (3.8) one

obtains R = c1/c2; substituting this into second equation of (3.8) yields

c2c3 = c1c4 (3.10)

This is a highly nonlinear expression in terms of sums involving exp (αkTs)

which must be solved for α. No analytic solution is available. This difficulty

led to the development of suboptimum minimization of ρ, known as the least-

squares Prony’s method that utilizes linear equation solutions. The Prony’s

method embeds the nonlinear aspects of the exponential model into a polynomial

factoring, for which reasonably fast solution algorithms are available.
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3.2 Original Prony Concept

If as many data samples are used as there are exponential parameters, then

an exact exponential fit to the data may be made. Consider the M -exponent

discrete-function

x[k] =
M∑

i=1

Riz
k
i (3.11)

2M complex samples x[0], x[1], . . . , x[2M − 1] are used to model 2M complex

parameters R1, R2, . . . , RM ; z1, z2, . . . , zM .












z0
1 z0

2 · · · z0
M

z1
1 z1

2 · · · z1
M

...
...

...

zM−1
1 zM−1

2 · · · zM−1
M























R1

R2

...

RM












=












x[0]

x[1]

...

x[M − 1]












(3.12)

If a method is obtained to determine the zi elements separately, Eq. (3.12)

represent a set of linear simultaneous equations that can be solved for unknown

vector of complex coefficients. Separation algorithm can be done by solving a

homogenous linear constant coefficient difference equation. In order to find the

form of this difference equation, first define the polynomial φ(z) that has zi

exponent as its roots,

φ(z) =
M∏

i=1

(z − zi). (3.13)

If the products of Eq (3.13) are expanded into a power series, then the polynomial

may be represented as the summation.

φ(z) =
M∑

m=0

a[m]zM−m = a[0]zM + a[1]zM−1 + . . . + a[M ]z0. (3.14)

with complex coefficients a[m] such that a[0] = 1. Shifting the index of Eq.

(3.11) from k to k − m and multiplying by the parameter a[m] yields

a[m]x[k − m] = a[m]
M∑

i=1

Riz
k−m
i (3.15)
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Forming similar products a[0]x[k], . . . , a[m−1]x[k−m+1] and summing produces

M∑

m=0

a[m]x[k − m] =
M∑

i=1

Ri

M∑

m=0

a[m]zk−m
i (3.16)

It has been changed summation location of m indices with i, Equation (3.16)

is valid for M 6 k 6 2M − 1. Making the substitution in Eq. (3.16), zk−m
i =

zk−M
i zM−m

i then

M∑

m=0

a[m]x[k − m] =
M∑

i=1

Riz
k−M
i

M∑

m=0

a[m]zM−m
i

︸ ︷︷ ︸

0

= 0 (3.17)

The right-hand side in Eq. (3.17) with a bracket may be recognized as the poly-

nomial defined by Eq. (3.14 ), evaluated at each of roots zi, yielding a zero result

as indicated. The polynomial is the characteristic equation associated with this

linear difference equation. For k = M Eq. (3.17) yields,

a[1]x[M − 1] + a[2]x[M − 2] + . . . + a[M ]x[0] = −x[M ]

For k = M, . . . , 2M − 1












x[M − 1] x[M − 2] · · · x[0]

x[M ] x[M − 1] · · · x[1]

...
...

...

x[2M − 2] x[2M − 3] · · · x[M − 1]























a[1]

a[2]

...

a[M ]












= −












x[M ]

x[M + 1]

...

x[2M − 1]












(3.18)

Roots zi’s can be calculated by substituting the solution of matrix Eq. (3.18)

into Eq. (3.14).

The damping αi and sinusoidal frequency fi may be determined from the root

zi using the relationships

αi = ln |zi|/Ts (3.19)

fi = tan−1 [Im{zi}/Re{zi}]/2πTs (3.20)
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Again the Prony procedure to fit M exponentials to 2M complex data samples

may be now be summarized in three steps.

1. Solution of Eq. (3.18) for the polynomial coefficients is obtained.

2. The roots of the polynomial defined by Eq. (3.14) are calculated. The

damping αi and sinusoidal frequency fi may be determined from the roots

using the relationship Eq. (3.19) and (3.20).

3. The roots computed in the second step are used to construct the matrix

elements of Eq. (3.12), which is then solved for the M complex parameters

R1, R2, . . . , RM .

3.3 Least-Squares Prony’s Method

In applications, the number of data points, namely N usually exceeds the min-

imum number needed to fit a model of M exponentials, i.e., N > 2M . In

this overdetermined case, the data sequence can only be approximated as an

exponential sequence,

x̂[k] =
M∑

i=1

Riz
k
i k = 0, 1, . . . , N − 1, (3.21)

Approximation error is denoted ε[k] = x[k] − x̂[k]. Simultaneously finding the

order M and the parameters {Ri, zi} for i = 1 to i = M that minimizes total

squared error ρ =
N−1∑

k=0

|∈ [k]|2 was shown in section 3.1 to be a difficult nonlinear

problem. A variant of Prony method can provide a suboptimum solution. Substi-

tution of appropriate linear-least squares procedures for the first and third steps

of the Prony’s method that sometimes been called the extended Prony method.

In the overdetermined sampled data case, the difference Eq. (3.17) is modified

to
M∑

m=0

[a[m]x[k − m]] = e[k] (3.22)

28



a[0]x[k] + a[1]x[k − 1] + . . . + a[M ]x[k − M ] = −e[k]

The term e[k] represents the linear prediction approximation error, in contrast

to error ε[k], which represents the exponential approximation error. Expression

in Eq. (3.22) is identical to the forward linear prediction error equation, making

each a[m] term a linear prediction parameter. Instead of Eq. (3.17), the a[m]

parameters may be selected as those that minimize the linear prediction squared

error
∑N−1

k=M |e[k]|2 rather than the exponential squared error ρ. This is simply the

covariance method of linear prediction. The number of exponentials M may be

estimated by using Singular Value Decomposition (SVD) analysis. The maximum

order is limited to M ≤ N/2. The exponents z1, z2, . . . , zM can be determined by

least squares linear prediction analysis and polynomial factoring, then calculation

of R1, R2, . . . , RM coefficients becomes a linear problem. Minimizing the squared

error with respect to each of the Ri parameters yields the complex values M ×M

matrix normal equation.
[
ZHZ

]
R = ZHx, (3.23)

where the N × M matrix Z, the M × 1 vector R, N × 1 data vector as follows

Z =












z0
1 z0

2 · · · z0
M

z1
1 z1

2 · · · z1
M

...
...

...

zN−1
1 zN−1

2 · · · zN−1
M












,R =












R1

R2

...

RM












,x =












x[0]

x[1]

...

x[N − 1]












. (3.24)

The M × M Hermitian matrix ZHZ has the form

ZHZ =








γ11 · · · γ1M

...
...

γM1 · · · γMM








where

γij =
N−1∑

k=0

(z∗

i zj)
k = γ∗

ji . (3.25)

29



A useful relation that avoids the summation of Eq. (3.25)

γij =







(z∗i zj)
N
−1

z∗j zi−1
if z∗

i zj 6= 1

N if z∗

i zj = 1 .

The Prony’s method will also fit exponentials to any additive noise present in the

data. An exponential model incorporating additive noise would have the form of

ŷ[k] =
M∑

i=1

Riz
k
i + ε[k] . (3.26)

The function ε[k] has also been used to represent the approximation error of

the exponential model. If ŷ[k] − ε[k] is used in place of x[k] in the analysis,

then the linear difference equation that describes the process consisting of sum

of exponentials plus white noise

y[k] =
M∑

i=1

a[m]y[k − m] +
M∑

i=0

a[m]ε[k] . (3.27)
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3.4 Application of Prony’s Method

Prony’s method is applied to estimate the RCS values of the sphere. Exact

values are calculated by using Eq. (2.24) for monostatic case.

Initially, the parameters of the exponential model in Eq. (3.1) M = 7 (number of

terms), N (number of samples) are chosen and the results are shown in Fig. 3.1.

In this calculation, the sampled data is taken from the interval [0, 2] with a

sampling period of 0.02. Although Prony’s method has a good performance

until a/λ = 0.2, after this value divergence of dashed line can be clearly observed

from the exact RCS values. The bottom part of this figure shows the error, which

is defined as the difference of the two results.
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Figure 3.1: Application of the Prony’s method to monostatic RCS results M = 7
, N = 100, Ts = 0.02, Samples are taken from the interval=[0.02, 2]

31



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

N
or

m
al

iz
ed

 R
C

S
 V

al
ue

 (σ
/π

a2 )

a/λ

# of exponentials=10 #of samples 100

EXACT Values
Sample Values
Prony Method

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10−6

10−4

10−2

100

102
ERROR Values

Figure 3.2: Application of the Prony’s method to monostatic RCS results. The
number of exponentials is increased to M = 10

When we increase the number of terms from 7 to 10 in Fig. 3.2, and keep

the number of samples same as before, it is observed that the error becomes less

than that of Fig. 3.1.

A better agreement is observed in Fig. 3.3, when the number of terms is taken

as 15. In Fig. 3.3, the error values are obtained nearly below the 0.01 line. Our

goal is to keep the error strictly less than 0.01.

In Fig. 3.4, 20 exponentials are used to represent the RCS values. At the bottom

part of the Fig. 3.3, one can observe the decrease of the error values. In Fig. 3.5,

we have used the maximum number (49) of exponentials to find the limits of

decrease in error values. Up to now, applications of the Prony’s Method is about

interpolation simulations.

Finally, in Fig. 3.6 an implementation of extrapolation is demonstrated by using

sampled data in the interval [0, 1.6] with Ts = 0.02. By using the coefficients and
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Figure 3.3: Application of the Prony’s Method to monostatic RCS results M =
15, N = 100, Ts = 0.02, Sampling interval=[0.02, 2]
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Figure 3.4: Application of the Prony’s method to monostatic RCS results M =
20, N = 100, Ts = 0.02, Sampling interval=[0.02, 2]

exponents of each term in Table (3.1), an extrapolation is performed between

a/λ = 1.6 and a/λ = 2.

Although, the performance of the Prony’s method at extrapolation region is good,

it does not yield results suitable to the percentage error criteria 1%. Due to this

fact, we search for an alternative method, which provides better estimations at

the extrapolation region.
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Figure 3.5: The maximum number of exponentials are used in the Prony’s
Method. M = max(49), N = 100, Ts = 0.02, Sampling interval=[0.02, 2]

Ri (Coefficients of Exponential
Model)
# Exponents=15 # samples=40

Exponents s = −αi + jωi

Real Imaginary Real Imaginary

-3.6011e+000 -3.4897e+000 4.1072e+001 -1.3332e+001
-3.6006e+000 3.4897e+000 4.1071e+001 1.3333e+001

2.0569e-001 -1.7554e+000 8.2639e+000 -2.8686e+001
4.9029e-001 1.8148e-001 1.3490e+000 3.2673e+001

4.7643e+000 1.3826e-006 1.0123e+001 -1.8110e-007
8.9196e-003 1.9161e-001 1.2175e+001 6.6640e+001

-2.0558e-002 9.8250e-006 3.6492e+001 1.5708e+002
8.9243e-003 -1.9160e-001 1.2175e+001 -6.6640e+001

1.0931e+000 7.2800e-008 5.6673e-002 -7.9100e-008
-1.1347e-002 1.4201e-002 6.0347e+000 7.0750e+001
-1.1346e-002 -1.4203e-002 6.0347e+000 -7.0750e+001
-1.1038e-002 3.6649e-002 2.1283e+001 1.0942e+002
-1.1039e-002 -3.6640e-002 2.1283e+001 -1.0942e+002
2.0568e-001 1.7554e+000 8.2639e+000 2.8686e+001
4.9029e-001 -1.8148e-001 1.3490e+000 -3.2673e+001

Table 3.1: Solution of the Exponents and Residues in the Exponential model
with Prony’s Method, Number of Exponents= 15 Number of samples= 40
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Figure 3.6: Extrapolation of RCS values in the frequency dimension. The pa-
rameters are solved with Prony’s method. M = 15, N = 80, Ts = 0.02, Sampling
interval=[0.02, 1.6]
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Chapter 4

Matrix-Pencil Method

The signal model of the observed late time of electromagnetic energy-scattered

response from an object in general can be formulated as,

y(t) = x(t) + n(t) ≈
M∑

i=1

Rie
sit + n(t), 0 ≤ t ≤ T (4.1)

In Matrix-Pencil method, same sequence of data samples are used in achieving

the parameter estimation, where

y(t) : observed time response

n(t) : noise in the system

x(t) : signal

si : −αi + jωi

αi : damping factor

ωi : Angular frequency(ωi = 2πfi)

Ri : residue or complex coefficient .

(4.2)

After sampling, variable, t, is replaced by kTs, where Ts is the sampling period.

The sequence can be written as

y(kTs) = x(kTs) + n(kTs) ≈
M∑

i=1

Riz
k
i + n(kTs) for k = 0, 1, . . . , N − 1

(4.3)
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and

zi = esiTs = e(−αi+jωi)Ts for i = 1, . . . ,M

The main problem is to find the best estimates of M , Ri’s, and zi’s from the noise

contaminated data, y(kTs). In general, simultaneous estimation of M , Ri’s, and

zi’s is a nonlinear problem.

However, solving the linear problem is interesting and, in many cases, is equiv-

alent to solving the nonlinear problem. In addition, the solution to the linear

problem can be used as an initial guess to non-linear-optimization problems.

Two of the popular linear methods to solve the parameters are the “polynomial”

method and the “Matrix-Pencil” method [6]. For example, Prony’s method is

polynomial type method. The basic difference between two method is that the

“polynomial” method is a two step process in finding the poles, zi. On the other

hand, the “Matrix-Pencil” approach is a one-step process. The poles zi are found

as the solution of a generalized eigenvalue problem. The Matrix-Pencil technique

is published in 1989, even though its roots go back to the pencil-of-function ap-

proach. The term “Pencil” arises when combining two functions defined on a

common interval, with a scalar parameter, λ:

f(t, λ) = g(t) + λh(t) (4.4)

f(t, λ) is called a pencil of functions g(t) and h(t), parameterized by λ. To avoid

obvious triviality, g(t) is not permitted to be a scalar multiple of h(t). The

pencil-of-function contains very important features about extracting information

about zi, given y(t), when g(t), h(t) an λ are approximately selected. Also, the

Matrix-Pencil method is called Generalized Pencil of Function (GPOF) method

[3]. For noiseless data, we can define two (N − L) × L matrices Y1 and Y2

defined by,
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Y2 =












x(1) x(2) · · · x(L)

x(2) x(3) · · · x(L + 1)

...
...

...

x(N − L) x(N − L + 1) · · · x(N − 1)












(N−L)×L

(4.5a)

Y1 =












x(0) x(1) · · · x(L − 1)

x(1) x(2) · · · x(L)

...
...

...

x(N − L − 1) x(N − L) · · · x(N − 2)












(N−L)×L

(4.5b)

where L is referred to as the pencil parameter and very useful in eliminating the

some effects of noise in data. One can write

Y2 = Z1RZ0Z2 (4.6a)

Y1 = Z1RZ2 (4.6b)

where

Z1 =












1 1 · · · 1

z1 z2 · · · zM

...
...

...

zN−L−1
1 zN−L−1

2 · · · zN−L−1
M












(N−L)×M

(4.7a)

Z2 =












1 z1 · · · zL−1
1

1 z2 · · · zL−1
2

...
...

...

1 zM · · · zL−1
M












M×L

(4.7b)

Z0 = diag [z1, z2, . . . , zM ] (4.7c)

R = diag [R1, R2, . . . , RM ] (4.7d)
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where diag[.] represents an M × M diagonal matrix. Now consider a matrix

pencil

Y2 − λY1 = Z1R{Z0 − λI}Z2 (4.8)

due to the [R]M×M matrix, I is an M × M identity matrix. In general, the

rank of Y2 − λY1 will be M . However, if λ is equal to zi, i = 1, 2, . . . ,M , the

rank of matrix is M − 1. Therefore, the parameters zi may be found as the

generalized eigenvalues of the matrix pair {Y2,Y1}. By using the Y+
1

Moore-

Penrose pseudo-inverse of Y1, problem of solving for zi can be thought as an

ordinary eigenvalue problem,

{Y+
1
Y2 − λI} (4.9)

Y+
1

= {YH

1
Y1}−1YH

1
, where the superscript “H” denotes the conjugate trans-

pose. Based on the decomposition of Y1 and Y2 in Eq. (4.6a) and Eq. (4.6b),

one can show that if M ≤ L ≤ N − M the poles zi; i = 1, . . . ,M are the gener-

alized eigenvalues of the matrix pencil Y2 − λY1. Namely, if M ≤ L ≤ N − M ,

λ = zi is a rank reducing number of Y2 − λY1.

One forms the data matrix Y from the noise-contaminated-data y(t).

Y =












y(0) y(1) · · · y(L)

y(1) y(2) · · · y(L + 1)

...
...

...

y(N − L − 1) y(N − L) · · · y(N − 1)












(N−L)×(L+1)

(4.10)

Notice that Y1 is obtained from Y by deleting the last column, and Y2 is

obtained from Y by deleting the first column. Therefore, in the presence of

noise, the matrix elements x(k)’s are replaced by y(k) to obtain Y1, Y2 and Y.

For efficient noise filtering, the parameter L is chosen between N/3 and N/2. In

applications; we set L = N/2. After than, a singular-value decomposition (SVD)

of the matrix Y is carried out as

Y = UΣVH (4.11)
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Here, U and V are unitary matrices, composed of eigenvectors of YYH and

YHY, respectively, and Σ is a diagonal matrix containing the singular values of

Y, i.e.

UHYV = Σ (4.12)

The parameters M is chosen at this stage. One compares the various singular

values with largest one. Typically, the singular values beyond M are set equal

to zero. The procedure of choosing M is as follows. Consider the singular values

σc such that

σc

σmax

≈ 10−n (4.13)

where n is the number significant decimal digits in the data. Once M and zi’s

are known, the residues, Ri, are solved from the least-squares problem:
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
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
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(4.14)

4.1 Relation between the Prony’s and Matrix-

Pencil Method

Given M complex number zi, i = 1, 2, . . . ,M there exist unique complex numbers

ak, k = 1, 2, . . . ,M , such that

1 +
M∑

k=1

akz
−k
i = 0 for i = 1, 2, . . . ,M (4.15)

Therefore, finding the signal poles zi, i=1,2,. . . ,M, is equivalent to find-

ing the coefficients ak, k = 1, 2, . . . ,M , of the M th degree polynomial
∑M

k=0 akz
−k (with a0 = 1), which has roots at zi. This is the essence of the

original Prony method. This, however, can be generalized as follows. Finding
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the signal-poles zi’s are equivalent to finding the coefficients ak, k = 1, 2, . . . , L

of an Lth-degree polynomial
∑L

k=0 akz
−k (with a0 = 1 and L ≥ M), such

that of all the L roots of the polynomial, there are M signal roots which are

one-to-one functions of zi’s, and which are also separable from the other (L−M)

(extraneous) roots, due to “over-modelling” as L is greater than M .

Let

p(λ) =
L∑

k=0

akλ
−k

so that p(zi) = 0 for i = 1, 2, . . . ,M . Then, it can be shown that for L ≤ m ≤

N − 1

L∑

k=0

ym−kak = yma0 + ym−1a1 + . . . + ym−kak + . . . + ym−LaL = 0

Therefore in matrix form [Y ] [a] = 0, where

Y = [Y1 : y] =












y(0) · · · y(L − 1)
... y(L)

y(1) y(L)
... y(L + 1)

...
...

...
...

y(N − L − 1) · · · y(N − 2)
... y(N − 1)












(4.16)

where y = [y(L), . . . , y(N − 1)]T , and a = [aL, . . . , a0]
T . Note also that

Y = [Z1][R][Z2 : z]

with

[z] = [zL
1 , . . . , zL

M ]T

Since the roots of polynomial are independent of the uniform scaling of the

coefficients ai, we have left a0 be one, without any loss of information. Therefore

[Y ][a] = −[y]

where a = [aL, . . . , a1]
T . In digital signal processing this equation is called “for-

ward linear prediction” equation. The minimum-norm solution, which is given
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by

[a] = −[Y +
1 ][y]

The link between Matrix-Pencil and Prony’s method is shown below: It can be

shown that the roots of Prony’s
∑L

k=0 akz
−k (with a0 = 1) are the eigenvalues

of the matrix

C1 =















0 0 · · · 0 −aL

1 0 · · · 0 −aL−1

0 1 · · · 0 −aL−2

...
...

...
...

0 0 · · · 1 −a1















L×L

= [U2,U3, . . . ,UL,Y+
1
y], (4.17)

where Ui is the (L × 1) vector with the ith element equal to 1 and all other

elements zero. Y+
1
Y2 can be written as

C2 = Y+
1
Y2 = [Y+

1
y1,Y

+
1
y2, . . . ,Y

+
1
yL]

with yk = [yk, . . . , yk+N−L−1]
T , where k = 1, . . . , L. As we can see, the ith column

of C2 is a solution of the following equation:

[Y1][b] = [yi] (4.18)

But in C1, only the last column vector is the minimum-norm solution with i = L,

while in C2, all column vectors are minimum-norm solutions of Equation (4.18).
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4.2 Applications of the Matrix-Pencil Method

In this section, the estimation of RCS values with the Matrix-Pencil method is

presented. The Matrix-Pencil Method is designed for the estimation of general

type systems. But RCS solutions have some specific features, such as, high-

frequency RCS of an object converges to its cross-section area. Also, we already

know that the calculation of RCS at high frequencies is consuming much CPU

time. We have done some modifications in the Matrix-Pencil method to adapt

to the RCS calculations.

4.2.1 Natural Matrix-Pencil Method

Prony’s method has been presented in the previous chapter. In order to clarify

the superiority of Matrix-Pencil method, two illustrations are explained with the
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Figure 4.1: Application of the Matrix-Pencil method to monostatic RCS results
M = 15, N = 100, Ts = 0.02, Sampling interval=[0.02, 2]
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same conditions used in Prony’s method. The parameters of these two solutions,

results of which are shown in Fig. 4.1 and Fig. 3.3, are the same.

If we look at the interpolation error plots of the Fig. 4.1 and Fig. 3.3, we can

see the superiority of Matrix-Pencil method. Also, the error results of monostatic

RCS at high frequencies imply the relative error, because normalized RCS value

converges to 1. Both in the interpolation and extrapolation regions, Matrix-

Pencil method estimations come closer to the exact solutions of RCS. Likewise,

Fig. 4.2 is analogous to Fig. 3.6.
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Figure 4.2: Extrapolation of the monostatic RCS values with Matrix-Pencil
method. M = 15, N = 80, Ts = 0.02, Sampling interval=[0.02, 1.6]. Extrapola-
tion is performed until a/λ = 2

According to these figures, we can conclude that the extrapolation perfor-

mance of Matrix-Pencil method is better than Prony’s performance. After this

conclusion, we have tested Matrix-Pencil by using different parameter values.

In the monostatic case, if we look at the shape of the RCS curve, we observe

that the amplitude and variety of the interval a/λ = 0 to a/λ = 0.4 is greater

45



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

N
or

m
al

iz
ed

 R
C

S 
Va

lu
e 

(σ
/π

a2 ) θ
=π

,φ
=π

a/λ

# of exponentials=15 #of samples=41

EXACT Values
Sample Values
GPOF METHOD with RCS values

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10−6

10−4

10−2

100

102
ERROR Values

Figure 4.3: Extrapolation of the monostatic RCS values with using less sampled
data. The number of exponentials (M) is still 15, N = 41, Ts = 0.02, Sampling
interval=[0.02, 1.2]

than the high frequency (optical) region. Taking this feature into consideration,

we have excluded the interval [0, 0.4] from the sampled data.

In Fig. 4.3, we have begun sampling from a/λ = 0.4 to a/λ = 1.2. Notice

that the end point of sampled data was also decreased to extrapolate more RCS

values without using analytical expressions. This modification improves both

interpolation and extrapolation results as seen from the Fig. 4.3 in the bottom

plot.
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Figure 4.4: Application of the Matrix-Pencil Method to monostatic RCS results
M = 20, N = 41, Ts = 0.02, Sampling interval=[0.02, 1.2]

In Fig. 4.4, only the number of terms is changed from 15 to 20. In this

figure, Matrix-Pencil method is used with its maximum number of terms, ac-

cording to this, the error values are decreased. However, it does not yield any

considerable improvement in the extrapolation region.
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Based on the importance of the prediction at high-frequency values, in Fig. 4.5,
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Figure 4.5: The extrapolation is extended up to a/λ = 10. Application of the
Matrix-Pencil Method to monostatic RCS results M = 20, N = 41, Ts = 0.02,
Sampling interval=[0.02, 1.6]

we have made an extrapolation until a/λ = 10. After a/λ = 2, the results is not

acceptable according to the percentage error criteria of 1%.
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Figure 4.6: The error values are shown at the bottom plot with logarithmic scale.
Application of the Matrix-Pencil Method to monostatic RCS results M = 20,
N = 81, Ts = 0.02, Sampling interval=[0.4, 1.6]

Furthermore, In Fig. 4.6, the number of terms is still 20, but we have included the

interval [1.6, 2] to sampled data, as a result N is taken as 81. Between a/λ = 0.4

and a/λ = 2, which is the interpolation region, the Matrix-Pencil Method yields

error values in the vicinity of 10−6. By using low-frequency values of RCS, we

can make a prediction with an acceptable range until a/λ = 5 as seen from the

bottom plot of the Fig. 4.6.
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Figure 4.7: Application of the Matrix-Pencil Method to monostatic RCS results
M = 35, N = 81, Ts = 0.02, Sampling interval=[0.4, 1.6]

In Figure 4.7, the number of terms is increased from M = 20 to M = 35. In

this case, the interpolation error is decreased, but at high frequencies a/λ ≥ 4

we have observed a growing curve at extrapolation. Actually, this growing curve

arises from the dominant negative damping factors (α).
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Figure 4.8: The maximum number of exponentials is used (M = 40). Application
of the Matrix-Pencil Method to monostatic RCS results , N = 80, Ts = 0.02,
Sampling interval=[0.02, 1.6]

Table 4.1 illustrates the solution of coefficients and exponents. The negative

α’s and the relevant terms are written in boldface. In Figure 4.8, we have changed

the number of terms from 35 to 40. Increasing the number of terms makes an

improvement at the interpolation, but it places too much stress on exponents.

In the following sections, we investigate a modification to remove the effects of

these negative damping factors.
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Singular values α ω <(R) =(R) | R |
1. 4.136e+001 -1.9342e-001 1.3600e+002 -1.8936e-008 5.8864e-008 6.1835e-008
2. 5.184e+000 -1.9342e-001 -1.3600e+002 -1.8936e-008 -5.8864e-008 6.1835e-008
3. 5.158e+000 8.1006e-002 1.5708e+002 2.3044e-007 -1.9630e-016 2.3044e-007
4. 3.6297e-001 2.9508e+000 1.5319e+002 4.8376e-007 -5.2137e-007 7.1123e-007
5. 2.1987e-001 2.9508e+000 -1.5319e+002 4.8376e-007 5.2137e-007 7.1123e-007
6. 2.0108e-001 1.5899e+000 1.1012e+002 -2.9368e-007 -6.9867e-007 7.5788e-007
7. 1.4316e-002 1.5899e+000 -1.1012e+002 -2.9368e-007 6.9867e-007 7.5788e-007
8. 7.9102e-003 2.2880e-001 1.0778e+002 -1.8027e-007 1.9168e-007 2.6313e-007
9. 5.8604e-003 2.2880e-001 -1.0778e+002 -1.8027e-007 -1.9168e-007 2.6313e-007

10. 4.6608e-003 2.0154e+001 1.2462e+002 1.0143e-005 1.4355e-005 1.7577e-005
11. 4.2487e-003 2.0154e+001 -1.2462e+002 1.0143e-005 -1.4355e-005 1.7577e-005
12. 1.0107e-003 4.5918e-003 8.7113e+001 -1.4717e-007 -1.5333e-008 1.4797e-007
13. 6.8345e-004 4.5918e-003 -8.7113e+001 -1.4717e-007 1.5333e-008 1.4797e-007
14. 3.2095e-004 2.8084e+000 7.2927e+001 2.1571e-004 -8.1360e-005 2.3054e-004
15. 3.1183e-004 2.8084e+000 -7.2927e+001 2.1571e-004 8.1360e-005 2.3054e-004
16. 1.8904e-004 5.8880e+000 7.2152e+001 7.1104e-004 -9.1674e-004 1.1602e-003
17. 9.9275e-005 5.8880e+000 -7.2152e+001 7.1104e-004 9.1674e-004 1.1602e-003
18. 2.1924e-005 9.2517e+000 7.1109e+001 -7.8813e-004 -7.3480e-004 1.0775e-003
19. 1.1929e-005 9.2517e+000 -7.1109e+001 -7.8813e-004 7.3480e-004 1.0775e-003
20. 9.2148e-006 -8.9395e-001 5.9412e+001 -6.6271e-008 6.5261e-008 9.3010e-008
21. 7.1315e-006 -8.9395e-001 -5.9412e+001 -6.6271e-008 -6.5261e-008 9.3010e-008
22. 6.2892e-006 -5.2942e-001 0 8.6446e-003 1.1790e-016 8.6446e-003
23. 5.8014e-006 1.4956e-002 0 1.0069e+000 -3.2618e-016 1.0069e+000
24. 5.1444e-006 3.3963e+000 0 1.0231e-001 1.1575e-015 1.0231e-001
25. 4.9580e-006 9.3205e+000 0 5.1610e-002 -3.6520e-016 5.1610e-002
26. 4.9420e-006 1.3746e+000 1.2715e+001 -1.1823e-004 -1.6427e-005 1.1937e-004
27. 3.9020e-006 1.3746e+000 -1.2715e+001 -1.1823e-004 1.6427e-005 1.1937e-004
28. 3.5676e-006 9.5897e+000 3.2424e+001 1.9125e-003 2.8396e-002 2.8460e-002
29. 3.2510e-006 9.5897e+000 -3.2424e+001 1.9125e-003 -2.8396e-002 2.8460e-002
30. 2.4436e-006 4.6055e+000 3.3407e+001 4.8547e-002 5.7146e-002 7.4983e-002
31. 2.2627e-006 4.6055e+000 -3.3407e+001 4.8547e-002 -5.7146e-002 7.4983e-002
32. 2.0154e-006 5.4222e-001 3.2661e+001 5.7596e-002 8.4852e-002 1.0255e-001
33. 1.6865e-006 5.4222e-001 -3.2661e+001 5.7596e-002 -8.4852e-002 1.0255e-001
34. 1.4683e-006 1.9089e+000 3.2877e+001 1.4745e-001 8.8223e-002 1.7183e-001
35. 1.4312e-006 1.9089e+000 -3.2877e+001 1.4745e-001 -8.8223e-002 1.7183e-001

Table 4.1: Solution of the Matrix-Pencil method; exponents and residues N = 81,
Interpolation region= [0.4, 2], Extrapolation region= [2, 10], Sampling period,
Ts = 0.02.
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4.2.2 Choice of the Parameters in the Matrix-Pencil

Method

In the flowchart of Fig. 4.9, the basic steps of the Matrix-Pencil method are

illustrated. In the first step the parameters, M and L are not chosen arbitrarily.

L is a parameter that determines the number of columns for Y1 and Y2 matrices.

The optimal choice of L is equal to N/2 [3]. After setting L = N/2, M must be

in a range 0 ≤ M ≤ N/2 (Note the inequality M ≤ L ≤ N − M ).

One can set M according to Eq. (4.19) by looking at the list of singular values

Figure 4.9: Flowchart of the Matrix-Pencil algorithm.

in Table 4.1, which are displayed in descending order;

σc

σmax

≈ 10−n, (4.19)

where the subscript c denotes the row location of singular values, and n is the

degree of the error at the interpolation region [0.4, 2]. For example, in Table. 4.1,

we have used N = 81 uniformly sampled data. According to this data, the

number of exponentials must be in a range 0 ≤ M ≤ 40.

The ratio of the singular values (σc) to the first singular value (σmax) also

implies the degree of the error in the the interpolation region, when the row

number of the chosen singular value is the same as the number of exponentials

(M). Briefly, if M is equal to c, then degree of the error is equal to σc

σmax
≈ 10−n.

For example, the maximum singular value is

σmax = 4.13 × 101.
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The singular values at the 20th row and last row are

σ20 = 9.21 × 10−6, σ35 = 1.4 × 10−6.

The related ratios of these singular values are

σ20

σmax

=
9.21 × 10−6

4.13 × 101
= 2 × 10−7,

σ35

σmax

=
1.4 × 10−6

4.13 × 101
= 3 × 10−8.

If we choose the number of exponentials as M = 35, we will obtain an error in

the interpolation region in the order of 10−8 v 10−7, as shown in Fig. 4.7. In case

of M = 20, simulation results yield an error range approximately 10−7 v 10−6 in

the interval [0.4, 2], as shown in Fig. 4.6 . The drift between the ratios and the

interpolation errors can be due to the insufficient precision of the numbers.

As a result, these ratios give us an intuition about the accuracy of the in-

terpolation. Also, this singular value check provides a flexibility to adjust the

interpolation error by considering only the singular values and without making

any simulations. However, if the adjustment is done only by considering the

interpolation results, a deviation (growing curve) can be observed in the extrap-

olation region. In the following sections, this difficulty is solved by eliminating

the growing exponentials.

4.2.3 Elimination of the Growing Exponentials

In this section, an improvement will be presented in the Matrix-Pencil simula-

tions. In Fig. 4.7 and Fig. 4.6, one can see the convergence of the interpolation

error results to 0, when the number of terms is increased. However, increasing

the number of terms leads to deviations in the extrapolation results. When we

investigate the list of the exponents and complex coefficients (R) in Table 4.1,

we see that some of the damping factors (αi) are negative. In the exponential

model

y(kTs) =
M∑

i=1

Riz
k
i = R1e

(−α1+jω1)kTs + . . . + RMe(−αM+jωM )kTs , (4.20)
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the damping factor with a negative sign yields a growing term in the overall

summation.

For example, five growing exponentials present in Fig. 4.7 are plotted separately
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Figure 4.10: Growing exponentials present in Fig. 4.7 are plotted separately.

in Fig. 4.10. Actually, in this figure, three exponential plots are seen. Notice that

in Fig. 4.10, the terms that have complex conjugate pairs are plotted as a single

term. If we look at the exact values of RCS at higher frequencies, we can observe

a convergence of the curve to 1. Before the implementation of interpolation or

extrapolation, the negative damping factors (αi) are replaced with 0 to reduce

the effect of the growing exponentials as follows;

zi =







Rie
(jωi)kTs if αi ≤ 0

Rie
(−αi+jωi)kTs if αi ≥ 0

(4.21)

If we compare Fig. 4.7 to Fig. 4.11, the improvement in the extrapolation

region can be easily seen. On the other hand, in the interpolation region, a

distortion can be observed by looking at the bottom plot of Fig. 4.11. This

modification is a partial remedy for this problem. Furthermore, in the next
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Figure 4.11: The elimination of the growing exponentials from monostatic RCS
results with M = 35, N = 81, Ts = 0.02 and sampling interval=[0.4, 2].

section, a modification is also applied to the residues of the exponential model

before the implementation of the extrapolation or interpolation of the RCS curve.

4.2.4 Generation of the Residues with the New Set of

Exponentials

In the previous section, the elimination of the growing exponentials are demon-

strated. As a result, the set of poles (zi) used in the estimation is changed.

Elimination of the negative damping factor (αi) gives us an opportunity to in-

crease the number of exponentials freely. So in Fig. 4.12, we have selected the

maximum number of terms as 40.

In the flowchart of the Matrix-Pencil method, in Fig. 4.9, the output of

the second box yields two sets of parameters. In the previous section the set
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Figure 4.12: Generation of the residues with the new set of exponentials with
M = 40, N = 81, Ts = 0.02 and sampling interval=[0.4, 2].

of exponentials is changed before the implementation, but the residues (R) are

still the same. But, in this section, we have also updated the residues (R) before

the interpolation and the extrapolation of the RCS values. In fact, this update

operation enforces the estimation of sampled data with a new set of exponents.

The flowchart of the Matrix-Pencil method with its modification is plotted with

Figure 4.13: Flowchart of the elimination of the growing exponentials.

dashed-line rectangular box in Fig. 4.13. Notice that the improvement in the in-

terpolation region [0.4, 2] and the extrapolation region [2, 10] can be easily seen

by comparing Fig. 4.11 and Fig. 4.12.
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Chapter 5

Multi-Scale Matrix-Pencil

Method

In this chapter, a method is investigated to estimate the RCS values by using

fewer number of sampled data and with better error range. A better algorithm

is developed with respect to the previous ones on the basis of the Matrix-Pencil

method. This algorithm provides a better estimation of the RCS results with

fewer number of sampled data (N). The steps of this method are explained be-

low.

Firstly, we begin uniformly sampling the RCS values with two different sam-

pling periods Tsd
= 0.02 and Tsw

= 0.04 as shown in Fig. 5.1.

First data set is created from the interval [0.4, 1.2] with Tsd
= 0.02. And

the second one is created from [0.4, 2] with Tsw
= 0.04. According to these two

Figure 5.1: Sampling procedure of the Multi-scale GPOF
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sets of data values, two different generalized eigenvalue solutions are performed,

which are also shown in the branches of the flowchart in Fig. 5.2.
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(5.1)

Equations (5.1) and (5.2) are designed for the solutions of least-squares prob-

lems from the first data set and second data set, respectively.
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(5.2)

Furthermore, these two set of poles (zd, zw) are synthesized to perform a least

squares problem in Eq. (5.3). For example, in Fig. 4.12, individually, Md = 20,

Mw = 20 and Mtotal = 40 poles are generated with generalized eigenvalue solution
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Figure 5.2: Flowchart of the Multi-scale GPOF
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from the first and second data set.








































y(0)

y(1)

y(2)

...

...

y(39)

y(40)

y(42)

y(44)

...

...

y(78)

y(80)









































=




























1 1 · · · 1 1 · · · 1

zd1
zd2

· · · zd20
zw1

· · · zw20

...
...

...
...

...

...
...

...
...

...

z40
d1

z40
d2

· · · z40
d1

z40
w1

· · · z40
w1

z42
d1

z42
d2

· · · z42
d1

z42
w1

· · · z42
w1

...
...

...
...

...

...
...

...
...

...

z80
d1

z80
d2

· · · z42
d1

z80
w1

· · · z80
w1
















































R1

R2

...

R20

R21

...

R40





















(5.3)

According to the experience in the previous section, growing exponentials are

eliminated before the least-squares solution. Therefore [zd, zw] pole set is totally

filtered from the growing terms. Instead of solving Eqs. (5.1) and (5.2), a syn-

thesized matrix consisting of filtered [zd, zw] poles is created to solve for residues

(Ri) in Eq. (5.3).

After the calculation of the residues, the simulation of monostatic RCS values

is illustrated in Fig. 5.3. Both interpolation and extrapolation are done. One

can see the success of the multi-scale method comparing Fig. 5.3 with Fig. 4.12.

Notice that both the error values and the number of sampled data are decreased.
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Figure 5.3: Multi-scale Matrix-Pencil Method with RCS values M = 40, N = 61,
Ts = 0.02, Sampling interval=[0.4, 2]
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5.1 Employing Es
θ, Es

φ Components in the RCS

Estimation

In this section, we will see the application of the Matrix-Pencil method to the

individual electric field components to estimate the RCS values. Below equa-

tion shows the components of the scattered electric field in the normalized RCS

calculation,

σ(bistatic)

πa2
= lim

r→∞

[

4πr2

πa2

|Es|2

|Ei|2

]

= lim
r→∞

[

4πr2

πa2

|Eθ
s|2 + |Eφ

s|2

|Ei|2

]

(5.4)

The Matrix-Pencil method is also capable of representing complex variables, such

as Es
θ , Es

φ. By using the Matrix-Pencil with full capacity yields better results in

the estimation of the RCS values. Due to the complex nature of Es
θ , E

s
φ compo-

nents, they are also more suitable variables to represent with a complex exponents

and residues. In Fig. 5.4, the monostatic (θ = π, φ = π) case values of Es
θ , E

s
φ

components are modelled with M = 15 exponentials. After that, high-frequency

values of Es
θ , E

s
φ components are predicted separately by using the exponential

model. After the estimation of electric field component values, normalized RCS

values are calculated by using Eq. (5.4). The success of estimation can be con-

cluded by looking at Fig. 5.4 and Fig. 4.8. Notice that both interpolation and

extrapolation errors are decreased, shown in the bottom plot of Fig. 5.4. Fur-

thermore, we have modelled with the maximum number of exponentials (40) to

estimate the electric field components in Fig. 5.5.

The extrapolation results can be acceptable until a/λ = 3.5 according to

the percentage error criteria of %1. If we compare Fig. 4.8 and Fig. 5.5, we

can see the increase of the acceptable extrapolation range from [2, 2.5] to [2, 3.5].

Actually, this increase is important due to the difficulty of the RCS calculation

at high frequencies. In the vicinity of a/λ = 4, the estimated RCS values be-

come unmanageable. According to the experience about growing exponentials in

section (4.2.3) and (4.2.4), the growing exponentials are eliminated.
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Figure 5.4: Employing Es
θ , Es

φ Components in the RCS Estimation M = 15,
N = 41, Ts = 0.04, Sampling interval=[0.4, 2]

In Fig. 5.6, the negative damping factors (αi) are all replaced with zero and

residues are generated with the new set of exponentials. Despite the distortion in

the interpolation region, the improvement can be observed in the extrapolation

region by comparing Fig. 5.5 and Fig. 5.6.
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Figure 5.5: Employing Es
θ , Es

φ Components in the RCS Estimation M = 40,
N = 81, Ts = 0.02, Sampling interval=[0.4, 2]

5.2 Application of Multi-Scale Matrix-Pencil

Method to Es
θ, Es

φ Components

In this section, the synthesis of three main algorithms used in the previous sec-

tions for the estimation of the RCS values are presented. Up to now, we have

demonstrated the elimination of growing exponentials together with updated

residues (R′

i), according to the new set of exponents in Section 4.2.4. After

that, multi-scale matrix pencil method is demonstrated. At last, we have used

Es
θ , Es

φ components in the estimation of the RCS values. Individually, all three

modifications make an improvement in the implementation of interpolation and

extrapolation. Furthermore, we have synthesized three useful modifications in

this section. The flowchart of synthesized algorithm is shown in Fig. 5.7. The

“∆” operation is simply the process of Eq. (5.4).
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Figure 5.6: Employing Es
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φ Components in the RCS Estimation also the
Growing exponentials are eliminated M = 40, N = 81, Ts = 0.02, Sampling
interval=[0.4, 2]

In Fig. 5.8, the application of the flowchart 5.7 is shown. Notice that the

superiority of extrapolation and interpolation results can be easily observed in

the bottom plot in Fig. 5.8. The estimation in the whole extrapolation interval

[2, 10] can be achieved below the desired percentage error criteria 1%. In addition

to that, interpolation results are already derived in the vicinity of 10−6. This al-

gorithm is a complete method that estimates the RCS values with an acceptable

range.
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Figure 5.7: Synthesized Flowchart of the Multi-scale Matrix-Pencil method
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Figure 5.8: Employing Es
θ , Es

φ Components in the RCS Estimation also the Multi-
Scale Matrix-Pencil Algorithm is used M = 40, N = 61, Ts = 0.02, Sampling
interval=[0.4, 1.2], Ts = 0.04, Sampling interval=[0.4, 2]

5.3 Matrix-Pencil Method with Asymptotic

RCS Values

We already know that at high frequencies, exact RCS value converges to unity

due to the surface area normalization of results. In the estimations of the natural

Matrix-Pencil method generates negative damping factors (αi) in the solution of

exponential model. These negative damping factors grow inconsistently at the

high frequency estimations. If the high frequency information is integrated to

Matrix-Pencil method, these negative damping factors will be diminish. Before

this, we already know that calculation of high frequency RCS values consumes

too much time. First of all, we have decided to use asymptotic expressions in the

calculation of high frequency RCS values. The asymptotic expression are given
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Figure 5.9: The integration of Asymptotic values with the Matrix-Pencil Method

in equations (5.5a) and (5.5b) [11].

Es
θ =

1

2

cos φa

r
e−jβ(r−2 cos θ/2) (5.5a)

Es
φ =

1

2

sin φa

r
e−jβ(r−2 cos θ/2) (5.5b)

In this section, a method is investigated to integrate the knowledge of asymptotic

RCS values to the Matrix-Pencil algorithm. Notice that these two asymptotic

equations are so elementary with respect to the analytical expressions (2.23b) ,

(2.23c). Due to simplicity, we can easily compute high frequency values in exten-

sive intervals in the vicinity of 10−2. Based on this information, a Matrix-Pencil

algorithm is modified to include the asymptotic data. In Fig. 5.9, Matrix-Pencil

estimations demonstrated in conjunction with the asymptotic values. The inte-

gration of asymptotic data, prevents to yield Matrix-Pencil algorithm unwanted

negative damping factors (αi). To investigate the limits of algorithm, we have

used exact data (ideal conditions) instead of asymptotic values in Fig. 5.10. No-

tice that the error values are decreased between a/λ = 5 and a/λ = 10.
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5.4 Applications of the Matrix-Pencil Method

to Surface Currents

In this section, the estimation of induced currents on the PEC sphere is demon-

strated. Exact current values can be calculated on the surface of the PEC sphere
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Figure 5.11: Prediction of current value J(θ0, φ0) at frequency f4 by using the
lower frequency values [J(f1, θ0, φ0),J(f2, θ0, φ0),J(f3, θ0, φ0)]

by using analytical expressions (2.36a) and (2.36b). The problem is to estimate

high-frequency current values from its sampled data. It is illustrated in Fig. 5.11.

In Fig. 5.12, the modified Matrix-Pencil algorithm is used to predict the high-

frequency values of the Jθ. The exponents and residues are generated according

to the samples taken from [0, 2] interval. The location of concerned Jθ is chosen

as (θ = 45◦, φ = 0◦). The modified algorithm available in Section 4.2.4 is used

in the estimation of induced current values. Briefly this algorithm eliminates
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Figure 5.12: Applications of the Matrix-Pencil Method to Surface Current, the
residues are generated with the eliminated set of exponentials (θ = 45◦, φ = 0◦)
Jθ is sampled from [0, 2], M = 50.

the growing exponentials. According to the new set of exponentials residues are

generated with least squares problem. In Fig. 5.12, the bottom plot shows us the

relative error instead of absolute error results. Relative error is defined as

∣
∣
∣
∣

exact − approx

exact

∣
∣
∣
∣

The high-frequency values can be predicted in the vicinity of 10−2 (relative error

values) until a/λ = 2.5. We move around on the φ cut by increasing θ angle.

Actually, the surface current components Jθ and Jφ have a small variety according

to the φ direction. The value of the surface current depends on the φ angle

sinusoidally. The main complexity of the surface currents concentrates in the θ

angle direction. Due to this fact, only θ angle parameter is changed from θ = 45◦

to θ = 90◦ in the next Figure 5.13. When θ = 90◦ exactly corresponds to the

equator of the of the sphere. The estimated induced current values are better

than the previous simulation of Jθ(45
◦, 0◦) in Fig. 5.12. The difference between

exact values and predicted results are obtained less than 10−2 boundary. From

the bottom plot, relative error values can seen in the Fig. 5.13.
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Figure 5.13: Applications of the Matrix-Pencil Method to Surface Current, the
residues are generated with the eliminated set of exponentials (θ = 90◦, φ = 0◦)
Jθ is sampled from [0, 2], M = 50.

Finally, if we come near to the bottom of the sphere, extrapolation results

become more accurate. When (θ = 180◦, φ = 0◦), the relative error results are

obtained below the 10−2 boundary too. They can bee seen at bottom plot in

Figure 5.14.

After application of the modified Matrix-Pencil to Jθ component, we have

tested this algorithm with Jφ component of surface current. The longitude of the

Jφ of surface current is chosen as φ = 90◦ cut where the Jφ takes its maximum

values (sin 90◦ takes its maximum value in the analytical expressions (2.36b)).

The latitude of the Jφ in Fig. 5.15 is set to θ = 45◦. When we look at the

bottom plot in Fig. 5.15, the relative error results is high with respect to the

previous results. If we concentrate at the at the upper plot in Fig. 5.15, the pre-

dicted results follow the exact current values. Due to exact high frequency values

small in magnitude, the calculation of relative error magnifies the deviation of

the predicted values.
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Figure 5.14: Applications of the Matrix-Pencil Method to Surface Current, the
residues are generated with the eliminated set of exponentials (θ = 180◦, φ = 0◦)
Jθ is sampled from [0, 2], M = 50.
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Figure 5.15: Applications of the Matrix-Pencil Method to Surface Current, the
residues are generated with the eliminated set of exponentials (θ = 45◦, φ = 90◦)
Jφ is sampled from [0, 2], M = 50.
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Figure 5.16: Applications of the Matrix-Pencil Method to Surface Current, the
residues are generated with the eliminated set of exponentials (θ = 90◦, φ = 90◦)
Jφ is sampled from [0, 2], M = 50.

After that, we have tested the modified Matrix-Pencil algorithm, at the lo-

cation (θ = 90◦,φ = 90◦). The results are shown in Fig. 5.16. The extrapolation

values can be accepted until frequency a/λ = 3. When θ = 180◦ at the bottom

of the sphere, the magnitude of Jφ surface current is the same as Jθ component

in Fig. 5.12. These two coordinates (θ = 90◦, φ = 0◦) and (θ = 90◦, φ = 90◦)

denote the bottom of the sphere. Magnitude of the Jφ and Jθ must be the same

to satisfy the uniqueness of the resultant J surface current. The Fig. 5.12 can be

considered also as the estimation of Jφ component.
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5.5 Comparisons with Other Extrapolation

Techniques

In this section, other extrapolation algorithms currently available in the liter-

ature are compared with results of the Matrix-Pencil method. One of them is

an extrapolation technique [7] based on the ESPRIT superresolution algorithm.

One of the terms defined in [7] to measure the performance of the extrapolation

is the relative extrapolation bandwidth (REB). It is defined as the ratio between

the number of points extrapolated and the number of points computed. The

REB of the best results in [7] is equal to REB= (53/8) = 6.3. If we calculate the

REB of the Figure 5.8, it is equal to (500/61) = 8.2. We see that in the Multi-

Scale Matrix-Pencil method the relative extrapolation bandwidth is greater than

the ESPRIT superresolution algorithm. Also, in [7] the average deviation of

the extrapolated frequency response from the calculated response is 2.06 dBm

(∼ 0.04). In our estimations, the error results never exceeds the 10−2 boundary.

This is also a success in the accuracy of the Multi-Scale Matrix-Pencil method.

The second comparison is done with [8], which uses the GPOF method in the

extrapolation of the surface current. The relative error values in the extrapola-

tion of the surface current components is equal to the 0.5. If we observe results

of the estimations in the Figures 5.14 , the relative error values are less than

10−2.

We have also used rational function model instead of exponential model for

representation of the RCS values. To solve for the coefficients of the denom-

inator and numerator, we have applied some appropriate algorithms from the

signal processing area. These are the covariance and the autocorrelation meth-

ods [12]. Both of them are designed for the solution of the all-pole models and

they generate stable model coefficients as a result. The estimation results of the

autocorrelation and the covariance methods are similar to the desired RCS val-

ues, but we observe a subinterval shifting in the estimated results. Subinterval
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shifting actually comes from the incompetence of the used zero-order numerator

models.

The third algorithm applied to RCS values is the iterative pre-filtering

(Steiglitz-McBridge) method, which is an iterative technique to implement the

direct method of signal modelling. If we set the suitable number of poles and

zeros in the rational function, iterative algorithm yields good results in the es-

timations. However, it is hard to know the appropriate number of poles and

zeros.
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Chapter 6

Angular Extrapolation of the

Induced Currents

In the previous chapter, the estimation of current values in the frequency dimen-

sion (a/λ) is demonstrated. In this chapter, we have modelled the same surface

current values in the angular dimension.

Figure 6.1: The location of the unknown current values on the surface of the
sphere

Imagine that the current values are known on the black shaded parts of the

78



sphere in Fig. 6.1. We have investigated a method to estimate current values re-

maining part of the sphere. To predict Jθ, Jφ current values at the unknown part

of the sphere, we set up a model with “Legendre polynomials”. The Legendre

polynomials
(

P 1

i (cos θ)

sin θ

)

are used as basis functions of the constructed model;

Jθ(θ, φ) =
M∑

i=1

Ki cos φ

(
P 1

i (cos θ)

sin θ

)

(6.1a)

In the summation cos φ term is independent of index i, so cos φ may be written

out of the summation operator. By the same manner, for Jφ a suitable model

can be written similar to Jθ;

Jθ(θ, φ) = cos φ
M∑

i=1

Ki
P 1

i (cos θ)

sin θ
(6.2a)

Jφ(θ, φ) = sin φ

M∑

i=1

Ki
P 1

i (cos θ)

sin θ
(6.2b)

The coefficients, Ki’s are solved from least-squares problem at appendix A.4.

The least-squares solution of Eq. (6.3) gives us the Ki coefficients;


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
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





(6.3)

where N data samples are taken when φ = 0◦, cos φ = 1.

The induced current values are sampled in the θ direction. The location of the

sampled data points are shown in Fig. 6.2 with thick black dots. Only using the

data samples at φ = 0◦ cut, we can estimate Jθ component whole surface of the

sphere.

Employing data samples which are taken from the thick line shown in Fig. 6.2,

we can produce Jθ component at every point in the boundary of the rectangular

area or all over the surface of the sphere shown in Fig. 6.1.
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Figure 6.2: The open form of sphere surface lays along a flat plane. The vari-
ables which totally represents the sphere surface, θ, φ are taken as vertical and
horizontal axis, respectively.

Also, we can estimate Jφ component of the surface current with slight differ-

ences in the application of the same algorithm. In this case, the induced current

values are sampled from the cut which maximizes the Jφ(φ = 90◦) component

on the surface of the sphere.

Jθ component of induced current is estimated with using data samples which

are taken from the region (0◦ ≤ θ ≤ 6◦, 69◦ ≤ θ ≤ 180◦). Fig. 6.3 shows us the

application of this algorithm. The predicted results are below the 10−6 boundary

which are shown at the bottom plot of the Fig. 6.3. Moreover, the interpolated

result are better than the predicted results which are less than 10−12.

In the solution of the Ki coefficients, to construct the least-squares problem

in Eq. (6.3), the parameters M (the number of Ki coefficients) is chosen as 23 at

a/λ = 2. The results are plotted in Fig. 6.3 with its relative error values. Also,

we have applied the same algorithm at a/λ = 4, with the number of Ki coeffi-

cients M = 36. The results of algorithm is shown in Fig. 6.4 with its relative

error plot. The efficiency of the results can be decided by looking at the relative

error values.

80



0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7
x 10−3 # of basefunc=23 a=2λ.(0≤θ≤6 69≤θ≤180) [jvθ]

241

θ T
s
=0.75°

(
Jlm

s
θ



Exact Values
Least Mean Square solution

0 20 40 60 80 100 120 140 160 180

10−12

10−610−410−2100

Relative ERROR Values

Rank(Z=P1
n
(cosθ)/sinθ)=23 Rank(ZHZ)=23

Figure 6.3: The Legendre-basis algorithm is applied to Jθ component of surface
current when a/λ = 2, samples are taken from (0◦ ≤ θ ≤ 6◦, 69◦ ≤ θ ≤ 180◦)
number of coefficients M = 23
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Figure 6.4: The Legendre-basis algorithm is applied to Jθ component of surface
current when a/λ = 4, samples are taken from (0◦ ≤ θ ≤ 6◦, 69◦ ≤ θ ≤ 180◦)
number of coefficients M = 36

The other component (Jφ) of the surface current is also estimated at a/λ = 2 with

M = 23. The samples are taken from the region (0◦ ≤ θ ≤ 6◦, 69◦ ≤ θ ≤ 180◦),

only the difference of the sampled φ cut is changed from 0◦ to 90◦.

The results are shown in Fig. 6.5 with its relative error results. The Legendre-

Base algorithm yields results below the 10−6 line boundary in the bottom plot

in Fig. 6.5. The difference between the exact and estimated results can not be

understand by the naked eye. Also, at a/λ = 4, Jφ values are solved from the

Legendre-basis algorithm in Fig. 6.6. Also, the efficiency of the algorithm can be

observed from the figure.
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Figure 6.5: The Legendre-basis algorithm is applied to Jφ component of surface
current when a/λ = 2, samples are taken from (0◦ ≤ θ ≤ 6◦, 69◦ ≤ θ ≤ 180◦)
number of coefficients M = 23
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Figure 6.6: The Legendre-basis algorithm is applied to Jφ component of surface
current when a/λ = 2, samples are taken from (0◦ ≤ θ ≤ 6◦, 69◦ ≤ θ ≤ 180◦)
number of coefficients M = 36

6.1 Calculation of RCS with the Integration of

the Surface Currents

In this section, the calculation of electric field components with the integration

of the surface currents on the surface of the PEC sphere is described. Before

the derivation of the vector moment components of PEC sphere, calculation of

the far-zone fields of arbitrary electric currents sources subject is explained as

an introduction of the section.

Far-zone conditions are

i. r � r′

ii. r � λ
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Figure 6.7: An Arbitrary Electric Current Source

R = |r̄ − r̄′| =
√

(r̄ − r̄′).(r̄ − r̄′)

=
√

r2 + (r′)2 − 2r̄.r̄′ ∼= r
√

1 − 2r̂.r̄′

r

∼= r − r̂.r̄′

Using ejωt convention Vector Magnetic Potential A can be written in terms of

the surface currents,

Ā(r̄) =

∫

V

dv′J̄(r̄′)
exp(−jk |r̄ − r̄′|)

4π |r̄ − r̄′|
∼=

∫

V

dv′J̄(r̄′)
exp(−jk(r − r̂.r̄′))

4πr
(6.4)

=
e−jkr

4πr
︸ ︷︷ ︸

g(r)

∫

V

dv′J̄(r̄′)
exp(−jkr̂.r̄′)

4πr
(6.5)

In the approximation of |r̄ − r̄′|, we neglect the r̂.~r′ component in the de-

nominator. The term kr̂.~r′ is kept in the exponent in Eq. (6.4), because its

contribution to the phase variation can be significant when it is the order of, or

larger than, π. We define a vector current moment,

~f(θ, φ) =

∫

V

dv′J̄(r̄′)exp(jkr̂.r̄′)
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Magnetic Field intensity can be found by taking the curl of the Vector Magnetic

Potential,

H̄(r̄) = ∇× Ā(r̄) = ∇× (g(r)f̄(θ, φ)) = ∇g(r) × f̄(θ, φ) + g(r)(∇× f̄(θ, φ))

The terms in the magnetic field intensity H̄;

∇g(r) = âr
∂

∂r
(
exp(−jkr)

4πr
) = −âr

k2

4π

[
j

kr
+

1

(kr)2

]

exp(−jkr)

Note that kr = 2πr/λ � 1 then,

∇g(r) ∼= −r̂
k2

4π

[
j

kr

]

exp(−jkr) = −jkr̂g(r) ∝ 1

r

∇× f̄(θ, φ) =
1

r2 sin θ

∣
∣
∣
∣
∣
∣
∣
∣
∣

r̂ rθ̂ r sin θφ̂

∂
∂r

∂
∂θ

∂
∂φ

fr rfθ r sin θfφ

∣
∣
∣
∣
∣
∣
∣
∣
∣

∝ 1

r

(∇g(r)) × f̄(θ, φ) ∝ 1

r

and

g(r)(∇× f̄(θ, φ)) ∝ 1

r2

since

H̄(r̄) ∼= ∇g(r) × f̄(θ, φ) = −jkg(r)
[

φ̂fθ − θ̂fφ

]

.

We can also find a short way of calculating far-zone electric field intensity,

Ē(r̄) =
1

jwε
∇× H(r̄) =

−jk

jwε
∇×

[
g(r)r̂ × f̄(θ, φ)

]

=
−jk

jwε

{
∇g(r) × (r̂ × f̄(θ, φ)) + g(r)

[
∇× (r̂ × f̄(θ, φ))

]}

=
−k

wε

k

j
g(r)

[

−θ̂fθ − φ̂fφ

]

= −jk(
k

wε
)
[

θ̂fθ + φ̂fφ

]

g(r)

then

Ē(r̄) = −jkη
[

θ̂fθ + φ̂fφ

]

g(r) (6.6)
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Actually Vector Current Moment is a volume integral;

~f(θ, φ) =

∫

V

dv′J̄(r̄′)ejkr̂.r̄′

Note that for far-field solutions, the main problem is completed by evaluating

the Vector Current Moment in Eq. 6.6. There are some numerical methods to

evaluate the volume volume integral of Vector Current Moment. One of them uses

Fourier Transform. To take the Fourier Transform, we need to convert surface

current J(θ, φ) to its x, y and z components such as J(x, y, z) = x̂Jx(x, y, z) +

ŷJy(x, y, z) + ẑJz(x, y, z). In this case we increase the number of dimensions

2(θ, φ) to 3(x, y, z). Furthermore, we have already calculated surface current

according to (θ, φ) angles in Figs. 6.3-6.6. To reduce these conversion operation

and Fourier Transform, we have evaluated a surface integral for Vector Current

Moment,

~f(θ, φ) =

∫∫

©
s(r=a)

ds′J̄(r̄′)ejkr̂.r̄′

where

ds′ = a2 sin θ′dθ′dφ′.

The surface integral is evaluated according to the parameters θ′ and φ′. On the

contrary, the θ and φ parameters denote the location of concerned electric field

intensity. (′ superscript denotes the source parameters).

~f(θ, φ) =

∫ 2π

0

∫ π

0

J̄(r̄′)ejkr̂.r̄′a2 sin θ′dθ′dφ′

Actually,

~J(~r′)

∣
∣
∣
∣
r=a

= ~J(θ′, φ′) = θ̂′Jθ(θ
′, φ′) + φ̂′Jφ(θ

′, φ′)

where

θ̂′ = x̂ cos θ′ cos φ′ + ŷ cos θ′ sin φ′ − ẑ sin θ′

φ̂′ = −x̂ sin φ′ + ŷ cos φ′
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To derive the fθ and fφ components from in Eq. (6.6), we apply dot product

to vector current moment with θ̂ and φ̂ vectors respectively. Then,

fθ = θ̂. ~f(θ, φ)

fφ = φ̂. ~f(θ, φ)

since

~f(θ, φ) =

∫ 2π

0

∫ π

0

[θ̂′Jθ + φ̂′Jφ]e
jkr̂.r̄′a2 sin θ′dθ′dφ′.

The result of dot product yields scalar fθ and fφ quantities.

fθ =

∫ 2π

0

∫ π

0

[θ̂.θ̂′Jθ + θ̂.φ̂′Jφ]e
jkr̂.r̄′ds′ (6.7a)

fφ =

∫ 2π

0

∫ π

0

[φ̂.θ̂′Jθ + φ̂.φ̂′Jφ]e
jkr̂.r̄′ds′ (6.7b)

where

θ̂.θ̂′ = cos θ cos φ cos θ′ cos φ′ + cos θ sin φ cos θ′ sin φ′ + sin θ sin θ′

θ̂.φ̂′ = − cos θ cos φ sin φ′ + cos θ sin φ cos φ′

φ̂.θ̂′ = − sin φ cos θ′ cos φ′ + cos φ cos θ′ sin φ′

φ̂.φ̂′ = sin φ sin φ′ + cos φ cos φ′

also

r̂.r̄′ = a(sin θ cos φ sin θ′ cos φ′ + sin θ sin φ sin θ′ sin φ′ + cos θ′ cos θ′).

We have divided the surface of the sphere equally spaced intervals in Fig. 6.8. Jθ

and Jφ currents at these intersection points, the far-zone electric field intensity

can be determined by the integration of vector current moment. The integra-

tions of the scalar fθ and fφ components are computed with Composite Simpson’s

Double integral algorithm [14] in appendix A.5.

The bistatic RCS values at different look angles can be calculated by the

integration of the surface currents on the sphere. Actually, the integration of

the surface currents gives us a flexibility to calculate the scattered electric field

intensity at an arbitrary look angle. After evaluation electric fields, according to
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Figure 6.8: The location of the some intersection points on the PEC sphere

the equation (5.4), the bistatic RCS values can be calculated by using electric

fields.

We have derived suitable integrants for the vector current moment of the

PEC sphere. Before the integration of vector current moment, we have predicted

big amount of surface current data with the help of Legendre-Basis algorithm.

By using (N = 157) data samples, which are taken from the φ = 0◦ cut between

0◦ ≤ θ ≤ 6◦, 69◦ ≤ θ ≤ 180◦, illustrated in the Fig. 6.9. The Jθ component of

induced current is generated at 241 × 61 equally spaced points on the surface of

the sphere. The resultant matrix Jθ = [jθ]241×61 is constructed without using the

analytical expression of Jθ in Eq. (2.36a).

Also, the same operation have been applied to the φ component of surface.

The induced current components Jθ = [jθ]241×61 and Jφ = [jφ]241×61 are used

in the integration of vector current moment with Composite Simpson’s Double

integral algorithm. After that, RCS values can be calculated at an arbitrary

look angle easily. The efficiency of this algorithm comes from its flexibility.
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Figure 6.9: 3-D illustration of Current Estimation on the Surface of the sphere
surface, θ, φ are taken as vertical and horizontal axis, respectively.

The calculation of RCS can be easily performed by using Jθ = [jθ]241×61 and

Jφ = [jφ]241×61 the induced current matrices only substituting the concerned an-

gle (θ0, φ0) in Eq. (6.7). After substitution of (θ0, φ0) as (π, π), the results are

presented in Fig. 6.10. Notice that error values at the bottom plot of this figure

are very low. The results can be obtained lower than the 10−6 boundary until

a/λ = 2. And if we increase the frequency (a/λ) until 4, we have have still

obtained RCS estimations lower than the 10−4 boundary.

We can easily calculate the bistatic RCS values by using the same set of gen-

erated surface current matrices. In Fig. 6.11, RCS values are plotted when the

look angle (θ = π/3, φ = π/6). In the concerned figure (θ, φ) values are arbitrary

two angles. We can choose θ between 0◦ and 180◦, also φ between 0◦ and 360◦

intervals. Notice that the error results are still kept under the 10−4 value.
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Figure 6.10: The monostatic (θ = π, φ = π) RCS calculations of the PEC sphere
is illustrated. Before the integration of current values Legendre-basis algorithm
is applied to Jθ and Jφ components of surface current by using the samples values
which are taken (0◦ ≤ θ ≤ 6◦, 69◦ ≤ θ ≤ 180◦) at φ = 0 and φ = 90◦ cuts. The
resolution of the plotted RCS figure is equal to 0.02.
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Figure 6.11: The bistatic RCS calculations when the look angle (θ = π/3, φ =
π/6) is illustrated. Before the integration of current values Legendre-basis algo-
rithm is applied to Jθ and Jφ components of surface current by using the samples
values which are taken (0◦ ≤ θ ≤ 6◦, 69◦ ≤ θ ≤ 180◦) at φ = 0 and φ = 90◦ cuts.
The resolution of the plotted RCS figure is equal to 0.02.
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Chapter 7

Conclusions

In this thesis, Prony’s and Matrix-Pencil methods are investigated to extract

the parameters of exponential model. These methods are applied to a reference

scatterer (such as the PEC sphere) to estimate frequency values. We can con-

clude that the Matrix-Pencil method is a quite efficient and accurate method

with respect to the Prony’s Method. The superiority of Matrix-Pencil method is

demonstrated. Also the Matrix-Pencil method is modified to increase the accu-

racy in the frequency extrapolation.

According to this aim, the elimination of the growing exponentials and the gen-

eration of residues with new set of exponentials are demonstrated. These modifi-

cations yield accurate and stable estimations of the RCS in the frequency dimen-

sion. Furthermore, these modified algorithms can be reliable in the frequency

extrapolation of induced currents. The results are presented at the end of chap-

ter 4.

In chapter 5, a new algorithm is developed based on the theory of Matrix-

Pencil method. This algorithm supports the estimations with two different scaled

samples. That is why, we have called the Multi-Scale Matrix-Pencil method. This

method can predict successfully the higher frequency RCS values with very mod-

est sampled data and few exponentials. Also, the electric field components are
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employed the Matrix-Pencil method in the RCS calculations. The effectiveness of

the extrapolation technique has been presented with the monostatic RCS estima-

tions at high-frequencies. Good agrement between the Multi-Scale Matrix-Pencil

and the exact solutions over the wide frequency band is observed.

In chapter 6, we have proposed an efficient model to represent the induced cur-

rents on the surface of the PEC sphere. The coefficients of Legendre-Based

functions are solved from the least squares problem. This model enables angular

extrapolation of the induced currents all over the surface of the sphere from a

few densely sampled data. Furthermore, calculation of bistatic RCS values by

integrating the accurate set of induced current data is demonstrated.
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Appendix A

Appendix

A.1 Singular Value Decomposition

The SVD is closely associated with the eigenvalue-eigenvector factorization of a

symmetric matrix: A = QΛQT . There the eigenvalues are in the diagonal matrix

Λ, and the eigenvector matrix Q is orthogonal: QT Q = I because eigenvectors of

a symmetric matrix can be chosen orthonormal. For most matrices that is not

true, and for rectangular matrices it is ridiculous. But if we allow the Q on the

left and the QT on the right to be any two orthogonal matrices–not necessarily

transposes of each other—the factorization becomes possible again. Furthermore

the diagonal (but rectangular) matrix in the middle can be made nonnegative.

It will be denoted by Σ , and its positive entries (also called sigma) will be

σ1, . . . , σr. They are the singular values [4] of A. They fill the first r places

on the main diagonal of Σ—and r is the rank of A.

The key to working with rectangular matrices is, almost always, to consider AAT

and AT A.

Singular Value Decomposition: Any m by n matrix A can be factored into

A = Q1ΣQT
2 =(orthogonal)(diagonal)(orthogonal).
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The columns of Q1 (m by n) are eigenvectors of AAT , and the columns of Q2 (m

by n) are eigenvectors of AT A. The r singular values on the diagonal of Σ (m

by n) are the square roots of the non zero eigenvalues of both AAT and AT A.

Suppose the singular value decomposition of A is A = Q1ΣQT
2 . Then the pseudo-

inverse of A is I. The singular values σ1, . . . , σr, are on the diagonal of Σ (m by

n), and the reciprocals 1/σ1, . . . , 1/σr are on the diagonal of Σ+ (m by n). The

pseudo-inverse of A+ is A++ = A.
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A.2 Legendre Polynomials

There are many bad ways to evaluate associated Legendre polynomials numeri-

cally [10]. For example, there are explicit expressions, such as

Pm
l (x) =

(−1)m(l + m)!

2mm!(l − m)!
(1 − x2)m/2

[

1 − (l − m)(m + l + 1)

1!(m + 1)

(
1 − x

2

)

+
(l − m)(l − m − 1)(m + l + 1)(m + l + 2)

2!(m + 1)(m + 2)

(
1 − x

2

)2

− . . .

]

(A.1)

The recurrence relations [10] is used for Legendre Polynomials

(l − m)P m
l = x(2l − 1)P m

l−1 − (l + m − 1)P m
l−2 (A.2)

It is useful because there is a closed-form expression for the starting value,

Pm
m = (−1)m(2m − 1)!!(1 − x2)m/2 (A.3)

(The notation n!! denotes the product of all odd integers less than or equal to

n.) Using Eq. (A.2) with l = m + 1, and setting P m
m−1 = 0, we find

Pm
m+1 = x(2m + 1)P m

m (A.4)

Equation (A.2) can be handled by following steps i − iii.

i. Pm
m (x) is evaluated from Eq. (A.3)

ii. Pm
m+1(x) is found by using Eq. (A.4)

iii. By using P m
m+1(x), P m

m (x), the values P m
m+2(x), . . . , P m

l−1(x), P m
l (x) are calcu-

lated one by one from Eq. (A.2).

We have two form of Legendre polynomials used in the calculation of current J

and electric field Es values.

sin θP ′1
n (cos θ),

P 1
n(cos θ)

sin θ
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The associated Legendre polynomials P m
n (x) of the first kind related to the

Legendre functions Pn(x).

Pm
n (x) = (−1)m(1 − x2)m/2 ∂mPn(x)

∂xm
(A.5)

from Eq. (A.5),

P 1
n(cos θ)

sin θ
=

d
dθ

Pn(cos θ)

sin θ

= −dPn(cos θ)

d(cos θ)

∣
∣
∣
∣
x=cos θ

= −dPn(x)

dx

The Legendre polynomials can be also obtained more conveniently by using Ro-

drigue’s formula,

Pm
n (x) =

1

2nn!

dn

dxn
(x2 − 1)n (A.6)

by using Rodrigue’s formula (A.6)

P 1
n(cos θ)

sin θ

∣
∣
∣
∣
θ=π

= (−1)n n(n + 1)

2

when θ = π and

P 1
n(cos θ)

sin θ

∣
∣
∣
∣
θ=0

= −n(n + 1)

2

when θ = 0. Also sin θP ′1
n (cos θ) can be written in terms of

P 1
n(cos θ)

sin θ

to reduce the computational cost

sin θP ′1
n (cos θ) = sin θ

dP 1
n(cos θ)

d cos θ
= −dP 1

n(cos θ)

dθ

= − d

dθ

(
d

dθ
P 1

n(cos θ)

)

by using Chain Rule x = cos θ

= − d

dθ

[
dx

dθ
P ′

n(x)

]

= −
[

d2x

dθ2
P ′

n(x) +

(
dx

dθ

)2

P ′′

n (x)

]

sin θP ′1
n (cos θ) = −

[

cos θ

(
P 1

n(cos θ)

sin θ

)

+ P 2
n(cos θ)

]

.
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A.3 Derivative Operator of Spherical Bessel

and Hankel Functions

The set of spherical Bessel and Hankel functions which appear in the solutions

of electromagnetic problems is that denoted by Ẑn, where Ẑn can be used to

represent Ĵn, Ĥ
(1)
n or Ĥ

(2)
n . The derivative operator of these functions are as

follows,

Ẑ ′

n(x) =
d

dx
Ẑn(x) =

(π

2

)1/2
[−n√

x
Zn+1/2(x) +

√
xZn−1/2(x)

]

. (A.7)
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A.4 Projections and Least Square Solution

If there are more equations than unknowns and, in general, no solution exist. In

this case, the equations are inconsistent and the solutions said to be overdeter-

mined. The geometry of this problem is illustrated in Fig. A.1 for the case of

three equations in two unknowns. Since an arbitrary vector b cannot be repre-

sented in terms of a linear combination of the columns of A = [ai]n×m as given in

Eq. (A.8), the goal is to find coefficients xi that produce the best approximation

to b,

Ax = b (A.8)

b̂ =
m∑

i=1

xiai (A.9)

This approach that is commonly used in this situation is to find the least squares

solution, i.e., the vector x that minimizes the norm of the error

‖ e ‖2=‖ b − Ax ‖ (A.10)

As illustrated in Fig. A.1, the least square solution has the property that the

error,

e = b − Ax

is orthogonal to each of the vectors that are used in the approximation for b,

i.e., the column vectors f A. This orthogonality implies that

AHe = 0 (A.11)

or,

AHAx = AHb

which are known as the normal equations. If the columns of A are linearly

independent (A has a full rank), then the matrix AHA is invertible and the

least squares solution is

x0 = (AHA)−1AHb
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Figure A.1: Geometrical illustration of the least squares solution to an overde-
termined set of linear equations. the best approximation to b is formed when
the error e is orthogonal to to the vectors a1 and a2

or,

x0 = A+b

where the matrix

A+ = (AHA)−1AH

is the pseudo-inverse of the matrix A for the overdetermined problem. Further-

more, the best approximation b̂ to b is given by the projection of the vector b

on to the subspace spanned by the vectors ai,

b̂ = Ax0 = A(AHA)−1AHb

or

b̂ = PAb

where

PA = A(AHA)−1AH

is called the projection matrix. Finally, expanding the square in Eq. (A.10) and

using the orthogonality condition given in Eq. (A.11) it follows that the minimum

least squares error is

min ‖ e ‖2= bHe = bHb − bHAx0.
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A.5 Composite Simpson’s Double Integral

Consider the double integral,

∫∫

R

f(x, y)dA =

where R is a rectangular region in the plane;

R = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d}

for some constants a, b, c, and d. (See Figure A.5) To illustrate the approxima-

tion technique, we employ the Composite Simpson’s rule, although any other

composite formula could be used in its place. To apply the Composite Simp-

son’s rule, we divide the region R by partitioning both [a, b] and [c, d] into

an even number of subintervals. To simplify the notation we choose integers

n and m and partition [a, b] and [c, d] with the evenly spaced mesh points

x0, x1, . . . , x2n and y0, y1, . . . , y2m, respectively. These subdivisions determine

step sizes h = (b−d)/2n and k = (d− c)/2m. Writing the double integral as the

iterated integral,

∫∫

R

f(x, y)dA =

∫ b

a

(∫ d

c

f(x, y)dy

)

dx

we first use the Composite Simpson’s rule to evaluate

∫ d

c

f(x, y)dy,
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treating x as a constant. Let yj = c + jk for each j = 0, 1, . . . , 2m. Then

∫ d

c

f(x, y)dy =
k

3

[

f(x, y0) + 2
m−1∑

j=1

f(x, y2j + 4
m∑

j=1

f(x, y2j−1) + f(x, y2m)

]

− (d − c)k4

180

∂4f(x, µ)

∂y4

for some µ, in (c, d). Thus,

∫ b

a

∫ d

c

f(x, y)dydx =
k

3

[∫ b

a

f(x, y0)dx + 2
m−1∑

j=1

∫ b

a

f(x, y2j)dx

+ 4
m∑

j=1

∫ b

a

f(x, y2j−1)dx +

∫ b

a

f(x, y2m)dx ]

− (d − c)k4

180

∫ b

a

∂4f(x, µ)

∂y4
dx.

The Composite Simpson’s rule is now employed on the integrals in this equation.

Let x = a + ih for each i = 0, 1, ..., 2n. Then for each; j = 0, 1, ..., 2m, we have

∫ b

a

f(x, yj)dx =
h

3

[

f(x0, yj) + 2
n−1∑

i=1

f(x2i, yj + 4
n∑

i=1

f(x2i−1, yj) + f(x2n, yj)

]

− (b − a)h4

180

∂4f(ξi, yj)

∂x4

∫ b

a

∫ d

c

f(x, y)dydx ≈ hk

9

{[

f(x0, y0) + 2
n−1∑

i=1

f(x2i, yj) + 4
n∑

i=1

f(x2i−1, y0) + f(x2n, y0)

]

+ 2

[
m∑

j=1

f(x0, y2j) + 2
m−1∑

j=1

n−1∑

i=1

f(x2i, y2j)

+ 4
m−1∑

j=1

n∑

i=1

f(x2i−1, y2j) +
m−1∑

j=1

f(x2n, y2j)

]

+ 4

[
m∑

j=1

f(x0, y2j−1) + 2
m∑

j=1

n−1∑

i=1

f(x2i, y2j−1)

+ 4
m∑

j=1

n∑

i=1

f(x2i−1, y2j−1) +
m∑

j=1

f(x2n, y2j−1)

]

+

[

f(x0, y2m) + 2
n−1∑

i=1

f(x2i, y2m)

+
n∑

i=1

f(x2i−1, y2m) + left.f(x2n, y2m)

]}
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The error term E is given by

E =
k(b − a)h4

540

[

∂4f(ξ0, y0)

∂x4
+ 2

m−1∑

j=1

∂4f(ξ2j, y2j)

∂x4
+ 4

m∑

j=1

∂4f(ξ2j−1, y2j−1)

∂x4

+
∂4f(ξ2m, y2m)

∂x4

]

+
(d − c)k4

180

∫ b

a

∂4f(x, µ)

∂y4
dx.
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