
Complex Anal. Oper. Theory (2011) 5:941–953
DOI 10.1007/s11785-010-0066-5

Complex Analysis
and Operator Theory

Embeddings, Operator Ranges, and Dirac Operators

Petru Cojuhari · Aurelian Gheondea

Received: 30 January 2010 / Accepted: 23 March 2010 / Published online: 13 April 2010
© Birkhäuser / Springer Basel AG 2010

Abstract We present a generalized operator range construction associated to an
indefinite unbounded selfadjoint operator that yields closed embeddings of Kreı̆n
spaces. As an application we obtain an energy space representation, in the sense of
Friedrichs, of a general free Dirac operator.

1 Introduction

In our article [9] a generalization of the continuous embedding of Hilbert spaces,
that we call closed embedding and corresponds to unbounded kernel operators, has
been obtained and we investigated its connection with operator ranges, its properties
and especially uniqueness properties. These constructions have been exemplified by
Hilbert spaces associated to certain multiplication or differentiation operators and to
some Hilbert spaces of holomorphic functions. As an application it allows us to show
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the closed embedding for a certain homogenous Sobolev space that is associated to
a singular integral operator defined by the Riesz potential. The approach starts from
previous investigations on Hilbert spaces induced by unbounded operators, as consid-
ered in our article [7], and we show that closed embedding is a special representation
of a Hilbert space induced by a positive selfadjoint operator.

On the other hand, an indefinite generalization of Hilbert spaces is that of Kreı̆n
spaces, see e.g. [4] and the rich bibliography cited there, and it is an interest in math-
ematical physics in connection with models in relativistic quantum physics involving
operator theory in Kreı̆n spaces, e.g. see [10]. Another motivation for these investiga-
tions comes from the works of de Branges [5] and Dritschel and Rovnyak [18] where
operator spaces have been considered in the Kreı̆n space setting. In [8] it was obtained
an interpretation of the positive/negative energetic spaces associated to certain Dirac
operators in terms of induced Kreı̆n spaces, in the spirit of energy spaces of Friedrichs
[20,21]. But induced Kreı̆n spaces is a rather abstract notion and, thinking from the
perspective of function spaces models, a more concrete representation, in the spirit
of reproducing kernel Kreı̆n spaces is needed. The new concept, closely embedded
Kreı̆n spaces, is a generalization of the notion of closely embedded Hilbert spaces
but, in order to obtain the correct definition, a model is needed. Compared with its
positive definite counter-part, this concept has an interesting feature concerning the
splitting of the domain whose necessity can be obtained by considering a general-
ization of the de Branges space for an unbounded kernel. In this article we present
this generalization and apply it to the construction of a Kreı̆n space closely contained
in L2(Rn; C

m) associated to a general free particle Dirac operator. It is interesting
to note that the closely embedded Kreı̆n space is of homogeneous Sobolev type, as
well. There are other interesting questions that we leave out of this article (due to a
constraint related to the size of the manuscript) such as uniqueness conditions, that
we will consider in a forthcoming paper that will also contain an application to a
description of an energy space representation of a Dirac operator corresponding to a
massless free particle.

A few words on the prerequisites. Firstly, we assume that the reader is familiar
with the basic notions of indefinite inner product spaces and their linear operators,
e.g. see [4]. In this respect, our notation follows the one we used in [8] and we recall
this briefly in Subsect. 2.1. Also, we assume that the reader has a good command
of operator theory in Hilbert spaces, both bounded and unbounded. In particular, we
will use freely the main concepts and results in the operator theory of unbounded sel-
fadjoint operators, especially their spectral theory, borelian functional calculus, and
polar decompositions. All these can be found in the classical textbooks of Birman and
Solomyak [3], Kato [23], Reed and Simon [26,27]. Occasionally, we will also use
freely the basic notions on Sobolev spaces, e.g. see Adams [1], and Maz’ja [25].

2 Induced Kreı̆n Spaces

In this section we recall the notion of a Kreı̆n space induced by a selfadjoint operator
in Hilbert space, cf. [7]. We first recall some basic facts about Kreı̆n spaces and their
operator theory.
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2.1 Kreı̆n Spaces and their Linear Operators

We recall that a Kreı̆n space K is a complex linear space on which it is defined an
indefinite scalar product [·, ·] such that K is decomposed in a direct sum

K = K+[+̇]K− (2.1)

in such a way that K± are Hilbert spaces with scalar products ±[·, ·], respectively and
the direct sum in (2.1) is orthogonal with respect to the indefinite scalar product [·, ·],
i.e. K+∩ K− = {0} and [x+, x−] = 0 for all x± ∈ K±. The decomposition (2.1) gives
rise to a positive definite scalar product 〈·, ·〉 by setting 〈x, y〉 := [x+, y+]−[x−, y−],
where x = x+ + x−, y = y+ + y−, and x±, y± ∈ K±. The scalar product 〈·, ·〉 defines
on K a structure of Hilbert space. Subspaces K± are orthogonal with respect to the
scalar product 〈·, ·〉, too. We denote by P± the corresponding orthogonal projections
onto K±, and let J = P+ − P−. The operator J is a symmetry, i.e. a selfadjoint and
unitary operator, J ∗ J = J J ∗ = J 2 = I . The operator J is called a fundamental
symmetry of the Kreı̆n space K. Note that [x, y] = 〈J x, y〉, (x, y ∈ K). If T is
a densely defined operator from a Kreı̆n space K1 to another K2, it can be defined
the adjoint of T as an operator T � defined on the set of all y ∈ K2 for which there
exists hy ∈ K1 such that [T x, y] = [x, hy] for all x ∈ Dom(T ), and T �y = hy . We
remark that T � = J1T ∗ J2, where T ∗ denotes the adjoint operator of T with respect to
the Hilbert spaces (K1, 〈·, ·〉J1) and (K2, 〈·, ·〉J2). We will use � to denote the adjoint
when at least one of the spaces K1 or K2 is indefinite. In the case of an operator
T defined on the Kreı̆n space K, T is called symmetric if T ⊂ T �, i.e. if the rela-
tion [T x, y] = [x, T y] holds for each x, y ∈ Dom(T ) and T is called selfadjoint if
T = T �.

A (closed) subspace L of a Kreı̆n space K is called regular if K = L + L⊥, where
L⊥ = {x ∈ K | [x, y] = 0 for all y ∈ L}. Regular spaces of Kreı̆n spaces are
important since they are exactly the analogue of Kreı̆n subspaces, that is, if we want
L be a Kreı̆n space with the restricted indefinite inner product and the same strong
topology, then it should be regular. In addition, let us recall that, given a subspace L
of a Kreı̆n space, we call L non-negative (positive) if the inequality [x, x] ≥ 0 holds
for x ∈ L (respectively, [x, x] > 0 for all x ∈ L \ {0}). Similarly we define non-
positive and negative subspaces. A subspace L is called degenerate if L ∩ L⊥ 
= {0}.
Regular subspaces are non-degenerate. As a consequence of the Schwarz inequal-
ity, if a subspace L is either positive or negative it is nondegenerate. A remarkable
class of subspaces are those regular spaces that are either positive or negative, for
which the terms uniformly positive, respectively, uniformly negative are used. These
notions can be defined for linear manifolds also, that is, without assuming closed-
ness.

A linear operator V defined from a subspace of a Kreı̆n space K1 and valued into
another Kreı̆n space K2 is called isometric if [V x, V y] = [x, y] for all x, y in the
domain of V . A unitary operator between Kreı̆n spaces means that it is a bounded iso-
metric operator that has a bounded inverse. Also, a coisometric operator W between
two Kreı̆n spaces is a bounded operator such that its adjoint W � is isometric.
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2.2 Kreı̆n Spaces Induced by Symmetric Operators.

If A is a symmetric densely defined linear operator in the Hilbert space H we can
define a new inner product [·, ·]A on Dom(A), the domain of A, by

[x, y]A = 〈Ax, y〉H, x, y ∈ Dom(A). (2.2)

In this subsection we recall the existence and the properties of some Kreı̆n spaces
associated to this kind of inner product space, cf. [8].

A pair (K,�) is called a Kreı̆n space induced by A if:

(iks1) K is a Kreı̆n space;
(iks2) � is a linear operator from H into K such that Dom(A) ⊆ Dom(�);
(iks3) � Dom(A) is dense in K;
(iks4) [�x,�y] = 〈Ax, y〉 for all x ∈ Dom(A) and y ∈ Dom(�).

The operator � is called the canonical operator.

Remark 2.1 (1) (K,�) is a Kreı̆n space induced by A if and only if it satisfies the
axioms (iks1)–(iks3) and

��� ⊇ A, (iks4’)

in the sense that Dom(A) ⊆ Dom(���) and Ax = ���x for all x ∈ Dom(A).
(2) If A is selfadjoint, hence maximal symmetric, the axiom (iks4’) is equivalent

with

��� = A, (iks4”)

in the sense that Dom(���) = Dom(A) and Ax = ���x for all x ∈ Dom(A).
(3) Without loss of generality we can assume that � is closed.
(4) If the symmetric densely defined operator A admits an induced Kreı̆n space

(K,�) such that � is bounded, then A is bounded. The converse is not true,
in general, that is, if A is bounded then it may happen that � is unbounded.
However, if A is not only bounded but also everywhere defined (in particular, if
A is bounded selfadjoint), then the operator � is bounded as well.

For a densely defined symmetric operator A in a Hilbert space, various necessary
and sufficient conditions of existence of Hilbert spaces induced by A are available
(see [8]). In this paper we are interested mainly in the case of selfadjoint operators,
when the existence is guaranteed by the spectral theorem.

Two Kreı̆n spaces (Ki ,�i ) i = 1, 2, induced by the same symmetric operator A,
are called unitary equivalent if there exists a bounded unitary operator U : K1 → K2
such that U�1x = �2x , for all x ∈ Dom(A).
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3 Closely Embedded Kreı̆n Spaces

In this section we make the connection between induced Kreı̆n spaces and de Branges-
Rovnayk [6] and Schwartz [28] theory of Hilbert/Kreı̆n spaces continuously contained.
It was shown in [12] that for bounded selfadjoint operators, continuously embedded
Kreı̆n spaces are particular cases of induced Kreı̆n spaces. To a certain extent we
replace “continuously embedded” by “closely embedded” but, once again, the intri-
cate geometry of Kreı̆n spaces makes additional difficulties.

3.1 The Induced Kreı̆n Space (BA,�BA )

In this subsection we start with a selfadjoint operator A and present a particular con-
struction of a Kreı̆n space induced by A, in the spirit of de Branges Kreı̆n space of
operator range type.

Let A be a selfadjoint operator in a Hilbert space H and consider its polar decom-
position A = SA|A|, where |A| = (A2)1/2 is a positive selfadjoint operator in H and
SA ∈ B(H) is a selfadjoint partial isometry, SA = S∗

A and S2
A = PH�Ker(A), in partic-

ular Ker(SA) = Ker(A). As in [9], let us consider the Hilbert space H+ = R(|A|1/2),
continuously embedded in H and having the kernel operator |A|, that is, with the
closed embedding j+ : Ran(|A|1/2) → H, and such that |A| = j+ j∗+. Then the
positive definite inner product of H+ is

〈|A|1/2x, |A|1/2 y
〉
+ = 〈

PH�Ker(A)x, y
〉
H, x, y ∈ Dom

(|A|1/2). (3.1)

We define an indefinite inner product [·, ·]BA on Ran(|A|1/2) by

[|A|1/2x, |A|1/2 y
]
BA

:= 〈SAx, y〉H , x, y ∈ Dom
(|A|1/2). (3.2)

Denote BA := (H+; [·, ·]BA ) as an indefinite inner product and let �BA be the linear
operator H → BA defined by Dom(�BA) = Dom(|A|) and �BA x = |A|x for all
x ∈ Dom(|A|).

Proposition 3.1 With the notation as before, (BA;�BA ) is a Kreı̆n space induced

by the selfadjoint operator A having, in addition, the property that Ran(�
�

BA
) =

D+[+]D− for some positive/negative uniformly definite linear manifolds D± of the
Kreı̆n space BA.

Proof We verify the axioms (iks1)–(iks4) from the definition of the induced Kreı̆n
space.

(iks1) Since the bounded operator SA commutes with |A|1/2, it leaves invariant
the linear manifold Ran(|A|1/2). We prove that SA| Ran(|A|1/2) extends uniquely to
a symmetry in the Hilbert space H+(= BA). Indeed, for any x, y ∈ Dom(|A|1/2) we
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have
〈
SA|A|1/2x, |A|1/2 y

〉

+ = 〈SAx, y〉H
= 〈PH�Ker(A)x, SA y〉H
= 〈|A|1/2x, SA|A|1/2 y

〉
+,

hence SA is symmetric in the Hilbert space H+ as well, and

〈
SA|A|1/2x, SA|A|1/2 y

〉
+ = 〈SAx, SA y〉H

= 〈PH�Ker(A)x, y〉H
= 〈|A|1/2x, |A|1/2 y

〉
+,

and hence SA is isometric in H+ as well. Thus, SA| Ran(|A|1/2) extends uniquely to
a symmetry in the Hilbert space H+(= cBA). Taking into account (3.2), this shows
that BA is a Kreı̆n space and that the extended operator, still denoted by SA, is a
fundamental symmetry.

(iks2) By definition, Dom(�BA) = Dom(|A|) = Dom(A).
(iks3) We have to prove that �BA Dom(A) = Ran(|A|) is dense in BA = H+ with

respect to the norm ‖ · ‖+, which follows from Theorem 3.4.(c) in [9].
(iks4) We have to prove that for all x ∈ Dom(�BA) = Dom(|A|) and all y ∈

Dom(A) we have

[�BA x,�BA y]BA = 〈Ax, y〉H. (3.3)

Indeed,

[
�BA x,�BA y

]
BA

= [|A|1/2|A|1/2x, |A|1/2|A|1/2 y
]
BA

= 〈
SA|A|1/2x, |A|1/2 y

〉
H

= 〈|A|1/2SA|A|1/2x, y
〉
H

= 〈Ax, y〉H.

Finally, we prove the additional property. This follows due to the fact that SA,
which is a fundamental symmetry of the Kreı̆n space BA, commutes with |A|1/2 and
hence Ran(�BA) = Ran(|A|1/2) = D+[+]D−, where D± = (I ± SA) Ran(|A|1/2)

is positive/negative uniformly definite in the Kreı̆n space BA. ��
Remark 3.2 With the notation as in Proposition 3.1 let us observe that the closure of
�BA is j�+.

The Kreı̆n space BA may not be uniquely determined by the selfadjoint oper-
ator A for the indefinite case, even for bounded kernel operators A, as observed
by Schwartz [28] and de Branges [5]. This phenomenon is reflected also in the
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lack of uniqueness, modulo unitary equivalence, of Kreı̆n spaces induced by general
selfadjoint operators; see Hara [22] (as well as equivalent results in [11] and [17]) for
the bounded case, and [8] for the unbounded case. For this reason it may be inter-
esting to point out the unitary equivalence of the induced Kreı̆n spaces (BA;�BA )

and (KA;�A). Briefly, with the notation as before, we can consider the seminorm
‖|A|1/2 · ‖ on Dom(A) and make the quotient completion with respect to this semi-
norm in order to get a Hilbert space (KA,�A) induced by |A|, cf. [7]. Further on,
SA can be lifted to KA and it yields an indefinite inner product [·, ·]A with respect to
which KA becomes a Kreı̆n space.

Proposition 3.3 Given a selfadjoint operator A in a Hilbert space H, the induced
Kreı̆n spaces (BA;�BA ) and (KA;�A) are unitary equivalent.

Proof Let U be the operator defined on Dom(A) = Dom(|A|) ⊆ KA and valued in
BA by

U x := |A|x, x ∈ Dom(A).

Then, for all x, y ∈ Dom(A) we have

[U x, U y]BA = [|A|x, |A|y]BA = 〈
SA|A|1/2x, |A|1/2 y

〉
H

= 〈|A|1/2SA|A|1/2x, y
〉
H = 〈Ax, y〉H = [x, y]A

and hence U is isometric with respect to the indefinite inner products. In addition,

‖U x‖+ = ‖|A|x‖+ =
∥∥∥|A|1/2x

∥∥∥H

and hence U is isometric with respect to the underlying positive definite inner prod-
ucts on KA and respectively BA, hence it it bounded. Since U has both dense domain
and dense range, it is uniquely extended to a bounded unitary operator between the
Kreı̆n spaces KA and BA. By the definitions of �A and �BA we have U�Ax =
|A|x = �BA x for all x ∈ Dom(A) = Dom(|A|) and hence U is the required unitary
equivalence. ��

3.2 Closely Embedded Kreı̆n Spaces

In view of Proposition 3.1 we can now introduce the definition of a closely embedded
Kreı̆n space. Without loss of generality the ambient space H will be considered a
Hilbert space. Thus, a Kreı̆n space K is called closely embedded in H, equivalently
we say that there exists a closed embedding of K in H, if:

(cek1) There exists a linear manifold D in K ∩ H that is dense in K.
(cek2) The canonical embedding j : D(⊆ K) → H is closed, as an operator from

K to H.
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(cek3) There exist positive/negative uniformly definite linear manifolds D± in K
such that Dom( j) = D+[+]D−.

This definition is a generalization of the concept of closely embedded Hilbert space
that allows us to establish the connection with induced Kreı̆n spaces. Again, the mean-
ing of the axiom (cek1) is that on D the algebraic structures of K and H coincide.

Proposition 3.4 If H is a Hilbert space and K is a Kreı̆n space closely embedded
in H, with embedding operator j , then A = j j� is a selfadjoint operator in H and
(K; j�) is a Kreı̆n space induced by A.

Proof By the Phillips Theorem, e.g. see [4], there exists K = K+[+]K− a funda-
mental decomposition of the Kreı̆n space K such that D± ⊆ K±, and let J be the
associated fundamental decomposition. Then A = j j� = j J j∗ is a selfadjoint oper-
ator in the Hilbert space H, where j∗ is the adjoint of j with respect to the Hilbert
space H+ := (K; 〈·, ·〉J ). Also, |A| = j j∗ and we can apply Proposition 3.1 in [9]
in order to conclude that (H+; j∗) is a Hilbert space induced by |A|. Since j� = J j∗
this implies that (K; j�) is a Kreı̆n space induced by A. ��

Given K, a Kreı̆n space closely embedded in the Hilbert space H, with the closed
embedding j : Dom( j)(⊆ K) → H, we call A := j j� the kernel operator of K.
The axiom (cek3) in the definition of a closely embedded Kreı̆n space is justified by
the anomaly in the indefinite setting that allows closed densely defined operators T
between Kreı̆n spaces such that T T � may not be densely defined.

Example 3.5 Let (wn) be a real sequence with wn 
= 0 for all n ∈ N. Let |w| = (|wn|).
On the Hilbert space �2|w|, of complex sequences x with

∑∞
n=1 |wn|x2

n < ∞, consider
the inner product

[x, y]w =
∞∑

n=1

wn xn yn, x, y ∈ �2|w|.

Then (�2|w|; [·, ·]w) is a Kreı̆n space.
We split the components of the sequence (wn) in two components according to the

signs, (w+
n ) and (w−

n ) (one of them may be a finite sequence). If either infn w+
n = 0

or infn w−
n = 0 then �2

w is closely embedded, but not continuously, in �2, with kernel
operator Mw−1 , the operator of multiplication with w−1 = (w−1

n ) in �2.

As a consequence of Proposition 3.3, Proposition 3.4 and the Lifting Theorem as
in [8], we have a generalization, to the unbounded case, of the indefinite variant of the
Lifting Theorem in [14] in the formulation of [18],

Theorem 3.6 Let A and B be two selfadjoint operators in the Hilbert spaces H1
and respectively H2. We consider the Kreı̆n spaces BA and BB, closely embedded in
H1 and respectively H2, as well as the closed embeddings jA : Dom( jA)(⊆ BA) →
H1 and respectively, jB : Dom( jB)(⊆ BB) → H2. Then, for any operators T ∈
B(H1,H2), and S ∈ B(H2,H1) such that

〈Bx, T y〉H2 = 〈Sx, Ay〉H1 , x ∈ Dom(B), y ∈ Dom(A),
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there exist uniquely determined operators T̃ ∈ L(BA,BB) and S̃ ∈ L(BB,BA) such
that T̃ j�Ax = j�B T x for all x ∈ Dom(A), S̃ j�B y = j�A Sy, for all y ∈ Dom(B), and

〈
S̃h, k

〉
BA

= 〈
h, T̃ k

〉
BB

, h ∈ BB, k ∈ BA.

4 Closely Embedded Kreı̆n Spaces Associated to Dirac Operators

Our motivation for introducing the concept of closely embedded Kreı̆n space comes
from the energy space representation, in the sense of Friedrichs [20,21], of the
Dirac operators. In this section we will use the definitions and basic properties of
Sobolev spaces, as in Adams [1] and Maz’ja [25]. In addition, some basic facts on
Dirac operators and their spectral theory that will be used can be found in Thaller [30].

Below the following notations are systematically used. We let L2(R
n; C

m) = C
m ⊗

L2(R
n) the space of all square summable C

m-valued functions on R
n . By û(ξ) we

denote the Fourier transform of u ∈ L2(R
n; C

m):

û(ξ) = 1

(2π)n/2

∫
u(x)ei〈x,ξ〉 d x,

in which 〈x, ξ 〉 designates the scalar product of all elements x, ξ ∈ R
n . Here and in

what follows
∫ := ∫

Rn . The norm in R
n (or C

m) will be denoted as simply by | · |.
The operator norm of m × m matrices corresponding to the norm | · | in C

m will be
denoted by | · |,as well. We will also need two more Hilbert spaces. W −1/2

2 (Rn; C
m)

is defined as the completion of L2(R
n; C

m) with respect to the norm

‖u‖2
W−1/2

2
:=

∫
(1 + |ξ |2)−1/2 |̂u(ξ)|2 d ξ. (4.1)

In addition, W 1/2
2 (Rn; C

m) is defined to be the Sobolev space of all u ∈ L2(R
n; C

m)

for which the norm

‖u‖2
W 1/2

2
:=

∫
(1 + |ξ |2)1/2 |̂u(ξ)|2 d ξ < ∞. (4.2)

Let H denote the free Dirac operator defined in the space L2(R
n; C

m) = C
m ⊗

L2(R
n) by

H =
n∑

k=1

αk ⊗ Dk + α0 ⊗ I, (4.3)

where Dk = i∂/∂xk for (k = 1, . . . , n), αk for (k = 0, 1, . . . , n) are m ×m Hermitian
matrices which satisfy the Clifford’s anticommutation relations

α jαk + αkα j = 2δ jk Im, ( j, k = 0, 1, . . . , n), (4.4)
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m = 2n/2 for n even and m = 2(n+1)/2 for n odd, δ jk denotes the Kronecker symbol,
Im is the m × m unit matrix, and I is the identity operator on L2(R

n).
We consider the operator H defined on its maximal domain, the Sobolev space

W 1
2 (Rn; C

m), and it is a selfadjoint operator. Note that

H2 =
n∑

k=1

α2
k ⊗ D2

k +
∑

j 
=k

(α jαk + αkα j ) ⊗ D j Dk

+
n∑

k=1

(α0αk + αkα0) ⊗ Dk + α2
0 ⊗ I

=
n∑

k=1

Im ⊗ D2
k + Im ⊗ I = Im ⊗ (−
 + I ),

that is,

H2 = Im ⊗ (−
 + I ), (4.5)

where 
 denotes the Laplace operator on R
n .

In the following we want to construct the space BH as in Subsect. 3.1. One of the
difficulties encountered in pursuing this way is related to making explicit and com-
putable the operator |H |1/2. Thus, we consider the polar decomposition of the Dirac
operator H writing H = S|H | with the selfadjoint and positive operator |H | (the
modulus of H ) defined on Dom(|H |) = Dom(H) and S = sgn(H). By (4.5) we have

|H | = Im ⊗ (−
 + I )1/2 and S = H
(

Im ⊗ (−
 + I )−1/2
)

.

Further on, we let

T = |H |1/2 = Im ⊗ (−
 + I )1/4 (4.6)

by considering T defined in L2(R
n; C

m) with domain Dom(T ) := W 1/2
2 (Rn; C

m).
The operator T represents on this domain a positive definite selfadjoint operator. In
particular, T is a boundedly invertible operator, and its inverse T −1 is the (vector-
valued) Bessel potential Im ⊗ (I − 
)−1/4 of order l = 1/2 (cf. Stein [29]).

We consider on Ran(T ) = L2(R
n; C

m) an inner product by setting

〈T f, T g〉 := 〈 f, g〉L2 , f, g ∈ W 1/2
2 (Rn; C

m).

We can choose for the completion of L2(R
n; C

m) with respect to the corresponding
norm ‖ · ‖T the space W −1/2

2 (Rn; C
m) that is not entirely made up of functions, but at

least of C
m-valued distributions. Keeping the notations made in Subsect. 3.1 we have

R(T ) = BH = W −1/2
2 (Rn; C

m), for T defined as in (4.6). Since S commutes with H ,
it follows from Theorem 3.6 that the operator S extends uniquely to a symmetry JT
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in the space R(T ), and hence W −1/2
2 (Rn; C

m) can be regarded as a Krein space with
respect to the fundamental symmetry JT . The corresponding indefinite inner product
is defined by

[u, v]T = 〈JT u, v〉
W−1/2

2
, u, v ∈ W −1/2

2 (Rn; C
m), (4.7)

and W −1/2
2 (Rn; C

m) is closely (but not continuously) embedded in the space

L2(R
n; C

m). The canonical embedding operator jT of W −1/2
2 (Rn; C

m) in L2(R
n; C

m)

is defined on the domain Dom( jT ) = L2(R
n; C

m), and since the kernel operator of
this closed embedding is H (cf. Proposition 3.4), we get that for the Dirac operator
there holds the following factorization

H = jT j�T = jT JT j∗T . (4.8)

Concerning the symmetry S, the space H := L2(R
n; C

m) can be decomposed into
an orthogonal direct sum

H = H+ ⊕ H−,

where H± = S±H and S± = 1
2 (I ± S), that is, S = S+ − S− is the Jordan decompo-

sition of S. This provides the Jordan decomposition of H = H+ − H−, where

H+ := S+ H S+ = S+S|H |S+ = S+|H |S+ ≥ 0,

and

H− := −S− H S− = −S−S|H |S− = S−|H |S− ≥ 0

on Dom(H). In this respect, we note that both operators H+ and H− are positive defi-
nite selfadjoint in H, and that σ(H−) = (−∞,−1] and σ(H+) = [1,+∞), (cf. (4.5))
and, of course, σ(H) = σ(H−) ∪ σ(H+) = (−∞,−1] ∪ [1,+∞).

Summing up, we proved the following

Theorem 4.1 (i) The space W −1/2
2 (Rn; C

m) defined by (4.1) can be organized as
a Kreı̆n space by extending uniquely the symmetry S to a fundamental symmetry
JT on the space W −1/2

2 (Rn; C
m).

(ii) The space W −1/2
2 (Rn; C

m) endowed with the indefinite inner product (4.7) is
a Kreı̆n space closely, but not continuously, embedded in L2(R

n; C
m), with

canonical embedding operator jT having the domain L2(R
n; C

m), and the
kernel operator of this canonical embedding jT is the Dirac operator H.

(iii) The Dirac operator H admits the factorization (4.8).

According to the Friedrichs interpretation of the energy space associated to a
Hamiltonian, the Kreı̆n space K = W −1/2

2 (Rn; C
m) can be regarded as the energy

space associated to the Dirac operator H . This space consists of distributions in
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which the function space L2(R
n; C

m) is dense. The Kreı̆n space structure of K
shows that there exist some vectors u of positive energy [u, u]K > 0, some vec-
tors v of negative energy [v, v]K < 0, as well as nontrivial vectors w of null energy
[w,w]K = 0. The fundamental symmetry JT defined as the lifting of the symmetry
S from H = L2(R

n; C
m) to K through the lifting Theorem 3.6, has a special role,

because the associated fundamental symmetry K = K−[+]K+ has the remarkable
property that H± are, respectively, dense in K±. Thus, even though some of the ele-
ments in K± are distributions, they can be normally approximated by functions in
H = L2(R

n; C
m), of the same type (that is, positive or, respectively, negative).
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