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ABSTRACT

EFFICIENT HLS-BASED IMPLEMENTATION OF
SPARSE MATRIX-VECTOR MULTIPLICATION ON

FPGA

Mert Kara

M.S. in Computer Engineering

Advisor: M. Mustafa Özdal

December 2021

Sparse Matrix-Vector Multiplication (SpMV) is an important core kernel used

in many scientific applications. SpMV is a communication-bound algorithm

that suffers poorly from spatial locality. It exhibits low computation-to-

communication ratio due to its inherent irregular memory access patterns. This

causes a significant waste of DRAM traffic and poor bandwidth utilization. Re-

cently published Propagation Blocking (PB) methodology tackles this communi-

cation bottleneck by dividing the execution into binning and accumulation phases,

allowing better locality in the cost of additional memory accesses. Building upon

PB approach, in this study, we design two FPGA kernels for binning and accumu-

lation phases using high-level synthesis, run together sequentially. Experimental

results and projections on larger data show that our design can provide up to

7.9x speedup over the CPU baseline implementation.

Keywords: FPGA, Accelerator, SpMV, HLS.
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ÖZET

FPGA ÜZERİNDE SEYREK MATRİS-VEKTÖR
ÇARPIMININ VERİMLİ HLS-TABANLI UYGULAMASI

Mert Kara

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: M. Mustafa Özdal

Aralık 2021

Seyrek Matris-Vektör Çarpımı (SpMV), birçok bilimsel uygulamada kullanılan

önemli bir çekirdek algoritmadır. SpMV, uzamsal yerellikten çok düşük

oranda faydalanabilen, iletişime bağlı bir algoritmadır. Düzensiz bellek erişim

kalıpları nedeniyle düşük hesaplama-iletişim oranı sergiler. Bu, DRAM trafiğinin

önemli miktarda etkili kullanılamamsına ve zayıf bant genişliğine neden olur.

Yakın zamanda yayınlanan Yayılma Bloklama (PB) metodolojisi, SpMV algo-

ritmasını gruplama ve toplama şeklinde iki aşamada gerçekleştirerek bu iletişim

darboğazının üstesinden gelir ve ek bellek erişimi ile daha iyi yerellik sağlar. PB

yaklaşımına dayanarak, bu çalışmada, sıralı olarak birlikte çalışan üst düzey sen-

tez kullanarak gruplama ve biriktirme aşamaları için iki FPGA çekirdeği tasar-

ladık. Yaptığımız deneyler ve projeksiyonlar, tasarımımızın CPU temel uygula-

ması üzerinde 7,9 kata kadar hızlanma sağlayabileceğini gösteriyor.

Anahtar sözcükler : FPGA , Hızlandırıcı, SpMV, HLS .
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Chapter 1

Introduction

Sparse matrix-vector multiplication(SpMV) is a fundamental computational ker-

nel for many scientific applications. It is primarily used in iterative linear solvers,

where a repeated computation on the resulting vector is performed until con-

vergence. PageRank algorithm, which calculates the importance of vertices in a

graph, is a famous application where SpMV exhibits itself as the core compu-

tational kernel. SpMV and PageRank are memory communication bound algo-

rithms that suffer from poor spatial and temporal locality.

With the increased availability and size of data, improving the performance

of SpMV computation, both in terms of execution time and energy efficiency,

has gained importance. In order to improve bandwidth utilization of SpMV,

several two-phase algorithms have been proposed. In these algorithms, SpMV is

separated into two phases as binning and accumulation, similar to scatter-gather

paradigm. In the binning phase, corresponding vector and matrix inputs are

multiplied and written into intermediate bin buffers as pairs of destinations and

contributions where each bin buffer holds the pairs for a certain partition of the

output vector. In the accumulation phase, these pairs are read and contributions

are added to their destinations for each output vector partition[1, 2, 3].
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Field-Programmable Gate Array (FPGA) has emerged as a promising plat-

form for accelerator development with the growing interest in energy-efficient

acceleration.[4, 5, 6, 7]. FPGAs outperform multi-core and GPU systems in

performance per watt and have been integrated into data centers to accelerate

computation-intensive activities [5, 6]. High-level synthesis(HLS) research has

also got its share from the growing popularity of FPGAs. HLS community has

seen much activity in the recent years, with a plethora of HLS tool offerings,

from both industry and academia. HLS tools automatically produce a circuit

specification that performs the function provided with a high-level language such

as C/C++, and SystemC. This allows designers to work at a higher-level of ab-

straction than hardware description languages such as Verilog and VHDL, pos-

sibly shortening production time and reducing the required level of hardware

expertise. [8].

Although FPGAs are primarily more suitable for applications with low

random-access patterns, we observed that recently proposed two-phase SpMV

algorithms can allow FPGAs to be used and perform well in communication-

intensive applications like SpMV too. In this study, we adapt the two-phase

SpMV algorithm to FPGA and design two separate hardware kernels for the

binning and accumulation phases. We implement our design using high-level

synthesis. The contributions of this work are as follows:

• We provide a hardware kernel for the binning phase of the two-phase SpMV

algorithm.

• We provide a hardware kernel for the accumulation phase of the two-phase

SpMV algorithm.

• We compare the performance of our design to a CPU baseline and provide

theoretical and experimental evaluation results.

The rest of the document is organized in six chapters. Second chapter is de-

voted to problem description for SpMV and goes through the details of two-phase

2



algorithm. Third chapter provides background information on FPGA accelera-

tor development and high-level synthesis. Chapter four presents our proposed

hardware design for SpMV computation. Fifth chapter provides theoretical and

experimental evaluations of our design, and chapter five concludes the thesis.

3



Chapter 2

Problem Description

This chapter begins with a brief overview of sparse matrix-vector multiplication.

The computational inefficiencies of SpMV are next explored in terms of vari-

ous possible implementations. Finally, information on the propagation blocking,

which is a two-phase SpMV algorithm that utilizes SpMV performance is pro-

vided.

2.1 Sparse Matrix-Vector Multiplication

Sparse Matrix-Vector Multiplication is a fundamental computational kernel used

in a variety of scientific applications. SpMV can be expressed mathematically as

y = Ax, where A is the sparse matrix, x is the dense vector, and y is the multipli-

cation result. SpMV can be computed either with a row-major matrix traversal or

a column-major matrix traversal. In graph applications, these correspond to pro-

cessing in pull direction and push direction, respectively. Pull direction traverses

the incoming edges of vertices, whereas push direction traverses the out-going

edges. Both implementations are explored further with pseudo-codes provided in

Listings 2.1 and 2.2. Through the text, graph terminology is sometimes preferred

over linear algebra terminology to ease explanation.
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2.1.1 SpMV in Pull Direction

Listing 2.1: SpMV Multiplication with Row-Major Traversal Algorithm

Inputs : Matrix ( Nonzeros ( Weight , Column ) , O f f s e t ) , Vector [ ]

Output : Result [ ]

for row index r from 0 to len ( Result ) :

sum = 0

for nonzero p in Nonzeros [ O f f s e t [ r ] : O f f s e t [ r + 1 ] ] :

sum += p . Weight ∗ Vector [ p . Column ]

Result [ r ] = sum

The row-major traversal(pull direction) computation iterates through the out-

put vector in the outer loop, and so the output vector is accessed continuously,

benefiting from high spatial locality. We assume that an optimized sparse matrix

format is used, which in this case can be compressed sparse row(CSR) format.

In CSR format, the input matrix is stored in three vectors. ”Weight” vector

stores the non-zero values, ”Column” vector stores the column indices for the

corresponding non-zero values and ”Offset” vector stores the row start indices

in ”Weights.” All these vectors are also accessed contiguously, so the inner loop

traversal on the input matrix also benefits from high spatial locality. However,

the column index ”p.Column” can refer to any column in the matrix, and thus

the input vector is accessed randomly, suffering from low spatial locality. Figure

2.1 visualises the computation.
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Figure 2.1: SpMV Multiplication with Row-Major Traversal (Pull Direction)

2.1.2 SpMV in Push Direction

Listing 2.2 includes the pseudo-code for SpMV computation in push direction.

Listing 2.2: SpMV with Column-Major Traversal Algorithm

Inputs : Matrix (Non−Zeros ( Weight , Row) , O f f s e t s ) , V [ ]

Output : Result [ ]

Result [ 0 . .V] = 0

for column index c from 0 to V. len do :

for non−zero p in Non−Zeros [ O f f s e t [ c ] : O f f s e t [ c + 1 ] ] :

Result [ p .Row] += p . Weight ∗ Vector [ c ]

Unlike pull direction, the outer loop iterates on the input vector this time.

This allows the read accesses to the input vector to occur sequentially, benefiting

from high spatial locality. However, write accesses to the output vector occur in a

random fashion with poor spatial locality this time, since the row index ”p.Row”
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can be anything. As in pull direction, an optimized matrix format that stores the

data in column-major format can be used, so that the read accesses on the input

matrix will refer to contiguous locations. Figure 2.2 illustrates the computation

of SpMV in column-major traversal (push direction).

Figure 2.2: SpMV with Column-Major Traversal Illustration

In both algorithms, either input or output vector is accessed randomly. There

is no way to have contiguous accesses on both vectors at the same time. This in-

creases the amount of memory communication, causing random memory accesses

to become the bottleneck.

2.2 Accelerating SpMV

Many studies have been conducted to alleviate the random-access bottleneck of

SpMV, proposing various preprocessing techniques, algorithmic optimizations,

and hardware accelerators. Preprocessing techniques try to provide an optimized

layout with increased locality through manipulating the input data. However, it

is not always easy to partition or reorder real-world graphs as they are mostly
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irregular and scale-free, and the cost of preprocessing itself can be high. Algo-

rithmic optimizations for SpMV usually focus on amortizing the newly added

complexity with better locality. One important example is cache blocking. In

cache blocking, input or the output vector is partitioned such that each parti-

tion will ideally fit in cache, and read or write accesses for other partitions will be

blocked to avoid cache misses. Cache blocking can provide increased performance,

but this improvement depends on the sparsity of the graph. [2].

Many graph processing frameworks have been proposed to take advantage of

different hardware.[9, 10, 11, 12, 13]. GraphChi [14], X-Stream [15], GridGraph

[16], and GraphMat [17] are representative examples based on multi-core general-

purpose processors, whereas Gunrock [18], nvGRAPH [19], and CuSha [20] are

examples based on general-purpose graphics processing unit. General-purpose

CPUs have several inefficiencies, such as ineffective on-chip memory and expen-

sive atomic operations [21, 22, 23, 24, 25]. Specialized graph processing hardware

accelerators have garnered considerable attention to overcome these inefficien-

cies. [26, 27, 28, 29, 22, 23, 24, 30, 25, 31, 32]. As the number of user-controllable

on-chip memory resources and dense programmable logic components increases,

FPGAs are becoming a promising solution in overcoming the inherent inefficien-

cies of general-purpose processors [33, 34, 32, 35].

2.3 Propagation Blocking

To increase locality and alleviate random memory access bottlenecks, multiple

groups have suggested Two-Phase algorithms with varying optimizations in [3],

[1], and [36]. Because the core premises of all three publications are similar, we

will refer to Beamer et al. in this section. Listing 2.3 contains the algorithm’s

pseudo-code. The code is provided for the implementation of PageRank, as it

was in the original paper, but it can be adapted to general SpMV easily. The

algorithm’s concept is similar to cache blocking; however, instead of partitioning

the input graph, propagation blocking partitions the data transfers to the output

vector. The flow of the propagation blocking is depicted in Figure 2.3.
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Figure 2.3: Propogation Blocking Flow

The first phase of the algorithm, called binning, iterates over the input vector

and calculates the contributions in the dot-product; however instead of adding

these contributions directly to the result vector, these contributions are paired

with their destination addresses and written into intermediate binning buffers.

The vertex set is simply divided into B groups, where B is the number of buckets.

Hence, pairs are written to their corresponding buffer which is decided with the

mapping function Bid(v) = v
B

, where Bid(v) is the index of the buffer that

vertex v is assigned to. In the second phase of the algorithm, for each bucket,

pairs are read from the corresponding bin buffer sequentially and contributions

are added into the corresponding sums defined by the destination element of the

pair. The number of buckets is picked such that the output vector partition and

number of insertion points of binning buffers would fit in cache so that accesses

on the input, output and the binning buffers all can benefit from high locality, in

the cost of doubling the number of read/write accesses.
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Listing 2.3: SpMV with Propagation Blocking

Input : G=(V,E) , B ( number o f b u f f e r s )

Output : Rank [V]

sums [ 0 . .V] = 0

b u f f e r s [ 0 . . B]

# Binning Phase

for each ver tex v in V:

co n t r i b u t i on = Rank [V] / dout ( v )

for each outgoing neighbor u o f ver tex v :

append ( cont r ibut i on , v ) to b u f f e r s [ v / B]

# Accumulation Phase

for each i in 0 . .B :

for each ( cont r ibut ion , v ) in b u f f e r s [ i ] :

sums [ v ] += co nt r i b u t i on

for each ver tex v in V:

Rank [ v ] = (1 − d) / |V| + d ∗ sums [ v ]

A significant performance gain for sparser graphs has been demonstrated by

the propagation blocking technique, as reported in [36]. Although the number

of memory accesses doubles due to writing into and reading from intermediate

bins, this can be amortized if the matrix is sparse enough, as both read and

write accesses to the input/output vectors occurs sequentially, allowing improved

spatial locality.
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Propagation blocking is a scatter-gather approach and is particularly suitable

to adopt for an FPGA implementation. Since FPGAs do not have a transpar-

ent cache hierarchy similar to CPUs, random memory accesses can cost much

more. Hence, FPGAs are usually preferred for compute-intensive applications

with streaming data. As propagation blocking allows input/output accesses to

be made in a streaming fashion, there is an opportunity to allocate most of the

limited on-chip memory to intermediate binning buffers.
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Chapter 3

Background

In this chapter preliminary information on FPGA, high-level synthesis and com-

mon optimization techniques are provided.

3.1 FPGA

A field-programmable gate array (FPGA) is a device that can be reprogrammed

to realize different circuits. FPGAs are built as an array of configurable logic

blocks (CLB) connected through programmable routing channels. They can also

integrate other useful devices such as high-speed input and output elements,

processors, and memory units.

Three key elements of a configurable logic block are lookup tables (LUTs),

registers, and multiplexers. An FPGA is programmed by loading the appropriate

values into LUTs and specifying the select inputs of multiplexers to manage rout-

ing. The output of a lookup table can be fed into a register to realize sequential

logic, or it can be directly connected to the CLB output to realize combinational

logic.

In the traditional way of FPGA programming, the desired design is provided to
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a synthesis tool with a hardware description language (HDL) code. The synthesis

tool then generates a bitstream file for the target FPGA by compiling this code.

The bitstream file includes all the information on how the LUTs, multiplexers, and

routing channels should be configured. The bitstream file can then be downloaded

to the FPGA to program it.

3.2 High-Level Synthesis

High-Level Synthesis (HLS) is another way of design process for FPGA program-

ming. Unlike HDLs, where the design needs to be described and dealt with in

a low-level context, high-level synthesis aims to provide an abstraction of most

low-level details and provide a development process similar to sequential program-

ming. With HLS programming, the designer provides a behavioral specification of

the design. The HLS tool then tries to map and optimize this specification into a

low-level RTL design. For example, most of the time, a programmer doesn’t need

to take care of pipelining as the HLS tool will automatically produce pipelined

RTL from loops in the code.

The ultimate goal of HLS is to map sequential software to a high-performance

hardware design with no additional coding or experience. However, HLS is still a

developing field, and a programmer cannot simply assume that writing sequential

code will result in highly optimized designs. There are inherent challenges in

mapping sequential software to hardware.

3.3 Optimization Techniques

HLS tools usually provide some pragmas for programmers to guide the compiler

on how hardware optimizations should be done. In this section, we provide brief

information on pipelining and dataflow optimizations.
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3.3.1 Pipelining

A pipeline can be defined as a series of computational stages where the output

of each stage is the input for the next one. Incoming instructions are subdivided

into different sub-operations which can be executed in different stages. This

allows concurrent execution of multiple instructions as different sub-operations

of instructions are executed in different stages at the same time.

Latency and initiation interval (II) are two important metrics for defining the

performance of a pipeline.

Latency refers to the total number of computational stages of a pipeline. This

is the total number of clock cycles necessary to execute an instruction, as each

stage takes a single clock cycle to execute.

Initiation interval can be defined as the number of clock cycles necessary to

wait until executing the next task in a pipeline. An II of 1 means that the next

instruction can be fed directly into the pipeline in the next cycle, whereas in II

of 2, the next instruction needs to wait for 2 cycles after the first instruction is

fed into the pipeline. A lower initiation interval is desired as it directly increases

throughput and provides better concurrency. Other optimization techniques such

as loop flattening, loop merging and array partitioning can be used to have more

efficient pipelines by allowing lower latency and initiation interval.

3.3.2 Dataflow

Dataflow optimization provides task-level pipelining. It allows a function to start

running as soon as the input data is available from the previous function. This

provides task-level concurrency and lowers the programmer’s effort to synchronize

different modules. However, in Vivado HLS, there are several limitations on

when dataflow optimization can be used. If there are single-producer-consumer

violations, bypassing tasks, feedback between tasks, conditional execution of tasks

or loops with multiple exit conditions, Vivado HLS will not be able to perform

14



dataflow optimization on the design.

3.4 Memory Model

Unlike CPUs, FPGAs do not have an automated cache system. However, they

may provide different kinds of memories with different read/write speeds and

sizes, such as ultraRAM, dynamic RAM (DRAM), and block RAM (BRAM).

The programmer is responsible for using different memory resources efficiently.

An FPGA accelerator’s performance substantially depends on how the memory

resources are put to use. Throughout the text, we will refer to BRAM and DRAM

many times. BRAM units are on-site memory blocks on an FPGA. They are

limited in size but provide fast access. A single BRAM unit can be accessed in

a single cycle. DRAM refers to the global memory, which is relatively cheap and

provides significant space. This is the same DDR SDRAM memory that can be

found in regular CPU settings. DRAM access latency is huge, and a single access

can take hundreds of cycles to access DRAM.

SDAccel Environment uses the OpenCL memory model. Definitions of differ-

ent memory types in the OpenCL memory model are as follows:

• Host memory refers to the memory that is only accessible to the CPU.

• Global memory refers to the memory that is accessible both to the CPU

and FPGA.

• Local memory refers to on-site memory resources on the FPGA and are

only accessible to the FPGA.

In the OpenCL memory model, the CPU and FPGA can not access global

memory concurrently. The CPU can only access DRAM when the FPGA kernel

is not running. In the usual memory flow, the CPU first creates the input and

15



output buffers in global memory and then copies the input data from the host

memory to the buffers in global memory, if necessary. When the FPGA kernel

starts, the host CPU loses access to the global memory until the kernel finishes

running. Only after that can the host CPU access the global memory again to

read any output data written by the kernel.

Unlike CPUs, since DRAM is not interfaced through cache on FPGAs, ran-

domly accessing DRAM data can exhibit significant performance loss. Therefore,

it is considered better practice to move as much data as possible from global

memory to local BRAM blocks in burst transfers at once.

Starting with the 2019.1 release, SDAccel Environment supports direct stream-

ing of data from CPU to FPGA. However, this functionality is not supported in

the 2018.3 release, which is the latest one that our license covers.
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Chapter 4

Proposed Design

We adapt the propagation blocking methodology in our design and provide two

FPGA kernels for binning and accumulation phases. These kernels can run se-

quentially and not concurrently. It is also possible to use them in heterogeneous

designs. A high-level overview of the proposed architecture is given in Figure 4.1.

Figure 4.1: Proposed Architecture
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4.1 Binning Kernel

Figure 4.2: Binning Kernel

The design of the binning kernel is given in Figure 1. There are six main compo-

nents of the binning kernel, and each module communicates through FIFO buffers

with hls::stream interface.

The Reader Module is responsible for reading and serializing the input data

from DRAM. It has 3 input ports connected to buffers in global memory. Input

matrix, input vector, and out-degrees are all read from DRAM into FIFO buffers

with burst transfers. All vectors are read in 512-bit lines to utilize communication

bandwidth. Each FIFO connects to a serializer sub-module, which is responsible

for getting the individual elements from the 512-bit lines. These elements are then

sent to the Parallelize Out-Degrees and Multiply modules with FIFO buffers.

In order to allow intra-kernel parallelization, the number of times that the

next vector value should be multiplied with the corresponding matrix value is
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calculated in the ”Parallelize Out Degrees” module and fed into FIFOs. This

allows processing of a single matrix cacheline per cycle. This number can be

increased by replicating the multiplier units, but since the main bottleneck is

the memory communication, there is no expectation of much speedup. In our

implementation, we use 16 multiplication units, processing two matrix lines per

cycle. Since Vivado HLS was already able to pipeline the multiplications with an

initiation internal of 1 and a pipeline latency of 6, we didn’t need to deal with

the pipelining here.

Multiplier units compute the contributions to the dot-products and output

these values together with the destination values (row indices of the matrix non-

zeros). These contribution and destination pairs are fed into a 16x16 arbiter

network to allow parallel writes to bins. Depending on the destination values,

pairs are fed into the corresponding FIFOs, which connect to ”Write To Bin”

units. Each pair is sent to ”Write to Bin” units according to their destination bins,

where their destination ”Write To Bin” unit is WriteToBin(dest) = dest
Binwidth

%16.

The intermediate bin buffer is partitioned into 16 BRAM arrays, which provides

two important benefits. Firstly, since BRAMs have a limited number of read

and write ports (in our case, 2), concurrent accesses are limited to the number of

ports per cycle. Having separate BRAM partitions increases the number of ports

in total and allows us to have more concurrent accesses. As there are 16 separate

BRAM partitions, 32 accesses per cycle can be made. Secondly, as BRAM size

increases, multiplexers inside BRAM units also get larger. This is undesirable

because it increases both complexity and latency, which makes it difficult to meet

the desired timing requirements. Having separate partitions allows the control

logic for address selection to get smaller. This improves latency and makes sure

that single-cycle array access is possible. In each ”Write to Bin” module, there is

a BRAM array allocated for holding the cache lines per bin. Incoming destination

contribution pairs are read from FIFO and written to the next available slot in

line in address ”bin index,” which is calculated by dividing the destination address

by the number of parallel units, which in our case is 16. Since the parallelization

factor is fixed, this is a simple shifting operation. There are two issues with the

”Write to Bin” unit. If there are consecutive pairs that need to be written to the
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same bin, the updated line may not be available if the line gets full. This needs to

be checked to ensure the correctness of the module. However, the tool was only

able to schedule this fullness check with an initiation interval of 2. The second

issue is that when a bin buffer gets full, this may cause the feeding FIFO to block

and stall the kernel until the line is written to DRAM. Our design currently relies

on the available redundant memory to avoid this. Although it is not very likely

that the whole kernel will stall, it is not guaranteed that this will not occur. On

the other hand, it is guaranteed that for at least ”line size” cycles, each write will

happen to the next index in the line without blocking the feeding FIFO.

When a cache line is full, it is fed to the write module through a FIFO. This

module doesn’t write the line directly to BRAM, but waits for more lines to be

fed in order to write access DRAM in burst mode. One challenge here is that the

bin addresses need to be known beforehand. This would require preprocessing

of the input matrix to know how many lines would be needed per bin, which is

not desirable. Our first proposal was to run two kernels together at the same

time, passing the cache lines to the accumulation unit as soon as they are full.

However, we weren’t able to have such an implementation running efficiently

without suffering a significant loss in achieved clock speed. In addition, the

accumulation kernel needs to re-read and write the output vector partition each

time it gets a new line for a different bucket, whereas in sequential running of

kernels, it doesn’t even need to read the output vector as it is initialized to

zeros and vector partitions are written to DRAM just once. The biggest issue

is that DRAM switching between read and write mode is necessary in parallel

implementation, which is a significant overhead.
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4.2 Accumulation Kernel

Figure 4.3: Accumulation Kernel Design

In the accumulation kernel, we design and use an RCW Pipeline Controller mod-

ule, which is to allow higher-task level parallelism. The RCW Controller sends

the necessary control signals to populate, compute, and write output modules by

implementing input and output buffers as ping-pong block RAMs. This increases

the utilization of bandwidth significantly. We again use an arbiter network in

order to send pairs to their corresponding compute units. The output vector

partition is further partitioned into 16 BRAM blocks, where each BRAM block is

updated by a single compute unit. Processing of sixteen pairs per cycle is possible

this way.

One issue in the accumulation kernel is in the compute module. II=1 can not

be obtained without additional logic due to a read-after write dependency. If

two consecutive pairs update to the same destination, a read-after-write hazard

will occur since the destination vertex value could have been updated by the

time it is read for the next pair. This is a common issue when there is a read-

compute-write pipeline on the same array location where the array is accessed
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in a random fashion, and we solve this by forwarding the compute result to

the compute stage of the next iteration, so that the invalid read data would be

discarded and the forwarded value would be used. The updated value is also

written to a register together with the destination index each cycle, and if for the

next pair, the destination indices are the same, the read value is ignored and the

register value is used. Compared to previous graph framework implementations

on FPGA, we observe that keeping an invalidate flag is a common approach to

overcome this dependency. Pipeline forwarding allows us to use fewer BRAM

resources on FPGA as there is no need to use a flag for each index in the output

vector. However, if the aim is to have a general-purpose graph framework but not

just SpMV, it might not always be possible to do pipeline forwarding to achieve

an initiation interval of 1, depending on the latencies of desired operations. In

such a case, an invalidating flag would be needed anyway.

4.3 Implementation Details

We use the Xilinx Virtex UltraScale+ FPGA VCU1525 Acceleration Development

Kit with SDAccel Development Environment 2018.3 for writing the HLS code.

In the SDAccel framework, an application program consists of a host applica-

tion running on a CPU and a hardware kernel running on an FPGA. The host

application uses the OpenCL API to manage the hardware kernel. The CPU and

FPGA communicate data using a shared DDR SDRAM. Global memory is acces-

sible by both the host processor and hardware accelerators, whereas host memory

is only accessible by the host application. The host application is responsible for

allocating the necessary buffers for data transfers in global memory. In SDAccel

Development Environment 2018.3, the maximum size for a single buffer is 512

MB, and direct data streaming to FPGA is not supported.

SDaccel uses the Vivado HLS compiler to support both C/C++ and OpenCL

kernels. They differ by the optimization pragmas they support. Our initial

tests and implementations showed that OpenCL pragmas allow a higher level
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of abstraction in optimizations. Although this reduces the programmers’ effort,

it makes it difficult to instruct the compiler to realize the design wanted and

forces the programmer to trust the compiler. We chose to implement C/C++

kernels so that we would have relatively more power to describe the design and

optimizations. The implementation works on 32-bit data types, and integers and

fixed-point arithmetic for floating numbers are supported.

4.4 Design Issues

Both binning and accumulation kernels are initiated by the host application once

sequentially. First, the host application calculates the necessary offset addresses

for intermediate bin buffers and creates input buffers in DRAM accordingly. After

transferring the input data to DRAM, binning kernel is given the start signal by

host. After binning kernel finishes its computation, the host application assigns

the buffers in DRAM to accumulation kernel and accumulation kernel runs.

One design issue with our implementation arises from the buffer size limitations

in DRAM. Although each DRAM bank has a memory size of 16 GB, the host

application can allocate only 512 MBs per buffer. Even though the necessary

memory to process larger graphs is available, the input data is needed to be

partitioned into 512 MB buffers. This means that in order to process 16 GB graph

data, 32 buffers are needed to be allocated and connected to the hardware kernel.

However, Vivado limits the maximum number of AXI interfaces to 16 for kernel. It

is suggested to have a design to run multiple times on the same allocated buffers

in order to process large data. Later versions of SDAccel framework supports

direct streaming to kernel.

Running both kernels in parallel efficiently is also challenging for several rea-

sons. Additional logic to synchronize the two kernels significantly reduces the

achievable target kernel clock. In addition, the communication overhead and

communication amount increases significantly in accumulation kernel. Output

vector partition for each bucket is needed to be re-read and re-written each time
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when two consecutive input lines destines different buckets. This not only in-

creases communication amount, but also increases the overhead in DRAM access

as read/write mode switching is expensive.
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Chapter 5

Evaluation

In this chapter, we first present a theoretical analysis of the proposed design.

We then provide the experimental results on the road graph and project the

findings onto larger graphs. The projections are compared with the CPU baseline

implementation of the GAP benchmark.

5.1 Theoretical Analysis

5.1.1 Binning Kernel

For the binning kernel, we should be able to obtain an initiation interval of 1

for every module. We have 16 partitions of the final intermediate bins. Reading

input data occurs in a streaming fashion. For the cache writes to DRAM, we aim

to hide the access latency in the kernel computation. In order to achieve this

goal, we hold 16 cache lines per bin in BRAM and do not write to DRAM before

these 16 cache lines are full. These lines are written into contiguous locations

in DRAM and allow us to achieve burst access. Assuming the latency to write

access is 100 clock cycles on average, we get 1.28 pairs written to DRAM per

cycle, which is the bottleneck in our design. If 32 cache lines per bin are held in
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the BRAM per bin, 2.56 pairs can be written per cycle. Assuming a 200 MHz

clock speed can be obtained, a total of 512M edges can be processed per a single

DDR bank. In this case, 4 Mb of BRAM is needed, but 3.81 GB/s of memory

write speed is obtained.

5.1.2 Accumulation Kernel

Assuming the output vector partition fits in BRAM, all the reads and writes

can be done in a streaming fashion, which allows us to utilize DRAM memory

bandwidth fully. In our case, the maximum theoretical memory bandwidth is 16

GB/s per bank. Although this number is a theoretical maximum and not really

possible to obtain, it is not expected to decrease much and therefore would be

more than enough compared to the write speed of the binning kernel, which is

the main bottleneck. With an initiation interval of 1 in all modules, processing

16 edges per bucket is possible. With a clock speed of 200 MHz, 3200M edges

can be processed, so again the bottleneck becomes the DRAM accesses.

5.2 GAP Benchmark Suite

For experimental evaluation, we conducted our experiments using the graph data

provided in the GAP benchmark suite. Our experiments follow the rules and

guidelines given in the benchmark.

GAP is a graph processing benchmark suite that aims to help standardize

graph processing evaluations. It provides graph kernels, input graphs, and eval-

uation methodologies, together with optimized baseline implementations that

represent state-of-the-art performance[37].

Information on the graphs provided with the GAP benchmark is shown in

Table 5.1.
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Graph Vertices (M) Edges (M) Directed Ref.

Twitter 61.6 1,468.4 Directed [37, 38]
Web 50.6 1,949.4 Directed [37, 39]
Road 23.9 58.3 Directed [37, 40]
Kron 134.2 2,111.6 Undirected [37, 41, 42]
Urand 134.2 2,147.4 Undirected [37, 43]

Table 5.1: GAP Benchmark

5.3 Experimental Evaluation

Due to the buffer size limitations of the OpenCL API on SDAccel Development

Environment 2018.3, we were only able to conduct experiments on ”Road Graph”,

which has 23.9 million vertices and 58.3 million edges. The problem with the

buffer size is further explained in the discussion.

We compare our design with a single iteration of the CPU PageRank im-

plementation of the GAP benchmark. Execution time in seconds and million

traversed edges per second (MTEPS) are used as evaluation metrics. The term

”optimized layout” in the table refers to the use of a graph directly from the GAP

benchmark API, without any shuffling or preprocessing done from our side. We

shuffle the input graph randomly in order to obtain a graph that is not optimized

for increased locality. We ran the PageRank implementation of the GAP bench-

mark for a single iteration on a single core of an Intel(R) Core(TM) i5-7500 CPU

at 3.40GHz for the baseline. Table 5.2 shows the experimental results on Road

Graph.

Execution Time (s) MTEPS

Single CPU / Optimized Layout 0.26786 221.9
Single CPU / Shuffled Layout 5.50293 10.5

FPGA Total 0.57886 99.6
Binning (FPGA) 0.55026 105.9

Accumulation (FPGA) 0.0286 2037.4

Table 5.2: Experimental Results on Road Graph

The data shows that there is a dramatic difference between the performance of
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binning and accumulation kernel. It is expected for the execution time of binning

kernel to be longer than the execution time of accumulation kernel from the the-

oretical analysis. However, experimental results on the road graph demonstrates

that the difference is much bigger than expected. There are two assumptions

in the theoretical analysis that fail. First one is the assumption that a clock

speed of 200 MHz will be obtained. However, due to the timing path failures,

the clock speed is changed to 111.4 MHz. Second failing assumption is that all of

the pipelined modules will have an initiation interval of 1. Although this should

be achievable with further work on the implementation, the initiation interval

of ”Write To Bin” module in the binning kernel is currently 3. This shows that

there is a large room for improvement in the binning kernel. On the other hand,

it can be seen that accumulation kernel performs closely to theoretical limit.

It can be observed that a single-core CPU with an optimized layout signifi-

cantly outperforms our current design. However, when the input graph is shuffled

randomly, the execution time of the CPU drops dramatically. This demonstrates

that the road graph is small enough for the cache hierarchy in the CPU to provide

substantial performance improvements. With larger graphs with less locality, our

design is expected to outperform the CPU as the benefits of the cache hierarchy of

the CPU will degrade. To support this, we also run the baseline implementation

with the rest of the graphs provided in the GAP benchmark. Table 5.3 shows the

evaluation of CPU baseline on all graphs.

Input Graph Execution Time (s) MTEPS

Road 0.26 221.9
Web 2.37 822.39

Twitter 3.66 400.68
Kron 130.08 16.23
Urand 169.10 12.69

Table 5.3: CPU Baseline Evaluation on GAP Benchmark

On Twitter and Web graphs, we see a significant improvement in the perfor-

mance of the baseline, compared to the road graph. In these graphs, the average

degree increases more than the number of vertices, so we can say these graphs

are likely to provide better locality. However, on Kron and Urand graphs, the
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number of traversed edges per second drops significantly.

5.4 Projection on Larger Graphs

In order to have a better comparison, we project the results we obtained on road

data onto larger graphs with certain assumptions.

For the accumulation kernel, input data is read sequentially in bursts to a ping-

pong BRAM buffer in a streaming fashion. As long as the output vector partitions

fit in BRAM, there is no random DRAM access and whole read/write accesses

to global memory occur sequentially. Therefore, with the assumption that the

output vector partition fits in BRAM, we expect to have the same performance

in terms of MTEPS with larger graphs too. This assumption actually holds

for the largest graphs in the GAP benchmark with our current implementation.

Our design currently provides a maximum of 2048 buckets, where each can hold

73728 elements. Kron and Urand graphs have 134.2 million vertices, and only

1821 buckets are needed.

For the binning kernel, there are random writes of bin lines to global memory,

and the latency of such a write access is not guaranteed to be hidden. If we

have sequential edge data coming that needs to be written into the same bin for

a long time, the performance of the binning kernel will degrade significantly as

the buffers for that bin will saturate and the kernel will need to wait idle until

that particular bin buffer is written to global memory. However, if the incoming

edges were coming in a more random fashion, the latency of DRAM access would

be more likely to be hidden. Therefore, in order to project the performance of

the binning kernel, we assume that the incoming edge sequence will arrive as

distributed as in the road graph. The input graph data on FPGA runs is already

shuffled, so it is not expected to have a higher density of such sequences. In

addition, it is again assumed that bin lines would fit in BRAM. In the current

implementation, we have BRAM allocated to support 2048 bins, and therefore,

this assumption also holds as the maximum number of buckets needed for the
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largest graph in the benchmark is 1821.

With these assumptions, we expect to have the same MTEPS performance

independent of graph size, whereas on the CPU, since the performance relies on

the success of caching, we expect the performance to degrade with larger graphs.

In terms of million traversed edges per second, Figure 5.1 compares the per-

formance of CPU implementation to the projected performance of binning and

accumulation kernels.
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Figure 5.1: MTEPS Comparison

Table 5.4 shows projected execution times of FPGA kernels together with

measured CPU execution times per graph.
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Input Graph CPU (s) Binning (s) Accumulation (s) Total FPGA Time (s)

Road 0.26 0.55 0.02 0.57
Web 2.37 18.39 0.95 19.34

Twitter 3.66 13.85 0.72 14.57
Kron 130.08 19.92 1.03 20.95
Urand 169.10 20.26 1.05 21.31

Table 5.4: Projected FPGA Execution Times

Figure 5.2 puts the data in Table 5.4 into a visual context.
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Figure 5.2: CPU and Projected FPGA Execution Time Comparison

A comparison of the projected performance of our design and the CPU baseline

shows that our design can provide up to 6.2x and 7.9x speedups on Kron and

Urand graphs, respectively. From the evaluation results, it can be said that

although the CPU baseline performs well in smaller graphs, it cannot scale up

well and is projected to be outperformed by our design as the graphs get larger.
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The results also demonstrate that our design is not suitable for small graphs

with already high locality. There is no improvement over the baseline in smaller

graphs. Considering the performance of the binning kernel and CPU baseline on

Road, Twitter and Web graphs, having a heterogeneous system where the binning

phase is performed on the CPU and the accumulation phase is performed on the

FPGA, might be worth looking at for small and mid-sized graphs. Figure 5.2

shows that, as the execution time for the accumulation kernel is already too

short, a concurrent implementation of binning and accumulation kernels may not

be as marginally beneficial as expected, considering the necessary design effort.
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Chapter 6

Conclusion

SpMV is an algorithm that suffers poorly from poor spatial and temporal local-

ity and is not inherently a suitable application to accelerate on FPGA. This is

because FPGAs are more powerful in streaming applications with low random-

access patterns, but they are not an ideal choice to accelerate random-access ap-

plications. Recently proposed two-phase algorithms such as propagation blocking

help to utilize the memory communication of SpMV. They aim to provide high

locality at the cost of an additional number of memory accesses and can allow a

significant increase in SpMV performance as graphs get sparser. They also allow

the opportunity for efficient FPGA implementations. In this study, we adapted

the propagation blocking algorithm to an FPGA implementation and provided

two kernels for the binning and accumulation phases. Through experiments on

the road dataset, we show that when the input matrix is shuffled and the locality

is lower, our implementation can provide comparable performance to the CPU.

We project our findings on the road dataset to larger graphs and show that our

implementation can provide up to a 7.9x speedup over the CPU baseline.
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