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ABSTRACT

ANOMALY DETECTION IN DIVERSE SENSOR
NETWORKS USING MACHINE LEARNING

Ali Alp Akyol

Ph.D. in Electrical and Electronics Engineering

Advisor: Orhan Arıkan

January 2022

Earthquake precursor detection is one of the oldest research areas that has the

potential of saving human lives. Recent studies have enlightened the fact that

strong seismic activities and earthquakes affect the electron distribution of the

ionosphere. These effects are clearly observable on the ionospheric Total Elec-

tron Content (TEC) that shall be measured by using the satellite position data

of the Global Navigation Satellite System (GNSS). In this dissertation, several

earthquake precursor detection techniques are proposed and their precursor de-

tection performances are investigated on TEC data obtained from different sensor

networks.

First, a model based earthquake precursor detection technique is proposed

to detect precursors of the earthquakes with magnitudes greater than 5 in the

vicinity of Turkey. Precursor detection and TEC reliability signals are generated

by using ionospheric TEC variations. These signals are thresholded to obtain

earthquake precursor decisions. Earthquake precursor detections are made by

using Particle Swarm Optimization (PSO) technique on these precursor decisions.

Performance evaluations show that the proposed technique is able to detect 14

out of 23 earthquake precursors of magnitude larger than 5 in Richter scale while

generating 8 false precursor decisions.

Second, a machine learning based earthquake precursor detection technique,

EQ-PD is proposed to detect precursors of the earthquakes with magnitudes

greater than 4 in the vicinity of Italy. Spatial and spatio-temporal anomaly de-

tection thresholds are obtained by using the statistics of TEC variation during

seismically active times and applied on TEC variation based anomaly detection

signal to form precursor decisions. Resulting spatial and spatio-temporal anomaly

decisions are fed to a Support Vector Machine (SVM) classifier to generate earth-

quake precursor detections. When the precursor detection performance of the

EQ-PD is investigated, it is observed that the technique is able to detect 22 out

of 24 earthquake precursors while generating 13 false precursor decisions during
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147 days of no-seismic activity.

Last, a deep learning based earthquake precursor detection technique, DL-

PD is proposed to detect precursors of the earthquakes with magnitudes greater

than 5.4 in the vicinity Anatolia region. The DL-PD technique utilizes a deep

neural network with spatio-temporal Global Ionospheric Map (GIM)-TEC data

estimation capabilities. GIM-TEC anomaly score is obtained by comparing GIM-

TEC estimates with GIM-TEC recordings. Earthquake precursor detections are

generated by thresholding the GIM-TEC anomaly scores. Precursor detection

performance evaluations show that DL-PD shall detect 5 out of 7 earthquake

precursors while generating 1 false precursor decision during 416 days of no-

seismic activity.

Keywords: Machine Learning, Deep Learning, ionosphere, earthquake precursor

detection, Global Navigation Satellite System (GNSS).
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ÇEŞİTLİ SENSÖR AĞLARINDA MAKİNE ÖĞRENİMİ
İLE ANOMALİ TESPİTİ

Ali Alp Akyol

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Danışmanı: Orhan Arıkan

Ocak 2022

Deprem öncül tespiti, insan hayatını kurtarma potansiyeline sahip olan en

eski araştırma alanlarından biridir. Yapılan son çalışmalar, güçlü sismik ak-

tivitelerin ve depremlerin iyonosferin elektron dağılımını etkilediğini göstermiştir.

İyonosferdeki bu etkiler, Küresel Konum Belirleme Sistemlerinin uydu pozisyonu

verileri kullanılarak ölçülebilen, Toplam Elektron İçeriği (TEİ) üzerinde açıkça

gözlemlenmektedir. Bu tezde, çeşitli deprem öncül tespit teknikleri önerilmiş,

önerilen bu tekniklerin öncül tespit başarımları farklı sensör ağlarından elde edilen

TEİ verileri üzerinde irdelenmiştir.

İlk olarak, Türkiye ve çevresinde meydana gelmiş 5 şiddeti üzerindeki deprem-

lerin öncüllerinin tespit edilmesi amacıyla, model tabanlı bir deprem öncül tespit

tekniği önerilmiştir. TEİ değişimleri kullanılarak deprem öncül tespit ve TEİ

güvenilirlik sinyalleri oluşturulmuştur. Oluşturulan bu sinyallerin eşiklendirilmesi

ile deprem öncülü kararları elde edilmiştir. Elde edilen deprem öncülü karar-

ları üzerinde Parçacık Sürüsü Optimizasyonu (PSO) tekniği kullanılarak de-

prem öncül tespitleri üretilmektedir. Başarım değerlendirmeleri, önerilen tekniğin

Richter ölçeğinde 5 şiddeti üzerinde meydana gelmiş 23 depremden 14 tanesine

ait öncülleri doğru tespit ederken 8 yanlış öncül kararı verdiğini göstermektedir.

İkinci olarak, İtalya ve çevresinde meydana gelmiş 4 şiddeti üzerindeki de-

premlerin öncüllerinin tespit edilmesi amacıyla, makine öğrenimi tabanlı bir de-

prem öncül tespit tekniği olan EQ-PD önerilmiştir. Sismik aktivitenin olduğu

zamanlara ait TEİ değişim istatistikleri kullanılarak, uzaysal ve uzay-zamansal

anomali tespit eşikleri elde edilmiş ve öncül kararlarının oluşturulması amacıyla,

TEİ değişimi tabanlı anomali tespit sinyaline uygulanmıştır. Elde edilen uzaysal

ve uzay-zamansal öncül kararları, deprem öncül tespitlerinin oluşturulması için

Destek Vektör Makinesi (DVM) sınıflandırıcısına beslenmiştir. EQ-PD tekniğinin

deprem öncül tespit performansı incelendiğinde, tekniğinin 24 deprem öncülünden

22’sini doğru tespit ederken 147 sismik aktivite olmayan günde 13 yanlış alarm
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ürettiği gözlemlenmiştir.

Son olarak, Anadolu bölgesinde meydana gelmiş 5.4 şiddeti üzerindeki deprem-

lerin öncüllerinin tespit edilmesi amacıyla, derin öğrenme tabanlı bir deprem

öncül tespit tekniği olan DL-PD önerilmiştir. DL-PD tekniği uzay-zamansal

Küresel İyonosferik Harita (KİH)-TEİ veri kestirimi kabiliyetine sahip bir ya-

pay sinir ağı kullanmaktadır. KİH -TEİ kestirimleri ve KİH -TEİ ölçümleri

karşılaştırılarak, KİH -TEİ anomali skorları elde edilmiştir. Deprem öncül tespit-

leri KİH -TEİ anomali skorlarının eşiklendirilmesi ile oluşturulmuştur. Öncül

tespit başarımları incelendiğinde, DL-PD tekniğinin 7 deprem öncülünden 5’ini

doğru tespit ederken 416 sismik aktivite olmayan günde 1 yanlış alarm ürettiği

gözlemlenmiştir.

Anahtar sözcükler : Makine Öğrenimi, Derin Öğrenme, iyonosfer, deprem öncül

tespiti, Küresel Konum Belirleme Sistemi.
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Chapter 1

INTRODUCTION

Earthquakes (EQs) are one of the oldest and deadliest of the natural disasters.

They can cause colossal damage on buildings, structures and living quarters that

result with loss of hundreds of human lives, injuries, fires and economic losses.

This is an inevitable fact that EQs still have a dangerous impact on human

lives in spite of advancements in the construction technologies of the buildings.

Detrimental effects of EQs are hard to prevent, since EQ epicenter, EQ magnitude

and time of onset are uncertain for humanity. EQ prediction aims to estimate,

epicenter, magnitude and time of EQs [1]. Sadly, an EQ prediction technique

that can estimate epicenter, magnitude and time of EQs accurately has not been

developed yet. Hence, from decades EQ prediction is one of the challenging

research areas which aims to unveil uncertainties regarding the EQs. In the

following sections, EQ prediction and EQ precursor detection studies are detailed.

1.1 Earthquake Prediction Studies

There are a still ongoing discussions on the predictability of EQs. These discus-

sions focus on the obscurity of underlying seismic activity and EQ preparation
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mechanisms and reliability of the possible EQ precursor based prediction tech-

niques [2, 3]. Despite the underlying seismic activity triggered phenomenon is

not fully comprehended, the ongoing discussion has not bring to a conclusion yet.

Furthermore, EQ prediction related literature consists of empirical case studies

that are conducted to detect EQ precursory signals after a strong EQ had taken

place. Due to the lack of comprehensive studies that investigate the precursory

signal behaviors for longer time intervals, critics related with the reliability and

repeatability of these techniques still exist [4].

EQ prediction techniques in the literature shall be grouped into model based

and precursor based prediction techniques. Model based techniques aim to fit a

mathematical, machine learning or deep learning model to simulate a recurrence

behaviour between past seismic activities or EQs with the upcoming EQs. Some

of the chosen mathematical EQ prediction models in the literature shall be listed

as follows. An EQ reappearance model proposed a relationship between fault

line strain related forces and EQ reappearance periodicity [5]. Another model

that uses Poisson’s distributions and distance factors claims that all the EQ

occurrences in a fault zone are related and shall be predicted [6]. Similarly, a

probabilistic model is proposed to predict location, magnitude and time of the

upcoming EQs [7]. A Fibonacci Lucas Dual model is fitted to past EQ occurrence

times to predict upcoming EQ recurrence times [8].

In recent years, several machine learning based models are also proposed to

predict EQ locations, magnitudes or occurrence times. These machine learn-

ing models are based on: boosting techniques such as AdaBoost, decisions trees

and random forests, multi-objective info-fuzzy network, unsupervised techniques

such as k -nearest neighbors, Support Vector Machine (SVM) and artificial neu-

ral networks [9, 10, 11, 12, 13]. Furthermore, SVM regressors and hybrid neural

networks are trained to predict EQs on a chosen earthquake catalog [14]. Deep

learning based models are also proposed [15, 16, 17, 18, 19]
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1.2 Earthquake Precursor Detection Studies

Earthquake precursor detection related studies aims to detect anomalies in

various precursory signals prior to strong EQs. These precursory signals

shall be generated from radon gas emissions [20, 21], ionospheric phenomenon

[22, 23, 24, 25, 26], temperature variations [27, 28, 29], chemical composition of

underground water [30, 21] and even unusual animal behaviour [31] or strange

lights [32].

There are studies suggesting the possible coupling mechanisms between seismic

activities and state of the ionosphere prior to strong EQs. A possible coupling

mechanism between Earth’s lithosphere, atmosphere and ionosphere is proposed

in [33]. The Lithosphere Atmosphere Ionosphere Coupling (LAIC) model claims

that seismic activity or tectonic plate movements generate radom gas emission

from Earth’s crust through atmosphere. Released radom gases ionize air in at-

mosphere that results with changes in ionosphere. These changes are observed

in critical frequency of maximum ionization layer (foF2), maximum ionization

height (hmF2) and Total Electron Content (TEC) parameters of the ionosphere.

Another physical coupling mechanism is proposed in [34]. The proposed claims

that low height of planetary boundary layer (PBL) causes accumulation of radon

gases that are released from Earth’s crust. This radon gas accumulation re-

sults with high ionization in ionosphere during the nighttime. Furthermore, the

proposed also claimed that resulting positive electron density anomalies have a

unique characteristic. Hence, it is possible to create a pattern (mask) which may

serve as an EQ precursor signal for upcoming strong EQs.

Comprehensive investigations are performed on the possible correlations be-

tween F2 layer ionospheric parameters and seismic activities and EQs. A pre-

liminary statistical analysis for foF2 critical frequencies that are measured at

Chung-Li (Taiwan Island) ground based station is performed for the EQs with

magnitudes M ≥ 4 that had taken place near this ground based station for the

time period from 1978 to 1986 [35]. Ionospheric data is processed for 6 days prior

to the each chosen EQ time. Results of this study claim that shallow focus EQs (z
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< 60 km) hardly generates a detectable EQ precursor while the deep focus EQs

(60 km < z < 300 km) causes significant increase in the ionospheric response

prior to upcoming EQs with magnitudes M ≥ 4. Another study is conducted on

the EQs which had taken place in Taiwan area during the period of 1997 - 1999

[36]. Results of this study suggest that it is possible to observe foF2 and TEC

anomalies 1 to 7 days prior to investigated EQs. Similarly, another ionospheric

foF2 related statistical investigation is performed for the 184 EQs with magni-

tude M ≥ 5.0 during 1994 - 1999 in the Taiwan area [37]. The study reported

empirical evidences to pre-earthquake ionospheric anomalies (PEIAs) 1 to 5 days

prior to 184 M ≥ 5.0 investigated earthquakes. Another comprehensive study

is conducted to investigate relationship between ionospheric TEC anomalies and

seismic activities. In the study, TEC data is extracted from Global Ionosphere

Maps (GIM) [38]. During the investigation, 736 M ≥ 6.0 earthquakes around the

world during 2002 - 2010 are selected. TEC anomalies are defined on the chosen

TEC data with respect to chosen EQs. Statistics of anomaly occurrence rates

for 1-21 days prior to the EQs (PE) and the background days with no seismic

activity (PN) are calculated. Results of the investigation revealed that rate of

TEC anomalies start increasing for 10 days prior to EQs. Furthermore, proba-

bility of observing a TEC anomaly during 1 to 10 days prior to a strong EQ is

1.8 to 3.6 times more likely compared to observing these TEC anomalies during

chosen background days. In another statistical study, pre-EQ ionospheric anoma-

lies are investigated on TEC data obtained from GIM for the chosen EQs around

Japan [39]. Results of the study suggest the fact that probability of observing

the GIM-TEC anomalies gets higher when 1 to 5 days prior to investigated EQs.

The presented statistical investigations [35, 36, 37, 38, 39] conducted their in-

vestigations during the seismically active time periods that detected ionospheric

anomalies are attributed to seismic activities. Hence, reoccurrence statistics of

ionospheric anomalies when there is no seismic activity remain uncertain.

There are also other ionospheric precursor related studies that report iono-

spheric anomalies prior to strong EQs around Italy [40, 41, 42, 43], Tai-

wan [44, 45, 46], Indonesia [47], Japan [23, 48, 49, 26], Chile [25, 50], India

[51], Nepal [52], China [53, 23], Mexico [24, 54, 55], El-Salvador [56], USA
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[57, 58] and Turkey [59, 60, 61]. In these studies, various statistical methods

have been practiced to understand the relationship between ionospheric vari-

ations and seismic activities such as: TEC variation and difference analysis

[25, 23, 48, 49, 50, 56, 59], ionospheric correction [51], inter-quartile and per-

centile analysis [26, 44, 45, 46, 52, 53], correlation analysis between TEC and

foF2 [24, 58, 55, 54], equatorial TEC abnormality analysis [47], ionospheric pa-

rameter based precursor pattern generation [43], relative TEC deviation analysis

[41, 57] and seismo-ionospheric variation investigation [40] and detection [42].

1.3 Contributions of the Thesis

When the previous EQ precursor related research studies are taken into consider-

ation, these research fall short on providing statistical characterizations of their

EQ prediction capabilities due to following reasons.

1. Most of these studies are post-EQ techniques that conduct statistical anal-

ysis on ionospheric data in the aftermath of a strong EQ.

2. Typically, statistical analysis is conducted on a relatively short time interval

leading to EQs of magnitude 6 or higher. There is no statistical analysis of

false alarms over larger periods of data.

Therefore, pre-EQ or real-time EQ precursor detection and false alarm perfor-

mances of these methods are highly uncertain and might lead to inconsistent EQ

precursor detections.

An objective investigation on relationship between TEC based ionospheric

anomalies and EQ precursors is conducted in [61], [60]. These investigations

revealed the fact that TEC based ionospheric anomalies are correlated with the

EQ preparation process and probability of observing such TEC anomalies prior

to strong EQs is notably higher than observing these anomalies when there is no
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seismic activity. In this dissertation, model based, machine learning based (EQ-

PD) and deep learning based (DL-PD) EQ precursor detection techniques are

presented. The proposed techniques contributes to the literature in the following

aspects.

1. Precursor detection performances of the proposed techniques are evaluated

by dividing each day into two separate classes: seismic activity days and

no-seismic activity days. Number of days in no-seismic activity class is

greater than seismic activity class days in all investigations.

2. The model based and machine learning based techniques are trained in a

supervised way that during the training set of days seismic activity and

no-seismic activity class information of each day is processed. Hence, these

proposed techniques are trained, validated and tested for unbiased precursor

detection performance evaluations.

3. During the training of the model based and machine learning based tech-

niques, geomagnetic parameters are also processed to increase the reliability

of precursor decisions.

4. EQ-PD is a novel Boosting technique which combines multiple EQ precursor

decisions to generate a final EQ precursor detection.

5. DL-PD is a deep learning technique which can be trained in an unsupervised

way that during the training seismic activity information is not processed.

DL-PD is capable of reliably predicting the future GIM-TEC data from the

past.

1.4 Organization of the Thesis

This dissertation consists of three different EQ precursor detection studies pre-

sented in detail in the following chapters. Chapter 2 is an extension of a previous

study detailed in [60]. In [60], it is shown that there is a correlation between seis-

mic activities and ionospheric TEC. In Chapter 2, a model based EQ precursor

6



detection technique is implemented by exploiting the results of the previous study.

In Chapter 3, a machine learning based EQ precursor detection technique that

process TEC data obtained from EUREF Permanent GNSS Network to detect

precursors of EQs around Italy is presented [62]. In Chapter 4, a deep learning

based EQ precursor detection technique that process GIM-TEC data obtained

from International GNSS Service to detect precursors of EQs around Anatolian

region is proposed. Finally, Chapter 5 concludes this dissertation with future

research directions.

7



Chapter 2

MODEL BASED

EARTHQUAKE PRECURSOR

DETECTION TECHNIQUE

GPS networks with precisely known receiver positions are deployed to provide

highly accurate real-time geolocation information. These permanently located

GPS networks shall also generate indirect ionospheric TEC measurements for

monitoring state of the ionosphere.

In this work, TEC measurements of Turkish National Permanent GPS Network

(TNPGN) are processed and presented in Section 2.1. There are multiple sources

of ionization in the ionosphere, such as strong solar radiation, radon gas emission,

ionospheric chemistry and strong seismic activities. The TEC measurements vary

both spatially and temporally due to ionization in the atmosphere. The proposed

model based earthquake precursor detection technique relies on detection of local

TEC anomalies that are triggered by strong seismic activities on the earth’s crust.

The proposed detection technique consists of five sequential processing stages.

First of all, TEC measurements are estimated by using a spatio-temporal estima-

tion technique as detailed in Section 2.2. Then, earthquake precursor detection

8



and TEC reliability signals are generated as presented in Section 2.3 and Section

2.4, respectively. Generated earthquake precursor detection signal is thresholded

for declaring a precursor decision by using precursor detection thresholds as de-

scribed in Section 2.5. Declared precursor decisions are validated by anomaly

detectors that use TEC reliability signal and detection parameters to assess reli-

ability of the anomaly decisions as introduced in Section 2.6. Finally, as detailed

in Section 2.6.3, validated precursor decisions of the precursor detectors are fused

to generate final earthquake precursor detections that has higher robustness and

performance in terms of lower false alarm rates.

2.1 Turkish National Permanent GPS Network

(TNPGN)

The TNPGN is a Global Navigation Satellite System (GNSS) network with 158

operational reference stations which are deployed across Turkey and Northern

Cyprus. The TNGPN is operational since 2009 and all its reference stations are

presented in Fig. 2.1.
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Figure 2.1: TNGPN reference station locations.
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Raw TEC data which is recorded at each operational reference station is pro-

cessed by IONOLAB-TEC and IONOLAB-BIAS services [63, 64]. Pre-processed

TEC measurements shall be generated with a time separation of 0.5 seconds.

In this work, TEC measurements with time separation of 2.5 minutes are post

processed. Samples of the processed TEC data are presented in Fig. 2.2.
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Figure 2.2: Daily TEC measurements at station “datc” on two different dates:

(a) 16.10.2011 and (b) 17.10.2011.

For two different dates of 16.10.2011 and 17.10.2011, pre-processed daily TEC

measurements at reference station with code name “datc” are visualized. As seen
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in Fig. 2.2, despite the daily TEC measurements are recorded in two consecutive

days, there are temporal differences between the hourly TEC recordings.

2.2 A spatio-temporal TEC interpolation tech-

nique

Anomalous behaviours in TEC measurements shall be detected by generating

estimates for the TEC measurements and comparing these estimates with the

TEC measurements. The TEC estimate of a reference station shall be generated

by using the TEC measurements of neighbouring reference stations (spatial TEC

estimation), past TEC measurements of the same reference station (temporal

TEC estimation) or both past TEC measurements of the reference station and

its neighbours (spatio-temporal TEC estimation). In this work, a spatio-temporal

TEC estimation technique is implemented [65, 60].

Let xu;d ((Nu;d × 1) column vector) defined as the available TEC data at

reference station u on day d:

xu;d = [xu;d(1) · · · xu;d(n) · · ·xu;d(Nu;d)]
T , (2.1)

where Nu;d is the total number of TEC measurements, xu;d(n), is the nth TEC

measurement of Nu;d consecutive TEC measurements. Neighboring reference sta-

tions of the reference station u shall be chosen with respect to a circle where

center of the circle is u reference station location and radius of the circle is Rr

km. TEC data of the v’th reference station which is located within the circle shall

be defined as xv;d;Rr ((Nu;d×1) vector) and total number of neighboring reference

stations shall be defined as Nu;Rr . Then a spatio-temporal TEC estimate of the

chosen reference station u on day d, x̂u;d;Rr shall be obtained as:

x̂u;d;Rr =

Nu;Rr∑
v=1

αu;d;Rr(v)xv;d;Rr , (2.2)

where αu;d;Rr(v) is weight of the vth neighboring station. Hence, weights vec-

tor αu;d;Rr (Nu;Rr × 1) shall be defined as the unique solution of the following

11



minimization:

αu;d;Rr = argmin
αu;d;Rr (v)

ds∑
di

∥∥∥∥∥xu;dn −
Nu;Rr∑
v=1

αu;d;Rr(v)xv;dn;Rr

∥∥∥∥∥
2

2

. (2.3)

αu;d;Rr shall also be obtained in closed form as:

αu;d;Rr
=

(
ds∑

dn=di

XT
u;dn;Rr

Xu;dn;Rr

)−1( ds∑
dn=di

bu;dn;Rr

)
, (2.4)

where Xu;dn;Rr matrix (Nu;d×Nu;Rr) is formed by combining multiple TEC mea-

surements of Rr km. neighbouring reference stations as:

Xu;dn;Rr = [x1;dn;Rr . . .xv;dn;Rr . . .xNu;Rr ;dn;Rr ], (2.5)

and bu;dn;Rr vector (Nu;Rr × 1) is defined as:

bu;dn;Rr = XT
u;dn;Rr

xu;dn . (2.6)

Ionosphere electron density and the strong solar radiation based magnetic ac-

tivity of the sun are highly correlated. Sun spot number (SSN) is a widely used

index to monitor sun and solar activity in a daily basis [66]. Since the proposed

spatio-temporal TEC estimation technique depends on past TEC observations,

days within [di, ds] in (2.4) are clustered with respect to their corresponding SSN .

Past TEC data which is in the same cluster with the estimation day is processed

during the minimization in (2.4). Hence, the minimization process is temporally

correlated with the magnetic activity of the sun.

By using the obtained weights αu;dn;Rr
, x̂u;d;Rr can be computed and compared

to xu;d to detect the local TEC anomalies. TEC estimation performance of the

spatio-temporal TEC interpolation technique is presented in Table 2.1 and Fig.

2.3 for the reference station “datc” on two different 16.10.2011 and 17.10.2011

that are also illustrated on the Fig. 2.2. Root Mean Square TEC estimation

error, TECRMS,u,d is defined in (2.7), and calculated for the reference station and

the chosen dates. As shown in the Table 2.1, root mean squared error (RMS) of

both estimation dates are close to zero.
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x̂RMS,u,d,Rr =

√
1

Nu,d

∥∥∥∥xu;d − x̂u;d;Rr

∥∥∥∥2
2

(2.7)

Table 2.1: RMS error for the TEC measurements and their estimates at reference
station “datc” on two different dates: 16.10.2011 and 17.10.2011.

16.10.2011 ”Datça” 17.10.2011 ”Datça”
Sunspot Number : 60 Sunspot Number : 74

x̂RMS,u,d,Rr = 0.4230 TECU x̂RMS,u,d,Rr = 0.4214 TECU
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Figure 2.3: Daily TEC measurements and their estimates at station “datc” on

two different dates: (a) 16.10.2011 and (b) 17.10.2011.
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2.3 Generation of the Earthquake Precursor

Detection Signal

An anomaly shall be defined as a ”variation from the norm.” [67]. Detection

of an TEC anomaly requires comparing the TEC measurements with the norm

or i.e. TEC estimates. Result of this comparison is the anomaly score of the

compared TEC measurements or i.e. local TEC variation. Amount of local TEC

variation on a TEC measurement and its estimate shall be calculated by using

Symmetric Kullback-Leibler Distance (SKLD) between the normalized xu;d and

its normalized estimate x̂u;d;Rr [68, 69]:

SKLD(Pu;d; P̂u;d;Rr) =

KLD(P̂u;d;Rr |Pu;d) +KLD(Pu;d|P̂u;d;Rr), (2.8)

where KLD is the Kullback-Leibler Distance given by:

KLD(P̂u;d;Rr |Pu;d) =

(
Nu;d∑
n=1

P̂u;d;Rr(n)ln

(
P̂u;d;Rr(n)

Pu;d(n)

))
, (2.9)

KLD(Pu;d|P̂u;d;Rr) =

(
Nu;d∑
n=1

Pu;d(n)ln

(
Pu;d(n)

P̂u;d;Rr(n)

))
, (2.10)

where Pu;d and P̂u;d;Rr are the normalized xu;d and x̂u;d;Rr as:

Pu;d =
xu;d

∥xu;d∥1
, (2.11)

P̂u;d;Rr =
x̂u;d;Rr

∥x̂u;d;Rr∥1
. (2.12)

Earthquake precursor detection signal which can serve to detect anomalies

on local TEC variations is constructed by 2D interpolation of all the calcu-

lated SKLDs for all stations in the TNPGN [70, 71]. For two consecutive dates:

29.08.2011 and 30.08.2011, earthquake precursor detection signals are generated

and presented in Fig. 2.4. As shown in Fig. 2.4, despite dates of the gener-

ated precursor detection signals are two consecutive days, they show spatial and

temporal local TEC variation differences.
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Figure 2.4: Visualization of earthquake precursor detection signals for two dif-

ferent dates: (a) 29.08.2011 with sunspot number 34 and (b) 30.08.2011. with

sunspot number 51.

2.4 Generation of the TEC Reliability Signal

Ionospheric TEC disturbances are not only triggered by the solar radiation and

the seismic activities but also affected by the geomagnetic storms. For robust
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and reliable detection of local TEC anomalies, TEC anomalies that are caused

by the geomagnetic storms should be taken into consideration by monitoring geo-

magnetic storm related parameters. Dst, Kp and the planetary ionospheric storm

index Wp are some of the widely used parameters for identifying the geomagnetic

storms [72]. Wp can easily be obtained by using TEC measurements and can serve

to identify the ionospheric storms even under magnetically quiet-time conditions

[73, 74]. Hence, Wp is a reasonable candidate for assessing the reliability of TEC

measurements. Wp parameter is a discrete parameter that can be obtained by

categorizing ionosphere variability, wu;d. wu;d can take both negative and positive

values indicating negative and positive geomagnetic storms as their magnitudes

are proportional to wu;d, respectively. As the wu;d gets closer to zero, state of the

ionosphere gets more quiet. To represent reliability of local variation in TEC for

the detection of local anomalies due to seismic activities, wu;d shall be defined as:

wu;d = log10(xu;d/xu;d;med), (2.13)

where local ionosphere variability, wu;d is an unquantized version of the iono-

spheric Wp parameter and xu;d;med is defined as the median of 7 days TEC pre-

ceding the day d, at station u.

In this work, earthquake precursor detection signals are generated by calcu-

lating SKLD based local TEC variations for each and every station in the GPS

network. Similarly, TEC reliability signals are generated by calculating local

ionosphere variabilities, wu;d for each and every station in the GPS network.

Thereafter, an estimate of local ionosphere variabilities, ŵu;d is generated by the

spatio-temporal algorithm as described in Section 2.2 to reduce spatial varia-

tion of the local ionosphere variabilities. The TEC reliability score, TECα;u;d for

reference station u and day d shall be defined as follows:

TECα;u;d = max(ŵu;d). (2.14)

Similarly, TEC reliability signal which shall serve to assess reliability of the TEC

measurements is also generated by 2D interpolation of all the calculated TEC

reliability scores for all stations in the TNPGN. Fig. 2.5 illustrates generated

TEC reliability signals for the same days that are also presented in Fig. 2.4.
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Figure 2.5: Visualization of TEC reliability signals for two different dates: (a)

29.08.2011 with sunspot number 34 and (b) 30.08.2011. with sunspot number 51.

As presented in Fig. 2.5, Diyarbakır and Bitlis regions of Turkey show higher

TEC reliability scores compared to other regions of Turkey. This issue shall be

attributed to the fact that these regions are at the border of the Eurasian tectonic

plate and Arabian tectonic plate. Therefore, these regions may exhibit frequent

seismic activities resulting with higher reliability scores.
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In the following, two different earthquake precursor detectors operating on

these precursor detection and reliability signals are presented.

2.5 Adaptive Generation of the Anomaly De-

tection Thresholds

A decision boundary shall be defined as a hyperplane that separates observa-

tion space into multiple decision regions [75]. The generated spatio-temporal

earthquake precursor detection signals are the observation space of the proposed

anomaly detection technique. Hence, anomaly detection thresholds shall sepa-

rate anomalous TEC variations from the regular TEC variations on the gener-

ated earthquake precursor detection signals. These anomaly detection thresholds

shall be generated with respect to spatial, temporal or spatio-temporal variations

of the generated earthquake precursor detection signals. In this work, spatial

earthquake precursor detection thresholds that are constant in time are gener-

ated to detect spatial TEC anomalies and temporal earthquake precursor detec-

tion thresholds that are constant in space are generated to detect temporal TEC

anomalies. Each day classified into two non-overlapping classes named as: ”seis-

mic activity” and ”no seismic activity” and TEC variation statistics of the days

of no seismic activity class are used during the threshold generation process.

2.5.1 Spatial earthquake precursor detection thresholds

Spatial earthquake precursor detection thresholds shall be generated by estimat-

ing TEC variation behaviour of each reference station on the days of no seismic

activity class [76]. The TEC variation behaviour of each reference station is

estimated by negative Pareto cumulative distributions. Each negative Pareto

cumulative distribution is unique to a TNPGN reference station and maps each

local TEC variation of this reference station to a tail probability. Hence, choosing

a constant tail probability corresponds to a different local TEC variation value
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for each TNPGN reference station.

Upper truncated Pareto distributions provide appropriate statistical charac-

terization on dense TEC measurements, since the TEC measurement and their

generated estimates are positive valued. For an upper-truncated Pareto random

variable Z its tail probability is given by the following three parameter model in

ρ, γ and ϑ [76, 77]:

P (Z > z) =
γρ(z−ρ − ϑ−ρ)

1 −
(

γ
ϑ

)ρ , 0 < γ ≤ z ≤ ϑ <∞ . (2.15)

Maximum Likelihood (ML) estimates for the distribution parameters are:

γ̂ = min(TEC∆;u(1) , · · · , TEC∆;u(Nns)) , (2.16)

ϑ̂ = max(TEC∆;u(1) , · · · , TEC∆;u(Nns)) , (2.17)

and ρ̂ is obtained as the solution to:

Nns

ρ̂
+

Nns

(
γ̂

ϑ̂

)ρ̂
log
(

γ̂

ϑ̂

)
1 − Nns

(
γ̂

ϑ̂

)ρ̂ =
Nns∑
i=1

[log(TEC∆;u(i)) − log(γ̂)] , (2.18)

where Nns is number of days with no seismic activity and TEC∆;u(i), 0 ≤ i ≤ Nns

is a time series of the local TEC variations obtained from the no seismic activity

days for the reference station u [76, 77].

γ̂, ϑ̂ and ρ̂ parameters shall be obtained by using (2.16), (2.17) and (2.18), re-

spectively. Thereafter, probabilistic distribution of local TEC variation tail prob-

ability, Ptail;TEC∆
shall be estimated for all stations in the TNPGN for seismically

inactive days. As an example demonstration of the estimation performance, Three

different local TEC variation tail probability distributions are illustrated in Fig.

2.6 for three different reference stations “Fethiye”, “Eskisehir” and “Samsun”.
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Figure 2.6: Local TEC variation Negative Pareto cumulative distributions for the

“Fethiye” (red), “Eskisehir” (orange) and “Samsun” (blue) stations.

As presented in Fig. 2.6, estimated local TEC variation tail probability dis-

tributions show spatial variation that distributions vary with respect to the lo-

cations of the reference stations. When a constant tail probability is chosen as

Ptail;TEC∆
= 0.1, the tail probability corresponds to a different local TEC varia-

tion in “Fethiye”, “Eskisehir” and “Samsun” reference stations as 0.0013, 0.0015

and 0.0002, respectively. If this procedure is repeated for all TNPGN reference

stations and the corresponding local TEC variations are chosen as spatial thresh-

olds, then a spatial earthquake precursor detection threshold that corresponds to

the chosen tail probability shall be generated. Three different spatial earthquake

precursor detection thresholds are illustrated in Fig. 2.7 for three different TEC

variation tail probabilities. Tail probabilities are chosen as 0.05 in Fig. 2.7a,

0.005 in Fig. 2.7b and 0.0005 in Fig. 2.7c.
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Figure 2.7: Spatial earthquake precursor detection thresholds with different local

TEC variation tail probabilities: (a) 0.05, (b)0.005 and (c) 0.0005.
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2.5.2 Temporal earthquake precursor detection thresh-

olds

Temporal earthquake precursor detection thresholds are generated by using all

daily local TEC variations TEC∆;v;d obtained from all reference stations v =

1, .., Ns where Ns is the number of all stations on TNGPN and d is the chosen

day. Let TEC∆;d;sort denote the (Ns × 1) sorted vector containing all local TEC

variations for the day d:

TEC∆;d;sort = f([TEC∆;1;d · · ·TEC∆;v;d · · ·TEC∆;Ns;d]
T ), (2.19)

where f(.) function is a vector sorting function. Median local TEC variation of

the chosen day d, Medd shall be defined as follows:

Medd =
TEC

Ns/2
∆;d;sort + TEC

Ns/2+1
∆;d;sort

2
(2.20)

where TEC
Ns/2
∆;d;sort is the Ns/2’th element of the TEC∆;d;sort vector. Similarly,

mean Md and standard deviation Sd of the daily local TEC variations of the day

d shall be defined as follows:

Md =
1

Ns

Ns∑
v=1

TEC∆;v;d , (2.21)

Sd =

√√√√ 1

Ns − 1

Ns∑
v=1

(
TEC∆;v;d −Md

)2

, (2.22)

Hence, temporal earthquake precursor detection threshold TETd for the chosen

day d shall be generated by:

TETd(β) = Medd + βSd , (2.23)

where β parameter is a control parameter that adjusts the expected range of

daily TEC variations. Choosing a high β parameter corresponds to increasing

the expected daily TEC variations that results with fewer earthquake precursor

detections for the day d. On the other hand, choosing a high β parameter will

also result with fewer number of false TEC anomaly decisions.
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Figure 2.8: Temporal earthquake precursor detection for the first 60 days of 2011
with different β parameters.

Different temporal earthquake precursor detection thresholds are illustrated in

Fig. 2.8. The thresholds are generated for the first 60 days of 2011 with three dif-

ferent β parameters chosen as: 0, 0.1 and 0.2. As seen in Fig. 2.8, generated tem-

poral earthquake precursor detection thresholds show temporal variations while

remaining constant over space.

2.6 Earthquake Precursor Detectors

Different from the previous research, spatial and temporal earthquake precursor

detectors are obtained that can operate on both generated earthquake precursor

detection and reliability signals as generation of these signals described in Section

2.3 and Section 2.4 [78]. During the operation, these detectors require detection

parameters and the earthquake precursor detection thresholds that are generated

based on techniques detailed in Section 2.5. Since spatial and temporal earth-

quake precursor detectors can declare a precursor decision on the detection signal
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with respect to the detection parameters, determining an appropriate set of de-

tector parameters has a significant importance on the performance of earthquake

precursor detection technique. In the following, a detector parameters based

earthquake precursor classification technique making use of false alarm control of

these detectors will be presented.

2.6.1 Control of False Alarm

To demonstrate the false alarm control performance of the proposed detectors,

false alarms that are generated by the proposed earthquake precursor detectors

are investigated on the days of no seismic activity. For each earthquake presented

in Table 2.2, a unique time window is defined for day labeling purposes. Days of

seismic activity are labeled with respect to these time windows which start from

9 days prior to an earthquake and end with the day of the related earthquake.

Hence, 154 days of 2011 are labeled as seismically active days and belong to

seismic activity class. Remaining 211 days in 2011 are labeled as in the no

seismic activity class.

Local TEC variation statistics that are obtained from the days of no seismic

activity are used to generate spatial earthquake precursor detection thresholds.

The relation between the tail probability of local TEC variation Ptail;TEC∆
and

probability of false alarm, PFA for the days of no seismic activity class is presented

in Fig. 2.9. As shown in Fig. 2.9, a desired level of PFA can be achieved by

obtaining the corresponding tail probability. Once a tail probability is chosen,

the spatial earthquake precursor detection thresholds can be obtained by using

the corresponding Pareto distribution for each reference station.

Unlike the spatial earthquake precursor detection thresholds, temporal earth-

quake precursor detection thresholds are generated by using the statistics that are

obtained from both days of seismic activity and no seismic activity. The relation

between the β parameter in (2.23) and PFA for the days of no seismic activity

class is also presented in Fig. 2.9. As shown in Fig. 2.9, PFA can be set to a

desired level by adjusting β parameter. Once a β parameter is chosen, temporal
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earthquake precursor detection thresholds shall be generated by using (2.23).
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Figure 2.9: (Right)Adjusting Spatial Detector’s PFA by adjusting local TEC
variation tail probability Ptail;TEC∆

, (Left) Adjusting Temporal Detector’s PFA

by adjusting β parameter in (2.23).

Spatial and temporal earthquake precursor detectors shall adjust Ptail;TEC∆
and

β parameters to obtain appropriate spatial and temporal earthquake precursor

detection thresholds for a desired level of PFA. If spatial or temporal earthquake

precursor detection thresholds are exceeded on the generated earthquake precur-

sor detection signal, the detector generates a precursor decision which might be

related to an upcoming earthquake. Generated precursor decisions shall be clas-

sified with respect to their TEC reliability scores. Decision classification validates

precursor decisions with acceptable TEC reliability scores, and rejects remaining

precursor decisions. A decision classification technique is detailed in the next

section.
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2.6.2 Classification of Precursor Decisions

Earthquake precursor detection signals and TEC reliability signals shall be syn-

chronized such that each and every reference station in the TNPGN will have a

local TEC variation, TEC∆;u;d and TEC reliability score, TECα;u;d for a chosen

day d and reference station u. The synchronized signal represents each TEC

measurement in terms of its variation and reliability. Therefore, it is possible to

assess each TEC variation with respect to its reliability. In order to distinguish

the local TEC variations with respect to their reliability, a linear classifier shall

be used. For a chosen reference station u, and day d, a linear classifier shall be

defined as:

TEC∆;u;d ≤ gLC × TECα;u;d + CTEC∆
, (2.24)

where gLC is gradient of linear classifier and CTEC∆
is the intersection point of the

linear classifier and the TEC variation axis. gLC and CTEC∆
parameters can be

considered as the detector parameter pair for an earthquake precursor detector.

To demonstrate the particular advantage of the proposed linear classifier, pre-

cursor decisions generated by a spatial detector for a chosen PFA = 0.1517, and

the detector parameters (gLC = −0.25, CTEC∆
= 0.029) are illustrated in Fig.

2.10. As shown in Fig. 2.10, the linear classifier may reduce PFA by rejecting

7 precursor decisions that result with false alarms while preserving 20 precursor

decisions resulting with true positive precursor detections. Despite the observed

performance enhancement may be limited to this particular case, a performance

enhancement is not guaranteed with constant detector parameters. Therefore, the

detector parameters of both the spatial and the temporal earthquake precursor

detectors require tuning for a chosen PFA.

Note that, choosing a linear classifier is also advantageous in terms of compu-

tation complexity. In order to choose an univariate quadratic decisions bound-

ary, a 3 dimensional optimization problem should be solved for the equation
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TEC∆;u;d ≤ a × TEC2
α;u;d + b × TECα;u;d + c. However, the resulting deci-

sion boundary will open through upwards or downwards only that classification

accuracy of this decision boundary might be limited. Similarly, proposing a bi-

variate decision boundary requires solving a 6 dimensional optimization problem

that makes the optimization problem difficult. If decision boundaries of both

temporal and spatial detectors are simultaneously optimized for univariate and

bivariate quadratic decision boundaries, resulting optimization problem will be 6

or 12 dimensional, respectively.

A decision fusion technique with parameter tuning for the individual earth-

quake precursor detectors will be presented in the following section.
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Figure 2.10: Precursor decisions of spatial earthquake precursor detector sepa-
rated by pre-defined linear classifier parameters.
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2.6.3 Decision Fusion Technique

The proposed decision fusion technique is based on generating a fused precursor

decision that combines precursor decisions of two or more detectors simultane-

ously so that the fused precursor decision is more reliable than the individual

precursor decisions [79]. Detection performance of the fused precursor decisions

is highly dependent on the diversity and the number of the individual decisions.

In this work, the earthquake precursor detections generated by dissimilar spatial

and temporal detectors. Precursor decisions that are generated by these detec-

tors are combined to form fused earthquake precursor detections for achieving

improved performance in terms of fewer false alarms and higher detection rates.

Figure 2.11: Spatial and temporal decision time series for 5 days with fused

decision time series for different ∆d parameters.

Daily earthquake precursor decisions that are generated by spatial and tem-

poral earthquake precursor detectors can be considered as hard decisions. These

hard decisions can be grouped into two distinct classes such that the upcoming

28



earthquake precursor decisions are marked as 1′s and remaining days without

precursor decisions are marked as 0′s. Therefore, the daily earthquake precursor

decisions of an earthquake precursor detector can be represented as a time series

consisting of only 1′s and 0′s.

These earthquake precursory decisions can be fused by using two stage of

processing. First, precursor decisions that are marked as 1′s in the decision time

series will be echoed for ∆d days for each decision time series. Thereafter, logical

AND operation is applied for the two different echoed decision time series to

obtain Fused∆d
earthquake precursor decisions. To demonstrate decision fusion

technique, two different spatial and temporal decision time series are generated

for 5 days and their corresponding Fused∆d
decisions are presented as in Fig.

2.11.

For a chosen ∆d parameter and given PFA, each earthquake precursor detec-

tor shall generate hard earthquake precursor decisions without considering the

detector parameters and the reliability assessment. As discussed in Section 2.6.2,

applying decision classification with detector parameters is a promising perfor-

mance enhancement, while it requires parameter tuning for the detector param-

eters. In this work, both spatial and temporal detector parameters are tuned by

using Particle Swarm Optimization (PSO) technique [80].

PSO is an iterative optimization technique based on simulating behaviour of

moving particles in a parameter search-space with respect to predefined con-

straints. The technique aims to obtain best parameter set in the search-space

represented by a particle beginning from first iteration to last. Detector parame-

ters of spatial detector, (gLC;S, CTEC∆;S) and temporal detector, (gLC;T , CTEC∆;T )

form a 4 dimensional search-space as (gLC;S, CTEC∆;S, gLC;T , CTEC∆;T ) where per-

formance of each particle in PSO is evaluated subject to this space. Performance

of the i’th particle xi shall be represented as an operation point on a Receiver

Operating Characteristic (ROC) space which has the same probability of precur-

sor detection PD;xi;∆d
, and probability of false alarm PFA;xi;∆d

as the Fused∆d

earthquake precursor decisions shall achieve. Pseudocode of the applied PSO

technique is presented in Algorithm 1.
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Algorithm 1 Particle Swarm Optimization Pseudocode

// Parameter Definition //
Niter ← Maximum number of iterations
Nparticles ← Number of particles
PFA;MIN ← Minimum permissible PFA for all particles
∆d ← Decision Fusion echo parameter

// Initialization //
for i = (1 to Nparticles) do

xi ← initialize the position of the i’th particle
vi ← initialize the velocity of the i’th particle
Lbest,i ← set initial local best of the i’th particle
if Lbest,i > Gbest then

Gbest = Lbest,i

end if

end for

// Iterative Optimization //
for t = (1 to Niter) do

for i = (1 to Nparticles) do
vi ← Update the velocity of the i’th particle
xi(t) = xi(t− 1) + vi ← Update the position of the i’th particle
if PD;xi;∆d

≤ exp−γ(PFA;xi;∆d
−PFA;MIN ) then

if PD;xi;∆d
> Lbest,i then

Lbest,i = PD;xi;∆d

if Lbest,i > Gbest then
Gbest = Lbest,i

end if

end if

end if

end for

end for
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Note that, the detector parameter optimization process shall be divided into

2 parallel optimization techniques such that detector parameters of spatial and

temporal detector shall be optimized separately by using 2 separate PSO tech-

niques. However, convergence to the global minima of the 4 dimensional search

space is not guaranteed in such a staged optimization process. Despite separate

optimization techniques may converge to their respective global minima for 2

dimensional search spaces, combining these 2 dimensional global minima into 4

dimensional solution does not guarantee obtaining a global minima in 4 dimen-

sional search space. Therefore, detector parameters are obtained simultaneously

in 4 dimensional space, instead of optimizing these parameters in two separate 2

dimensional search spaces.

Since each particle performance is represented in 2 dimensional ROC space,

they can move freely in every direction. To enforce particles to move through

directions with lower PFA and higher PD, movement of the particles can be re-

stricted to a certain PFA range by using ROC-space barrier functions. These

barrier functions can put a constraint on the performance of particles in terms of

lower probability of false alarms and shall be defined as follows:

PD;xi;∆d
≤ exp−γ(PFA;xi;∆d

−PFA;MIN ), (2.25)

where PFA;MIN is minimum permissible probability of false alarm for all particles

and γ is a transition parameter of the barrier function. As shown in Algorithm 1,

the barrier function is a constraint for fitness calculation in iterative optimization

part. Fig. 2.12, illustrates the barrier functions for different PFA;MIN values.

As shown in Fig. 2.12, the ROC-space is limited by barrier functions and de-

tection performance of the particles that are moving outside of this region will

not be considered. Since performances of the particles are restricted in the false

alarm generation sense, performance of a particle shall be evaluated subject to

its probability of detection only.
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Figure 2.12: ROC barrier functions with γ = 10 and PFA;MIN =

[0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75] (from left to the right).

In the following performance of the proposed fused earthquake precursor de-

tection technique will be evaluated by fusing the earthquake precursor decisions

of the spatial and the temporal earthquake precursor detectors for the days of

2011. Flow diagram of the proposed TEC based earthquake precursor detection

technique is presented in Fig. 2.13.
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Figure 2.13: Flow diagram of the proposed earthquake precursor detection tech-
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2.7 Performance of the Proposed Model Based

EQ Detection Technique

Earthquake precursor detection performance of the proposed technique is investi-

gated on the earthquakes that are presented in Table 2.2. As shown in Table 2.2,

there are 23 daily different earthquakes that had taken place around Turkey in

2011 with magnitudes greater than 5 in Richter scale. All performance evaluation

simulations are performed with respect to seismic activity and no seismic activity

classes that are generated from the temporal information obtained from Table

2.2.

Table 2.2: 23 earthquakes that have taken place around Turkey in 2011.

Date Time Earthquake Epicenter Mw Z
(dd.mm.yyyy) (hh:mm) Latitude Longitude (Richter) (km)
19.01.2011 09:17 41.8770 42.7038 5.3 27.81
28.02.2011 07:49 34.7417 25.3913 5.5 25.42
01.04.2011 13:29 35.4819 26.4011 6.2 8.99
19.05.2011 20:15 39.1328 29.0820 5.7 24.46
23.06.2011 07:34 38.5562 39.6307 5.3 13.42
27.06.2011 21:13 39.1108 29.0260 5.0 18.27
25.07.2011 17:57 40.8195 27.7498 5.1 6.97
18.08.2011 14:57 42.3595 43.0042 5.0 15.5
13.09.2011 16:19 34.4090 23.7220 5.0 5.00
14.09.2011 03:35 37.2030 22.0120 5.0 35.05
22.09.2011 03:22 39.6597 38.6777 5.4 7.18
27.09.2011 12:08 34.1700 23.6200 5.2 40.43
10.10.2011 19:07 37.2050 22.0600 5.1 5.00
23.10.2011 10:41 38.6890 43.4657 6.7 19.02
24.10.2011 08:49 38.7060 43.5823 5.0 17.27
25.10.2011 14:55 38.8230 43.5857 5.4 17.44
27.10.2011 08:04 37.3807 43.8343 5.6 21.61
08.11.2011 22:05 38.7192 43.0778 5.4 8.36
09.11.2011 19:23 38.4382 43.2825 5.6 21.47
14.11.2011 22:08 38.7038 43.0833 5.1 23.32
18.11.2011 17:39 38.8022 43.8528 5.2 8.00
23.11.2011 12:18 35.4048 25.9317 5.0 6.96
30.11.2011 00:47 38.4700 43.2905 5.0 19.79
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Different earthquake precursor detection signals can be generated by consid-

ering the fact that amount of TEC variations changes with respect to the time

of the day. Studies report that TEC variations of up to 25% during daytime

and 30% during nighttime shall be observed around the earthquake fault zones

[81]. Hence, daytime and nighttime ionosphere show distinguishable difference

in terms of TEC variations. This difference can be attributed to strong solar

radiation that causes high TEC variability in daytime and low TEC variability

in nighttime. It is possible to dissociate the local TEC variation TEC∆;u;d into

different sources of TEC variations as;

TEC∆;u;d ≃ TEC∆;solar + TEC∆;seismic + TEC∆;other, (2.26)

where TEC∆;solar is TEC variation triggered by strong solar radiation,

TEC∆;seismic is TEC variation triggered by seismic activities and TEC∆;other is

TEC variations with different sources. Due to observed strong solar radiation

in daytime, TEC∆;solar may attenuate seismic activity triggered TEC variations,

TEC∆;seismic. On the other hand, it might be possible to observe seismic activity

triggered TEC variations during the nighttime since disturbing effect of strong

solar radiation is less effective during nighttime. Hence, the effect of the strong

solar radiation shall be removed from the TEC measurements to investigate seis-

mic activity triggered TEC variations, TEC∆;seismic during the nighttime. A TEC

measurement window function shall be applied on a chosen TEC measurement

to remove the effect of the strong solar radiation from the measurement. An ex-

ample window is presented in Fig. 2.14c and applied on the TEC measurements

that are presented in Fig. 2.2. The windowed TEC measurements are called

nighttime TEC measurements and illustrated in Fig. 2.14.

In this work, the daytime and the nighttime earthquake precursor detection

signals are generated for all daytime and nighttime daily TEC measurements of

all TNPGN stations in 2011. TEC estimates for the daytime and the nighttime

TEC measurements are obtained as detailed in Section 2.2. Thereafter, local

daytime and nighttime TEC variations are measured by the SKLD metric and

earthquake precursor detection signals are generated as discussed in Section 2.3.
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Figure 2.14: The TEC measurements and the nighttime TEC measurements at
station “datc” on two different dates: (a) 16.10.2011 and (b) 17.10.2011. (c) TEC
measurement window function.

Daytime earthquake reliability signals are generated by using all daytime TEC

measurements of all TNPGN stations for the days in 2011. TEC reliability score

of each TEC measurement is examined by the maximum value of the estimated

local ionosphere variabilities, and earthquake reliability signals are generated as

discussed in Section 2.4. Earthquake reliability signals are synchronized with

the earthquake precursor detection signals to assess reliability of the local TEC

variations during the optimization process in earthquake precursor detectors.

Previous research has revealed that the nighttime earthquake precursor de-

tection signals with temporal earthquake precursor detectors and the daytime

earthquake precursor detection signals with spatial earthquake precursor detec-

tors achieve better performance in terms of higher detection rates with fewer false

alarm rates [60],[78]. In this work, the temporal earthquake precursor detector
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is operated on nighttime precursor detection signals with daytime based reliabil-

ity signal and the spatial earthquake precursor detector is operated on daytime

precursor detection signals with the same daytime reliability signal. Appropri-

ate earthquake precursor detection thresholds are also generated and the spatial

and the temporal earthquake precursor decisions are generated based on these

thresholds.

Performance of the proposed earthquake precursor detection technique evalu-

ated in terms of Fused∆d
precursor decisions that are generated by combining

the nighttime temporal earthquake precursor decisions with the daytime spatial

earthquake precursor decisions. Fig. 2.15 visualizes the ROC curves for differ-

ent Fused∆d
earthquake precursor decisions. As seen in Fig. 2.15, the Fused∆2

earthquake precursor decisions detects 14 earthquake precursors prior to 23 earth-

quakes and generates 5 false alarms during 211 days of no seismic activity.
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Figure 2.15: (a) ROC curves for Fused∆0 (orange), Fused∆1 (green), Fused∆2

(blue), and Fused∆3 (pink) earthquake precursor decisions.
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Despite the significant detection performance of Fused∆2 precursor decisions,

near real-time implementation of the proposed earthquake precursor detection

technique might be limited. Therefore, near real-time performance of the pro-

posed should also be evaluated. Cross-validation techniques are widely used to

assess the performance of machine-learning based techniques over different data

sets [82]. Among the cross-validation techniques, k-fold cross-validation technique

is a good candidate to evaluate the near real-time precursor detection performance

of the proposed earthquake precursor detection technique. The validation tech-

nique is based on training a machine learning model for k times and testing the

trained model for k times by partitioning dataset into k small datasets, folds,

while reserving a fold for testing and using the remaining folds for training k

times.

When the proposed earthquake precursor detection technique is considered,

folds are the small partitions of earthquake precursor detection and reliability

signals with different time durations. Training phase of the proposed earthquake

precursor detection technique can be considered as obtaining best precursor de-

tection threshold pair with their appropriate detector parameters. Test phase

performance of the proposed earthquake precursor detection technique can be

assessed by using precursor detection thresholds and detector parameters that

are obtained in the training phase on chosen test dataset. In this work, 10-fold

cross-validation is applied by partitioning earthquake precursor detection and

reliability signals into 10 different folds. Each fold contains 36.5 days on the av-

erage and number of earthquakes and number of no seismic activity class days

are presented in the Fig. 2.16 and also tabulated in first and the second columns

of Table 2.4, respectively.
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Figure 2.16: 10 different nonintersecting folds generated for the days of 2011 with

their seismic activity and no seismic activity class labels. Average number of false

alarm days (no seismic activity class days) is around 21.1 and average number of

earthquakes is around 2.3 for each fold.

During the training phase of the proposed earthquake precursor detection tech-

nique, the proposed technique might memorize earthquake precursor detection

and reliability signals such that any variation from this training signals might

result with errors in the testing signals. This phenomenon is known as overfitting

in machine learning [83]. There are several methods to cope with drawbacks of

overfitting problem. One of the widely used solutions for this problem in machine
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learning is pruning [84]. Pruning reduces the complexity of the model such that

more general implications are imposed on the training dataset. In this work, two

different pruning techniques are implemented to prevent the proposed technique

from overfitting on earthquake precursor detection and reliability signals. First

technique is based on limiting the training ROC operating points of Fused∆d

earthquake precursor decisions such that the operating points with a certain false

alarm range, PFA;range and a detection range, PD;range are accepted. Another

technique is choosing multiple operating points on the training ROC curve to

obtain the second and the third best training ROC curves. A fitness function

is also used to choose between possible operating points on training ROC curve

[85]:

fitness(K,D, PFA, PD) =
1

K(PFA − 0) + D(1− PD))
, (2.27)

where K and D are tradeoff parameters to control the ROC point error penalties

in terms of probability of false alarms, PFA and probability of detections, PD, re-

spectively. To demonstrate near real-time operation performance of the proposed

earthquake precursor detection technique, 10-fold cross validation technique is

implemented to earthquake precursor detection and reliability signal folds with

decision fusion paramater chosen as, ∆d = 3, barrier function parameters chosen

as γ = 20 and PFA;MIN = [0.01 : 0.01 : 0.1]. During the training, the ROC

operating points are restricted to PFA;Range = [0, 0.07] and PD;Range = [0.4, 0.6].

Table 2.3 illustrates the average training (mean of 10 different training data)

and the overall testing performances (cumulative performance of all test folds)

of the ROC operation points chosen with respect to (2.27), limited with respect

to PFA;Range and PD;Range. As shown in the third row of Table 2.3, training and

testing performances are reasonably close to each other such that the effect of

overfitting is nearly removed with pruning techniques. Individual training and

testing performances of the third best Fused∆3 earthquake precursor decisions

for 10 different folds are also presented in Table 2.4.
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Table 2.3: 10-fold cross validation average training and overall testing perfor-

mances of the first, the second and the third best Fused∆3 earthquake precursor

decision operation points.

Average Training Overall Test

Performance Performance

PD PFA PD PFA

First Best 12.1/20.7 5/189.9 10/23 12/211

Second Best 12/20.7 5.7/189.9 8/23 9/211

Third Best 12/20.7 7.2/189.9 14/23 8/211

Table 2.4: Number of earthquakes and no seismic activity days in each fold.

Training and testing performances of third best Fused∆3 earthquake precursor

decisions for each fold.

Fold Info Training Test

Number of No Seismic Performance Performance

Earthquakes Activity Days PFA PD PFA PD

1 26 6/185 12/22 3/26 0/1

1 26 8/185 13/22 0/26 1/1

1 26 6/185 13/22 1/26 0/1

1 26 7/185 13/22 0/26 1/1

2 22 6/189 12/21 0/22 2/2

1 26 8/185 13/22 2/26 0/1

1 26 9/185 13/22 0/26 1/1

4 12 7/199 11/19 0/12 3/4

5 12 7/199 10/18 2/12 1/5

6 9 8/202 10/17 0/9 5/6

During the training phase of the proposed earthquake precursor detection

technique, achieved average probability of false alarm and average probability

of precursor detection are 0.0380 and 0.5794 with standard deviations of 0.0057

and 0.0167, respectively. Since these standard deviations are smaller than the
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mean values, the proposed earthquake precursor detection technique shall choose

a similar operating point each time during the training phase. Furthermore, the

proposed earthquake precursor detection technique is achieved average proba-

bility of false alarm as 0.0397 and average probability of precursor detection as

0.5783 during the test phase. Unlike the training phase, standard deviation of

probability of precursor detection is 0.4657 due to the nonuniform distribution

of number of earthquakes for each fold. As shown in the 6’th column of Table

2.4, there is no precursor detections for three folds with only one earthquake, PD

is calculated as zero for these folds. Hence, the calculated standard deviation of

probability of precursor detection is high. Standard deviation of probability of

false alarm is achieved as 0.0603 during the test phase that is comparably close

to the probability of false alarm standard deviation that is achieved during the

training phase.

2.8 Concluding Remarks

Geomagnetic activities and strong solar radiation enforces atmospheric gases to

lose electrons. Hence, ionosphere is mostly composed of electrically charged parti-

cles and free electrons. Studies enlightened a fact that the electron density of the

ionosphere is also affected by seismic activities in the Earth’s crust and surface.

In this work, a statistically robust earthquake precursor detection based on

reliable detection of local ionospheric anomalies is presented and implemented

by using TEC data obtained from the Turkish National Permanent GPS Net-

work (TNPGN-Active). Adaptive operation performance of the proposed earth-

quake precursor detection technique is evaluated without cross-validation and

with cross-validation for the 23 earthquakes occurred around Turkey with magni-

tudes higher than 5 in Richter scale. Precursor detection results of the proposed

technique show that the technique shall detect 14 out of 23 earthquake precursors

and generate 5 false alarms in direct application. In cross-validated application

of the proposed technique, the proposed successfully detected 14 out of 23 earth-

quake precursors and generated 8 false alarms. Results of the work suggests the
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fact that it is possible to implement the proposed earthquake precursor detection

technique in near real-time by monitoring local TEC variations in sufficiently

dense GPS networks.

For further improvement on the obtained results, position of active faults can

be incorporated into both the precursor detection and the reliability analysis is

planned as a future work.

43



Chapter 3

A MACHINE LEARNING

BASED EARTHQUAKE

PRECURSOR DETECTION

TECHNIQUE

To determine the statistical significance of real-time precursor detection of EQs,

an investigation had been carried out to obtain precursor detection and false

alarm generation performances of a ionospheric TEC based EQ precursor detec-

tion technique [60, 61]. Results of these investigations enlighten the fact that

there is an interaction between ionospheric TEC anomalies and strong seismic

activities. In this study, a machine learning based ionospheric EQ precursor

detection technique, EQ-PD is proposed to detect anomalous effects of this in-

teraction on ionospheric TEC. EQ-PD has the following key contributions to the

EQ precursor detection literature.

One of the first contributions of the proposed is that EQ-PD generate precursor

detections with machine learning techniques. The proposed EQ-PD technique is

trained, validated and tested on ionospheric TEC data to generate EQ precursor

detections. Hence, it is possible to investigate its precursor detection performance
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in a robust and reliable way.

Another contribution of the proposed is that EQ-PD shall work with any

chosen GNSS network that shall record daily TEC data on its reference stations.

EQ-PD requires daily geomagnetic indices and daily ionospheric TEC data to

generate daily EQ precursor decisions.

Final contribution to the literature is that EQ-PD shall be defined as one of

the few Boosting techniques in the literature. EQ-PD generates multiple EQ

precursor decisions and combines them to get EQ precursor decisions with higher

robustness and performances.

In this work, TEC data obtained from reference stations located around Italy

with time duration nearly 3 years is processed to evaluate the EQ precursor

detection performance of the proposed technique. Obtained TEC data is divided

and non-overlapping training, validation and test data sets are generated. EQ

precursor detection performance evaluation of the EQ-PD is performed on the

test data sets only.

This work consists of multiple sequential processing stages. TEC data pro-

cessed by the technique is presented in Section 3.1. Generation of the anomaly

detection signal, anomaly detection thresholds, anomaly decisions, precursor de-

tection signal and EQ precursor detections are detailed in Section 3.2. Detection

performance of the proposed is investigated in Section 3.3. Finally, the work is

concluded with concluding remarks and future research directions in Section 3.4.

3.1 Data Collection and Processing

GNSS networks consist of multiple reference stations such that location of these

reference stations are estimated and updated with the ionospheric phase delays

of the satellite signals [86]. These phase delays are not only used to estimate

reference station positions but also used to estimate Slant Total Electron Content
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(STEC). STEC shall be defined as total number of electrons encapsulated by

a cylinder with 1 m2 cross section and extends between the satellite and the

reference station. A Vertical Total Electron Content (VTEC) or (TEC) estimate

shall also be generated by combining all STEC estimates that are obtained from

a different satellite [87]. Measurement unit of the estimated TEC shall be defined

as TECU and 1 TECU corresponds to 1016electrons/m2.
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Figure 3.1: Positions of 320 EPN reference stations over Europe including region
of choice covering Italy shown with green circles and chosen reference stations
with red circles.

TEC data of a reference station shall be monitored by a time separation of

2.5 minutes. TEC data of multiple reference stations or a GNSS network shall

also be monitored by generating 2-D TEC maps of a chosen area with the same

time separation of 2.5 minutes [88, 89, 64]. Hence, it is possible to constantly

and reliably monitor the TEC data of a chosen region, if a GNSS network has

already been deployed on the chosen region. In this work, a subset of reference

stations of EUREF Permanent GNSS Network (EPN) is chosen for TEC data

collection and processing purposes [90]. Chosen reference stations are deployed
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around Italy and presented as orange circles in Fig. 3.1.

EPN is a GNSS network and operated by the International Association of

Geodesy Regional Reference Frame sub-Commission for Europe (EUREF). More

than 100 agencies and universities contribute to the operation EPN with well-

defined guidelines and standards [90]. The EPN made up of more than 300

Continuously Operating GNSS Reference Stations (CORS) deployed around Eu-

rope. In this work, TEC data of chosen reference stations of EPN is processed

by IONOLAB-TEC and IONOLAB-BIAS services to obtain more reliable and

refined TEC data.

IONOLAB-TEC provides reliable and accurate GPS-TEC estimates for a cho-

sen GPS reference station [87, 89, 91, 92]. IONOLAB-TEC combines different

STEC data obtained from all GPS satellites that are above the horizon limit of

the chosen reference station. Thereafter, a vertical TEC is estimated for each

GPS satellite and combined to form a final TEC estimate such that multipath

effects of the GPS satellite positions are reduced [93]. IONOLAB-BIAS method is

implemented for the the STEC estimation process. The method includes differen-

tial code biases (DCB) to STEC estimation and reduces noise on the estimations

[92].

In this work, temporal and spatial variabilities of TEC measurements are vi-

sualized by the chosen reference stations with code names ”AQUI” in L’Aquila

region, ”VEN1” in Venice region, ”TORI” in Turin region and ”MATE” in Matera

region of Italy. Geodetic locations of these chosen reference stations are presented

in Table 3.1, and shown in Fig. 3.2. As shown in Fig. 3.2, ”AQUI”, ”VEN1” and

”TORI” reference stations are located on seismically active regions and ”MATE”

reference station is located on a seismically inactive region compared to other

reference station locations. Hence, ”AQUI”, ”VEN1” and ”TORI” reference sta-

tions are chosen to visualize spatial variabilities of TEC measurements on seis-

mically active regions. ”MATE” reference station is chosen to visualize temporal

variabilities of TEC measurements on seismically inactive region.
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Table 3.1: Geodetic locations and regions of chosen reference stations: ”AQUI”,

”VEN1”, ”TORI” and ”MATE”.

Station Code Location Country City

Name Latitude Longitude

AQUI 42.37◦N 13.35◦E Italy L’Aquila

VEN1 45.43◦N 12.35◦E Italy Venice

TORI 45.06◦N 7.66◦E Italy Turin

MATE 40.65◦N 16.7◦E Italy Matera
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Figure 3.2: Geodetic locations of AQUI, VEN1, TORI and MATE reference

stations with recorded EQ epicenters for days in between 2005 and 2016.

Geomagnetic activities disturb multiple regions of ionosphere [94, 95]. Since,

geomagnetic activities cause ionospheric disturbances or anomalies, geomagnetic

activity related anomalies should be decoupled from the other ionospheric anoma-

lies [96, 97, 98]. Geomagnetic activity and geomagnetic storm related ionospheric

disturbances shall be classified by monitoring geomagnetic indices. Widely used
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geomagnetic indices shall be listed as: auroral electrojet index (AE), planetary

magnetic activity index (Ap), disturbance storm time index (Dst), global geo-

magnetic storm index (Kp) and sun spot number (SSN) [94, 66, 99]. Hourly,

daily, 27 day and yearly averaged AE, Ap, Dst, Kp and SSN shall be accessed

via NASA Goddard Space Flight Center OMNIWeb service [100]. Among these

geomagnetic indices, Dst and Kp indices are used for identifying geomagnetic

storms, SSN is used for estimating amount of solar radiation, AE is used for

measuring auroral zone magnetic activity and Ap indices is used for measuring

average geomagnetic activity.

In this work, temporal TEC variability is presented with TEC data obtained

from ”MATE” reference station for two different dates: 11 February 2016 and 12

February 2016. The TEC data is visualized in 3.4. As shown in 3.4, two daily

consecutive TEC measurements of a reference station show observable temporal

differences. Daily geomagnetic indices of these days are also tabulated in Table

3.2.

Table 3.2: For two different dates: 11 February 2016 and 12 February 2016, daily
AE, Ap, Dst, Kp and SSN .

Date AE Ap Dst Kp SSN
(D Month YYYY) (nT) (nT) (nT)
11 February 2016 268 8 -19 20 85
12 February 2016 176 12 -11 27 63

EQ related data is accessed via Advanced National Seismic System’s compre-

hensive earthquake catalog (ANSS ComCat) [101]. Accessed EQ related data:

daily different EQ number and EQ date (first column), EQ time (second col-

umn), EQ epicenter (third and fourth columns) and EQ magnitude type (fifth

column) is presented in Table 3.7.
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3.2 Machine Learning based Earthquake Pre-

cursor Detection Technique : EQ-PD

GNSS networks constantly and reliably collect ionosphere related data such as

TEC, foF2 and hmF2. The collected data shows anomalies before the strong

seismic activities that these anomalies shall be defined as EQ precursors if they

are detected prior to the EQs [102]. In this work, ionospheric TEC and machine

learning based EQ precursor detection technique, EQ-PD is proposed. The pro-

posed shall detect EQ precursors in a daily basis by using the daily TEC data

that is collected from spatially distributed reference stations or from a GNSS

network.

The collected TEC data exhibit both spatial and temporal TEC variations.

Hence, detection of seismic activity triggered TEC anomalies or EQ precursors

requires a precursor detection technique that shall learn and detect spatial and

temporal TEC variations in TEC data, simultaneously.

This work is organized as follows. In Section 3.2.1, TEC estimation perfor-

mance result of a spatio-temporal TEC interpolation technique is presented. In

Section 3.2.2, spatial and temporally varying anomaly detection signals are gen-

erated. Then, anomaly detection thresholds that shall adapt to these spatial and

temporal variations are generated in Section 3.2.3. In Section 3.2.4, anomaly

decisions are obtained by thresholding anomaly detection signals and obtained

anomaly decisions are combined to form an EQ precursor detection signal. Sup-

port Vector Machine (SVM) classifiers are trained, validated and tested on the

EQ precursor detection signals and finally, EQ precursor detections are generated

as discussed in Section 3.2.5. Flow diagram of the proposed EQ-PD technique is

visualized in Fig. 3.3.
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Figure 3.3: Flow diagram of the proposed EQ-PD technique. Detection signals

are generated based on regional TEC data and detection thresholds are adaptively

chosen based on the geomagnetic indices.
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3.2.1 Spatio-Temporal TEC Interpolation

As discussed in Section 2.2, it is possible to obtain a TEC estimate, x̂u;d;Rr for

the TEC measurement of xu;d by using the neighbouring reference station weight

vector αu;dn;Rr
in (2.2). Similarity between the obtained TEC estimate, x̂u;d;Rr

and TEC measurement shall be xu;d measured to generate local TEC variation for

the day d and reference station u. TEC estimates, x̂u;d;Rr and TEC measurements,

xu;d of ”MATE” reference station for the chosen dates in Table 3.2 are visualized

in Fig. 3.4.

As illustrated in Fig. 3.4, amount of TEC variations show distinguishable

differences during daytime and during nighttime. TEC variability sources shall

be separated into different categories such as:

TECVu;d ≃ TECVgeo;u;d + TECVseis;u;d + TECVoth;u;d, (3.1)

where TECVu;d is the TEC variability of a reference station u for day d. For the

chosen reference station and time, TECVgeo;u;d shall be defined as the TEC vari-

ability source generated by geomagnetic activities. Similarly, TECVseis;u;d shall

be defined as the TEC variability source generated by ongoing seismic activities

on the earth’s crust. Finally, TECVoth;u;d is the TEC variability source generated

by other sources of interactions between ionosphere and space weather. Due to

strong solar activity during daytime, TECVgeo;u;d shows higher TEC variabilities

during daytime compared to the nighttime. However, amount of TEC variability

caused by TECVseis;u;d depends on the magnitude of the seismic activity and

independent from the time of the day. Therefore, detection of nighttime TEC

variabilities caused by TECVseis;u;d shall be easier compared to daytime TEC

variabilities due to the absence of TECVgeo;u;d during nighttime. The TEC varia-

tion window that is presented in Fig. 2.14c shall be applied on the TEC measure-

ments, xu;d to generate nighttime TEC measurements, xnight
u;d . Similarly, nighttime

TEC estimates, x̂night
u;d;Rr

shall also be generated with the spatio-temporal estima-

tion technique as presented in Section 2.2. Nighttime TEC estimates, x̂night
u;d;Rr

and
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TEC measurements, xnight
u;d of ”MATE” reference station for the chosen dates in

Table 3.2 are visualized in Fig. 3.5.
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Figure 3.4: Daily TEC estimates x̂u;d;Rr and TEC measurements xu;d for reference

station ”MATE” for (a) 11 February 2016 and (b) 12 February 2016.
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Figure 3.5: Nighttime TEC estimates x̂night
u;d;Rr

and TEC measurements xnight
u;d for

reference station ”MATE” for (a) 11 February 2016 and (b) 12 February 2016.

3.2.2 Generation of Whole-day and Night-time Anomaly

Detection Signals

Detection of ionospheric TEC related anomalies requires generation of anomaly

detection signals. Anomaly detection signals shall be generated by measuring

the distance between TEC measurements of all reference stations with their TEC

estimates. Symmetric Kullback-Leibler Divergence (SKLD) shall be used as an
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appropriate metric to measure the metric distance between TEC estimates x̂u;d;Rr

and TEC measurements xu;d as also detailed in Section 2.3 [68, 69, 103, 104]. For

a reference station u and day d, SKLD based whole-day TEC variation, TECw-day
∆

shall be defined as follows:

TECw-day
∆ = KLD(P̂u;d;Rr |Pu;d) +KLD(Pu;d|P̂u;d;Rr), (3.2)

where KLD is the abbreviation of Kullback-Leibler Divergence and defined as:

KLD(P̂u;d;Rr |Pu;d) =

(
Nu;d∑
n=1

P̂u;d;Rr(n) log

(
P̂u;d;Rr(n)

Pu;d(n)

))
, (3.3)

KLD(Pu;d|P̂u;d;Rr) =

(
Nu;d∑
n=1

Pu;d(n) log

(
Pu;d(n)

P̂u;d;Rr(n)

))
, (3.4)

where Pu;d ((Nu;d× 1) column vector) is the daily normalized TEC measurement

vector and P̂u;d;Rr ((Nu;d×1) column vector) is the daily normalized TEC estimate

vector. Pu;d and P̂u;d;Rr shall be defined as follows:

Pu;d =
xu;d

∥xu;d∥1
= xu;d

(
Nu;d∑
n=1

xu;d(n)

)−1

, (3.5)

P̂u;d;Rr =
x̂u;d;Rr

∥x̂u;d;Rr∥1
= x̂u;d;Rr

(
Nu;d∑
n=1

x̂u;d;Rr(n)

)−1

. (3.6)

Note that both Pu;d and P̂u;d;Rr vectors are unitless since TECU are normalized

in (3.5) and (3.6). Similarly, SKLD based nighttime TEC variation, TECnight
∆

shall be defined as follows:

TECnight
∆ = KLD(P̂night

u;d;Rr
|Pnight

u;d ) +KLD(Pnight
u;d |P̂night

u;d;Rr
), (3.7)

where Pnight
u;d is the nighttime normalized TEC measurement vector and P̂night

u;d;Rr

is the nighttime normalized TEC estimate vector. Pnight
u;d and P̂night

u;d;Rr
shall be

defined as follows:

Pnight
u;d =

xnight
u;d

∥xnight
u;d ∥1

= xnight
u;d

(
Nu;d∑
n=1

xnight
u;d (n)

)−1

, (3.8)
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P̂night
u;d;Rr

=
x̂night
u;d;Rr

∥x̂night
u;d;Rr

∥
1

= x̂night
u;d;Rr

(
Nu;d∑
n=1

x̂night
u;d;Rr

(n)

)−1

. (3.9)

Both whole-day and nighttime anomaly detection signals shall be visualized

by kriging interpolation of all TECw-day
∆ and TECnight

∆ for the chosen reference

stations presented in Fig. 3.1 and for a chosen date d [70, 71]. For the two

consecutive dates presented in Table 3.2, whole-day anomaly detection signals

are generated and visualized in Fig. 3.6. As shown in Fig. 3.6, generated whole-

day anomaly detection signals show spatial and temporal differences.
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Figure 3.6: Whole-day anomaly detection signals for the chosen reference stations

in Fig. 3.1 for (a) 11 February 2016 and (b) 12 February 2016. Reference sta-

tions with available TECw-day
∆ are marked as black squares and reference stations

without a TECw-day
∆ are marked as green squares.

3.2.3 Adaptive Generation of the Anomaly Detection

Thresholds

Ionospheric local TEC variations shall be detected by using anomaly detection

thresholds. These anomaly detection thresholds shall be generated by using past
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TEC variation statistics that shall be obtained from past anomaly detection sig-

nals. Days of anomaly detection signals are divided into three non-overlapping

time intervals named as: training, validation and test set of days. Past TEC

variation statistics are generated by using the anomaly detection signals of train-

ing and validation sets of days. Anomaly detection signal with test set of dates

is reserved for the performance evaluation of the proposed EQ-PD technique

which uses TEC variation statistics obtained from training and validation sets of

days. After, the TEC variation statistics are obtained, anomaly detection thresh-

olds shall be generated and applied to detect anomalies behaviours in observed

TECw-day
∆ and TECnight

∆ in (3.2) and (3.7), respectively.

As presented in Fig. 3.6, TEC anomaly detection signals vary in both space

and time. Hence, it is possible to threshold temporal variations, spatial variations

or both spatial and temporal variations of the anomaly detection signals. In this

study, spatial anomaly detection thresholds that are constant in time are gen-

erated to detect spatially varying TEC anomalies and spatio-temporal anomaly

detection thresholds are generated to detect both spatially and temporally vary-

ing TEC anomalies. The anomaly detection signals of training and validation

sets of days are further divided into two non-overlapping sub-classes named as:

days with seismic activity and days with no-seismic activity. The TEC varia-

tion statistics are obtained from the training and validation days with no-seismic

activity.

3.2.3.1 Spatial anomaly detection thresholds

As discussed in Section 2.5.1, it is possible to generate spatial anomaly detection

thresholds by modelling TEC variation behaviour for each reference station in a

chosen region. The TEC variation behaviour of each reference station shall be

estimated by an unique negative Pareto cumulative distribution. Each negative

Pareto cumulative distribution maps each local TEC variation of its related ref-

erence station to a tail probability. Upper-truncated Pareto negative cumulative

distributions shall be modelled by estimating γ̂, ϑ̂ and ρ̂ parameters by using

(2.16), (2.17) and (2.18), respectively.
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It is also possible to estimate the Pareto cumulative distribution for a chosen

reference station by using these distribution parameters. The estimated distribu-

tion represents conditional probability of TEC∆ given a chosen reference station

in a chosen region and seismically inactive days during a chosen time interval.

For the three chosen reference stations: AQUI, TORI and VEN1 located in the

region presented in Fig. 3.1 and time interval in between 2005 and 2016, es-

timated upper-truncated Pareto negative cumulative distributions of TECw-day
∆

are presented in Fig. 3.7a. As presented in Fig. 3.7a, a chosen TEC variation

tail probability of 0.1 corresponds to different spatial threshold values of 0.015,

0.012 and 0.003 at the reference stations AQUI, TORI and VEN1, respectively.

Furthermore, the same estimation procedure shall be repeated for the night-time

local TEC variations, TECnight
∆ .

For the TORI reference station and the same time interval as in Fig. 3.7a,

estimated upper-truncated Pareto negative cumulative distributions of TECw-day
∆

and TECnight
∆ are presented in Fig. 3.7b. As illustrated in Fig. 3.7b, different

negative Pareto cumulative distributions are estimated for whole day and night-

time local TEC variations of the same reference station.

For each EPN reference station in the chosen area an upper-truncated Pareto

negative cumulative distribution shall be estimated. For a chosen tail probability,

a local TEC variation TEC∆ shall also be obtained for each reference station

of interest. A spatial anomaly detection threshold is formed by selecting all

the chosen local TEC variations as thresholds. Two whole-day spatial anomaly

detection thresholds are generated by choosing TECw-day
∆ tail probabilities of

0.005 and 0.05. The generated thresholds are presented in Fig. 3.8a and Fig.

3.8b, respectively. As illustrated in Fig. 3.8a and Fig. 3.8b, as the chosen tail

probabilities get smaller, resulting local TEC variations get higher. Additionally,

changing the tail probabilities result with spatial anomaly detection thresholds

with different spatial characteristics.
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Figure 3.7: (a) Negative Pareto cumulative distributions of local TEC variations

of AQUI, VEN1 and TORI reference stations for the days in between 2005 and

2016. (b) Whole day TECw-day
∆ and night-time TECnight

∆ negative Pareto cumu-

lative distributions of local TEC variations of TORI reference station for the days

in between 2005 and 2016.
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Figure 3.8: Generated spatial anomaly detection thresholds for the chosen

TECw-day
∆ tail probabilities (a) 0.005, and (b) 0.05.

The generated spatial anomaly detection thresholds extract the underlying

TEC variation distribution of each reference station independently that these
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thresholds shall be generated spatially adaptive way for any given reference sta-

tion or region.

3.2.3.2 Spatio-Temporal anomaly detection thresholds

By using daily geomagnetic parameters, each day of training and validation sets

shall be clustered with respect to its geomagnetic activity. After the geomagnetic

activity based clustering of the days, it is possible to generate a spatial anomaly

detection threshold for each different day cluster. A spatio-temporal anomaly

detection threshold which varies in both space and time shall be generated by

applying a different spatial anomaly detection threshold for each different day.

Unsupervised machine learning techniques do not require labeled data to oper-

ate. k -means clustering is one of the widely used unsupervised machine learning

techniques. The technique is based on finding k different cluster means on m

dimensional space, iteratively. Pseudocode of the applied k -means clustering

technique is presented in Algorithm 2.

To demonstrate clustering performance of the proposed technique, daily geo-

magnetic parameters data, gd is defined for day d as a five dimensional vector

consisting of daily geomagnetic parameters of Ap, AE, Kp, Dst indices, and SSN .

Geomagnetic parameters data is stored for each day in between 2005 and 2016.

Each dimension or geomagnetic parameter of the gd is normalized with respect

to its minimum and maximum values. k -means clustering technique is executed

on the normalized gd for different k values that ranges between 1 and 20. For

each execution of the technique, a mean silhouette score is calculated and stored.

Optimal k value that maximizes the mean silhouette score is chosen as k = 3

[105, 106]. Generated cluster means for the geomagnetic parameters data are

presented in Table 3.3 with mean value of each dimension of gd.

When real time operation of the proposed is concerned, the proposed runs in

near-real time operation due to requirement for further processing on some of the

61



chosen geomagnetic parameters. The EQ-PD technique requires some geomag-

netic data such as Dst and AE indices that may be provisional and not final for

the current time. These geomagnetic parameters require further processing to

remove possible artificial noise and baseline shifts [94]. Despite this processing

requirement of the data, EQ-PD technique is immune to possible errors on the

data. The effect of artificial noise and baseline shifts on k -means clustering tech-

nique is minimal that the technique processes data in the order of years. Hence

cluster mean locations shall be slightly shifted due to these errors. Furthermore,

EQ precursor detection process is also immune to these errors that EQ precur-

sor detection is performed by Support Vector Machine technique which is hardly

affected by outliers in the data.

Algorithm 2 k -means Clustering Pseudocode

// Parameter Definition //
Niter ← Maximum number of iterations
Nsamples ← Number of day sample
k ← Number of cluster locations

// Initialization //
for i = (1 to k) do

µi ← Initialize the mean for the i’th cluster
end for

// Iterative Search //
for t = (1 to Niter) do

for d = (1 to Nsamples) do
zd = argmini ∥µi−gd∥ ← Assign day sample d to the closest mean location

end for
for i = (1 to k) do

µi = MEAN
(
gd : zd = k

)
← Re-calculate mean of the i’th cluster

end for
end for
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Table 3.3: Generated cluster means for the days in between 2005 and 2016 and

mean value of each geomagnetic parameter.

k -means Kp SSN Dst Ap AE

cluster (nT) (nT) (nT)

1 3.19481 51.8314 -25.8080 21.7639 350.6083

2 1.12953 20.9920 -5.4621 4.8475 93.5610

3 1.40000 112.5771 -5.8790 6.2715 127.5974

Mean 1.58834 50.9175 -9.3896 8.3969 150.7634

As shown in Table 3.3, k -means clustering technique obtained the highest mean

silhouette score when k = 3 and generated three different cluster means based on

the chosen geomagnetic parameters of Ap, AE, Kp, Dst indices, and SSN . Each

of the day cluster mean represents a different level of ionospheric geomagnetic

activity. When cluster mean geomagnetic activity levels are compared to each

other, cluster-1 and cluster-3 represent the days with relatively higher geomag-

netic activities. Cluster-2 represents the days with relatively lower geomagnetic

activities in the ionosphere. Once these cluster means are obtained, each upcom-

ing day shall be classified with respect to its geomagnetic activity by measuring

the distance between geomagnetic parameters of a chosen day d, gd and cluster

means. The chosen day will be assigned to the cluster with the smallest distance.

Spatio-temporal anomaly detection thresholds shall be generated by estimating

k different Pareto cumulative distributions that are obtained from clustered days

of training and validation sets. Clustered days are classified with respect to

the k different cluster means that are presented in Table 3.3. For a region of

choice, the k different Pareto cumulative distributions shall be estimated for each

reference station. For the TORI reference station located in the region presented

in Fig. 3.1, time interval in between 2005 and 2016 and three different activity

states of the ionosphere, estimated upper-truncated Pareto negative cumulative

distributions of TECw-day
∆ are presented in Fig. 3.9a.
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Figure 3.9: (a) Whole day TECw-day
∆ negative upper-truncated Pareto cumulative

distributions of TORI reference station for the three different day clusters, (b)

Night-time TECnight
∆ negative upper-truncated Pareto cumulative distributions

of TORI reference station for the three different day clusters.
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Figure 3.10: Generated spatio-temporal anomaly detection thresholds for the

different clusters and chosen TECw-day
∆ tail probabilities (a) Cluster-1 0.005, (b)

Cluster-1 0.05, (c) Cluster-2 0.005, (d) Cluster-2 0.05, (e) Cluster-3 0.005, (f)

Cluster-3 0.05.
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As presented in Fig. 3.9a, a chosen TEC variation tail probability of 0.05 corre-

sponds to three different spatial threshold values of 0.045, 0.027 and 0.016 at the

TORI reference station for cluster-1, cluster-2 and cluster-3, respectively. Fur-

thermore, the same estimation procedure shall be repeated for the night-time local

TEC variations, TECnight
∆ as shown in Fig. 3.9b. After choosing an appropriate

TEC∆ tail probability, it is possible to obtain k different TEC∆ thresholds from

each reference station. Hence, a spatio-temporal anomaly detection threshold is

generated that it is possible to apply a different spatial threshold for each differ-

ent day type. Fig. 3.10 presents a spatio-temporal anomaly detection threshold

obtained from the set of days that belongs to cluster-1, cluster-2 and cluster-3

in Table 3.3 by choosing TEC∆ tail probability as 0.05 and 0.005. As presented

in Fig. 3.10, the generated spatio-temporal anomaly detection thresholds are

spatially different than each other.

The generated spatio-temporal anomaly detection thresholds extract the un-

derlying TEC variation distributions of each reference station for different activity

states of the ionosphere independently. Hence, these thresholds shall be gener-

ated both spatially and temporally adaptive way for any given reference station

or region.

3.2.4 Generation of EQ Precursor Detection Signal

The proposed EQ-PD is based on the detection of beyond the expected TEC∆

anomalies triggered by strong seismic activities. TEC∆ behaviours of the refer-

ence stations are examined to learn the expected TEC∆ behaviours when there

is no seismic activity in the ionosphere. Hence, it is possible to identify beyond

the expected TEC∆ anomalies when there is seismic activity in the ionosphere.

For a given TEC∆ tail probability, an anomaly detection threshold can be gen-

erated by finding the corresponding TEC∆ on the estimated Pareto distributions

for each reference station of interest. Since the estimated Pareto distributions are

obtained from no-seismic activity days, they depict the TEC∆ behaviour of each

reference station for the days with no-seismic activity. Therefore, each different
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TEC∆ tail probability corresponds to a different probability of false alarm (PFA)

or rate of TEC∆ anomaly detections for the no-seismic activity days class.

Major disturbances in TEC are reported prior to 1 to 9 days prior to strong

EQS by several studies [23, 103, 104, 107]. Several TEC related disturbances are

reported and statistically analyzed in [38]. As presented in [38], it is 1.8 to 3.6

times more likely to observe TEC disturbances prior to 1 to 9 days to strong EQs

than observing these disturbances when there is no seismic activity. Due to these

facts, days of seismic activity days class are chosen with respect to 9 days prior

to each strong EQ including the EQ days. All the remaining seismically inactive

days are included to no-seismic activity days class.

To demonstrate the relationship between TEC∆ tail probabilities and PFA,

first 274 days of 2016 are divided into seismic activity days and no-seismic activity

days classes. Since significant TEC disturbances are observed 9 days prior to an

EQ, these days including with the EQ day are selected for the seismic activity days

class. Seismic activity days class consists of 24 different time intervals including 9

days prior to the 24 EQs that are presented in Table 3.7. The relationship between

TEC∆ tail probability and PFA obtained from a whole-day anomaly detection

signal for the no-seismic activity days class is presented in Fig. 3.11. As shown

in Fig. 3.11, different statistical behaviours can be obtained for spatial anomaly

detection and spatio-temporal anomaly detection thresholds by adjusting TEC∆

tail probabilities on the estimated Pareto distributions.
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Figure 3.11: Relationship between TEC∆ tail probability and PFA obtained from

the days with no seismic activity during the first 274 days of 2016.

For a TEC∆ tail probability, anomaly decisions can be made by applying

the corresponding anomaly detection thresholds on the anomaly detection signal.

EQ precursor detection signals can be generated by gathering all daily anomaly

decisions obtained from different combinations of anomaly detection signals and

anomaly detection thresholds. In this study, 6 different anomaly detection signals

are generated. Three different whole day and three different night-time anomaly

detection signals are generated by altering the radius parameter Rr of spatio-

temporal TEC interpolation technique depicted in Section 2.2 and Section 2.3.

Spatial and spatio-temporal anomaly detection thresholds are generated for these

six different anomaly detection signals as detailed in Section 3.2.3.1 and Section

3.2.3.2. During the threshold generation process, 23 different TEC∆ tail proba-

bilities are chosen for each anomaly detection threshold. For 6 different anomaly

detection signals, 2 different anomaly detection threshold types and 23 different

threshold levels, 6 × 2 × 23 = 276 different anomaly decisions shall be gener-

ated for each day of interest. Each anomaly decision is marked as 1’s if there is a

threshold exceedance in a chosen anomaly detection signal and anomaly detection

threshold. If there is no threshold exceedance, then the related anomaly decision
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is marked as 0. Daily EQ precursor detection signal is formed by stacking all 276

different anomaly decisions and visualized in Fig. 3.12.
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Figure 3.12: EQ precursor detection signal.

3.2.5 Generation of EQ Precursor Detections

Support Vector Machine, (SVM) is one of the most robust and widely used pre-

diction methods used in machine learning [108, 109, 110]. SVM is a supervised

machine learning technique that shall either perform binary linear classification

or binary non-linear classification with the use of kernels. In this work, SVM

is chosen to classify days of EQ precursor detection signal into seismic activity

days and no-seismic activity days classes. Each day training and validation set

of day is labeled as y = 1, if the day belongs to seismic activity days class. All

the remaining days of no-seismic activity class are labeled as y = 0. The goal of

the SVM is to obtain the optimal decision boundary coefficients, θ that minimize

the following cost function:

min
θ

Creg

m∑
d=1

y(d)C1;h(θ
T s(d)) + (1− y(d))C0;h(θ

T s(d)) +
1

2

m∑
j=1

θ2
j , (3.10)

where n is the n daily anomaly decisions stacked in EQ precursor detection signal,
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m is the day duration of EQ precursor detection signal, Creg is the regularization

constant. Hinge loss functions of C0;h and C1;h represent the cost of classifying

when day labels are y = 0 and y = 1, respectively and defined as follows:

C0;h(θ
T s(d)) = max(0, (1 + θT s(d))), (3.11)

C1;h(θ
T s(d)) = max(0, (1− θT s(d))), (3.12)

s(d) represents a m dimensional sample vector that shall be obtained by applying

a Gaussian Kernel with parameter σ on the d’th day sample of the EQ precursor

detection signal as follows:

s(d) = [s
(d)
1 · · · s(d)r · · · s(d)m ]T , (3.13)

s(d)r = exp

(
− ∥P

(d)
E −P

(r)
E ∥2

2σ2

)
= exp

−
n∑

j=1

(P
(d)
E;j − P

(r)
E;j)

2

2σ2

 , (3.14)

where P
(d)
E;j represents the j’th entry or anomaly decision of the EQ precursor

detection signal for the day d.

During the training of the SVM, each sample vector, s(d) is multiplied by a

sample weight, w(d). Sample weights are initially chosen as 1, w
(d)
init = 1 for

d’th sample and normalized with respect to number of samples in each class to

approximate prior probabilities of the classes. Prior probability of the no seismic

activity class or Class 0, pD(0) and prior probability of seismic activity class or

Class 1, pD(1) shall be defined as:

pD =

[
pD(0)

pD(1)

]
=

1

m0 +m1

[
m0

m1

]
. (3.15)

where m0 is the number of samples in Class 0 and m1 is the number of samples

in Class 1.
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Additionally, prior probabilities of these classes shall be modified to train the

SVM in a cost-sensitive way. Prior probability vector, pD shall be updated by

multiplying the vector with a cost matrix as follows:

pDC =

[
0 CostFA

CostMD 0

]
pD, (3.16)

where CostFA is the cost of generating a false alarm and CostMD is the cost of

generating a misdetection. Sample weight of the d’th sample shall be obtained

by using updated prior probability vector, pDC for d ∈ Class 0 as in:

w(d) =
w

(d)
init∑

∀d∈Class 0

w
(d)
init

pDC(0), (3.17)

and when d ∈ Class 1:

w(d) =
w

(d)
init∑

∀d∈Class 1

w
(d)
init

pDC(1). (3.18)

Updated sample weights incorporate cost of misdetection and cost of false

alarms into the SVM objective function in (3.10). Hence, SVM generates the

decision boundary, θ with respect to these costs that the training of the SVM will

be in a cost-sensitive way. As an example, choosing CostMD = 1 and CostFA > 1

will enforce the trained SVM to reduce number of generated false alarms.

Training of the proposed SVM model requires hyperparameter tuning that

Creg, σ and CostFA parameters affect the precursor detection performance of

EQ-PD. Hence, training shall be performed for different combinations of Creg, σ

and CostFA parameters on the training set of days. Thereafter, for each chosen

combination decision boundary coefficients, θ should be obtained. Among all

decision boundary coefficient sets, the ones with the highest performance on the

validation set of days should be chosen as the optimal decision boundary coef-

ficients. Performance of the EQ-PD will be evaluated with this set of decision

boundary coefficients on the test set of days.
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In the following section, precursor detection performance of the proposed EQ-

PD technique will be investigated for the days in 2014 and 2016.

3.3 Precursor Detection Performance of the

Proposed EQ-PD Technique

Performance of the proposed EQ-PD technique is investigated on training, vali-

dation and test data sets that provide an unbiased evaluation of the chosen SVM

model. To achieve unbiased evaluation of the technique, three nonintersecting

EQ precursor detection signals for training, validation and testing of the model

are generated and presented in Table 3.4. As shown in Table 3.4, start and end

dates, number of days and number of daily different EQs in these time periods are

presented for training, validation and test sets. Precursor detection performance

of the EQ-PD technique is evaluated on the test set of days. During the test

set of dates and the region of choice, 24 daily different EQs had taken place and

presented in Table 3.7. All of the presented EQs had a magnitude greater than

4 in Richter scale [101]. If multiple EQs had taken place at the same day in the

chosen region, the EQ with the highest magnitude is chosen for the test perfor-

mance evaluation. As shown in Table 3.7, 24 daily different EQs are investigated

out of 43 total EQs.

Table 3.4: Training, validation and test set information.

Data set Date (D Month YYYY) Number Number of daily

Start End of Days different EQs

Training 1 January 2014 1 April 2015 456 35

Validation 2 April 2015 23 December 2015 266 21

Test 24 December 2015 30 September 2016 282 24

Additionally, random guessing experiments are performed to show statistical

significance and reliability of the precursor detection performance of the EQ-PD
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technique. Results of the experiments are compared with the EQ-PD precur-

sor detection performances to test their statistical significance. Test results and

reliability analysis of the proposed are presented in subsequent subsections.

3.3.1 Test Results

In the test performance evaluation, 3 different whole-day and 3 different night-

time TEC estimates are generated by adjusting the TEC estimation radius pa-

rameter, Rr as 250 km, 300 km and 350 km as detailed in Section 2.2. The TEC

estimates are generated for the TEC measurements of reference stations located

in the region of choice for the days in between dates 1 January 2005 (first day of

training set) and 30 September 2016 (last day of test set). Whole day TECw-day
∆

and night-time TECnight
∆ local TEC variations are calculated and whole-day and

night-time anomaly detection signals are generated for all the reference stations

located in the region of choice for the same time duration as detailed in Section

3.2.2.

As detailed in Section 3.2.3.1, Spatial TEC∆ behaviours of the generated

anomaly detection signals are obtained by estimating TEC∆ Pareto cumulative

distributions for the no-seismic activity days in between dates of 1 January 2005

(first day of training set) and 1 April 2015 (last day of training set). Similarly, as

detailed in Section 3.2.3.2, spatio-temporal TEC∆ behaviours of the generated

anomaly detection signals are obtained by clustering the no seismic activity class

days into k = 3 different day clusters and estimating TEC∆ Pareto cumulative

distributions for each of these day clusters for the no-seismic activity class days

in between dates of 1 January 2005 (first day of training set) and 1 April 2015

(last day of training set). In addition to the TEC∆ behaviours, cluster mean

locations are also obtained from the training set of days. Upcoming days of vali-

dation and test set of days are clustered with respect to these k = 3 cluster mean

locations. Finally, spatial and spatio-temporal anomaly detection thresholds are

also generated by selecting 23 different TEC∆ tail probabilities on the related

TEC∆ Pareto cumulative distributions.
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EQ precursor signal of training set shall be obtained by thresholding anomaly

detection signals with the appropriate anomaly detection thresholds and stacking

resulting 276 different daily anomaly decisions for the training set of dates pre-

sented in Table 3.4. For the validation and test set of dates presented in Table

3.4, EQ precursor signals are generated by thresholding future anomaly detection

signals with the appropriate anomaly detection thresholds that are obtained from

training set.
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Figure 3.13: ROC curves of validation (blue) and test (orange) sets and the chosen

validation (blue circle) and test (orange circle) ROC points for (a) Validation1

and Test1, (b) Validation2 and Test2, (c) Validation3 and Test3, (d) Validation4

and Test4.
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For different combinations of the SVM model parameters, Creg, σ and CostFA

different SVM models are trained on the EQ precursor detection signal that

is generated for the training set of days. During the training of the models,

SVM regularization parameter, Creg is chosen from the range 0.01 and 10000,

Gaussian kernel parameter, σ is chosen from the range 0.001 and 1000 and cost

of generating a false alarm parameter, CostFA is chosen from the range 1 and 2.1.

Cost of generating a misdetection parameter, CostMD is chosen as 1 during the

training. SVM Decision boundary coefficients, θ are obtained for each different

model parameter combinations. Each SVM decision boundary obtained from the

decision boundary coefficients are validated on the EQ precursor detection signal

that is generated for the validation set of days. Receiver Operating Characteristic

(ROC) curve of validation set is obtained by choosing the validated SVM models

with highest probability of detection (PD) for a given PFA on the validation set

of days. Similarly, ROC curve of test set is also obtained by applying the chosen

validated SVM models on the EQ precursor detection signal that is generated for

the test set of days. Validation and test ROC curves of the chosen SVM models

with different parameters are presented in Fig. 3.13.

When the generated ROC curves in Fig. 3.13 are taken into consideration,

these curves exhibit a stepped behaviour in PD axis since PD values are calcu-

lated with respect to small numbers of EQ precursors in validation and test sets.

There are 21 EQ precursors in the validation set and 24 EQ precursors in the

test set that PD shall take 21 and 24 distinct nonzero values during the per-

formance evaluations of validation and test sets, respectively. Furthermore, PFA

axis shall be controlled by adjusting TEC∆ tail probabilities of anomaly detection

thresholds as illustrated in Fig. 3.11. Hence, the generated anomaly detection

thresholds have no control over PD axis that increasing PFA may not always result

with increased number of EQ precursor detections. Finally, the generated ROC

curves are visualized for 0.5 ≤ PD ≤ 1 and 0 ≤ PFA ≤ 0.5 that performances of

ROC points with PD ≤ 0.5 or PFA ≥ 0.5 are not taken into consideration during

visualization.

To determine EQ precursor detection performance of the proposed, 4 different

ROC points are chosen from the validation ROC curve and named as: Validation1,
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Validation3, Validation3 and Validation4. EQ precursor detection performance of

these ROC points with their corresponding test ROC points are also presented

in Fig. 3.13. Furthermore, number of detected EQ precursors, number of false

precursor detections and SVM model parameters are presented in Table 3.5. for

the chosen ROC points. As shown in Fig. 3.13 and Table 3.5, validation ROC

points achieve smaller number of false alarms, while their corresponding test ROC

points generate higher number of false alarms.

EQ precursor detection distances shall be calculated by assigning the refer-

ence station with the highest level of TEC∆ anomaly to each day. Hence, every

EQ precursor detection shall be assigned to a reference station. For a chosen

EQ epicenter, EQ precursor detection distance shall be obtained by averaging

the distances between the epicenter and locations of the reference stations where

the related precursor detected. EQ precursor detection distances shall also be

averaged on all EQs to generate average precursor detection distances. For the

test ROC points that are presented in Fig. 3.13, average EQ precursor detec-

tion distances are presented in Table 3.5. As shown in Table 3.5, Test1 ROC

point achieves the smallest average precursor detection distance, while Test4 has

the furthermost average EQ precursor detection distance. Precursor detection

histograms of these ROC points are also visualized in Fig. 3.14.
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Figure 3.14: EQ Precursor detection histograms for ROC points (a) Test1, (b)
Test2, (c) Test3 and (d) Test4.
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SVM hyperparameter tuning process decides if the resulting decision boundary

coefficients are overfitting to the EQ precursor detection signal of the training set

of days or not. As the SVM regularization parameter, Creg gets higher, decision

boundary coefficient regularization will reduce and results with overfitting of the

trained model. Furthermore, as the Gaussian kernel parameter, σ gets smaller,

increases the variance of the features and also results with overfitting of the

trained model. A shown in Table 3.5, trained SVM models neither overfitting nor

underfitting to the training data. As a result, EQ-PD technique detects 22 EQ

precursors out of 24 EQs and generates 13 different false alarms in 147 days of

no-seismic activity class days in 2016.

3.3.2 Reliability Analysis

In order to show statistical significance and reliability of the precursor detec-

tion performance of the EQ-PD technique, 100000 random guessing Monte Carlo

simulations are performed with respect to ROC space parameters of the chosen

validation and test ROC points. Performance of the proposed is investigated

in terms of detected EQ precursors, and generated daily false alarms in Section

3.3.1. However, random guessing simulations shall be performed by using both

daily precursor detections and false precursor detections. In order to perform the

random guessing simulations, ROC space parameters are defined as follows :

• TPEQ, Number of detected EQ precursors,

• FNEQ, Number of of mis-detected EQ precursors,

• NPos,EQ, Number of EQs,

• TPday, Number of detected daily precursors,

• FNday, Number of of mis-detected daily precursors,

• NPos,day, Number of seismically active days,

• FPday, Number of generated daily false alarms,
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• TNday, Number of daily true negatives,

• NNeg,day, Number of possible false alarm days.

TPEQ, FNEQ and NPos,EQ are the ROC space parameters that are related with

the detection of an EQ precursor. The remaining, TPday, FNday, NPos,day, FPday,

TNday and NNeg,day are the ROC space parameters that are related with daily

precursor decisions. Note that, multiple daily precursor decisions may lead to a

detection of only one EQ precursor. For the chosen ROC points in Table 3.5, all

the ROC space parameters are presented in Table 3.6. Pseudocode of the random

guessing simulation is presented in Algorithm 3.

For each random guessing simulation, EQ precursor detection performance

is calculated by using Matthews correlation coefficient (MCC) score defined as

follows, [111]:

MCC(TP, TN, FP, FN) =

TP × TN − FP × FN√
(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)

. (3.19)

MCC score is a one dimensional measurement metric for two dimensional ROC

space points. It is possible to compare MCC score of a ROC point with a random

guessing experiment. MCC = 1 corresponds to the case when all EQ precursors

are detected without generating a single false alarm. MCC = 0 corresponds to

the case when EQ precursor detection performance is not better than random

guessing. Finally, MCC = −1 corresponds to the case when all EQ precursors

are missed and false alarms are generated for each day of no-seismic activity days

class.

MCC scores of the chosen ROC points in Table 3.5 are defined as MCCR and

presented in 3.6. Additionally, MCCR of the related ROC-points and MCC score

histograms of random guessing Monte Carlo simulations for the chosen validation

and test ROC points are presented in Fig. 3.15 and Fig. 3.16, respectively. Mean

and standard deviations of these random guessing simulations are also defined

as µRG and σRG and presented in Table 3.6. As presented in Fig. 3.15 and Fig.
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Algorithm 3 Random Guessing Monte Carlo Simulation

// Parameter Definition //
NMC ← Number of Monte Carlo Simulations
NPos,EQ ← Number of EQs
NPrecursor = TPday + FPday ← Number total precursor detections
Ndays ← Number total days
MCCvec ← A vector to store Matthews correlation coefficient scores

for n = (1 to NMC) do

// Initialization //
Pdate ← Assign each precursor detection to an unique date
EQdate ← Assign each EQ to an unique date
Define Seismic Activity class days with respect to EQdate

for d = (1 to Ndays) do
if d /∈ Seismic Activity class days then

NNeg,day = NNeg,day + 1
end if

end for

// Find Detected EQ Precursors and False Alarms//
for EQ = (1 to EQdate) do

for P = (1 to Pdate) do
if P related to EQ then

TPEQ = TPEQ + 1
break

end if
end for

end for

for P = (1 to Pdate) do
if P /∈ Seismic Activity class days then

FPday = FPday + 1
end if

end for

FNEQ = NPos,EQ − TPEQ

TNday = NNeg,day − FPday

MCCvec(n) = MCCR(TPEQ, FNEQ, TNday, FPday)

end for
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3.16,MCCR ≥ µRG+2×σRG holds for all the visualized MCCR. Furthermore, Z-

score of MCCR shall be obtained with respect to µRG and σRG. Resulting Z-score

will indicate statistical significance of EQ precursor detection performance of the

related ROC point and presented for each chosen ROC point in Table 3.6. As

presented in Table 3.6, all the z-scores are higher than 2 that precursor detection

performance of EQ-PD is superior to the random guessing simulations for all the

chosen ROC points.
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Figure 3.15: MCC score histograms obtained from random guessing Monte
Carlo simulations for the chosen ROC points:(a) Validation1, (b) Validation2,
(c) Validation3 and (d) Validation4. MCC score of the chosen ROC point is
marked by an arrow in each figure.
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Figure 3.16: MCC score histograms obtained from random guessing Monte Carlo

simulations for the chosen ROC points: (a) Test1, (b) Test2, (c) Test3 and (d)

Test4. MCC score of the chosen ROC point is marked by an arrow in each figure.
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Table 3.7: 24 daily different EQs that have taken place in the region of choice.

EQ # - Date Time EQ Epicenter Mw

(# - DD Month YYYY) (hh:mm:ss) Latitude Longitude (Richter)

1 - 2 January 2016 12:36:28 36,4556◦N 12,1175◦E 4,3

2 - 6 January 2016 18:44:46 39,9354◦N 15,5508◦E 4,4

3 - 8 January 2016 13:07:42 42,9131◦N 18,5153◦E 4,6

4 - 13 January 2016 17:01:29 36,1699◦N 14,7607◦E 4,1

5 - 16 January 2016 18:55:11 41,5846◦N 14,6515◦E 4,4

6 - 17 January 2016 16:36:07 36,5834◦N 12,8374◦E 4,2

7 - 8 February 2016 15:35:43 37,023◦N 14,8791◦E 4,5

8 - 14 February 2016 14:51:29 43,0612◦N 17,4307◦E 4,4

9 - 4 April 2016 18:53:05 39,2273◦N 15,4905◦E 4,2

10 - 25 May 2016 22:10:28 36,81◦N 15,79◦E 4,1

11 - 30 May 2016 20:24:20 42,71◦N 11,96◦E 4,4

12 - 2 June 2016 10:49:12 36,5748◦N 11,1289◦E 4

13 - 23 June 2016 14:37:56 44,0943◦N 9,9234◦E 4,2

14 - 5 July 2016 05:54:38 37,5845◦N 17,0005◦E 4,5

15 - 30 July 2016 20:21:38 44,94◦N 7,21◦E 4,2

16 - 24 August 2016 01:36:32 42,723◦N 13,1877◦E 6,2

16 - 24 August 2016 01:56:01 42,6404◦N 13,1986◦E 4,6

16 - 24 August 2016 02:01:08 42,7856◦N 13,1447◦E 4,2

16 - 24 August 2016 02:05:55 42,6352◦N 13,3022◦E 4,1

16 - 24 August 2016 02:07:31 42,6243◦N 13,1756◦E 4,2

16 - 24 August 2016 02:19:44 42,6817◦N 13,1667◦E 4

16 - 24 August 2016 02:33:29 42,8413◦N 13,1533◦E 5,6

16 - 24 August 2016 02:51:27 42,7596◦N 13,1812◦E 4,1

16 - 24 August 2016 02:59:36 42,8104◦N 13,1056◦E 4,1

16 - 24 August 2016 03:40:11 42,6522◦N 13,2549◦E 4,2

16 - 24 August 2016 04:06:51 42,7959◦N 13,0745◦E 4,5

16 - 24 August 2016 11:50:31 42,8989◦N 13,0834◦E 4,6

Continued on next page
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Table 3.7 – continued from previous page

EQ # - Date Time EQ Epicenter Mw

(# - DD Month YYYY) (hh:mm:ss) Latitude Longitude (Richter)

16 - 24 August 2016 14:02:22 42,7989◦N 13,1462◦E 4,3

16 - 24 August 2016 17:46:11 42,7279◦N 13,2082◦E 4,3

16 - 24 August 2016 23:22:06 42,6589◦N 13,1775◦E 4,1

17 - 25 August 2016 03:17:16 42,7611◦N 13,214◦E 4,4

17 - 25 August 2016 04:51:41 42,6397◦N 13,2478◦E 4,2

17 - 25 August 2016 12:36:07 42,6654◦N 13,1732◦E 4,4

18 - 26 August 2016 04:28:25 42,6◦N 13,29◦E 4,8

19 - 27 August 2016 02:50:59 42,8608◦N 13,2683◦E 4,1

20 - 28 August 2016 13:07:34 42,6665◦N 13,2488◦E 4,3

20 - 28 August 2016 15:55:35 42,7975◦N 13,1733◦E 4,2

20 - 28 August 2016 16:42:02 42,8814◦N 13,102◦E 4,3

21 - 31 August 2016 18:12:52 42,8627◦N 13,2213◦E 4,1

22 - 3 September 2016 01:34:13 42,831◦N 13,0956◦E 4,4

22 - 3 September 2016 10:18:51 42,87◦N 13,21◦E 4,4

23 - 11 September 2016 18:39:02 42,68◦N 13,28◦E 4

24 - 19 September 2016 23:34:26 42,7166◦N 13,1893◦E 4,1

3.4 Concluding Remarks

In recent studies, ionospheric TEC disturbances have been reported prior to

strong seismic activities and EQs. These studies show the fact that ionosphere is

affected from the seismic activities in the Earth’s crust and surface.

In this study, a novel EQ precursor detection technique, EQ-PD is presented.

EQ precursor detection performance of the proposed is investigated on the iono-

spheric TEC data obtained from EUREF Permanent GNSS Network (EPN) and
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geomagnetic parameter data from NASA Goddard Space Flight Center OMNI-

Web service. Each daily TEC data is estimated by using a spatio-temporal TEC

estimation technique and local TEC variation is calculated by using the Sym-

metric Kullback Leibler Divergence (SKLD). Local TEC anomalies are detected

on the local TEC variations by using a hypothesis testing technique. Alternative

or positive hypothesis is defined as the generated local TEC variations in the

period of 10 days starting form 9 days prior to an EQ and ending at day of the

EQ contain an anomaly due to precursor of the EQ. A Support Vector Machine

(SVM) is trained to decide if a EQ precursor decision is a valid EQ precursor

detection or not. Near-real time operation performance of the proposed EQ-PD

technique is investigated on a validation set and test set which is not included

into SVM training process. During the validation set of days 21 EQs with mag-

nitudes greater or equal to 4 in Richter scale occurred in a chosen region around

Italy. During the test set of days 24 EQs with magnitudes greater or equal to 4 in

Richter scale occurred in the same region. Performance evaluations indicate that

EQ-PD shall detect 17 out of 21 EQ precursors while generating 7 false precursor

decisions for validation set of days. Similarly, it shall detect 22 out of 24 EQ

precursors while generating 13 false precursor decisions for test set of days.

A reliability analysis is also performed to show statistical reliability of the pre-

cursor detection performance of the EQ-PD technique. Random guessing Monte

Carlo simulations are performed with respect to ROC space parameters of the

chosen validation and test ROC points. Matthews correlation coefficient (MCC)

analysis on the performance parameters of the proposed EQ-PD technique is also

performed. Results of these analysis suggest that EQ-PD outperforms random

guessing simulations in all cases.

In conclusion, the proposed EQ-PD technique has a remarkable precursor de-

tection performance in near real-time for dense GPS networks. EQ precursor

decisions of the EQ-PD technique shall be fed to another EQ forecasting tech-

nique which may be developed in future.

As future work, EQ precursor decision classification shall be performed by an

alternative machine learning technique instead of SVM. The alternative technique
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should be a supervised, cost-sensitive machine learning technique. Precursor de-

tection performance of the EQ-PD shall be compared with other machine learning

techniques rather than random guessing simulations. Furthermore, another study

shall be performed to understand precursor detection statistics for different types

of EQs. Finally, a noise sensitivity analysis on the TEC measurements shall

be performed to understand noise sensitivity of the proposed model based EQ

precursor detection technique.
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Chapter 4

A DEEP LEARNING BASED

EARTHQUAKE PRECURSOR

DETECTION TECHNIQUE

Recent studies report the fact that ionospheric TEC anomalies have been occur-

ring before the strong seismic activities and EQs [60, 61, 62]. In this study, a deep

learning based ionospheric EQ precursor detection technique, DL-PD is proposed

to detect seismic activity triggered TEC anomalies. DL-PD has the following key

contributions to the EQ precursor detection literature.

One of the contributions of the proposed DL-PD technique is that it generates

GIM-TEC estimates both spatially and temporally adaptive way. Hence, spatio-

temporal TEC estimation capability of DL-PD is far more comprehensive when

compared to model based techniques.

Another contribution of the proposed is that DL-PD technique is an unsu-

pervised machine learning technique. DL-PD shall work independently from the

seismic activity information. Hence, it generates expected GIM-TEC estimates

that shall be compared with the observed GIM-TEC to detect spatio-temporal

anomalies.
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Final contribution to the literature is that DL-PD shall work with any chosen

time duration and region of the world. DL-PD requires daily GIM-TEC data to

generate daily or hourly EQ precursor decisions.

In this work, GIM-TEC data obtained from NASA Jet Propulsion Laboratory

for the region covering most of the Europe, Anatolian region and Middle East

with time duration nearly 1.5 years is processed to generate GIM-TEC estimates.

The generated estimates are compared with the actual GIM-TEC data to obtain

ionospheric TEC anomalies. EQ precursor detection performance of the generated

TEC anomaly decisions are evaluated for 500 consecutive days.

This work consists of multiple processing stages. Processed GIM-TEC data

and seismic activity information is presented in Section 4.1. Generation of GIM-

TEC estimates and precursor detection technique is presented in Section 4.2.

Precursor detection performance of the proposed is evaluated in Section 4.3. Fi-

nally, concluding remarks and future research directions are presented in Section

4.4.

4.1 Data Collection and Processing

In this study, TEC based Global Ionospheric Maps (GIM-TEC) are processed.

TEC data of International GNSS service (IGS) network reference stations are pre-

processed by Jet Propulsion Laboratory to generate GIM-TEC data [112]. The

GIM-TEC data shall be further processed by IONOLAB to improve its reliability

and robustness [64]. The obtained GIM-TEC maps have a spatial resolution

of 1° latitude and 1° longitude with temporal resolution of 15 minutes. Hence,

180×360×96 dimensional datacube which contains 96 temporally different GIM-

TEC maps is stored for each individual day. An example GIM-TEC is presented

in Fig. 4.1 for a chosen date of 2017-01-19T11:00.

EQ related data is accessed via Advanced National Seismic System’s compre-

hensive earthquake catalog (ANSS ComCat) [101]. Accessed EQ related data:
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Figure 4.1: GIM-TEC map of the world for the date: 2017-01-19T11:00.

daily different EQ number and EQ date (first column), EQ time (second col-

umn), EQ epicenter (third and fourth columns) and EQ magnitude type (fifth

column) is presented in Table 4.6.

4.2 Deep Learning based EQ Precursor Detec-

tion Technique: DL-PD

The collected GIM-TEC maps shall present detectable ionospheric anomalies that

are related with the upcoming strong seismic activities and EQs [38, 102]. In this

work, deep learning (DL) and ionospheric GIM-TEC based EQ precursor detec-

tion technique, DL-PD is proposed. The proposed shall detect EQ precursors in

a daily basis by using the daily GIM-TEC data.

The collected GIM-TEC data exhibit both spatial and temporal TEC varia-

tions. Therefore, an anomaly detection technique that shall adopt to the spatio-

temporal data is required. The proposed DL-PD technique generates spatio-

temporal estimates of GIM-TEC maps which makes the detection of TEC based
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ionospheric anomalies possible.

This section is organized as follows. In Section 4.2.1, pre-processing steps of

obtained GIM-TEC data is presented. In Section 4.2.2, a deep neural network

with spatio-temporal estimation capabilities is presented. Thereafter, EQ pre-

cursor detections are generated with respect to the ionospheric anomaly scores

as discussed in Section 4.2.3. Flow diagram of the proposed DL-PD technique is

visualized in Fig. 4.2.

GIM-TEC

Sequence

Generation

GIM-TEC

Sequence

Deep Neural

Network

GIM

Prediction

GIM Ground

Truth

Comparison

Anomaly

Score

Earthquake

Precursor

Detection

Figure 4.2: Flow diagram of the proposed deep learning based earthquake pre-

cursor detection technique, DL-PD.
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4.2.1 GIM Pre-Processing

Each GIM-TEC map is spatially cropped with respect to a chosen area presented

in Fig. 4.3. The chosen area is limited from -7.5° to 75.5° longitude and from

22.5° to 57.5° latitude. Anatolian region resides at the center of this chosen area

and extends from 20.5° to 47.5° longitude and from 34.5° to 45.5° latitude. GIM-

TEC map of the chosen area is illustrated in Fig. 4.3 for the GIM-TEC map of

the chosen date in Fig. 4.1. EQ epicenters of the EQs with magnitudes greater

or equal than 5.4 for the dates of 01.01.2000 and 31.12.2018 are also depicted in

Fig. 4.3.
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Figure 4.3: Cropped GIM-TEC map of the world for the date 2017-01-19T11:00.
EQs with magnitudes greater or equal to 5.4 for the dates of 01.01.2000 and
31.12.2018. Anatolian region is marked with red dashed rectangle.

As shown in Fig. 4.3, GIM-TEC data of the chosen area corresponds to 36×84
dimensional matrix for each time frame. Hourly GIM-TEC data is generated by

averaging GIM-TEC data with 15 minutes of time separation and a 36× 84× 24

dimensional daily GIM-TEC data is generated. When the total number of days is

defined as Ndays, GIM-TEC data shall be represented as a 4 dimensional datacube

with dimensions 36× 84× 24×Ndays.
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Figure 4.4: (a) 2nd (2017-01-18T22:00), (b) 4th (2017-01-19T00:00), (c) 6th (2017-

01-19T02:00), (d) 8th (2017-01-19T04:00), (e) 10th (2017-01-19T06:00), (f) 12th

(2017-01-19T08:00) and (g) 14th (2017-01-19T10:00) GIM-TEC data frames of a

15 timestep GIM-TEC sequence for the date: : 2017-01-19T11:00 (15th frame).

(h) GIM-TEC ground truth of this sequence (2017-01-19T12:00).
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Training of recurrent neural networks requires an input data such that each

training sample of the data should include a temporal dimension or timesteps.

Timesteps dimension defines a temporal data sequence for all spatial samples.

Hourly GIM-TEC data shall be processed to generate hourly GIM-TEC se-

quences. When the number of timesteps is defined as Ntime, past Ntime hourly

GIM-TEC data frames shall be merged to generate a GIM-TEC sequence for

a chosen time and date. Hence, a GIM-TEC sequence shall be defined as a 3

dimensional datacube with 36× 84×Ntime dimensions. Furthermore, upcoming

GIM-TEC data frame with dimension of 36× 84 shall be labeled as ground truth

for this generated GIM-TEC sequence. The generated hourly GIM-TEC sequence

data is a 36× 84×Ntime× 24Ndays dimensional datacube with 36× 84× 24Ndays

dimensional GIM-TEC data ground truth. In Fig. 4.4, even number of GIM-TEC

data frames of a 15 timestep GIM-TEC sequence is visualized for the the chosen

date in Fig. 4.1. Ground truth of this GIM-TEC sequence is also visualized in

Fig. 4.4h [113].

Each generated hourly GIM-TEC sequence is normalized with respect to max-

imum recorded TECU during Ntime duration and constant minimum value of

0. Corresponding GIM-TEC ground truth of these generated sequences are also

normalized with respect to the same minimum and maximum TECU values.

4.2.2 Deep Neural Network based GIM prediction

A deep learning neural network model is proposed to estimate upcoming hourly

GIM-TEC by using a GIM-TEC sequence with Ntime temporal samples and 36×
84 spatial samples. The proposed model is presented in Fig. 4.5. As shown

in Fig. 4.5, the proposed model is composed of Input, Convolutional LSTM

(ConvLSTM), and 2-D convolutional neural network layers with a total 282,661

trainable parameters.

ConvLSTM layer is a type of LSTM layer that shall adopt to spatio-temporal

data such as GIM-TEC [114],[115]. ConvLSTM layer features a cell memory for

time t, ct that accumulates the state information of the layer. The cell memory
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Input Convolutional LSTMs Conv2D Output

Figure 4.5: Proposed deep neural network with multiple spatio-temporal ConvL-
STM layers.

shall be accessed, cleared or erased by control gates. Each of these gates shall

have their own training parameters. When a new training sample is fed to the

ConvLSTM, input gate it is activated. Forget gate, ft shall remove previous

cell state ct−1during the training. Output gate, ot decides if the latest cell state

ct should propagate through final hidden state ht or not. Inputs x1, . . . xt, cell

states c1 . . . ct, hidden states h1 . . . ht, control gates it, ft and ot contain 3D spatio-

temporal information for each time frame t. Equations of cell state activations

are presented in (4.1).

it = σ(Wx,i ∗ xt +Wh,i ∗ ht−1 +Wc,i ◦ ct−1 + bi)

ft = σ(Wx,f ∗ xt +Wh,f ∗ ht−1 +Wc,f ◦ ct−1 + bf )

ot = σ(Wx,o ∗ xt +Wh,o ∗ ht−1 +Wc,o ◦ ct + bo)

ct = ft ◦ ct−1 + it ◦ tanh(Wc,c ∗ xt +Wh,c ∗ ht−1 + bc)

ht = ot ◦ tanh(ct)

(4.1)

where ∗ denotes convolution, ◦ denotes Hadamard product, bi, bf , bo denote

input, forget and output gate biases. Wx,i, Wx,f , Wx,o, Wh,i, Wh,f , Wh,o, Wc,c

and Wh,c denote the convolution kernels for the related control gate. An example

ConvLSTM layer is visualized in Fig. 4.6 with convolution kernels are represented

as Wx and Wh for simplicity.
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Figure 4.6: ConvLSTM layer with its spatio-temporal inputs xt, control gates it,
ft, ot, hidden states ht and cell states ct. Peephole connections are also visualized
in blue.

Each ConvLSTM layer of the proposed network contains 20 different con-

volution filters that each one of these filters is 5 × 5 dimensional. First three

ConvLSTM layers generate outputs as sequences while the last ConvLSTM layer

only return the outputs of latest time frame. Conv2D layer contains only one

convolution filter of size 3 × 3 and has a sigmoid activation function. Output

shape of each layer that are presented in Fig. 4.5 are also presented in Table

4.1. As shown in Table 4.1, proposed deep neural network shall take GIM-TEC

sequences and generate a GIM-TEC ground truth for a total of Ntrain,batch sam-

ples. Additionally, batch normalization is performed after each ConvLSTM layer

in order to reduce internal covariate shift between timesteps [116].
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Table 4.1: For the proposed network, output shapes of each layer. Number of
training samples are represented as Ntrain,batch.

Layer Output Shape
Input Ntrain,batch ×Ntime × 36× 86× 1

ConvLSTM1, . . . ,ConvLSTM3 Ntrain,batch ×Ntime × 36× 86× 20
ConvLSTM4 Ntrain,batch × 36× 86× 20
Conv2D Ntrain,batch × 36× 86× 1
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Figure 4.7: GIM-TEC estimate and GIM-TEC ground truth for the GIM-TEC

sequence presented in Fig. 4.4.
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GIM-TEC estimation performance of the proposed technique is visualized in

Fig. 4.7 for the GIM TEC sequence presented in Fig. 4.4. As illustrated in Fig.

4.7, estimated GIM-TEC resembles the GIM-TEC ground truth of the upcom-

ing hour that RMSE between the GIM-TEC ground truth and the GIM-TEC

estimate is 1.0065 TECU .

Note that, the proposed deep neural network shall be trained in an unsuper-

vised way. Therefore, explicit class labels are not required during the training of

the proposed.

4.2.3 Earthquake Precursor Detection

Detection of an GIM-TEC anomaly requires comparing the GIM-TEC ground

truth data with the norm or i.e. GIM-TEC estimates. Result of this comparison is

the anomaly score of the compared GIM-TEC data. The anomaly score between

these GIM-TEC data shall be calculated by using Structural Similarity Index

Measure (SSIM) [117]. SSIM of two images I1 and I2 shall be calculated by

multiplying luminance, l(I1, I2), contrast, c(I1, I2) and structure, s(I1, I2) terms

as follows:

l(I1, I2) =
2µI1µI2 +K1

µ2
I1
+ µ2

I2
+K1

, (4.2)

c(I1, I2) =
2σI1σI2 +K2

σI1 + σI2 +K2

, (4.3)

s(I1, I2) =
2σI1I2 +K3

σ2
I1
σ2
I2
+K3

, (4.4)

SSIM(I1, I2) = l(I1, I2)× c(I1, I2)× s(I1, I2), (4.5)

where µI1 ,µI2 are the pixel mean values, σI1 ,σI2 are the pixel standard devia-

tions, and σI1I2 is the cross-covariance for images I1 and I2. K1, K2 and K3

are the constants to stabilize the division by weak denominator. K1 = (0.01L)2,

K2 = (0.03L)2 and K3 = K2/2. L is the dynamic range of the image and for
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a normalized GIM-TEC sequence which changes between [0, 1], value of the L

parameter shall be chosen as 1.

SSIM index is a similarity measure that satisfies symmetry SSIM(I1, I2) =

SSIM(I2, I1), boundedness SSIM(I1, I2) ≤ 1 and unique maximum

SSIM(I1, I2) = 1 ⇔ I1 = I2 conditions. Hence, minimum value of the SSIM

index is 0 and maximum value of SSIM index is 1. SSIM index of the GIM-TEC

estimate and GIM-TEC ground truth presented in Fig. 4.7 shall be obtained as

0.9566. When the value of the SSIM index is close to 1, similarity between the

GIM-TEC estimate and GIM-TEC ground truth is high.
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Figure 4.8: Seismic activity time, SSIM index, SSIM threshold and EQ precursor

decisions for the last 100 days of 2017.

In order to investigate the relationship of the GIM-TEC anomalies and EQ

precursors, last 100 days of 2017 are divided into seismic activity days and no-

seismic activity days classes. Seismic activity days are separated with respect

to 6 EQs with magnitudes greater or equal to 5 and 8 days prior to these daily

different EQs including with the EQ days are selected for the seismic activity days.

The proposed DL based neural network generates hourly GIM-TEC estimates.

Hence, hours of each seismic activity day is also labeled as seismic activity time
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and visualized with SSIM index between GIM-TEC ground truths and estimates

for the last 100 days of 2017 in Fig. 4.8.

As illustrated in Fig. 4.8, a SSIM threshold shall be chosen to generate EQ

precursor decisions. SSIM indices that are smaller than the chosen threshold

shall be labeled as GIM-TEC anomalies. Generated GIM-TEC anomalies shall

be associated with the seismic activity times that resulting GIM-TEC anomalies

shall be called as EQ precursor decisions. The visualized EQ precursor decisions

in Fig. 4.8, detects 4 out of 6 EQ precursors while generating 1 false EQ precursor

decision out of 61 no-seismic activity days.

4.3 Performance of the Proposed DL based EQ

Precursor Detection Technique

Precursor detection performance of the proposed DL-PD technique is investigated

on a GIM-TEC data of 500 days duration for the chosen region presented in Fig.

4.3. Start and end dates, number of days and number of daily different EQs in

this time period are presented Table 4.2. EQ precursor decisions are generated

for the EQs in Anatolian region as presented in Fig. 4.3. As the spatial region

gets larger, GIM-TEC anomalies shall be detected more reliably. However, larger

spatial regions may result with simultaneous or consecutive EQs that number

of seismically active days will be much higher than the no-seismic activity days.

Therefore, performance evaluation is performed with GIM-TEC data of a larger

chosen region with EQ epicenters of smaller Anatolian region.

Table 4.2: Processed GIM-TEC data information.

Date (D Month YYYY) Number Number of daily

Start End of Days different EQs

19 August 2016 31 December 2017 500 32

During the chosen time duration and Anatolian region, 32 daily different EQs
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had taken place and presented in Table 4.6. All of the presented EQs had a

magnitude greater than 5 in Richter scale [101]. If multiple EQs had taken place

at the same day, the EQ with the highest magnitude is chosen for the performance

evaluation. As shown in Table 4.6, 32 daily different EQs are investigated out of

37 total EQs.

As detailed in Section 4.2.1, obtained GIM-TEC data is pre-processed to gen-

erate hourly GIM-TEC sequences for the chosen 500 days duration. Number

of timesteps Ntime is chosen as 15 that generated GIM-TEC sequence data and

GIM-TEC ground truth data have the dimensions of 36 × 84 × 15 × 12000 and

36×84×12000, respectively. Note that, the generated GIM-TEC sequences data

has a size of ≈ 2 GB when each GIM pixel is represented with a single precision

(4 bytes) floating-point number. For the same number of timesteps and days

duration, size of the GIM-TEC sequences data of whole world will be ≈ 43 GB.

The deep neural network that is proposed in Section 4.2.2 is trained for the

generated GIM-TEC sequences and GIM-TEC ground truth data in an unsu-

pervised way. Training parameters of the proposed are tabulated in Table 4.3.

The proposed model is implemented in Python programming language and the

proposed model is trained on a computer with a single NVIDIA Quadro RTX

8000 GPU.

Table 4.3: Model Training Parameters.

Training Parameter Value

Learning Rate 0.0002, 0.0005, 0.001

Validation Split %10

Number of Epochs 200

Batch Size 32

Optimizer Adam(β1 = 0.9, β2 = 0.999)

Loss L2 Squared

Early Stopping Validation loss decay, patience = 20

Performance Metric PSNR
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As shown in Table 4.3, Peak Signal to Noise Ratio (PSNR) is chosen as the

appropriate performance evaluation metric. PSNR is a ratio between maximum

possible power of image pixels, MAXI and mean squared error, MSE(I1, I2)

between the compared images I1,I2 and defined below:

PSNR(I1, I2) = 10× log10

(
MAX2

I

MSE(I1, I2)

)
(4.6)

Both SSIM index and PSNR are the widely used image quality assessment met-

rics with different image quality sensitivities [118]. Training logs of the proposed

network are presented in Fig. 4.9.
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Figure 4.9: Training logs of the proposed model (a) Training loss, (b) Validation

Loss, (c) Training PSNR and (d) Validation PSNR.
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In Fig. 4.9, models whose validation PSNR value exceeds 32 are chosen and

visualized among all the trained models. Furthermore, Model-1 and Model-2 are

compared for validation. Model-1 is superior to Model-2 that it achieves lower

training and validation losses and higher PSNR values during training and vali-

dation. Therefore, Model-1 is the validated model for performance evaluations.

Note that, GIM-TEC data that presented in Table 4.2 is also divided into

3 non-intersecting training, validation and test intervals. Last 15 days of the

2017 is separated for the test dataset. Remaining 475 days are used for training

with %10 validation split. Mean SSIM index value for training and validation

datasets is 0.9723. Similarly, mean SSIM index is 0.9653 for the test dataset. EQ

precursor detection performance evaluations are performed for each day in Table

4.2. During these evaluations days are not divided with respect to their respective

datasets, since GIM-TEC estimation performances of trainig, validation and test

datasets are very close to each other.

As detailed in Section 4.2.3, EQ precursor decisions are generated for the dates

presented in Table 4.2 and EQs presented in Table 4.6 by thresholding SSIM index

which serves as an GIM-TEC anomaly score. Resulting EQ precursor detection

ROC curves are presented in Fig. 4.10.
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Figure 4.10: ROC curves based on EQ precursor detection performance for EQs

with magnitudes (M) (a) M ≥ 5, (b) M ≥ 5.2, (c) M ≥ 5.4 and (d) M ≥ 5.6.

Chosen ROC points (a) ROC1, (b) ROC2, (c) ROC3 and (d) ROC4.

When the generated ROC curves in Fig. 4.10 are taken into consideration,

these curves exhibit both stepped and piece-vise linear sections in PD axis.

Stepped sections in PD axis shall be attributed to the fact that PD values are

calculated with respect to small numbers of EQ precursors. As presented in

Table 4.4, precursor detection performances are evaluated for 32 M ≥ 5 EQ pre-

cursors, 20 M ≥ 5.2 EQ precursors, 7 M ≥ 5.4 EQ precursors and 4 M ≥ 5.6

EQ precursors. Therefore, PD shall take 32, 20, 7 and 4 distinct nonzero values

during the performance evaluations in Fig. 4.10a, Fig. 4.10b, Fig. 4.10c and Fig.
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4.10d, respectively. As shown in Fig. 4.10, piece-vise linear sections in PD axis

shall be attributed to the fact that operational ROC points are interpolated to

generate the ROC curves. Hence, piece-vise linear sections of the ROC curves

are not operational except vertices of these linear sections. Finally, the generated

ROC curves are visualized for 0 ≤ PD ≤ 1 and 0 ≤ PFA ≤ 0.1 that performances

of ROC points with PFA ≥ 0.1 are not taken into consideration during visualiza-

tion. Note that number of possible false precursor decisions are higher than the

number of all EQ precursors when PFA = 0.1 and minimum EQ magnitude M ≥
5.2.

As shown in Fig. 4.10, four different ROC curves are obtained for 4 differ-

ent group of EQs and 4 different ROC points, ROC1,ROC2,ROC3 and ROC4,

respectively. Number of detected EQ precursors, number of all EQs, number of

false precursor decisions, number of no-seismic activity days are presented for

the chosen ROC points in Table 4.4. As presented in both Fig. 4.10 and Table

4.4, the proposed DL-PD technique detects 5 out of 7 EQ precursors while gen-

erating 1 false EQ precursor decision out of 416 no-seismic activity days. SSIM

threshold shall be selected between 0.90 and 0.89 to label a GIM-TEC estimate

as an anomaly. Furthermore, probability of precursor detection increases as the

magnitude of the desired EQs increases while generated false EQ precursor de-

cisions remains low. Hence, the proposed achieves its highest performance when

the EQ precursors that belong to EQs with magnitudes greater or equal to 5.4

are detected.

Note that, reliable positioning of precursor detection locations require further

spatial processing techniques. In order to correlate a precursor detection with

a specific EQ epicenter, seismic activity triggered spatial GIM-TEC variations

should be processed and detected around the EQ epicenter. Such a detection

technique requires processing multiple GIM-TEC regions independently and com-

bining their SSIM based anomaly scores to position accurate precursor detection

location. In this work, such a spatial processing technique is not implemented and

left as a future work. Instead, a simple TEC difference based precursor detection

distance positioning technique is implemented.
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Each EQ precursor is detected by prior precursor decisions. Precursor deci-

sion location shall be obtained by comparing GIM-Estimate with GIM Ground

truth of the date when the precursor decision is generated. Precursor decision

location pixel is located by obtaining a pixel that has the highest TEC difference

between GIM-Estimate and GIM Ground truth images. Precursor decision loca-

tion shall be obtained by converting this pixel location into geodetic coordinates.

Precursor detection distance, dprec for an EQ shall be calculated by measuring

the distance between EQ epicenter and precursor decision location information.

Furthermore, multiple precursor decisions shall contribute to the detection of an

EQ precursor. Therefore, multiple precursor detection distances shall also be

obtained. When multiple precursor detection distances are generated, mean of

these distances,
∑

dprec represents the detection distance of the precursor. Mean

precursor detection distances,
∑

dprec and standard deviation of these precursor

detection distances, σ(
∑

dprec) are presented in Table 4.5. As shown in Table

4.5, precursors of EQs with M ≥ 5.4 shall be detected from longer distances with

smaller precursor detection distance standard deviations.

Table 4.4: For the chosen ROC points : number of detected EQ precursors, num-

ber of all EQs, number of false precursor decisions, number of false precursor

decisions resulting with detection of weaker EQ precursors, number of no-seismic

activity days (false alarm days), SSIM index threshold and minimum EQ magni-

tude in Richter scale.

ROC Detected EQ Number False Prec. Weaker EQ No-seismic SSIM index Min EQ

point Precursors of EQs Detections Prec. Detections activity days Threshold magnitude

ROC1 12 32 0 0 227 0.8975 5

ROC2 11 20 0 0 320 0.8975 5.2

ROC3 5 7 1 1 M ≥ 5.2 416 0.8925 5.4

ROC4 3 4 2 1 M ≥ 5.2 452 0.89 5.6

1 M ≥ 5.4
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Table 4.5: For the chosen ROC points : Mean EQ precursor detection distances

(
∑

dprec), standard deviation of EQ precursor detection distances (σ(
∑

dprec))

and minimum EQ magnitude in Richter scale.

ROC
∑

dprec Precursor σ(
∑

dprec) Precursor Min EQ

point Detection Distance (km) Detection Distance (km) magnitude

ROC1 2042.8887 833.9594 5

ROC2 2031.674 916.2285 5.2

ROC3 2300.6086 632.8927 5.4

ROC4 2235.5288 807.1093 5.6

Number of generated false precursor decisions that result with the detection

of weaker EQ precursors are further investigated for the chosen ROC points.

ROC1 and ROC2 points do not generate false precursor decisions. There is a

false precursor decision of the ROC3 point. As presented in Table 4.4, the pre-

cursor decision is a false precursor decision for the EQs with M ≥ 5.4 while it

is a precursor detection for the EQs with M ≥ 5.2. Similarly, 2 false precursor

decisions of ROC4 point result with detection of 1 EQ precursor with EQ M ≥
5.4 and another EQ precursor with EQ M ≥ 5.2. Hence, these false EQ precursor

decisions shall be attributed to EQ precursors that belong to weaker EQs. Fur-

thermore, EQ precursor decisions of the chosen ROC point, ROC3 are visualized

in Fig. 4.11. As illustrated in Fig. 4.11, there are 7 distinct seismically active

time periods representing 7 different EQs with M ≥ 5.4. The false precursor de-

cisions among these precursory decisions are also visualized in Fig. 4.12. There

are three hourly different false precursory decisions that are 7, 10 and 13 hours

prior to the seismically active time of the EQ that had taken place 20 July 2017

with magnitude M = 6.6 around Anatolia region. Since, these false hourly EQ

precursor decisions are made at the same day, they are marked as 1 daily false

EQ precursor decision for ROC3 point in Table 4.4.
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Figure 4.11: Seismic activity time, SSIM index, SSIM threshold and EQ precursor

decisions for the last 500 days of 2017. Seismically active time is generated with

respect to 7 different EQs with M ≥ 5.4.

7500 7600 7700 7800 7900 8000

Hours

0.8

0.85

0.9

0.95

1

S
S

IM
 in

de
x

Seismically Active Time
SSIM index
SSIM threshold
EQ precursor detections
False EQ precursor decisions

Figure 4.12: Seismic activity time, SSIM index, SSIM threshold, EQ precursor

detections and false EQ precursor decisions for the last 25 days prior to the EQ

that had taken place 20 July 2017 with magnitude M = 6.6 around Anatolia

region.
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Table 4.6: 32 daily different EQs that have taken place around Anatolian region.

EQ # - Date Time EQ Epicenter Mw

(# - DD Month YYYY) (hh:mm:ss) Latitude Longitude (Richter)

1 - 11 September 2016 13:10:08 42.0081°N 21.4876°E 5.1

2 - 27 September 2016 20:57:08 36.3888°N 27.6141°E 5.1

3 - 28 September 2016 07:17:35 36.7738°N 21.912°E 5

4 - 15 October 2016 08:18:32 42.2088°N 30.7242°E 5.1

4 - 15 October 2016 20:14:49 39.8063°N 20.6463°E 5.5

5 - 16 October 2016 00:09:58 39.7659°N 20.7143°E 5

5 - 16 October 2016 00:41:14 39.8168°N 20.5912°E 5.2

5 - 16 October 2016 02:21:04 39.7866°N 20.6113°E 5

6 - 20 December 2016 06:03:44 36.5393°N 26.9187°E 5.4

7 - 25 January 2017 18:50:51 35.3583°N 26.4196°E 5.2

8 - 06 February 2017 03:51:40 39.5986°N 26.0647°E 5.3

8 - 06 February 2017 10:58:02 39.5734°N 26.0755°E 5.2

9 - 07 February 2017 02:24:04 39.5279°N 26.0993°E 5.3

10 - 12 February 2017 13:48:16 39.6004°N 26.0884°E 5.3

11 - 02 March 2017 11:07:26 37.616°N 38.4305°E 5.6

12 - 13 April 2017 16:22:16 37.1253°N 28.6913°E 5

13 - 21 April 2017 13:09:22 38.7709°N 29.0638°E 5

14 - 03 May 2017 08:53:37 42.175°N 46.9611°E 5.2

15 - 11 May 2017 17:58:02 40.0382°N 40.7422°E 5.1

16 - 27 May 2017 15:53:24 38.7729°N 27.8234°E 5.1

17 - 12 June 2017 12:28:39 38.9296°N 26.365°E 6.3

18 - 17 June 2017 19:50:04 38.8864°N 26.4186°E 5.2

19 - 15 July 2017 20:30:17 34.925°N 25.4294°E 5.3

20 - 20 July 2017 22:31:11 36.9293°N 27.4139°E 6.6

21 - 21 July 2017 17:09:45 36.9074°N 27.3012°E 5

22 - 31 July 2017 21:29:14 34.5158°N 24.0577°E 5.3

23 - 08 August 2017 07:42:22 36.9645°N 27.5711°E 5.3

Continued on next page
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Table 4.6 – continued from previous page

EQ # - Date Time EQ Epicenter Mw

(# - DD Month YYYY) (hh:mm:ss) Latitude Longitude (Richter)

24 - 23 August 2017 13:42:53 36.1833°N 44.9358°E 5.1

25 - 27 August 2017 23:14:52 37.9475°N 47.1318°E 5.2

26 - 11 September 2017 16:20:15 39.2104°N 21.5733°E 5

27 - 11 October 2017 22:49:44 39.1647°N 24.2379°E 5.1

28 - 12 November 2017 18:18:17 34.9109°N 45.9592°E 7.3

28 - 12 November 2017 18:29:52 34.9224°N 45.5873°E 5.3

29 - 15 November 2017 19:48:03 40.3082°N 47.3317°E 5.2

30 - 22 November 2017 20:22:53 37.0511°N 28.6427°E 5.1

31 - 24 November 2017 21:49:15 37.0845°N 28.6223°E 5.2

32 - 11 December 2017 14:09:57 35.0786°N 45.7614°E 5.4

4.4 Concluding Remarks

In this work, a deep learning based EQ precursor detection technique, DL-PD

is presented and implemented by using GIM-TEC data obtained from the In-

ternational GNSS Service Network (IGS). A deep learning based neural network

is trained to predict upcoming GIM-TEC data and GIM-TEC estimation per-

formance of this network is measured by SSIM index. Precursor decisions are

generated by thresholding these SSIM indices.

Precursor detection performance of the proposed DL-PD technique is evalu-

ated for 32 earthquakes occurred around Anatolian region with magnitudes higher

than 5 in Richter scale. Precursor detection performance evaluations of the pro-

posed technique indicate that the technique shall detect 11 out of 20 earthquake

precursors that belongs to EQs with magnitudes greater than 5.2 and generate

no false precursor decisions. For the EQs with magnitudes greater or equal to
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5.4, the proposed shall detect 5 out of 7 earthquake precursors and generate 1

false precursor decision out of 416 no-seismic activity days. Results of this work

suggests the fact that it is possible to implement the DL-PD technique in near

real-time by monitoring anomalous behaviours in GIM-TEC data for a chosen

region.

As future work, another deep learning architecture that shall take inputs of

both GIM-TEC estimates and GIM-TEC ground truths or the statistics derived

from these images shall generate EQ precursor decisions and their locations, when

the new architecture is trained in a supervised way. Another future work shall

be merging decisions of multiple DL based EQ precursor decisions in such a way

that higher detection rates with lower false alarm rates shall be achieved. Finally,

an accurate precursor location positioning technique shall be implemented by

processing multiple GIM-TEC regions independently and combining their SSIM

based anomaly scores.
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Chapter 5

CONCLUSIONS

In this dissertation, Total Electron Content (TEC) anomaly detection techniques

are developed by using model based, machine learning based and deep learning

based techniques on various TEC data obtained from GNSS sensor networks.

The developed techniques detect TEC anomalies by comparing a TEC estimate

with the actual recorded TEC data.

In Chapter 2, a model based EQ precursor detection technique is presented

with the TEC data obtained from the Turkish National Permanent GPS Network

(TNPGN-Active). Local TEC variations are generated and thresholded by using

TEC variation statistics obtained from a chosen region around Turkey for the days

of 2011. Since the proposed technique is trained in a supervised way, days of 2011

are divided into 10 distinct day sets and 10-fold cross validation is performed for

performance evaluation of the proposed. It is shown that the proposed technique

shall detect 14 out of 23 EQ precursors while generating 8 false precursor decisions

during 211 days of no-seismic activity.

In Chapter 3, a machine learning based EQ precursor detection technique,

EQ-PD is presented with the TEC data obtained from EUREF Permanent GNSS

Network (EPN) and geomagnetic parameter data obtained from NASA Goddard

Space Flight Center OMNIWeb service. Local TEC variations are generated
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and thresholded by using TEC variation statistics obtained from a chosen region

around Italy for the days in between 01.01.2014 and 01.04.2015. EQ-PD tech-

nique is trained in a supervised way that labels of seismic activity and no-seismic

activity day classes are used during the training. Hence, TEC data is divided

into three non-intersecting time periods, training, validation and test for unbi-

ased evaluation of precursor detection performance of the proposed. It is observed

that for the validation set of dates the EQ-PD technique shall detect 17 out of

21 EQ precursors while generating 7 false precursor decisions during 120 days of

no-seismic activity. Additionally, for the test set of dates the EQ-PD shall detect

22 out of 24 EQ precursors while generating 13 false precursor decisions during

147 days of no-seismic activity.

Finally in Chapter 4, a deep learning based EQ precursor detection technique,

DL-PD is presented with the GIM-TEC data obtained from the International

GNSS Service Network (IGS). A deep learning model that has the spatio-temporal

data prediction capabilities is trained in an unsupervised way for the GIM-TEC

data obtained from a chosen region around Europe for the days in between

19.08.2016 and 31.12.2017. A GIM-TEC anomaly score is obtained by measuring

the similarity between GIM-TEC estimates and GIM-TEC ground truths. Gen-

erated GIM-TEC anomaly score is thresholded to obtain EQ precursor detection

performance of the DL-PD technique. It is shown that the proposed technique

shall detect 5 out of 7 EQ precursors while generating 1 false precursor decision

during 416 days of no-seismic activity.

In conclusion, the proposed techniques have robust performances over geo-

graphically separated with reliable TEC data and for a wide range of time dura-

tion and resolution. They display remarkable precursor detection performances

for EQs with different magnitudes.

As a future work for the Chapter 2, positions active fault lines shall be pro-

cessed for better precursor detection performances. For the Chapter 3 of the

dissertation, a future research direction shall be implementation of other cost-

sensitive machine learning techniques to compare their EQ precursor detection

performances with EQ-PD. For the Chapter 4, another deep neural network that
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shall further process the GIM anomaly scores to generate EQ precursors shall

be implemented. When all three EQ precursor detection techniques are consid-

ered, precursor detection performances of these techniques shall be compared with

each other by choosing the same region and time duration during the performance

evaluations.
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