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Abstract: An asymptotic analysis of flows of rare events switched by some
random environment is provided. An approximation by nonhomogeneous Pois-
son flows in case of mixing environment is studied. Special notions of S-set
and “monotone” structure for finite Markov environment are introduced. An
approximation by Poisson flows with Markov switches in case of asymptotically
consolidated environment is proved. An analysis of the 1st exit time from a
subset is also given. In heavy traffic conditions an averaging principle for tra-
jectories with Poisson approximation for flows of rare events in systems with
fast switches is proved. The method of proof is based on limit theorems for
processes with semi-Markov switches.

Applications to the reliability analysis of state-dependent Markov and semi-
Markov queueing systems in light and heavy traffic conditions are considered
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8.1 Introduction

Models of real technical systems have usually a high dimension and a complex
structure. Exact analytic solutions can be obtained only for special rare cases.
Therefore asymptotic methods play a basic role in the investigation and ap-
proximate modelling. At the analysis of highly reliable complex systems various
events connected with failures, changes in the regime of operation, exceeding
of some level, etc., usually have small probabilities (or rates) and depend on a
trajectory of a system. This implies a significance of the analysis of so called
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flows of rare events in reliability theory. Different asymptotic approaches for
reliability analysis of various classes of stochastic systems are studied in the
books [Korolyuk and Turbin (1978), Kovalenko (1980), Anisimov et al. (1987),
Anisimov (1988)]. An asymptotic analysis of wide classes of regenerative queue-
ing models is considered by Soloviev (1970). A survey of results devoted to the
analysis of rare events in queueing systems is given by Kovalenko (1994).

In this paper we provide the asymptotic analysis of flows of rare events
switched by some random environment. The environment may be nonhomoge-
neous in time and not regenerative. In case when the environment satisfies an
asymptotically mixing condition, an approximation by nonhomogeneous Pois-
son flows is proved. A special attention is given to the case of finite Markov
processes (MP) with transition rates of different orders. The notions of S-
set and ”monotone” structure are introduced in non-homogeneous case and an
asymptotic behaviour of a flow of rare events on S-sets and the exit time from
the S-set are studied. We mention that in homogeneous case corresponding
notions were introduced by Anisimov (1970),(1973),(1974).

The method of S-sets allows to study the asymptotic behaviour of the time
of 1st loss of a call for wide classes of queueing systems and networks with finite
number of states and in the case of fast service or light loading (see Anisimov
et al. (1987), Anisimov and Sztrik (1989), Sztrik and Kouvatsos (1991), Sztrik
(1992), Anisimov (1996)).

In case when the environment is a non-homogeneous MP which satisfies
conditions of the asymptotic consolidation (aggregation) of a state space, an
approximation of flows of rare events by Poisson flows with Markov switches is
studied.

We mention that models of the asymptotic consolidation of the state space
of MP’s and semi-Markov processes (SMP) and algorithms of the sequential
aggregation of the state space are studied in Anisimov (1970), (1973), (1974).
For homogeneous MP’s in continuous time with transition rates of different
orders similar results (an analysis of stationary and transient probabilities in
case of the asymptotic aggregation of the state space) are obtained by Courtois
(1977) and Bobbio and Trivedi (1985). On the base of operator technique
models of the asymptotic consolidation of homogeneous MP and SMP’s are
studied by Korolyuk and Turbin (1978).

In heavy traffic conditions an averaging principle for trajectories with Pois-
son approximation for flows of rare events is proved. The method of proof is
based on the results of Anisimov (1994), (1995) and Anisimov and Aliev (1992)
for processes with semi-Markov switches.

Applications to the reliability analysis of state-dependent Markov and semi-
Markov queueing systems of the type Mgny.o/Mswm,g/m/k in light and heavy
traffic conditions are considered. The models of the asymptotic consolidation
and the case of highly reliable servers are considered as well. Another applica-
tions can be found in Anisimov (1996), (1998), (1999).
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The results obtained give us an approximate analytic approach in modelling
of reliability characteristics of rather complex queueing models in transient and
stable regimes under light and heavy traffic conditions.

8.2 Flows of Rare Events in Systems with Mixing

In various models the analysis of reliability is essentially connected with analysis
of flows of rare events on the trajectory of a system. In many models rare events
may appear only in some region of the state space and in some cases this region
is accessible with small probability.

Let for any n > 0 z,(t),t > 0 be a random process with state space X
and {qn(z,t),z € X,t > 0} be nonnegative functions such that ¢,(z,t) = 0 as
x & Zy, where Z, C X. Denote by (zn(t),II,(t)),t > 0 a two-component process
such that IT,(¢) is a Poisson process switched by z,(t) with instantaneous rate
of jump at time ¢t gn(zn(t),t). We can interpret g,(z,t) as the rate of failure
in state z at time t, and II,(t) is the total number of failures on the interval
[0,t]. We study the behaviour of II,(¢). In this section we suppose that z,(t)
satisfies an asymptotically mixing condition in Z,.

Let us introduce a strong mixing coefficient (s.m.c.) in Zy:

on(u, Zy,) =sup sup |P{zn(t) € A1, zn(t +u) € Ag}—
t>0 A1,A2CZn

P{z,(t) € A1}P{z,(t + u) € A} (2.1)
Put vy
Ay(t) =E /0 gn(z(v), v)dv,

where V;, — oo, and let fIn(t) be a nonhomogeneous Poisson process with
integral intensity A, (t) that is

E exp{ifIL,(t)} = exp{(e? — 1)An(t)}.

For some fixed T' > 0 denote gn = supy¢(o 1) SUPzez, In(2,1)-

Theorem 8.1 Let
, [T
A nqn/o on(u, Zp)du — 0. (2.2)

Then the finite-dimensional distributions of processes I, (Vut) and Ii,(t) on the
interval [0, T] are asymptotically equivalent.
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Proof. According to the construction of II,(-), for any ¢ > 0 we have a repre-
sentation

Vat
E exp{ 011, (Vyt))} = Eexp{(e ™ - 1) /0 gn (@ (v), v)dv}.

Taking into account the inequality

|, S~ [ s < sup 1) sup 1P(4) - Q)

A€eBy

which is true for any non-negative bounded function f(y) and any non-negative
measures P(-),Q(-) on Y, we easily get that |Egn(zn(u),u)gn(zn(v),v) —
Eqn(zn(u),u) Egn(zn(v),v)| < ¢2on(v —u,Z,) as u < v. Then using the
inequality |e™® — e7%| < |a — b], a,b > 0, due to (2.2) we get

|E exp{~0ILn(Vat))} — exp{(e™® ~ 1) An(t)}]

< e~ 112(E( /0 " (@n (), 0)dv — An(t))Q)l/ ?_ 0(va,) — 0.

This relation proves the equivalence of one-dimensional distributions of I1,,(V,t)
and IT,(¢). By analogy the equivalence of finite-dimensional distributions can
be proved. |

Remark 8.1 In particular if ¢ = O(1/V,), then (2.2) is satisfied if there
exists such nonrandom sequence r,, that as n — oo

Vn‘lrn — 0, sup @np(u) — 0. (2.3)

u>ry

Remark 8.2 Let (2.2) hold and there ezist a continuous function Ag(t) such
that for any t € [0, 7]
nll»nolo An(t) = Ao(t).

Then the sequence of processes Il,(Vpt) J-converges on [0,T)] to the Poisson
process Ily(t) with integral intensity Ao(t) (J-convergence means the conver-
gence of measures in Skorokhod space Dr ).

This means that flows of rare events in systems with mixing can be approx-
imated by Poisson processes with average integral intensity. Denote now by v,

the time of the first jump of II,(t) (time of first failure).

Consequence 8.1 If Q(a) = (a?/2)"}(e*~1—a) and t < T, then

exp{—An(t)} < P{vn > Vat} < exp{—An(t)}(1 + %Q(An(t))an).
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Analogous results can be obtained for discrete time models.

The main problem in applications is how to estimate the function Ay(-) and
the s.m.c. pn(u,Zy,). Further we consider homogeneous and nonhomogeneous
finite Markov processes and show that A,(-) can be replaced by an equivalent
function calculated with the help of stationary or quasi-stationary distribution.

8.3 Asymptotically Connected Sets (S-Sets)

We introduce an important notion of V,-S-set (asymptotically connected set).
Let z,(t),t > 0 be a Markov process (MP) in discrete or continuous time with
finite state space X = {1,2,...,7}. Let X be some fixed subset of X.

Definition 8.1 The subset Xg is called a V,-S-set if as n — oo
P{z,(t) € Xo, t < Vp/2,(0) =4} — 1 and for any i,j € X

P{ there ezists u, u < Vy, such that z,(u) = j/zp(0) =i } — 1.

This means that on the interval [0, V;] process stays in X with probability
close to one and all states in Xy asymptotically communicate. In particular the
total state space X may form a V,,-S-set. In that case (2.3) is satisfied.

8.3.1 Homogeneous case

Consider now discrete time and suppose that z,x,k > 0 is a homogeneous MP
with finite state space X. Let {xnk(i),i € X}, k > 0 be jointly independent
families of rare indicators, that is P(xnx(7) = 1) = 1 — P(xnk(7) = 0) = ¢n(3),
where ¢, (i) — 0, i € X. Let

[Vat]

On(Vat) = > Xnk(Tnk)-
k=0

Suppose that X forms a V;,-S-set. Denote by m,(i),i € X the stationary dis-
tribution of z,x which exists at this assumption. Put Ap = Y ;cx mn(i)gn (7).

Statement 8.1 If limsup,_, ., VaAn, < 00, then Vomp(i) — oo, @ € X, and
finite-dimensional distributions of the process Il,(Vyt) and the Poisson process
with parameter V, Ay, are asymptotically equivalent.

These results give also the possibility to study the exit time from the region.
Let X, be some fixed subset of X. Denote by v, (i, Xp) the exit time from X
given that the initial state is i € Xp.
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Definition 8.2 The subset Xy is called an S-set if for any 1,5 € Xo
P{ there exists k, k < vp(i, Xo) such that Tpg = j/Tno=1}—1 as n — .

Consider an auxiliary MP &, with state space X and matrix of transition
probabilities  Pn(Xo) = ||pn(i, 1)pn(é, Xo) |, 4,5 € Xo, where pn(i,Xo) =
Y lex, Pn(iy 1). Denote by 7, (i), 7 € Xo its stationary distribution (which exists
at least at large enough n) and put gn(Xo) = ¥ ;e x, Tn(i)(1 — pa(i, Xo)).

Statement 8.2 If X forms an S-set, then for any ig € Xy

nli_{%op{gn(XO)Vn(iO, XO) > t} = exp{—t}, t>0.

We mention that Xy forms also a gn(Xo)"l—S—set for T, and it is always
possible to find such V;, that V,,gn(Xo) — 0 and X forms a V,-S-set for zp.
Let us consider a special type of V;,-S-set which is called a ”monotone struc-
ture”. We give here a corresponding definition for continuous time. The case
of discrete time was considered in Anisimov at al. (1987), Anisimov (1996).
Let x,(t),t > 0 be some MP with finite state space Z which can be repre-
sented in the form: Z = {(i,s), i € X5, s = 0,7}, and given transition rates

(3, 8), (4, 9))-

Definition 8.3 The state space Z is called a "monotone structure” if as n —
oo the following asymptotic relations hold:

1. ;un((ivs)v(j,s + 1)) = En(s)aij(s)(l +0(1))’ 1 € Xsaj € Xs+17 where
en(s) =0, s=0,7—1;

2. “n((z73)7(]7‘9+k)) =O’ i€ XS, ] € Xs+k7s = 0,7‘—2, k> ]-y
3. un((Z,S),(],k)) = ,U’U(Sak)(l + 0(1))3 (&S XS7j € Xka s = Wak <s;

4. the matriz G(s) — M(s) is invertible for each s = 1,7, where G(s)
is a diagonal matriz with elements ,ul(s) = Ym<sjeXn Hij(s,m) and

M(s) = [ltsy(5,5)l1isj € Xeyi # j, where we put (s, ) = 0, i € X

5. an augiliary MP with state space {(¢,0),5 € Xo} and transition rates
1i5(0,0) is irreducible with stationary distribution p;,i € Xo.

We call a subset of states Zq = { (¢,q), ¢ € X,} a g-level, ¢ =0,r.
Let p,(s) = (pn(i,s), i € Xs), s =0,m, and p = (p;, i € X;) be row-
vectors, where pn(i,s) be the stationary probability of state (i,s). We put
—_ 1781 .
bn(s) = j=0 En(J)'
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Theorem 8.2 If Z forms a monotone structure, then for any v, — oo it also
forms v, 6,(r)~1-S-set and for q=1,r the following representation holds:

Pn(q) = Sn(@)a(g)(1 + o(1)),

where a(q) = pIIig A(G)(G(G+1)-M(i+1))7", Als) =llaij(s)ll, 1,5 € X,
;= C() = (k)C(kH) -C(s).

The proof is made recursively to the order of the monotone structure by
analogy to discrete case [Anisimov (1996)].

Remark 8.3 If Z forms a monotone structure, then for any level ¢ and some
0<a<l op(u,Zy) <Cop(q)a®

Using Remark 8.3 we can study flows of rare events of different orders on the
monotone structure. Denote by II,(t) a switched Poisson process constructed
on the trajectory of xn( ) according to the rate ¢, (7, s) in state (i, s), where
(4, 8) = gnbi(s) [1j=5 en(§)(1 + o(1)) and g, — 0 (we set [II7' = 1). Put
Vo = (gnbn(r))~".

Consequence 8.2 If the state space Z forms a monotone structure, then I, (V,t)
J-converges to the Poisson process with parameter A = Y5_o(ai(s),b(s)), where
b(s) is a column vector with elements bi(s),i € Xs.

In particular if Z is a subset of the state space and the rate of exit from
state (4, s) is equal to gn (i, ), then using Consequence 8.2 we get an exponential
approximation with parameter A for the variable V, 1, (4, s), where Q, (i, s) is
the exit time from Z starting from state (i, s).

These results can be extended to the case when z,(t),t > 0 is a SMP such
that an embedded MP forms a monotone structure [Anisimov (1996)].

8.3.2 Nonhomogeneous case

We extend now the notion of the monotone structure to the case when z,(t)
is a nonhomogeneous MP. Suppose that z,(t) takes values in Z = {(i,s), i €
X5, s =0,r} and transition rates at time t are un((3, 3), (4, 9), t).

Let there exist a normalizing factor V;, such that the rates pn((3, s), (4, q), Vat)
satisfy all items of Definition 8.3 where the values a;;(s) = a;;(s,t) and p;5(s, k) =
1 (s, k,t) depend on t. That means for instance p,((%, 8), (4,q), Vat) = en(s)as;

o(1) for item 1. We denote corresponding matrices as G(s,t) and M(s,t). Let

pi(t),i € Xo be the stationary distribution of auxiliary MP with state space
{(4,0),% € Xo} and transition rates p;(0,0,t), i # j.

Suppose also that the following condition is satisfied: functions a;;(s,t) and
pij (s, k, t) are piecewise continuous in ¢ and if a;;(s, 1) > 0, then for some ¢y > 0
aij(s,t) > co on some interval [0, T] (the same for u;;(s, k, t)).
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Then the set Z forms a monotone structure in the scale of time V;,.
Denote

q—-1
a(g,t) =p(t) [T AG, )(GG +1,8) = M(j +1,¢))~".
j=0

Theorem 8.3 If Z forms a monotone structure, then as ¢q=1,7,0<t<T
(P{zn(Vat) = (i,9)},i € Xq) = bn(q)a(q, t)(1 + o(1)),

and
P{zn(Vat) = (1,0)} = pi(t)(1 + (1)), i € Xo. (3.1)

We mention that right hand side plays a role of quasi-stationary probability.
Using this result we can study the behaviour of flows of rare events by

analogy to Consequence 8.2. Let II,,(t) be constructed on z,(t) according to the

rate gn(i, s, t), where gn(i, s, Vnt) = gnbi(s,t) [T}2; €n(5) and Vo, = (gnbn(r))~".

Consequence 8.3 If Z forms a monotone structure, then I;(Vpt) converges
to the Poisson process with local rate \(t) = 3 5_o(@(s,t),b(s,t)), where b(s,t)

is a vector with elements b;(s,t),1 € X.

In particular if Z is a subset of the state space and the rate of exit from
state (,s) at time ¢ is equal to gn(3, s,t), then

P{V, ' (i,5) > t} — exp{— /Ot X(u)du} (3.2)

8.4 Asymptotically Consolidated Systems

We note that as it follows from Consequences 8.2, 8.2 the asymptotic behaviour
of exit time from S-set does not depend on the initial state. This gives the
possibility of studying models of asymptotic consolidation of state space (see
Anisimov, 1973, 1978, 1998, Anisimov et al., 1987).

Let 2 (t) be a nonhomogeneous MP with finite state space X and transition
rates un(1,7,t),4,%4 € X,i # j,t > 0. Suppose that for X and pn(i,,t) we have
the following representation:

X = |J Xk, where X, [\ Xk, =0 as ky # ko, (4.1)
key

pn (3, 5, Vat) = O (3, 5,) + Vi tho (4, 5, ) (1 + 0(1)), 4,1 € X, (4.2)
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where ho(i, 7, t) are continuous functions, for any k € Y u(o)(z jt)=0asi€
Xk, j € Xk and V,, — oo. This means that X can be divided on non-intersected
regions with small transition rates of the order O(1/V;) among them.

Denote by I, (t) a Poisson type process switched by x,(t) with rate g, (i,t)
at time ¢ in state ¢ and consider its asymptotic behaviour.

Consider for simplicity the quasi-ergodic case. Suppose that at each k uni-
(6,5, w) = pois yw), 5 €
Xk, 1 # 7, and at each fixed u an auxiliary homogeneous MP {x(() )(t u),t > 0}
with state space X and transition rates po(i, j,u) is ergodic with stationary
distribution pgk)(u),i € Xx. Forany k € Y, m € Y, k # m we introduce the
instantaneous average transition rates among regions

olk,mt) =S () Y holi, 1, ).

1€ X leEXm

formly in u € [0, T] there exist continuous limits p

Let y(t) be a nonhomogeneous MP with state space Y and transition rates
at time ¢ Ao(k,m,t),k # m. Suppose that gn(i, Vpt) = V. lgo(i, t)(1 + 0(1)),
where qo(7,t) are continuous functions. Denote q(k,t) = 3 ;cx, pgk)(t)qo(i,t).
Let us introduce a consolidated process Z,(t) = k, if zp(t) € Xk, t > 0.

Theorem 8.4 At our assumptions the sequence (Zn(Vpt), I, (Vo(t)) J-converges
on [0,T] to the process (y(t),Io(t)), where Ily(t) is a Poisson type process
switched by y(t) with local rate in the state k at time t q(k,t).

This result can be extended to the case, when regions X form V,,-S-sets or
in particular monotone structures in the scale of time V,. B

It is also possible to study the exit time from some subset X which satisfies
conditions of the asymptotic consolidation of states (4.1), (4.1). Using the same
technique we can represent the exit time from X as the time of first jump of
IT,(t) and prove that asymptotically it is equivalent to the time 7 of first jump
of ITy(t). We mention that 7 is a PH-type random variable.

That means, in complex systems with different orders of transition rates
we in general can approximate the distribution of the time of first failure by
PH-type distribution.

8.5 Heavy Traffic Conditions

In heavy traffic conditions the trajectory of a system is usually non-stable and
goes to infinity. We consider the behaviour of a flow of rare events on the
trajectory of a switching type system, which satisfies the averaging principle.
Let for each n > 0 Fp = {Guk(t,2,2), t >0, z€ X, z€ R"}, k>0
be jointly independent families of random processes in DI, z,(t), t > 0 be an
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independent of F,;, semi-Markov process (SMP) in X which plays the role of
switching environment, Spo be the initial value. Denote by 0 = t,0 < tp1 <

- the epochs of sequential jumps of z,(-), and Tpx = Zp(thk), £ > 0. We
construct a process with semi-Markov switches (PSMS) in the following way.
Let Spk41 = Snk + &nk, where &k = Cuk(Tnk, Tnk, Snk)y Tk = tak+1 — tnk,
and let (,(t) = Snk + Cuk(t — tnks Tnk, Snk) 88 tnk <t < tpkt1, t > 0. Then
the process (zn(t), (a(t)), t > 0 is a PSMS (see Anisimov (1994), (1995)).

Let {gn(z,2),z € X,z € R"} be a family of non-negative functions. We
construct a Poisson type process I, (t) switched by (zn(t), (n(t)) as follows: if
at time t xp(t) = z,(a(t) = 2, then II,(¢) has the rate of jump gn(z, 2).

Consider for simplicity the homogeneous case (distributions of processes
Cnk(+) do not depend on the index k > 0). Let 7,(x) be the sojourn time in state
z of z,(-). Denote &,(z,2) = (ni(mn(2),2,2), gn(z,2) = sup{|(ni(t, z,2)]| :
t<m(z)}, zeX, zeR".

Suppose that an imbedded MP x,k, k > 0 has at each n > 0 the stationary
measure 7, (A), A € Bx and put mu(z) = E1y(z), bp(z,2) = Eéy(z,n2),

mp =/an(x)7rn(dx), bn(2) =/an(x, 2)mn(dz), gn(2) =/an(z,nz)7rn(dx).

Theorem 8.5 Suppose that n™1Spo RN S0, there ezists a sequence of integers
rn such that n~'ry — 0, supys, ¢n(k,X) — 0, where pu(k,X) is a s.m.c.
for zpi (see (2.1)), for any N > 0,e >0

lim sup supnP{n"tgy(z,nz) > €} =0,

n—»ool |<N x

limsup sup sup{En1(2)x(7n1(z) > L) + E{¢n1(z, n2)|x(lé(z, n2)| > L)} — 0,

n—oo |Z|<

as L — oo, for any x as max(|z1],|22|) < N |bn(z, 21) — bn(z, 22)| < Cn|21 —
23| + an(N), and |ngn(z,n21) — ngn(z,n22)| < Cn|21 — 22| + an(N), where
Cn are some constants, an(N) — 0 uniformly in |z1] < N, |22|] < N, also
there exist functions b(z),q(z) and a constant m such that for any z € R"
bn(2) — b(2), ngn(z) — q(2), mp = m > 0 and b(z) has no more than linear
growth.

Then the sequence (n~'(y(nt), I, (nt)) J-converges on [0,T) to the process
(s(t),TIo(t)), where s(0) = so, ds(t) = m~1b(s(t))dt and Ily(t) is a nonho-
mogeneous Poisson process with local rate at time t q(s(t)).

The proof is essentially based on averaging principle type theorems for pro-
cesses with semi-Markov switches given in Anisimov (1994),(1995).

We mention that if the state space of z,(t) satisfies conditions of asymptotic
consolidation of states (see (4.1),(4.2)), then in the limit we get the process
(s(t),p(t)) which is switched by MP y(t) (see Theorem 8.4).
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8.6 Analysis of Reliability of Queueing Models

We consider the basic state-dependent queueing system Mgn,o/Msn,g/m/k
and, basing on the previous results, study different cases devoted to the relia-
bility analysis in light and heavy traffic conditions.

8.6.1 Light traffic analysis in models with finite capacity

Consider a nonhomogeneous model Mys,q/Mp,g/m/k switched by some ex-
ternal Markov environment.

Let zn(t),t > 0 be a nonhomogeneous MP with values in X = {1,2,..,r}
and transition rates c,(4,7,t),4,7 € X,i # j,t > 0. Let the family of non-
negative functions {A,(4,t,q), pn(i,t,q), ¢ > 0,i € X,t > 0} be given. There
are m servers and k places for waiting. Denote by Q,(t) the number of calls
in the system at time ¢. The system operates in the following way. Calls enter
the system one at a time. If at time ¢t x,(t) = 7 and Qn(t) = g, then with rate
An(i,t,q) a call may enter the system and it takes an idle server if there is one.
If not, it goes to a queue if there are no more then k+m—1 calls in the system.
Otherwise this call is lost. A service rate for each busy server is un(i,t, q).

Suppose that we have light traffic and slow dependence on ¢, that is:

An(%, Vat, q) = endo(i 2, 9)(1 +0(1)), i € X, (6.1)
pin (%, Vnt, q) = po(i, t, q)(1 + o(1)), i € X, (6.2)
c'n(ivja Vnt) = Cl](t)(l + 0(1))’ 7').7 € X7Z 75 jv (63)

where e, — 0, Vy, = ,5"™~1, functions X (i, t, q), po(i, ¢, q),ci;(t) are continu-
ous, and all values o(1) — 0 uniformly in ¢ on some interval [0, T].

Consider at each fixed t an auxiliary homogeneous MP with transition
rates c;j(t),%,j € X and suppose that it’s ergodic with stationary distribution
pi(t),i € X. Let A(t, q) and G(g, t) be diagonal matrices with elements Ao (i, ¢, q)
and min(q, m)uo(%,t, q) correspondingly, C(t) = ||ci;(t)||, 7,7 € X,i # j, where
we assume c;;(t) = — 3, ¢ij(t).

Denote by p(t) and 1 row vectors with elements p;(t) and 1, and put

m+k—1 _

A=) [T Ale.H(Gla+1,1)- C(t) ) A(m+k, t)T.
q=0

Let Q,(¢,s) be the time of first loss of a call given that z,(0) = 7,@n(0) = s,
and Y, (t) be the number of lost calls on the interval [0, ¢].

Theorem 8.6 If conditions (6.1)-(6.3) are satisfied, then the relation (3.2) is
true and Yy (Vpt) J-converges to the Poisson Process with local rate A(t).
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In particular if there is no Markov environment then

R m+k—1

Mty = ( TI Hola thuola+1,6)7)dolm + ).
q=0

We mention that some classes of Markov and semi-Markov queueing models
with fast service in homogeneous case were considered in Anisimov et al. (1987),
Anisimov (1996).

Remark 8.4 If z,(t) satisfies conditions of asymptotic consolidation in the
scale of time V,, (see (4.1),(4.1)), then using Theorem 8.4 we get J-convergence
of Yp(Vpt) to Poison process I1(t) switched by limiting consolidated MP. Cor-
respondingly V. 1Q, (i, s) weakly converges to the time of 1st jump of II(t).

8.6.2 Heavy traflic analysis

Consider now the model Mspr,g/Msm,g/1/00 in heavy traffic conditions. For
simplicity we study the homogeneous case and suppose that parameters of
the model do not depend on n. The system is described by a homogeneous
SMP z(t),t > 0 with values in X = {1,2,..,r}. Process z(t) plays a role of
environment. Input and service rates are A(i,z) and u(i, 2) correspondingly,
q > 0,i € X,t > 0. There is one server and infinitely many places for waiting.
Denote by Q(t) the number of calls in the system at time ¢.

Suppose that calls are impatient, that is each call independently of others
may get a refusal (be lost) with local rate n=*q(z(t),n=1Q(t)), where q(4, z) is
some continuous function. Let Y, (t) be the number of lost calls on the interval
[0, t]. Suppose that z(t) is ergodic with stationary distribution p;,i € X. Denote

Mz) =3 M 2)pi, Blz) = Y pli 2)pi, G(2) = ) a(i, 2)pi,

ieX ieX ieX

Theorem 8.7 If Q(0) = nqo, functions (i, z), u(i, 2),q(i, 2) are locally Lips-
chitz with respect to z, and the function b(z) has no more then linear growth,
then Yy (nt) J-converges on [0,T] to the Poisson process with local rate q(s(t)),
where

~

s(0) = g0, ds(t) = (A(s(t)) - As(1))) dt,

and T is any positive value such that s(t) > 0 on the interval [0, T).

The proof uses the result of Theorem 8.5 and the representation of Q(t) as
a Switching Process (switching times ¢; < tp < ... are the epochs of jumps of

Analogous results can be proved for semi-Markov queueing networks.
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8.6.3 Systems with highly reliable servers

Consider the system Mg/Mg/r/oo in heavy traffic conditions. Suppose for
simplicity that there is no semi-Markov environment z(t) and there are r servers
which are subject to random failures. The system is described by families of
functions {\(g), p(¢), ¢ > 0} and random variables {n(q), x(q), ¢ > 0}. Values
n(-) correspond to batches (or volumes of information) of input calls, and «(:)
correspond to batches of served calls. Suppose that rates of failure and repair for
servers are small (of the order O(1/n)). That means, if at time t n=1Q(t) = q,
then the instantaneous rate of failure for each working server is n~'a(q), and
the instantaneous rate of repair for each failed server is n=!c(g). In this case
we naturally get the model which allows the asymptotic consolidation of states.

Denote by Ry(t) the number of servers “on” at time t. Let g(q) =

En(q), v(q) = Ex(i,q).

Theorem 8.8 Suppose, that Q(0) = ngo, Rn(0) = 7o, variables n(q), x(q)
are integrable uniformly in q in any bounded region, functions \(q), u(q), g(q),
v(q),a(q),c(q) are locally Lipschitz with respect to q and have no more then
linear growth. Then the sequence of processes (Ry(nt),n~1Q(nt)) J-converges
on [0,T] to the MP (R(t), 2(t)) in {0,1,..r} x [0,00) such that R(0) = ro, and
at fized z(t) = q the process R(t) has the following local rates of transitions: the
rate from k to k+1 is (r — k)b(q); from k to k — 1 is ka(q), otherwise the rate
is zero, k =0,1,..,r. Correspondingly, the process z(t) satisfies the equation:

2(0) = qo, dz(t) = (g(2(£)A(2(t)) = R(E)u(z()))((t)) ) dt.
Here T is any positive value such that z(t) > 0 on [0, T] with probability one.

We mention that the process R(t) at fixed z(t) = ¢ locally behaves as a
Birth-and-Death process with rates (r — k)b(q) and ka(q) correspondingly and
in some sense it plays the role of environment for z(¢). But in this case we have
a feedback between the environment and the process itself.

This result can be extended to the case, when we have additional semi-
Markov environment, and also to queueing networks (Mgsn,q/Msn,q/ki/oo)"
with unreliable servers.
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