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ABSTRACT

ADAPTIVE OBSERVER DESIGNS FOR FRICTION
ESTIMATION IN POSITION CONTROL OF SIMPLE

MECHANICAL SYSTEMS WITH TIME DELAY

Caner Odabaş

Ph.D. in Electrical and Electronics Engineering

Advisor: Ömer Morgül

September 2021

Friction force/torque is a well known natural effect that can cause performance

degradation or even instability in mechanical systems, although it sometimes can

be disregarded in closed loop feedback design phase. Hence, friction modeling and

cancellation methods can be vital to achieve desired robustness and performance

criteria in position control problems.

Basically, the topic of friction cancellation is divided into two main categories

named model based and non-model based methods. Friction modeling is a broad

area of research and there are lots of different modeling approaches in various

complexities. Among these approaches, Coulomb Model is one the simplest yet

fundamental models. Nevertheless, in some cases, being a classical static model,

it is inadequate to exhibit the dominant friction components occurring at different

motion stages such as break-away force, stick-slip motion, pre-sliding behavior or

friction lag. Generally, dynamical models, i.e. LuGre Model, are more advanced

as a result, they are better to describe such friction effects. Unfortunately, for

these cases, the number of friction parameters are increased. In fact, there is

a trade-off between model complexity and parameter identification. A desired

system response may not be achieved when model parameters do not coincide

with the existing friction coefficients. In this manner, precise identification of

each parameter can be challenging when there are many of them. Besides, some

of these parameters might be time varying due to environment, temperature,

material properties, position, etc. Therefore, non-model based adaptive schemes

are prevalent in the literature since these methods do not require any parameter

identification.

In this study, we focus on adaptive observer based friction compensation tech-

niques and provide some stability conditions. First, we consider simple second

order mechanical systems with or without time delay under Coulomb friction. To

estimate the Coulomb friction, we first consider Friedland-Park observer. Then,

iii



iv

some necessary conditions are stated to extend the estimation function in the

observer structure to a larger class of functions. Especially measurement delay

can be significant since observers estimate friction based on the velocity mea-

surements. Therefore, it is proposed to employ a velocity predictor either based

on numerical differential equation solvers or inverse Pade approximant when the

existing time delay is large. What is more, a new observer design that considers

friction and velocity error dynamics together is proposed as a novel contribution.

Extensive MATLAB simulations are conducted to investigate the performances

of proposed observers in a closed loop position control system with and without

delay. To this end, Smith predictor and ITAE index-based designs are considered

to utilize a position controller. In some of these simulations, LuGre model is pre-

ferred to mimic the actual friction instead of Coulomb friction in order to observe

the effects of dynamic parameters. Moreover, some experiments are performed

on DC motor platform driven by Arduino Uno microcontroller. Under the light

of acquired results, observer based friction compensation improves the system

performance even existing friction cannot be confined to Coulomb coefficient, es-

pecially when the implemented controller has low bandwidth. Also, in terms of

practicability, it is an advantage that these observer structures do not require any

parameter identification.

Keywords: Friction observer, Time delay, ITAE Index, Smith predictor, Con-

troller Parametrization, Position Control, Adaptive Control, Dwell Time, Nu-

merical Differential Equation Solvers, Pade Approximation.
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Sürtünme kuvveti/torku bazen kapalı döngü kontrol sistemlerinin tasarlan-

masında ihmal edilmesine karşın sistemin performansında düşüşlere ve hatta

kararsızlığa sebep olabilen en çok bilinen doğrusal olmayan bozucu etkenlerden

biridir. Bu sebeple, sürtünmenin modellenmesi ve giderimi istenilen gürbüzlük

ve performans ölçütlerine ulaşabilmek için önem arz edebilmektedir.

Temel olarak, sürtünme giderimi model tabanlı ve model tabanlı ol-

mayan yöntemler olarak iki gruba ayrılmaktadır. Sürtünmenin modellen-

mesi oldukça geniş bir araştırma alanı olup bu konuda farklı karmaşıklıklarda

yaklaşımlar bulunmaktadır. Bunlar arasında Coulomb Modeli basit ama en

temel yaklaşımlardan biridir. Fakat bazı durumlarda statik bir sürtünme mod-

eli olarak, Coulomb Modeli hareketin farklı fazlarında dominant hale gelen

kopma kuvveti, kayma-yapışma hareketi, kayma öncesi davranış ve sürtünme

hafızasına bağlı gecikme gibi sürtünme etkilerini kapsamakta yetersiz kalabilmek-

tedir. Genellikle LuGre Modeli gibi dinamik modeller daha kompleks olmalarının

sonucu olarak bu etkileri tanımlamakta daha faydalı olmaktadırlar. Öte yan-

dan, kullanılan sürtünme parametrelerinin sayısı bu durumlar için artmaktadır.

Gerçekte modelin karmaşıklığı ve model parametrelerinin çıkarımı arasında bir

ödünleşim vardır. Modeldeki parametreler ve sürtünme katsayıları örtüşmediği

durumlarda istenilen sistem tepkileri elde edilemeyebilmektedir. Bu anlamda her

bir model parametresinin hassas bir şekilde çıkarımının yapılması kullanılacak

parametrelerin sayısı arttıkça zorlayıcı bir hal almaktadır. Üstelik bu parame-

trelerin bazıları ortam, sıcaklık, malzeme özellikleri ve pozisyon gibi sebeplerden

ötürü zamanla değişebilmektedir. Bu nedenle model tabanlı olmayan adaptif

yöntemler herhangi bir parametre tanılaması gerektirmedikleri için litaratürde

oldukça popülerdir.
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Bu çalışmada gözlemci tabanlı sürtünme giderim yöntemleri üzerine

yoğunlaşılmış ve bunlarla ilgili olarak kararlık şartları sunulmuştur. İlk olarak

tanınan bir örnek olarak Friedland-Park Gözlemcisi sistemde zaman gecikmesinin

olduğu ve olmadığı durumlar için ele alınmıştır. Sonrasında gözlemcinin kul-

landığı kestirim fonksiyonunun daha geniş bir kümeden seçilebilmesi için gerekli

bazı koşullar belirtilmiştir. Gözlemciler sürtünme kestirimini hız ölçümlerini

baz alarak yaptığı için özellikle bu ölçümlerin gecikmesi önemli olabilmekte-

dir. Bu sebeple büyük gecikmeler için sayısal diferansiyel denklem çözümlerine

veya Pade Benzetiminin tersine dayanan bir hız kestirimi yapısının kullanımı

önerilmektedir. Ek olarak, hız ve sürtünme hatası dinamiklerinin beraber kul-

lanıldığı yeni bir gözlemci tasarımı da özgün bir katkı olarak sunulmaktadır.

Önerilen gözlemcilerin zaman gecikmeli ve zaman gecikmesiz kapalı pozisyon

döngülerindeki performasını incelemek için MATLAB ortamında kapsamlı benze-

tim çalışmaları yapılmıştır. Bu amaçla, Smith kestirimi ve ITAE Endeksi tabanlı

tasarımlar kullanılacak pozisyon kontrolcüsü için göz önünde bulundurulmuştur.

Ayrıca, simülasyonlarıın bazılarında dinamik parametrelerin etkisini görebilmek

adına ortamdaki sürtünmeyi taklit etmesi amacıyla Coulomb modeli yerine LuGre

modeli tercih edilmiştir. Bunların yanında, Arduino Uno mikrodenetleyecisi ile

sürülen DC motor platformunda bazı deneyler yapılmıştır. Elde edilen sonuçların

ışığında gözlemci tabanlı sürtünme giderimi özellikle gerçeklenen kontrolcü düşük

bant genişliğine sahip olduğunda sistemin performansını arttırmaktadır. Ayrıca,

bu gözlemci yapılarının herhangi bir parametre tanılaması gerektirmemeleri de

uygulanabilirlik açısından bir avantajdır.

Anahtar sözcükler : Sürtünme Gözlemcisi, Zaman Gecikmesi, ITAE Endeksi,

Smith Kestirimi, Kontrolcü Parametrizasyonu, Pozisyon Kontrolü, Adaptif

Kontrol, Durma Zamanı, Diferansiyel Denklemlerin Sayısal Çözümü, Pade

Yakınsaması .
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Burak Çatalbaş; thank you all for productive and fruitful conversations where I

have always been inspired. I express my special thanks to Bahadır Çatalbaş. We
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Chapter 1

Introduction

Stable and precise control of position is one of the main objectives in many en-

gineering applications. To this end, system modeling and identification play an

essential role in the performance of mechanical systems. In fact, unmodelled

system nonlinearities may cause instability of closed loop feedback systems even-

tually. Friction force/torque is one of these effects which exists in almost every

moving mechanism. Basically, friction is a natural phenomenon resulting from

the complex interaction between two surfaces in contact. Although the definition

of friction is pretty straightforward, its behavior may alter according to motion,

material properties, or environment. Therefore, there are lots of different ap-

proaches for friction modeling, identification, and compensation.

1.1 Background and Motivation

Mainly, friction models can be categorized as static and dynamic models in the

literature. Among the static models, Coulomb friction is a simple well-known

model which expresses the fundamental and dominant component of friction at

1



the steady-state. According to this model, friction opposes the motion and de-

pends mainly on the sign of the velocity. Therefore, this behaviour can be de-

scribed as follows,

F = Macsgn(v). (1.1)

where F , M and ac correspond to friction force, mass and Coulomb coefficient

respectively and sgn(v) is signum function, which is defined below.

sgn(v) =


1, v > 0,

0, v = 0,

−1, v < 0.

(1.2)

What is more, it is possible to improve this model by adding a damping term

so-called viscous coefficient denoted by Fv. Since this term is related to velocity,

v, (1.1) can be rewritten as follows.

F = Macsgn(v) + Fvv. (1.3)

Generally, friction force at rest is higher than the Coulomb friction level. This

component is called stick friction or stiction. Therefore, one should apply a

force greater than the stiction level in order to trigger the motion; otherwise, the

system preserves its position and practically, the amplitude of friction becomes

equivalent to the applied force. However, even in the sticking regime, microscopic

motion occurs. This behavior is called as pre-sliding motion and the minimum

force required to generate movement is named as break-away force. To get a more

realistic and continuous friction model, it is better to include Stribeck effect [4].

This component is dominant at low velocities and becomes minimal at a spe-

cific velocity called Stribeck velocity. According to this model, friction decreases

continuously starting from stiction level while velocity increases. Hence, (1.3)

becomes,

F = [Mac + (Fs −Mac)e
−|v/vs|δs ]sgn(v) + Fvv. (1.4)

where Fs and vs are stiction and Stribeck velocity respectively. In the model, δs

is a parameter which is equal to 1 typically. Pictorially, distinctions among these

models are depicted in Figure 1.1.
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(a) (b) (c) (d)

Figure 1.1: Friction curves of different static models. (a): Colomb, (b):
Coulomb+Viscous, (c): Coulomb+Viscous+Stiction, (d): Stribeck Model.

Some friction terms may be dominant components at different stages of the

motion. Static friction models generally portray the sliding phase, which can

be treated as steady-state characteristics of friction well. On the other hand,

dynamic models can express the pre-sliding phase of motion to a better extend

compared to static models thanks to time varying model parameters. Moreover,

Hess and Soom observed that dynamics of friction are important to explain the

hysteresis behavior named friction lag [5]. In 1968, Dahl developed a dynamic

model for sliding and rolling friction that can be used in simulations, especially

for aerospace applications. Dahl assumes that the origin of friction is in quasi-

static contact bonds that are formed and subsequently broken in a repetitive way

[6]. According to the model, friction force is only a function of the displacement

and the sign of velocity. This property is called rate independence and provides

an advantage to model hysteresis and pre-sliding displacement. A General form

of Dahl’s model is given by

dF

dp
= σ0

∣∣∣∣1− F

Mac
sgn

(
dp

dt

)∣∣∣∣i sgn(1− F

Mac
sgn

(
dp

dt

))
. (1.5)

where p and σ0 correspond to position and stiffness. Exponent i is a model

parameter typically set to 1. Note that (1.5) does not include, Stribeck effect

and viscous friction. Therefore, Bliman and Sorine developed a model based on

linear space invariant differential operators to eliminate these drawbacks of Dahl

Model [7]. To this end, time variable t is replaced by a space variable s with the

following transformation.

s =

∫ t

0

|v(τ)| dτ. (1.6)
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Then, a first order model can be defined as

dF

ds
= −σ0

F

Mac
z + σ0sgn(v). (1.7)

This first order model can be extended to a second order model as below aiming,

at imitation of Stribeck effect.

d2F

ds2
+ 2ζw

dF

ds
+ w2F = w2Macsgn(v). (1.8)

where ζ and w denote damping coefficient and angular frequency respectively.

Actually, this second order model includes two first order models in parallel, see

[3, 7, 8] for details. Unfortunately, this second order model provides a transient

Stribeck effect since it is not exhibited in the steady-state relation between ve-

locity and friction force. Another extension of Dahl model is developed by the

universities of Lund and Grenoble that is why it is named LuGre Model [2]. Ac-

cording to this model, moving object and asperities are connected through elastic

bristles. When a tangential force is applied, these bristles start to bend as if a

spring mass system. If the force is sufficiently large, deflected bristles slip off

each other randomly. During the motion, new contacts are formed and slipped

off repetitively and this results in friction generation. The average deflection of

the asperities can be introduced through a new state variable zd. Then, friction

dynamics become

dzd
dt

= v − |v|
h(v)

zd, (1.9)

F = σ0zd + σ1(v)
dzd
dt

+ Fvv. (1.10)

where σ0, σ1 are model parameters and h(v) is an appropriately chosen function

to capture Stribeck effect. A well known candidate of h(v) is given as follows.

h(v) =
1

σ0

(
Mac + (Fs −Mac)e

−(v/vs)2
)
. (1.11)

Note that when dzd
dt

= 0, system reaches steady state and LuGre Model converges

to classical friction model given in (1.4). Furthermore, as it can be seen in

(1.10), the inclusion of viscous friction and Stribeck effect at the same time is

the main advantage of LuGre model compared to the aforementioned Dahl and

Bliman-Sorine dynamic models. With LuGre Model, we conclude our discussion
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on friction modeling. Certainly, there are many other models present in the

literature. Interested readers may refer to [9] and the references therein.

After this brief introduction about modeling, we will move on to friction iden-

tification and compensation. Fundamentally, friction compensation approaches

are grouped under two headings as model based and non-model based techniques.

As the name implies, model based methods rely on accurately identified model

parameters. Then, using these parameters, friction can be estimated and super-

posed via either feedback or feedforward to control input delivered to the plant.

Therefore, if estimated friction is well enough, it cancels out existing friction dy-

namics and control input generated by a controller is completely directed to the

plant. As mentioned before, friction regimes are different in the pre-sliding and

sliding phases. Actually, the steady state characteristics of friction depend on

velocity, while dynamic characteristics depend on position. Hence, viscous coeffi-

cient, Stribeck velocity, Coulomb and stiction coefficients can be determined using

constant velocity tests. In these tests, force/torque generated by the controller

will be equal to friction force/torque itself since acceleration is zero. Aiming at

zero steady state velocity error, it is better to employ a basic PI controller dur-

ing these tests. Then, one can have a friction-velocity mapping for the sliding

regime and apply curve-fitting techniques in order to determine static friction

parameters. On the other hand, dynamic characteristics of the friction in the

presliding stage are a function of position; therefore, micro motion can produced

by applying a ramp input with a low slope in order to obtain a friction-position

mapping [10]. Nevertheless, parameter identification for the pre-sliding phase

is challenging compared to the sliding phase. Revisiting (1.10), we can conclude

that accurate identification of dynamics coefficients σ0 and σ1 is challenging due to

complexity of LuGre model and immeasurable internal state variable zd. Hence,

there are some studies to improve the accuracy of dynamical parameter identifi-

cation. For instance, inspired by biological theories, [11] and [12] utilize Genetic

Algorithm and Novel Evolutionary Algorithm (NEA). In another approach, two

linear controllers having strictly positive real transfer functions are utilized to

adapt partially known friction parameters to normal force variations and tem-

perature changes [13]. In [14], a sliding-mode observer is designed to estimate
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the internal state zd in LuGre model. Then, an adaptive controller drives the

position and velocity of a motor to track the reference signals using estimations

of zd. Similarly, [15] employs a Q filter-based disturbance observer to compen-

sate the differences between existing friction and nominal model. In this study, a

feedforward static friction compensation is applied and taking velocity feedback,

the observer regards unmodelled friction dynamics as a disturbance applied to

the system. Likewise, [16], proposes an observer design aiming at minimization of

modeling errors. Here, the observer is distinctively designed based on LuGre fric-

tion and model parameters are tuned adaptively using velocity feedback. Lastly,

[17] proposes three different methods for friction identification. One of them is

to construct a two layer neural network in order to obtain precise and offline es-

timation using the Extended Kalman Filter (EKF). Secondly, a polytopic model

consisting of several locally valid friction models is suggested for a better param-

eter identification. These two methods are categorized as grey-box models and

apart from them, [17] provides a frequency domain identification as a third alter-

native. Therefore, according to the third method, a system can be excited with

random noise in a single experiment aiming at parameter identification, while

grey-box models require several experiments.

Parameter identification can be time consuming and challenging since it re-

quires an appropriate measurement setup and process. Furthermore, estimated

parameters might tend to vary due to environmental properties such as tem-

perature, liquidity, load, etc. [18] that is why nonmodel based approaches are

prevalent in the literature as alternatives. For instance, in [19], it is proposed to

utilize an Extended Kalman-Bucy Filter (EKBF) assuming friction torque is an

unknown. Similarly, [20] has designed a disturbance observer for pivot friction

compensation in a hard disk drive using Kalman Filter framework and [21] has

designed a controller unit consisting of a low pass PD controller and Extended

Kalman Filter to enhance the position performance of the system under friction.

In [22], a robust sliding mode controller design is developed as a nonmodel based

cancellation method. Furthermore, there are several different observer designs

that do not require any friction modeling in the literature. For instance, separate
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velocity and momenta observers are employed together using position measure-

ments to eliminate disturbances including friction in [23]. Also, for a multilink

robotic manipulator, a nonlinear disturbance observer is designed in [24]. Al-

though the main purpose of this observer is to estimate constant disturbance

signals, it can also give promising results with time varying disturbance. There-

fore, it can be employed to satisfy different design purposes such as independent

joint control, sensorless torque control, and fault diagnosis in addition to fric-

tion compensation. Again for a robotic platform controlled by passivity based

multi input multi output (MIMO) controller, an observer operating as an inte-

grator and driving the steady state error to zero is introduced in [25]. Of course,

there are plenty many observer designs implemented for nonmodel based friction

compensation in the literature. As the last example, we would like to mention

Friedland-Park observer. Although this is an adaptive observer aiming Coulomb

coefficient estimation, simulations and experiments reveal that it may still per-

form satisfactorily even actual friction is not confined Coulomb friction only [26].

Inspired by its simple structure and performance, we made some further analysis

and extensions on the observer design which will be expressed in the subsequent

chapter.

Motivated by all of these facts and justifications, we consider adaptive observer

designs which do not require any parameter identification for friction cancellation

in a position control system with one degree of freedom in the scope of our

research. Therefore, it can move along only one axes. Note that the proposed

methods in this study can be extended to the systems with multiple degrees of

freedom. In this case, in addition to friction, systems include coupling forces and

other nonlinearities which should be taken into account as well [27, 28, 29, 30].

A general block diagram of a one-degree position control system is displayed in

Figure 1.2. Note that the inner loop which controls the velocity is optional.

This structure is named a hierarchical closed loop position control system and is

required if velocity control is also desired. When there are no design restrictions

on velocity output or velocity is immeasurable, direct position control with a

single closed loop is an alternative. Likewise, reference filter is another optional

component in the position control problems. Although it may deteriorate the
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Figure 1.2: General representation of a hierarchical closed loop feedback system
for position control under the presence of friction force

transient response of the system a little bit, it may be beneficial to obtain an

improved steady state response. In later parts of this dissertation, all components

of a position control system are explained in depth.

1.2 Key Contributions

One of the main contributions of this study is that we make performance and

stability analysis of Friendland-Park observer to a broader extend. In real life po-

sition control applications, measurement delay may emerge due to sampling, data

collection system/sensor design (i.e. encoder resolution, complex communication

protocols etc.) and velocity estimation if direct measurement is not possible.

This delay might deteriorate the system response and limit observer bandwidth

significantly. For such cases, we show that velocity prediction is required in the

presence of a large time delay in order to estimate the friction accurately. To this

end, we propose different velocity predictor schemes to enhance the robustness

and performance of the closed loop system.

Another novel contribution of our research is that we develop a novel adaptive

observer design as an alternative. Parameters of Friedland-Park type observers

are tuned somehow in a heuristic way, whereas in this new design, it may be pos-

sible to determine the observer parameters by considering overshoot and settling

time properties of the friction estimation. Therefore, observer parameters may

be determined by considering the damping ratio and natural frequency. Apart
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from ease of its design, this new observer adopts both friction and velocity er-

ror dynamics which can improve the friction estimation performance in velocity

uncertainties. This new observer has behavior as second order switching system.

Furthermore, we provide a stability analysis for this new design. In addition to

a numerical method based on linear matrix inequalities (LMI) to solve minimum

dwell time, we have also stated some conditions for asymptotic stability. In ad-

dition to MATLAB simulations, we conduct some experiments on a DC motor

application running by an Arduino Uno based platform. In these experiments,

the system is delay free.; therefore, we tune the PID controller using the integral

of the time-weighted absolute error (ITAE) index. Likewise, under the presence

of measurement delay, this new observer design may work well enough without

a separate velocity predictor since it also considers velocity error dynamics for

friction estimation.

1.3 Organization of the Dissertation

This dissertation is organized as follows. In Chapter 2, different observer designs

are discussed and stability analyses are presented. First, we revisit the origi-

nal Friedland-Park Friction Observer for a delay free system and characterize a

general class of nonlinear functions that could be used to estimate this observer.

Friedland-Park type observers use both control input and velocity measurements

for friction estimation. Therefore, the effects of actuation and measurement delay

on observer estimation performance are investigated. For this purpose, some delay

compensation techniques are discussed. To this end, several numerical differential

equation solvers and inverse Pade Approximant based schemes are proposed to

estimate the actual velocity based on delayed velocity measurements. Lastly, a

new observer structure is provided as an alternative observer design.

Chapter 3 focuses on different controller design procedures to form a closed

loop position with adaptive observers. At first, we simply consider a delay free sys-

tem. An optimal PID controller can be obtained according to ITAE performance

index considering bandwidth requirements in this scenario. However, designing
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such optimal controllers for systems with delay can be challenging and might not

provide the desired setpoint or robustness objectives. Therefore, we also consider

a particular controller structure named Smith predictor. Smith predictor based

controllers are highly preferred in the control of time delayed systems. This re-

search utilizes pole placement and controller parametrization methods to design

Smith Predictor-based velocity and position controllers.

In Chapter 4, we performed detailed simulations in MATLAB to observe the

performance of the position control system. To this end, Coulomb and LuGre fric-

tion models have utilized to synthesis the disturbance signal arising from friction

in the system. Motivated by simulation results, we also conduct some experi-

ments on an Arduino Uno based DC motor platform to examine the effectiveness

of proposed strategies.

Finally, in the Appendix, we present some concluding remarks in Chapter

6 and details of LMI based dwell time analysis and MATLAB Simulink block

settings for Arduino Uno experiments.
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Chapter 2

Friction Observer Designs

As mentioned in the introduction, different observer designs can be found in the

literature. In this chapter, two main observer designs are discussed. We start

with a well-known adaptive Coulomb Observer developed by Friedland and Park

[26, 31]. Inspired by the proposed design, we provide some necessary conditions

to acquire other candidate estimation functions for the observer. Furthermore,

we propose some extensions and modifications for the plants which have a time

delay. Ultimately, we propose a new observer design and provide a stability

analysis based on an appropriate Lyapunov function.

2.1 Friedland-Park Observer design for delay

free systems

A simple mechanical system can be modeled with a single mass equation. In

this case, applied force/torque becomes control input, whereas position and/or

velocity is the output. Assuming that the system is delay free, equations of
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motion under the presence of friction can be written as follows

ẋ = v, (2.1)

Mv̇ = −F (v) + u. (2.2)

where, M , u, x, v and F (v) represent total mass, applied force, position, velocity

and existing friction force respectively. Note that applied force/torque is directly

generated by the controller itself when there is no friction compensation. How-

ever, when friction exists, control input cannot be fully transformed to desired

v̇ and the system begins to suffer from performance degradation due to friction

force/torque, which is denoted by F (v). Besides, stability issues may arise with-

out any friction compensation. To this end, we adopt an observer based friction

cancellation approach. In this case, applied force/torque becomes the sum of

controller input, denoted by ur and friction estimation of the observer F̂ (v) as

below.

u = F̂ (v) + ur. (2.3)

Assuming that observer estimation, F̂ (v), perfectly matches to existing friction

F (v), force/torque sourcing from controller input can be effectively delivered to

the system. Hence, any controller designed for a linear time-invariant system

without any friction can be adopted for position control together with an appro-

priate observer. Certainly, friction cancellation eases the controller design process

in this manner.

Similarly, equations of rotational motion can be derived as

θ̇ = w, (2.4)

Jẇ = −F (w) + u, (2.5)

u = F̂ (w) + ur. (2.6)

where θ, w and J stand for angular position, angular velocity and moment of

inertia of the system respectively.

In the literature, there are many different approaches to model the friction

force; however, Coulomb friction is a common and fundamental component in
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most of these models. Thus, observer depicted in Figure 2.1 mainly aims to

estimate Coulomb component for friction cancellation. Consequently, exist-

ing and estimated friction can be formulated as F (v, ac) = Macsgn(v) and

F̂ (v, âc) = Mâcsgn(v), where ac and âc represent Coulomb friction coefficient

and its estimation, both respectively.

To design the observer, let g(v) : R 7→ R be an appropriate differentiable

function yet to be determined. Inspired by [26], we propose an extended adaptive

friction observer given by

ż = g′(v)
u

M
, (2.7)

âc = z − g(v). (2.8)

Here, z is an internal state of the observer and âc is the estimation of Coulomb

friction coefficient. To analyze the performance of the observer given by (2.7)

and (2.8), let us define the estimation error as:

e = ac − âc. (2.9)

Then, we can conclude that ȧc = 0 if we assume that ac is constant. This leads

Figure 2.1: Structure of a generalized Friedland-Park observer
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error dynamics to become

ė = − ˙̂ac

= −ż + g′(v)v̇

= −g
′(v)u

M
+
g′(v)[F̂ (v, âc)− F (v, ac) + u]

M

= −g
′(v)

M
[F (v, ac)− F̂ (v, âc)]

= −g′(v)sgn(v)e. (2.10)

Remark 1. If g′(v)sgn(v) ≥ 0 ∀v 6= 0, then under some conditions one can show

the asymptotic stability of the error dynamics given by (2.10). Indeed, there is a

quite large class of functions g(·) which satisfy these conditions. To characterize

these, let us define the following class of functions. Consider a function h : R 7→
R which satisfies the following condition

αv2 ≤ vh(v) ≤ βv2 ∀v (2.11)

where β ≥ α. Such functions have a graph in Cartesian axes whose boundaries

are given by the lines y = αv and y = βv and we say in such a case that h(·)
belongs to a sector [α, β], or simply h ∈ [α, β], see [32] for more details. Note that

if α = 0, β = ∞, then the functions h ∈ [0,∞] have a graph which lies entirely

in first and third quadrant of Cartesian axes. Since sgn(·) ∈ [0,∞], it is clear

that for any function g such that g′(·) ∈ [0,∞], we will have g′(v)sgn(v) ≥ 0 ∀v.

Clearly, a large class of functions g(·) satisfy this condition. For example, if we

choose g(v) = 1
2
kv2, then g′(v) = kv which belongs to sector [0,∞] when k > 0.

Indeed, in this case we have g′(v)sgn(v) = k|v| ≥ 0. Another candidate function

is g(v) = kln(cosh(αv)) where k > 0 and α > 0 are arbitrary constants. In this

case, g′(v) = kαtanh(αv) ∈ [0,∞]. For the choice of g(v) = k | v |, k > 0, we

have g′(v)sgn(v) = k and in this case the error equation given by (2.10) has the

solution e(t) = e−kte(0), provided that v 6= 0. In [26], the function g(v) = k|v|µ is

utilized, which yields g′(v) = kµ|v|µ−1sgn(v) ∈ [0,∞] for any positive constants

k and µ.

Note that although for the particular choice of g(v) = k|v|µ, the well known
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observer given in [26] will be attained, as a novel contribution, we also show that

it is possible to use other alternatives of g(v) as far as they satisfy Lemma 1.

Under certain mild assumptions, one can show the stability of the error dy-

namics given by (2.10) by using the standard Lyapunov stability analysis.

Lemma 1. Consider the system given by (2.1)-(2.10). Assume that g(v) : R→
R is a differentiable function which satisfies g′(v) ∈ [0,∞), g(v) 6= 0 and g′(v) 6= 0

for v 6= 0. Under these constraints, if |v| ≥ α ∀t, then the error dynamics given

by (2.10) is exponentially stable, i.e. e(t) −→ 0 with an exponential decay.

Proof. Note that g′(v)sgn(v) ≥ 0 and with the given assumptions it easily follows

that if |v| ≥ α > 0 then, g′(v)sgn(v) ≥ β for some β > 0. Let us define the

following Lyapunov function

V (e) =
1

2
e2 (2.12)

By differentiating (2.12) and using (2.10) we obtain

V̇ = eė ≤ −βe2 = −2βV (2.13)

Hence, V (t) ≤ e−2βtV (0) and therefore we have

|e(t)| ≤ e−βt |e(0)| . (2.14)

Remark 2. Although the applicability of Lemma 1 seems to be limited since it

requires that |v| ≥ α>0; nevertheless, it could be utilized in various meaningful

applications such as unit step tracking in velocity loop, ramp tracking in position

loop. Note that in these cases, it is expected that condition |v| ≥ α hold sufficiently

long period of time. Indeed, if we choose g(v) = kv2, then we have g′(v)sgn(v) =

2k|v|, hence for |v| > α, g′(v)sgn(v) ≥ β is satisfied with β = 2kα.

A somewhat less restrictive assumption on v(t), which could be related to the

persistency of excitation [33], could be given as below.
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Lemma 2. Let v(t) be the solution of (2.1)-(2.10) and let us define

G(t) = g′ (v(t)) sgn (v(t)) . (2.15)

Assume that there exist some α>0 and T>0 such that the following holds∫ t+T

t

G(s) ds ≥ α, ∀t ≥ 0 (2.16)

Then for the error dynamics given by (2.10), e(t)→ 0 as t −→∞; moreover, the

decay is exponential.

Proof. Note that the solution of (2.10) is given as

e(t) = e−
∫ t
0 G(s) dse(0). (2.17)

Since the exponential term is always positive, (2.17) can be rewritten as

|e(t)| = e−
∫ t
0 G(s) ds |e(0)| . (2.18)

Let t = nT + τ for some integer n ∈ Z+ and 0<τ<T . Then,∫ t

0

G(s) ds =

∫ nT

0

G(s) ds+

∫ nT+τ

nT

G(s) ds ≥ nα. (2.19)

where the fact that G(s) ≥ 0 is used. Inserting (2.19) into (2.18) leads to

|e(t)| ≤ e−nα |e(0)| . (2.20)

As t −→∞, n −→∞ as well; hence, |e(t)| −→ 0. As it can be seen from (2.20),

the decay is exponential. In fact, since n = t−τ
T

and τ < T ,

|e(t)| ≤ eαe−
αt
T |e(0)| . (2.21)

Remark 3. Note that when |v(t)| ≥ α>0, the condition given by (2.15) also

holds. On the other hand, when the signals are in the sinusoidal form, the con-

dition |v(t)| ≥ α may not hold whereas (2.15) may hold. Hence, Lemma 2 could

be utilized in the sinusoidal signal tracking and/or rejection. Indeed, if we choose

g(v) = kv2, then G(t) given by (2.15) satisfies G(t) = 2k|v|. If v(t) = sinωt,

then (2.16) is satisfied with T = π/ω and α = 2k/ω.
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Although Remark 1 sets a condition for estimation function g(v), the relation-

ship between convergence rate of the observer response to existing friction and

parameter selection of g(v) remains implicit. Specifically in original Friedland-

Park observer where g(v) = k|v|µ, design parameters k and µ are generally chosen

in a heuristic way. In other words, [26] claims that estimation error convergences

to zero asymptotically and rate of convergence becomes faster when either ob-

server gain k or design exponent µ is increased. However, it is not clear that how

k and µ should be chosen to obtain desired observer bandwidth. To overcome this

parameter selection issue, [34] makes a linear approximation for the pole location

of Friedland-Park observer, assuming that desired velocity signal is sinusoidal.

Before moving forward on the computation of approximate pole location, note

that in Friedland-Park observer case (2.10) can be rewritten as

ė = −kµ|v|µ−1e. (2.22)

Hence, for an initial condition e(0) explicit solution of the error function at time

T can be acquired as

e(T ) = e(0)e−kµ
∫ T
0 |v|

µ−1dt. (2.23)

To establish an analogy with first order linear time invariant observer, this solu-

tion can be rewritten such that

e(T ) = e(0)eσ(T )T . (2.24)

where σ(T ) = −kµ
[
1
T

∫ T
0
|v|µ−1dt

]
. Then, at the steady state, approximate pole

location can be computed as

p = −kµ|v|µ−1 (2.25)

where (.) denotes the mean value ofthe corresponding variable. Note that (2.25)

can be generalized as

p = −g′(v) (2.26)

Under this assessment, parameters can be set to satisfy desired pole placement

of the observer. Nevertheless, to compute the pole location, we still need to
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observer under Coulomb Friction.

know velocity response of the system beforehand. Based on some assumptions

[34] makes a velocity estimation based on a desired sinusoidal position response.

However, foreseeing velocity to observer design can be problematic if there are

some unmodelled dynamics due to nonlinearities, disturbances or time delay in

the system. What is more, when position reference does not have a periodic

trajectory, it may be difficult to use velocity for observer characterization and

this may lead to poor friction canceling. Moreover, a particular pole placement

can be achieved for different estimation functions g(v) with appropriately tuned

parameters. Consequently, how fast the observer estimation converges to friction

existing in the system is not so obvious. For instance, in order to achieve a certain

estimation error at time t with the original Friedland-Park observer, one should

know v(t) and carefully set k and µ in (2.23). Apart from these inferences, it

is also remarked that original Friedland-Park observer becomes sensitive when

high gain k is combined with a relatively high value of µ and as a result of this

response tends to ring [26].

To gain a deeper understanding of this issue, we conduct some open loop ob-

server simulations. To this end, we design a system as in Figure 2.2 assuming
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Figure 2.3: Friction estimation and velocity response of the open loop system for
g(v) = 100v2.

that M = 5 and F (v) = sgn(v) in (2.2). Note that in this case Coulomb coef-

ficient, ac becomes 0.2. Then, we apply a control input, u = 2Λ(2) where Λ(f)

denotes a zero mean periodic triangular signal with frequency f . We first consider

g(v) = k|v|µ for k = 100 and µ = 2. In this case, the velocity response of the

open loop system becomes periodic as in Figure 2.3. Then, the mean of absolute

velocity at the steady state can be computed within a period 0.5 sec as below.

|v| = 1
2

∫ 3

2.5
|v|dt

= 0.0836 (2.27)

Consequently, Referring to (2.25), pole location can approximated as p ≈ −16.72.

Furthermore, it is possible to friction estimation error at time t using (2.23). For

instance, initially e(0) = 0.2 since system is in rest and âc = 0. For t = 0.29 sec.,

error and estimated Coulomb coefficient can computed using (2.23) such that

e(0.29) ≈ 0.1376 and âc(0.29) = 0.0624. By using these, the estimated friction

becomes F̂ = 0.312 at t = 0.29 as in Figure (2.3). As another example, we can

consider t = 0.6 case. Then, e(0.6) = e(0)e−200
∫ 0.6
0 |v|dt ≈ 0.06 leads to âc ≈ 0.14

F̂ = −0.707 due to sgn(v) = −1.

As stated previously, a similar estimation performance can be achieved for
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Figure 2.4: Characteristics of different observer estimation functions for pole
locations at -16.72 and -66.88.

another g(v). Again aiming a pole location p = −16.72, one can determine

g(v) = 200ln(cosh(v)) since tanh(v) = 0.0836. Note that although these two

estimation function candidates are different, they have a similar graph in the

interval [-0.5,0.5] and as a result, their estimations are the same as long as open

loop velocity response stays inside the area designated by dotted red lines.

Moreover, functions corresponding to larger pole locations provide faster fric-

tion estimation response as shown in Figure 2.5. Consequently, although estima-

tion functions used in the observer design have different characteristics, they can

produce similar responses for the same pole locations. When a rapid convergence

is desired, one should design an observer with a larger pole to increase its band-

width. For instance, both g(v) = 400v2 and g(v) = 800ln(cosh(v)) lead to a pole

at approximately −66.88 for the same velocity signal in the previous case. There-

fore, estimation converges to existing friction faster as in Figure 2.5. Considering

(2.23), it is an expected result since k is larger and the average velocity integral

is the same compared to the previous case. In other words, the observer has a

larger pole in this case referring to (2.24). Mathematically speaking observer pole

can be very large; however, performance problems may also arise in practice. For

instance, in [26], it is stated that observer tends to ring when high k combined

with relatively high µ. Probably, in this case, the observer becomes very sensitive
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to velocity noise. In fact, these type observers assume that velocity information

is present precisely since they do not perform a velocity estimation. Therefore,

if direct velocity measurement is not available, a velocity predictor is required.

However, this predictor can degrade friction performance. Similarly, if velocity

measurements are acquired with a time delay, friction performance may again

deteriorate that is why in the following sections, we will consider these issues in

detail. Furthermore, we will also exhibit a new observer design including velocity

dynamics for friction estimation.

Figure 2.5: Friction estimation performances of Friedland-Park type observer
designs having different g(v). (Solid Blue: F (v) = sgn(v), Dashed Orange: F̂ (v))

2.2 Friedland-Park Observer design for systems

with time delay

Previously, we have emphasized that Friedland-Park type observers count on

control input and velocity measurements to estimate the friction. Hence, they

can suffer performance degradation under the presence of time delay within the

system. In such cases, time delay may exist as input and/or output delay and
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Figure 2.6: Time delay may emerge either in input or output ports of the plant.
In case A, an output-delay model is used due to measurement issues whereas in
case B, an input-delay model is used due to actuation issues.

require some delay compensation techniques, especially when it is large compared

to observer bandwidth, see Figure 2.6. For our analyses in this thesis, we assume

that open loop system has a fixed and known time delay. Although it is out of

the main context of our study, time delay can be measured by considering system

properties or inferred after some system identification techniques. Regarding this

issue, interested readers can find further details in [35, 36].

Let us first start with considering input case which occurs actuation or process

delay. In our previous work [37], a copy of the time delay is attached to the

control input port of Friedland-Park observer as in Figure 2.6 B. This enables

observer to make a fair computation using theoretical velocity derived from u and

actual velocity v [37, 38]. To investigate the effect of input delay on the observer

performance, we first revisit the system in Figure 2.2 with an input delay such that

Td = 0.05 and Td = 0.1 seconds. For g(v) = 100v2 and g(v) = 400v2, estimation

performances of the observers are given in Figure 2.7. Referring to the figure,

it can be inferred that without any delay compensation observer performance

deteriorates drastically. In fact, for Td = 0.1s, it tends to make the system

unstable since the direction of real friction and estimation becomes opposite due

to large delay for each g(v).

As stated in [16], an effective friction compensation scheme generally requires

velocity measurements with a good resolution and small time delay. Mostly, mea-

surement delay is introduced by sampling, data collection system/sensor design

(i.e. encoder resolution, complex communication protocols, etc.) and velocity
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Figure 2.7: Friction estimation performances of Friedland-Park type observer
designs with different estimation function and actuation delays. (Dashed Blue:
F (v) = sgn(v), Solid Orange: F̂ (v))

estimation if a direct measurement of it is not possible. In this case, estimated

friction becomes a function of delayed velocity measurements denoted by vo(t)

while existing friction is a function of actual velocity v(t), see Figure 2.6 A. In

this case, friction cancellation is still achieved imperfectly if the time delay is

small and vo(t) has similar behavior to v(t). Otherwise, a velocity predictor as

in Figure 2.6 A should be utilized in order to increase observer performance [39].

Hence, observer can estimate friction by (2.7)-(2.8) since both estimated and ex-

isting friction forces are functions of v. The relationship between the measured

vo(t) and the actual velocity v(t) can be formulated as:

vo(t) = v(t− Td). (2.28)

where Td stands for the time delay present in the system. Replacing t with t+Td,

we see that obviously it is required to have vo(t + Td) to estimate the friction

force accurately. Hence, the actual velocity v(t) and observed velocity vo(t) are

related as follows

v(t) = vo(t+ Td). (2.29)
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Since we observe vo(t), but v(t) is required to calculate the friction force, we need

to estimate v(t). Let us call v̂(t) as an estimation of v(t), and define the velocity

estimation error ev as

ev = v(t)− v̂(t). (2.30)

Due to the fact that measurement vo(t) is the delayed velocity of the actual

velocity v(t), we can only use the estimated velocity v̂(t) in the observer equations

given by (2.7)-(2.8). In this case, the observer should be given as follows:

ż = g′(v̂)
u

M
(2.31)

âc = z − g(v̂) (2.32)

Then, the parameter estimation error e(t) = ac − âc dynamics is given as

ė = −g′(v̂)
u

M
+ g′(v̂) ˙̂v. (2.33)

Defining the velocity estimation error ev as given by (2.30), by using (2.31)-(2.32)

we obtain

ė = g′(v̂)(âcsgn(v̂)− acsgn(v))− g′(v̂)ėv

= −g′(v̂)sgn(v̂)e+ g′(v̂)ac(sgn(v̂)− sgn(v))

−g′(v̂)ėv. (2.34)

If sgn(v̂) = sgn(v), which is satisfied when |v| > |ev|, then the parameter error

dynamics becomes:

ė = −g′(v̂)sgn(v̂)e− g′(v̂)ėv. (2.35)

Note that with velocity estimation error ev satisfying ev = 0, we have v = v̂,

and (2.35) becomes the same as (2.10). When ev 6= 0, the perturbation term

g′(v̂)ėv could be considered as a disturbance acting on an exponentially stable

system. Since exponentially stable systems are robust to perturbations, we could

expect stable (may not be necessarily asymptotically stable) error dynamics in

(2.35). Consequently, in the presence of time delay, when the conditions stated

in Lemma (2) are satisfied and velocity error and time delay are small enough, it

is expected to have stable error dynamics as in delay free design. The following

lemma clarifies this point.
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Lemma 3. Consider the system given by (2.1)-(2.2). Assume that v̂ is the

estimation of v(t) (see Figure 1.2) and that the observer is given as (2.31)-

(2.32), where g(v) : R 7→ R satisfies the conditions stated in Lemma 1 (or

lemma 2). Furthermore assume that sign(v̂) = sign(v). Under these conditions,

if |g′(v̂)ėv| < m for some m > 0 , then the parameter estimation error e given by

(2.10) is bounded as well. Furthermore, if m→ 0, then |e| → 0 as well.

Proof. Note that when ev = 0, i.e. v̂(t) = v(t), then the parameter error satis-

fies (2.10), which is shown to be exponentially stable in Lemma 1 or Lemma 2.

Then by classical converse theorems of Lyapunov stability theory, there exists a

Lyapunov function V : R+ ×R 7→ R+ which satisfies the following

n1‖e‖2 ≤ V (t, e) ≤ n2‖e‖2 (2.36)

∂V

∂t
+
∂V

∂e
[−g′(v̂)sgn(v̂)e] ≤ −n3‖e‖2 (2.37)∥∥∥∥∂V∂e

∥∥∥∥ ≤ n4‖e‖ (2.38)

for some positive constants n1, n2, , n3, n4, see [32]. By using this function from

(2.35) we obtain

V̇ (t, e) =
∂V

∂t
+
∂V

∂e
[−g′(v̂)sgn(v̂)e]− ∂V

∂e
(g′(v̂)ėv) (2.39)

≤ −n3‖e‖2 + n4‖e‖m (2.40)

≤ −n3‖e‖
(
‖e‖ − n4

n3

m

)
(2.41)

clearly, if ‖e‖ ≥ n4

n3
m, then V̇ < 0 and by (2.36), ‖e‖ is bounded. By using

standard Lyapunov Theory arguments it follows that the error is bounded [32].

In fact, lim
t→∞
‖e(t)‖ < n4

n3
m. Clearly as m→ 0, we have e→ 0 as well.

Remark 4. Lemma 1 and 2 show that when the measurements are not delayed,

the observer structure given by (2.7)-(2.8) achieves exact friction cancellation

since the parameter error dynamics is exponentially stable. When there is a mea-

surement delay, obviously, we need to estimate v(t) for exact friction cancellation.
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Figure 2.8: Friction estimation performances of Friedland-Park type observer
designs with different estimation function and measurement delays.(Dashed Blue:
F (v) = sgn(v), Solid Orange: F̂ (v))

In such a case, we need a method to estimate v(t) based on the delayed measure-

ments vo(t). If the methodology chosen for such an estimation yields small er-

rors, then Lemma 3 guarantees that the friction parameter estimation error also

remains small. This point will be clarified in the sequel, see Remark 5.

In order to investigate the effects of output delay, we revisit the system in

Figure 2.2 one more time and apply u = 2Λ(2) to open loop system with adap-

tive estimation function g(v) = 100v2 and g = (v)400v2 for Td = 0.01 and

Td = 0.02 seconds. In this case, estimation performance deteriorates even under

small measurement delays compared to the input delay case. Moreover, without

any predictor, there will be time lag equal to Td between actual and estimated

frictions as shown in Figure 2.8. Motivated by this, we will mainly consider

measurement delay in the remaining chapters of the thesis since estimation per-

formance may dramatically become poor under this type of delay. To this end,

we will exhibit different velocity predictor designs to compensate for hindering

measurement delay effects on friction estimation. However, here we present some

results for observer response when a velocity predictor based on Heun Method is
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employed to conclude our discussions on output delay , which will be explained in

the following section. As shown in Figure 2.8, friction estimation matches with

the existing friction pretty well thanks to Heun Method based predictor. We

can conclude that minor mismatches between actual and inferred time delays can

slightly affect the robustness of the controllers.

2.2.1 Velocity prediction via delayed measurements

For velocity prediction, we propose two different approaches. The first one is

based on the numerical solution of Ordinary Differential Equations (ODEs). Al-

though we mention some of the well known numerical solvers in this thesis, a

numerical derivation is a broad research area and one can find some other ad-

vanced solvers to enhance the accuracy of prediction. In the second approach,

we approximate the time delay as a rational function. Thus, the inverse of this

rational function can be utilized to compensate for the effect of measurement

delay on velocity signal.

Obviously, better velocity estimation schemes will yield better friction com-

pensation performance. Two main approaches, which will be explained in this

section, provide a sufficient velocity prediction in order to extend an adaptive ob-

server to applications with measurement delay within the scope of our research;

however, there might be other estimation schemes giving better velocity predic-

tion error bounds in the literature. Indeed, this issue requires and deserves further

investigation.

2.2.1.1 Numerical ODE Solver based approaches

As a first alternative to predict vo(t + Td), one can simply utilize the definition

of derivative as given below.

v̇o(t) = lim
Td→0

vo(t+ Td)− vo(t)
Td

. (2.42)
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Euler predictor

Figure 2.9: The Euler Approximation based velocity predictor.

Note that v̇o(t) can be easily found since past velocity measurements have al-

ready been available. Then, v̂(t) can be estimated by using current value of vo(t)

and its derivative v̇o(t). By using this approach, which is well known as Euler

approximation, we can approximate v̂(t) as follows

v(t) = vo(t+ Td) ≈ vo(t) + Tdv̇o(t). (2.43)

By considering v̂(t) is the estimation of v(t) = vo(t + Td), we may utilize the

following

v̂(t) = vo(t) + Tdv̇o(t). (2.44)

Now from (2.42) it follows that the predicted velocity error ev will be small if

the time delay Td is sufficiently small. To test this assumption, we apply a delayed

sinusoidal input (u) to Euler Approximation based predictor as in Figure 2.9. As

can be seen in Figure 2.10, the proposed method predicts v(t) based on delayed

measurements vo(t) with sufficient accuracy.

Remark 5. Velocity estimation error bounds for Euler approximation can be

obtained theoretically as well. Note that Taylor series expansion of a function

f : R 7→ R can be given as follows:

f(t+ Td) = f(t) + Tdḟ(t) +
1

2
T 2
d f̈(ξ) (2.45)

where t < ξ < t+Td, see [40]. Now if we choose f(t) = vo(t) in (2.45), we obtain

vo(t+ Td) = vo(t) + Tdv̇o(t) +
1

2
T 2
d v̈o(ξ) (2.46)
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Figure 2.10: Performance of the Euler when desired velocity is v(t) = sin(2t) and
Td = 0.1 second.

where t < ξ < t + Td. We note that the last term in (2.46) is called as the

discretization or truncation error of Euler Method [40]. By using (2.29) and

(2.44) in (2.46), we obtain

v(t) = v̂(t) +
1

2
T 2
d v̈o(ξ) (2.47)

By using (2.30) we easily obtain

|ev| = |v(t)− v̂(t)| ≤ 1

2
T 2
d m̂1 (2.48)

where m̂1 = max
t
|v̈o(t)|. Similarly, if we use f(t) = v̇o(t) in (2.45) we obtain

|ėv| <
1

2
T 2
d m̂2 (2.49)

where m̂2 = max
t
|...v o(t)|. Clearly, if Td is sufficiently small, then the conditions of

Lemma 3 are satisfied and subsequently the performance of the proposed friction

compensation scheme will be satisfactory.

Note that Euler method is a first order approximation and there are some

higher order methods such as Runge-Kutta, midpoint etc. [41]. For instance,
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Heun Method, a particular choice of Runge-Kutta Method, is a second order

technique that uses Euler approximation at the initial step, i.e.

vio(t+ Td) = vo(t) + Tdv̇o(t) (2.50)

vo(t+ Td) = vo(t) +
Td
2

(
v̇o(t) + v̇io(t+ Td)

)
. (2.51)

In these equations, the initial estimation process is also called the predictor part.

Together with finalized vo(t+Td) computation, whole process is called predictor-

corrector approach. Unfortunately, numerical derivative operation adds both

positive and negative errors at the end of each step; therefore, it tends to be

unstable. Although higher order approximations may provide better accuracy

in the computation of derivative numerically, they become more sensitive to in-

put uncertainties. In contrast to numerical integration, differentiation is an ill-

conditioned process. Conditioning or condition number is a definition to measure

amplification of the input perturbation at the output. Since high order numerical

derivatives tend to provide larger condition numbers, they become vulnerable to

input uncertainties as well [42]. Hence, in practice, filters are utilized to prevent

large oscillations at the input of derivative action [43]. Practically, a simple low

pass filtered differentiator, L(s) is designed for the scope of this paper; however,

filtering is a wide research area and one can find various filter designs in the liter-

ature for that purpose. Similarly, [34, 44] employ our proposed low pass filtered

differentiator L(s) aiming at a velocity prediction from position measurements.

Distinctively, here in this study, we have employed a filter to predict velocity

based on delayed velocity measurements. Certainly, it is also possible to use such

a filter for velocity prediction from delayed position measurements in the absence

of direct velocity output. Thus, we may use the following high-pass filter as a

differentiator

L(s) =
sN

s+N
. (2.52)

where N is high-pass filter coefficient. As N increases, filter behavior converges

to ideal derivative operation. Nevertheless, in this case, filter gain becomes larger

for high frequency signals and generates larger variations. Hence, the choice of

N should be made carefully to realize this trade-off. Note that MATLAB also

utilizes the same filtering to generate PID controllers.
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Note that Euler Method is also a single step method because it refers to only

one previous point and its derivative to determine the function’s current value.

Higher order methods such as Runge-Kutta take some intermediate steps. Al-

ternatively, there are multi step methods utilizing more than one previous point

to compute the function’s current value. For instance, any two step linear multi

step solver needs two past values to compute the current value of a function. In

order to stay in the main scope of this thesis, we study two widely known two-

step methods called Adams-Bashforth and Adams-Moulton. Interested readers

can find further details about multi-step methods in [40, 41]. Two-step Adams-

Bashforth Method is given as

vo(t+ Td) = vo(t) +
Td
2

(3v̇o(t) + v̇o(t− Td)). (2.53)

Smilarly, two-step Adams-Moulton is given as

vo(t+ Td) = vo(t) +
Td
2

(v̇o(t) + v̇io(t+ Td)). (2.54)

Note that, like Heun Method, two-step Adams-Moulton Method is an implicit

method. Therefore, a predictor-corrector approach should be utilized in order to

compute an initial v̇io(t + Td). To this end, again, a simple solution is to utilize

Euler Approximation. Nevertheless, when the number of steps increases, such

solvers need further past values for numerical computation. What is more, they

require a single step method such as Euler predictor to calculate some of their

initial conditions. Therefore, single methods have some advantages over multi

step methods in terms of practicability.

2.2.1.2 Inverse Pade Approximant based approaches

Irrational e−Tds can be approximated by a rational function using Pade approxi-

mation such that

e−Tds ≈ R(s) =

n∑
k=0

(−1)kckT
k
d s

k

n∑
k=0

ckT kd s
k

(2.55)
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where n is the order of approximation and coefficients are

ck =
(2n− k)!n!

2n!k!(n− k)!
, k = 0, 1, ..., n. (2.56)

Typically, as delay increases, n should be increased as well to keep approximation

error low. On the other hand, for substantial values of n, the relative magnitude

c0/cn of the coefficients in (2.55) become very large; therefore, some numerical

analysis/simulation difficulties can arise [45]. Furthermore, a high order approx-

imation may produce clustered poles in the transfer function that makes the

system sensitive to perturbations again. Aiming at delay cancellation, the in-

verse of Pade approximation should be cascaded to velocity output for prediction;

however, note that (2.55) is a nonminimum phase system; hence its inverse is un-

stable. Therefore, another rational function approximation with zero numerator

dynamics is used by taking the first n-terms of Maclaurin series [46]. Although

this approach provides a coarse approximation compared to the standard Pade

approximation, it is implementable. In this case (2.55) and (2.56) become

e−Tds ≈ R(s) =
1

n∑
k=0

cksk
(2.57)

ck =
T kd
k!
, k = 0, 1, ..., n. (2.58)

Then, for an nth order velocity prediction, it is sufficient to multiply velocity

measurement with

R(s)−1 ≈ 1 + Tds+
T 2
d

2
s2 + ..+

T nd
n!
sn (2.59)

Consequently, it is observed that either inverse of first order Pade approxima-

tion or Euler method can perform adequately for velocity prediction when the

delay is not large compared to the system’s bandwidth. The general representa-

tion of an nth order predictor is illustrated in Figure 2.11. Note that both first

order predictors have the same structure. Particularly, Euler method and first

order inverse Pade approximant have the same structure as in Figure 2.11 with

different c1 coefficients. In Figure 2.12, a comparison of predictor errors of differ-

ent velocity predictors can be found. In all predictors, initially estimation error,
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Figure 2.11: The general structure of a n-th order predictor

ev(0) is large due to time delay; however, it decreases after a while. In fact, all

predictor schemes can be utilized to estimate the delay free velocity v(t) since es-

timation error becomes smaller than its initial value. In this sense, using delayed

measurements v(t− Td), their prediction v̂(t) converges to actual v(t). Although

the performance of Euler approximation is the worst among these predictors, its

accuracy is still acceptable. Moreover, its simplicity is an advantage compared to

other methods.
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Figure 2.12: Prediction performances of different types of velocity predictors
when Td = 0.1s and v(t) = sin(2t).

33



2.3 A New Observer design

In Section 2.1, we introduced a generalization of Friedland-Park observer to esti-

mate the Coulomb Friction for simple mechanical systems without delay. Then,

in Section 2.2, we modified this observer for the time delay case by introducing

various velocity prediction schemes. Similar to Section 2.1, in the sequel, we will

introduce a novel friction observer for simple mechanical systems for delay free

case. Let us rewrite the simple mechanical systems given by (2.2) as below.

Mv̇ = −Macsgn(v) + u. (2.60)

Assuming that v is measured, we first consider the following observer for velocity

estimation

M ˙̂v = −Mâcsgn(v) +KM(v − v̂) + u. (2.61)

where v̂ is the estimated velocity, âc is the estimated Coulomb friction constant

and K > 0 is an observer gain. Since v is already measured, one may argue that

the observer given by (2.61) is not necessary. However, as it will become clear in

the sequel, it is instrumental in estimating the friction coefficient ac. Now let us

define the velocity error ev and Coulomb friction parameter error ea as follows

ev = v − v̂, (2.62)

ea = ac − âc. (2.63)

By using (2.60) (2.61), we obtain

Mėv = −Measgn(v)−KMev (2.64)

For the stability analysis, let us define the following Lyapunov function V :

V =
1

2
e2v +

L1

2
e2a (2.65)

where L1 > 0 is another observer gain. By taking the derivative of (2.65) and

using (2.64), we obtain:

V̇ = evėv + L1eaėa (2.66)

= −eveasgn(v) + L1eaėa −Ke2v (2.67)
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If we choose the following adaptive law

ėa =
1

L1

evsgn(v) (2.68)

then, (2.67) becomes

V̇ = −Ke2v ≤ 0 (2.69)

which proves that the error system given by (2.64) and (2.68) is stable. For

time-invariant systems, using LaSalle’s invariance principle, one could prove

asymptotic and even exponential stability [32]. However, due to the term

sgn(v) ∈ {−1, 1}, the error system is time-varying and LaSalle’s argument can-

not be applied directly [32, 47]. Moreover, the error system can be viewed as a

switching system and in general, the stability properties may depend on the so-

called dwell time [48, 49]. We will address these issues in the sequel. Note that,

assuming that ac is constant, (2.68) results in the following adaptive parameter

update rule

˙̂ac = −Levsgn(v) (2.70)

where L = 1/L1 and L > 0. Using (2.64) and (2.70) state space representation

of error vector e = [ev ea]
T can be obtained as

d

dt

[
ev

ea

]
=

[
−K −sgn(v)

Lsgn(v) 0

]
︸ ︷︷ ︸

A(v)

[
ev

ea

]
(2.71)

Note that the sign of off diagonal terms in A(v) changes according to sign

of velocity. In this manner, A(v) can be treated as a system switching between

A1(v) and A2(v) based on velocity sign. To clarify, A1(v) is associated with v > 0

while A2(v) is associated v < 0. Then, under this statement, they become

A1(v) =

[
−K −1

L 0

]
, A2(v) =

[
−K 1

−L 0

]
(2.72)

Note that A1(v) and A2(v) have very similar structure. In fact, they share

same eigenvalues since |sI − Ai(v)| = s2 + Ks + L for i = 1, 2. This equation

35



can be linked to the characteristic equation of a second order systems which is

s2 + 2wnζs+ w2
n. Then,

L = w2
n, (2.73)

K = 2wnζ. (2.74)

where ζ and wn stand for damping ratio and natural frequency of second order

system. Moreover, settling time to within 2% desired output and percentage

overshoot equations can be rewritten as below adopting the definitions given in

[50].

settling time = −2ln(0.02
√

1− ζ2)
K

(2.75)

% overshoot = 100e−
Kπ/

√
4L−K2

. (2.76)

To sum up, new observer parameters K and L can be determined by considering

settling time and overshoot performance of the observer response. For different

K and L values calculated settling time and overshoot are presented in Table 2.1.

These theoretical values are compatible with the responses plotted in Figure 2.13

where again u = 2Λ(2) is applied to open loop observer as in the previous section.

However, there are some minor differences between theory and simulations. For

instance, for K = 10 and L = 90, simulated settling time and percentage over-

shoot are 0.73 seconds and 16.47% which are slightly different in Table 2.1. This

difference is mainly due to the switching and hence essentially the time varying

nature of the underlying dynamics given by (2.71). If the switching becomes

less frequent, which is related to the so-called dwell-time, one expects that these

mismatches may diminish and the second order approximation becomes more ac-

curate. Consequently, it seems that this new proposed structure can provide a

good enough friction compensation performance while it is easy to design. Like-

wise, under the presence of time delay, observer performance degrades. However,

the parameters of new observer can be tuned considering delay effects or similar

input/output delay compensation methods proposed in the previous section can

still be implemented in order to improve estimation response.
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Table 2.1: The theoretical Settling time and overshoot values for different K and
L parameters of the new adaptive observer

K L ζ wn settling time (s) % overshoot
10 90 0.53 9.49 0.81 14.25
40 800 0.71 28.28 0.21 4.32
80 1600 1 40 0.23 0
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Figure 2.13: Friction estimation performance of the new observer design for dif-
ferent K and L values given in Table 2.1. (Dashed Blue: F (v) = sgn(v), Solid
Orange: F̂ (v).)

2.3.1 Stability analysis of the new observer

As stated above, (2.69) proves the stability of the new observer, but not neces-

sarily the asymptotic stability due to the switching nature of the whole system.

The basic underlying reason is that LaSalle’s Invariance Theorem is not directly

applicable to our case due to the time-varying behavior of the switching signal.

Nevertheless, as shown is [47], under certain cases, LaSalle’s Invariance Principle

can be applied to switching systems and asymptotic stability can be deduced un-

der certain cases. This requires that the switching signal have certain properties,
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depending on the so-called dwell-time. We will follow the methodology and re-

sults given in [47] in the sequel. To adopt the notation of [47], we first define the

following quantities. Let σ(.) : [0,∞) → Σ2 = {1, 2} be a piecewise continuous

function. Note that we will also refer to σ(.) as the switching function. In our

case, σ(t) will depend on the sign of v(t); i.e.

σ(t) =

1, v(t) ≥ 0

2, v(t) < 0
(2.77)

Since σ(.) is piecewise continuous, there exists a sequence {tk | k = 0, 1, ....} such

that tk+1 > tk and tk → ∞ as k → ∞. For simplicity, one may assume t0 = 0.

In our case, the instance tk will denote the times that v(t) changes the sign.

From a mathematical point of view, σ(t) could be arbitrary, but if it has certain

regularity, it was shown in [47] that LaSalle’s Invariance Principle is applicable

and one may deduce asymptotic stability. Next, we will give these regularity

conditions.

We assume that σ(t) satisfies the following properties:

A1) σ(t) ∈ Σ2 and constant for tk < t < tk+1, ∀k.

A2) For any t and τ such that tk < t < tk+1 < τ < tk+2, σ(t) 6= σ(τ), ∀k.

A3) There exists a τD > 0 such that tk+1 − tk ≥ τD, ∀k.

Note that maximum τD > 0 satisfying A3 is called dwell-time of the switching

signal.

Now we consider the switching signals σ(t) satisfying A1-A3, with the notations

of [47]. This set contains sufficient regularity to prove asymptotic stability. For

future reference, we define this set as follows;

Sob = {σ : [0,∞)→ Σ2|σ satisfies A1− A3} (2.78)
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Note that (2.65) could be written as follows

V =
1

2
e2v +

1

2
L1e

2
a =

1

2

[
ev ea

] [1 0

0 L1

][
ev

ea

]
(2.79)

Let us define the symmetric positive definite matrix P as

P =

[
1 0

0 L1

]
(2.80)

Clearly, by using (2.69), (2.71) and (2.72) we obtain

ATi P + PAi = −

[
2K 0

0 0

]
i = 1, 2 (2.81)

Next we define C1 and C2 as follows:

C1 = C2 =
[√

2K 0
]

(2.82)

From (2.81), it easily follows that

ATi P + PAi = −CiCT
i i = 1, 2 (2.83)

Moreover the pairs (Ci, Ai) are observable, i = 1, 2. Now we can state our main

stability result.

Lemma 4. Consider the observer system given by (2.71). Let σ(t) be the switch-

ing signal for the velocity v(t). We preset σ(t) = 1 when v(t) ≥ 0 and σ(t) = 2

when v(t) < 0. Let tk, k = 0, 1, .. be the corresponding switching instants. Fur-

thermore, assume that σ(t) satisfies A1-A3. Under these conditions, the observer

system given by (2.71) is exponentially stable.

Proof. With the notation of [47], we have Sob ⊂ Sdwell i.e. the given conditions

provide sufficient regularity for asymptotic stability, and the stability result fol-

lows from Theorem 4 of [47]. (For the definition of Sdwell, see [47].)

Remark 6. We note that the essential part in the regularity conditions is the

assumption that tk+1−tk ≥ τD. This implies that the switching frequency is finite.

To demonstrate that this condition is essential, in [47] a switching system which
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is essentially the same as given by (2.72) is considered, and a special switching

sequence for which tk+1 − tk ≈ o(1/k) is constructed and it was shown that the

system remains stable, but asymptotic stability does not hold. Note that for such

a switching signal, the condition A3 is not satisfied, i.e. this switching signal

does not have a nonzero dwell-time, and as a result, switching frequency does not

remain finite.

Remark 7. Previously, in Remark 2 and 3 we make some mild assumptions

which are typical in adaptive control theory to guarantee the asymptotic stability

of Friedland-Park type observers. Revisiting these remarks, we can state that it

is necessary to satisfy either |v| ≥ 0 or (2.16) for a sufficiently long period of

time. Similarly, for the stability of the new observer structure, velocity switching

frequency should be finite such that tk+1 − tk ≥ τD > 0.

2.3.2 Dwell time analysis for the new observer

Now consider the system given by (2.71). Let σ(t) be the switching function re-

lated to the velocity v(t), is indicated in Lemma 4 and let τD be the corresponding

dwell-time. Note that both A1 and A2 given (2.72) are stable. Hence, according

to the well known results, (2.71) is exponentially stable if τD is sufficiently large

[51]. The minimum τD satisfying this result is also called minimum dwell-time

for stability. Although an analytical solution of this minimum dwell time is not

available, there are many efficient algorithms in the literature for the computation

of τD [47, 48, 52, 53, 54].

In our case, subsystems A1(v) and A2(v) are all individually stable systems;

therefore, a dwell time analysis is conducted to investigate the stability of the

observer. For simplicity, we investigate delay-free dynamics. In the presence

of delay, a velocity predictor proposed in the previous section can be utilized

to diminish velocity error ev. Alternatively, time delay can be injected in ob-

server dynamics to get a switched delay system. However, dwell time analysis

for switched delay systems is a vast research area; therefore, it is out of the main

scope of the thesis, yet further interested readers in this subject may find some
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inspiring details in [49, 55, 56].

Lemma 5. Consider a class of switched delay system given by

ẋ(t) = Aσ(t)x(t), t ≥ 0 (2.84)

where x(t) ∈ Rn is the state vector and σ(t) is the piecewise switching signal in

a finite set S = 1, 2, ...,M . Assume that, for given T > 0

∃Pi :


Pi > 0, ∀i ∈ S

A′iPi + PiAi < 0, ∀i ∈ S

eA
′
iTPje

AiT < Pi, ∀i, j ∈ S, i 6= j.

(2.85)

Then, the system is exponentially stable for all σ(t). Also, for switching instances

tk where k = 1, 2, ...,M , τD satisfying tk+1 − tk ≥ τD is called dwell time.

Interested readers can find further details and proof of the lemma in [57]. Also,

note that this lemma provides a sufficient but not necessary condition for exponen-

tial stability. Therefore, the actual dwell time might be smaller than the solution

found by Lemma 5 in practice. To compute the upper bounds of minimum dwell

time, some advanced methods can be utilized. For instance, square matrix repre-

sentation and Kronecker products based methods are proposed in [58]. However,

observe that solutions of these methods coincide with Lemma 5 initially. In the

light of this fact, we developed Matlab scripts given in Appendix A to minimize

the solution LMI conditions given in Lemma 5 numerically for different K and L

values. According to simulation results, minimum dwell time converges to zero

for all K and L pairs in [1, 10000]. Note that this observation is in agreement

with Lemma 4. Therefore, the new observer design is asymptotically stable. This

can also be seen visually in Figure 2.14 within the interval [1, 50]. Certainly,

in addition to stability concerns, one should also consider performance criteria.

Previously, we state that friction estimation’s percentage overshoot and settling

time depend on parameters K and L. Therefore, when these parameters are large,

undesired estimation responses can be acquired in an instantaneous interval and

this can affect the performance of the overall closed loop feedback system.
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Figure 2.14: The minimum dwell time for different K and L values.

2.3.3 New observer with the delayed measurements

Similar to Section 2.2, next we will consider the effect of delayed measurements

for the new observer. Note that in this case, we cannot measure the actual

velocity v(t), but only measure the delayed velocity vo(t) = v(t− Td), see (2.28)

and (2.29). Hence, the new observer equations should be modified as follows.

M ˙̂v = −Mâcsgn(v̂) +KM(vo − v̂) + u. (2.86)

By using (2.60), we obtain:

M ˙̂v = −Macsgn(v) +Mâcsgn(v̂)−KMev −KM(vo − v). (2.87)

If, as before, we assume that sgn(v) = sgn(v̂), which is satisfied when |v| > |ev|,
we have the following

Mėv = −Msgn(v)ea −KMev −KM(vo − v). (2.88)

Note that apart from the last term, (2.88) is the same as (2.64). If we use the

same adaptation rule as given by (2.68), the observer equation will become

d

dt

[
ev

ea

]
= A(v)

[
ev

ea

]
+

[
−KM(vo − v)

0

]
(2.89)

42



In Remark 4, we conclude that when there is a measurement delay, it is re-

quired to design a velocity predictor for exact friction cancellation. If the time

delay is small enough, a promising estimation performance can still be achieved

without a velocity prediction for the cost of a negligible friction estimation error.

Obviously, for large delay values, this error cannot be tolerated by the feed-

back system. Although new observer design include velocity error dynamics, a

separate velocity prediction described in Section 2.2.1 may still be required to

estimate friction precisely in systems with time delay. To investigate the delay

effects on the estimation, we again revisit open loop system given in Figure 2.2.

This time we utilize the new observer instead of a Fridlank-Park type observer

in the simulations. As it is shown in Figure 2.15, Heun method based velocity

predictor enhances the friction estimation performance. Furthermore, comparing

Figure 2.13 and 2.15, we can observe that settling time and percentage over-

shoot slightly change when output delay is imposed. In fact, this is a conceivable

outcome because delay term introduces infinitely many poles into the transfer

function of the system. Hence, second order dynamics approximation changes.

One should consider this to determine the observer parameters K and L. On the

other hand, when velocity predictor as in Section 2.2.1 is utilized, the estima-

tion response of the observe resembles to delay free case. Consequently, proposed

velocity predictor schemes can be still employed together with the new observer

structure in order to improve the friction estimation in systems with delay.

Remark 8. Note that when v0 = v, (2.89) reduces to (2.71), which is an expo-

nentially stable system by Lemma 4. Hence, if |vo−v| is small, (2.89), similar to

(2.33), becomes a bounded perturbation of an exponentially stable system. Hence

if |vo − v| < m, then we can state that ||e|| ≤ Cm for some C > 0. Hence, as

m → 0, we have ||e|| → 0 as well. This property can easily be proven similar

to Lemma 3. We also note that the perturbation term vo − v in (2.89) will be

sufficiently small if the velocity prediction error is small as well, see (2.44)-(2.48).
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Figure 2.15: Friction estimation performances of the new observer design for
different measurement delays and observer parameters. (Dashed Blue: F (v) =
sgn(v), Solid Orange: F̂ (v))
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Chapter 3

Controller Designs For Velocity

and Position Loops

This dissertation investigates the effectiveness of adaptive observer based friction

compensation approach for different controller implementations aiming at direct

or hierarchical position control. To this end, we separately consider optimized

PID controller designs based on the integral of time multiplied by absolute error

(ITAE) for delay free systems and Smith Predictor based controller designs for

systems with delay.

3.1 ITAE Index Based PID Controller Design

PID controllers are very popular in control theory. Roughly speaking, one can

tune controller parameters to achieve desired performance metrics. While integral

term denoted by Ki, improves steady state behavior and disturbance rejection,

it also can lead to a larger settling time, overshoot and oscillatory response at

the transient, which may even cause instabilities in some cases. On the other

hand, the derivative term denoted by Kd, enhances transient response, provides

shorter settling time and overshoot. In this case, derivative kicks due to large

45



derivative coefficients might be a drawback. Whenever the setpoint is adjusted,

sudden changes in the error signal occur and as a result, the derivative of the error

signal becomes very large instantaneously. This phenomenon is called derivative

kick and may result in undesired saturation problems at the controller output.

Lastly, the proportional gain denoted by Kp, can make the controller aggressive

since the error signal is directly multiplied with it. In this sense, percentage

overshoot may increase and steady state error may decrease when proportional

gain is increased. In theory, the disturbance rejection performance is improved for

larger Kp. However, in most of time, Kp alone is insufficient to eliminate steady

state error completely because in real-world applications, there is an upper bound

for Kp that can be set without causing instability. The system bandwidth and

phase margin limit this bound. In conclusion, a good designer should recognize

the trade-off among the parameters of a PID controller. In the literature, one can

find many different algorithms for manual and auto tuning of PID controllers [59].

One popular approach among these algorithms is to define a performance index

for controller optimization. For instance, integral of the square of the error (ISE),

the integral of the absolute magnitude of the error (IAE), the integral of time

multiplied by absolute error (ITAE), the integral of time multiplied by squared

error (ITSE) are some of well known performance indices whose equations are

given below.

ISE =
∫ T
0
e2(t) dt, (3.1)

IAE =
∫ T
0
|e(t)| dt, (3.2)

ITAE =
∫ T
0
t|e(t)| dt, (3.3)

ITSE =
∫ T
0
te2(t) dt. (3.4)

where e is the error is the difference between the reference input and the output

of closed loop feedback system.

In theory, even a single proportional controller is sufficient to stabilize a feed-

back position control system designed for a first order plant transfer function

without any position error when there is no friction. However, due to friction,

a PID controller is required to satisfy performance criteria and eliminate steady
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Table 3.1: Graham and Lathrop derived the set of normalized transfer function
coefficients, minimizing the ITAE criterion for a step input.

s+ wn
s2 + 1.4wns+ w2

n

s3 + 1.75wns
2 + 2.15w2

ns+ w3
n

s4 + 2.1wns
3 + 3.4w2

ns
2 + 2.7w3

ns+ w4
n

s5 + 2.8wns
4 + 5.0w2

ns
3 + 5.5w3

ns
2 + 3.4w4

ns+ w5
n

Table 3.2: Graham and Lathrop derived the set of normalized transfer function
coefficients, minimizing the ITAE criterion for a ramp input.

s2 + 3.2wns+ w2
n

s3 + 1.75wns
2 + 3.25w2

ns+ w3
n

s4 + 2.41wns
3 + 4.93w2

ns
2 + 5.14w3

ns+ w4
n

s5 + 2.19wns
4 + 6.5w2

ns
3 + 6.3w3

ns
2 + 5.24w4

ns+ w5
n

state error. To this end, we employ ITAE performance index to tune PID de-

signed for position control. According to bandwidth requirements of desired PID

controller, the optimum characteristic equation of closed loop feedback system for

step input tracking is computed by Graham and Lathrop in [60] and presented

in Table 3.1. Similarly, for ramp input tracking one can design an optimum PID

using coefficients provided in Table 3.2 [59]. For instance, consider a plant trans-

fer function P (s) = K/Js where J denotes inertia. Then, a single closed loop

position control system transfer function T (s) can be derived as

T (s) =
KKds

2

J
+ KKps

J
+ KKi

J

s3 + KKds2

J
+ KKps

J
+ KKi

J

. (3.5)

Afterwards, according to Table 3.1, controller parameters can optimized as given

below.

1.75wn = Kd
J
, (3.6)

2.15w2
n = Kp

J
, (3.7)

w3
n = Ki

J
. (3.8)

Similar to ITAE based position controllers, velocity controllers can be designed

and employed for a hierarchical control loop. However, such a separate and
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cascaded position and velocity controller designs are not very common in the

literature. Also, since Ki is directly proportional with the cube of bandwidth,

overshoot increases when controllers with large bandwidth are utilized. Therefore,

in some applications, it is not an obligation but an option to design a pre-filter

in order to improve the transient response of the feedback system as shown in

Figure 1.2. One particular choice is to design a simple low-pass filter. A filter

with a smaller cut-off frequency reduces the overshoot. However, diminution of

the cut-off frequency affects the rising time negatively. In other words, system

response slows down that is why cut-off frequency should be chosen according to

the design requirements on overshoot and rise time of the system. Typically, it

is chosen to cancel the fastest negative real axis zero of closed loop system [61].

In this case, the transfer function of this optional filter denoted by H(s) can be

written as follows

H(s) =
Ki

Kds2 +Kps+Ki

. (3.9)

3.2 Smith Predictor Based Controller Design

Generally, PID controllers are designed to track position input for delay free

systems with friction in the literature [1, 3, 2]. On the other hand, Smith predictor

controllers are very effective and easy to design to control systems with delay.

Time delay, also known as dead time or transport delay, may emerge due to

signal transmission, communication, processing, analysis or measurement. Phys-

ical systems in the nature might have a significant amount of time delay making

controller design challenging or causing performance and/or stability issues since

time delay introduces infinitely many poles into closed loop transfer function. Mo-

tivated by this fact, [62] proposed a special predictor to the ease controller design

process. In fact, although closed loop feedback system includes time delay phys-

ically, it is possible to remove this delay from the characteristic equation of the

closed loop system mathematically as in Figure 3.1. In this case, it is possible to

design a controller as if the plant is delay free. However, [63] proved that constant
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disturbance rejection could not be achieved by using original the Smith predictor

structure. Afterward, many other modifications have been made to improve the

performance of Smith predictor in various application fields. For instance, [64]

introduced a new form for the Smith predictor aiming at decoupling disturbance

and set-point response from each other. In [65], an auto tuning algorithm is de-

veloped to estimate Smith predictor parameters; however, it requires no modeling

error in the assumed plant transfer function. In reality, the perfect representation

of the plant might not be always available; therefore, [66] has made an addition

of extra feedback path from the difference of plant output and the model output

to the control input aiming at higher order process control. Later, in [67], it is

suggested to replace proportional controller in predictor structure with a lead/lag

controller in order to have fast disturbance rejection. Furthermore, [68] studied a

congestion control problem such that there is a bounded uncertainty in delay. For

this problem, they utilized a geometric approach to design a Smith predictor plus

proportional controller for the network system. For the control of a robot arm,

[69] employs the internal model principle for Smith predictor based velocity and

position controller design. The internal model control (IMC) principle implies

that to reject impacts of disturbances and to track a reference signal, controller

structure should include the copies of disturbance and reference signal generators

[70]. Hence, [61] proposed a method to achieve desired set point tracking and ro-

bustness criterion based on IMC principle and calculate vector margin to analyze

robustness to time delay perturbations.

To design a Smith Predictor based controllers, we utilized the technique de-

veloped by [69]. In this approach, it is possible to design a Smith predictor

based controller using controller parametrization method given in [71] to place

the poles of closed loop system to satisfy the required robustness and performance

objectives. Indeed, applying the pole placement method based on the controller

parametrization technique to both systems with and without time delay is possi-

ble. As another remark, it is possible to extend the idea given in this section to

plant with any higher order transfer functions; however, we simply assume that

plant has a first order transfer function including time delay. In this regard, it

is worth reading the whole motivation presented in [61]. To start with, let the
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Input Output

OutputInput

Figure 3.1: Although physically not the case, a smith predictor based controller
C(s), removes the time delay from the closed loop transfer function where P1(s)
is delay free plant transfer function and C0(s) is a simple equivalent controller
explained in later parts.

plant transfer function be,

P (s) =
1

Ms
e−Tds (3.10)

Considering this transfer function, one can design either a direct closed loop

position feedback system or nested position and velocity control loop structures as

illustrated in Figure 1.2. Since a hierarchical closed loop feedback system can be

regarded as an extension of a direct position control loop, we design both velocity

and position controllers separately in this section instead of a single position

controller design. To this end, a Smith Predictor based velocity controller, Cv(s),

is designed for the plant given by (3.10) first and then position controller Cp(s)

in the subsequent sections.

3.2.1 Velocity Controller Design

The main inspiration in Cv(s) design is to use a copy of delay free plant transfer

function and an internal controller Cv(s) together in order to satisfy desired ro-

bustness and performance criteria. Hence, to get a simpler Cv(s) a gain block M

might be appended to controller to make plant transfer function P0(s) = 1
s
e−Tds.
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Then, complete controller Cv(s), illustrated in Figure 3.2, can be obtained as

Cv(s) =
C0v(s)

1 + C0v(s)
(

1−e−Tds
s

) . (3.11)

where C0v(s) is an internal velocity controller. Then, closed loop transfer function

of velocity loop formed by (Cv(s), P (s)) can be obtained as

Tv(s) =
C0v(s)

s+ C0v(s)
e−Tds. (3.12)

Note that it is also possible to decompose (3.12) into Tv(s) = T0v(s)e
−Tds

where T0v(s) = C0v(s)/(s+ C0v(s)) is delay free closed loop velocity transfer function.

To design C0v, controller parametrization method explained below is employed.

� Transfer function of the delay free plant should be written in terms of

coprime, rational and stable functions Np(s) and Dp(s) such that

P0(s) =
Np(s)

Dp(s)
. (3.13)

� Let the chosen Dp(s) have zeros at s = z1, z2, ..., zn. Then, another stable

function X(s) which satisfies X(z1) = 1/Np(z1), X(z2) = 1/Np(z2), ..., X(zn) =

1/Np(zn) should be chosen.

� Lastly, a stable Y (s) can be found by solving Bezout equation given below.

X(s)Np(s) + Y (s)Dp(s) = 1. (3.14)

Figure 3.2: The structure of a Smith predictor based velocity controller
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� Using these functions, the set of all stabilizing controllers can be written as

C(s) =
X(s) +Dp(s)Q(s)

Y (s)−Np(s)Q(s)
. (3.15)

where Q(s) is proper and stable function satisfying Q(s) 6= Y (s)Np(s)
−1. Also, it

should be selected based on desired performance and robustness criterion; there-

fore, the minimum degree of Q(s) is one less than the number of interpolation

conditions. For instance, in order to obtain minimum degree controller stabilizing

P0(s) when step input is applied, a particular choice might be Q(s) = 0 since plant

has already a pole at s = 0. Then, for Np(s) = 1/(s+Kv), Dp(s) = s/(s+Kv),

X(s) = Kv and Y (s) = 1, a candidate internal velocity controller, C0v(s), might

be obtained such that

C0v(s) = Kv. (3.16)

where Kv is a free design parameter which will be determined by the pole place-

ment method. Then, as in [38], Cv(s), complete form of Smith predictor based

controller and Tv(s), closed loop transfer function for velocity, can be written as

Cv(s) =
Kv

1 +Kv

(
1−e−Tds

s

) , (3.17)

Tv(s) =
Kv

s+Kv

e−Tds. (3.18)

However, the controller given by (3.17) is only capable of step input track-

ing. Additionally, Q(0) = Y (0)/N(0) condition should be satisfied if ramp input

tracking is desired. In this case, we can simply choose Q(s) = Kv. Then, the

transfer function of Smith predictor based controller for ramp tracking and its

closed loop system become

C0v(s) =
2Kv +K2

vs

s
, (3.19)

Cv(s) =
2s2Kv + sK2

v

s2 + (2Kvs+K2
v )(1− e−Tds)

, (3.20)

Tv(s) =
2Kvs+K2

v

(s+Kv)2
e−Tds. (3.21)

In general, one can determine the required Q(s) in order to satisfy desired distur-

bance rejection and setpoint responses. Note that after controller parametrization
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procedure is applied, the transfer function from input to output, Trp(s) and the

transfer function from disturbance to output, Tdp can be acquired as below.

Trp(s) = Np(s)(X(s) +Dp(s)Q(s)), (3.22)

Tdp(s) = Np(s)(Y (s) +Np(s)Q(s)). (3.23)

Then, using the final value theorem, an appropriate Q(s) satisfying required

conditions for desired disturbance rejection and setpoint responses can be de-

termined. In this case steady state error, ess for a reference input R(s) and

disturbance D(s) becomes

ess = lim
s→0

s[(1− Trp(s))R(s)− Tdp(s)D(s)]. (3.24)

To sum up, it is possible to change controller design by simply changing Q(s)

and pole locations of the controller to satisfy different design requirements for a

given plant transfer function.

3.2.2 Position Controller Design

Smith predictor based position controller has a very similar structure to the ve-

locity controller given in the previous section. Distinctively, position controller,

Cp, includes delay free transfer function of the velocity closed loop, T0v, as in

Figure 3.3. Thus, once the velocity controller is designed, same design procedure

Figure 3.3: The structure of a Smith predictor based position controller
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can be utilized for a position loop extension as well [38]. For step input track-

ing case, closed loop pole Kp can be located by again using the pole placement

method. Thus, the transfer function of the controller can be given as

C0p(s) = Kp. (3.25)

Cp(s) =
Kp

1 +Kp

(
1−T0v(s)e−Tds

s

) . (3.26)

Then, closed loop transfer function of hierarchical position system can be obtained

as follows

Tp(s) =
Kp

s+Kp

Tv(s)

=
Kp

(s+Kp)

Kv

(s+Kv)
e−Tds. (3.27)

Similarly, after ramp input tracking extension of velocity loop given by (3.19)

and (3.21), we obtain following transfer functions for the position loop,

C0p(s) =
2Kps+K2

p

s
, (3.28)

Cp(s) =
2Kps

2 +K2
ps

s2 + (2Kps+Kp2)(1− T0v(s)e−Tds)
, (3.29)

Tp(s) =

(
2Kps+K2

p

s2 + 2Kps+K2
p

)
Tv(s). (3.30)

Mathematically, Kv and Kp can be set freely according to desired closed loop

transfer function of the system. However, intuitively, it is generally expected

that inner loop poles be larger than outer loop poles in the literature. Therefore,

although it is not a strict requirement, poles of (3.27) or (3.30) may be allocated

such that Kv > Kp. Again, the optimal pre-filter shown in Figure 1.2 can be

designed to improve the transient response of the system. Certainly, more com-

plex filter designs might be implemented for time delayed systems. For instance,

Feliu-Batlle and Rivas-Perez insert inverse of the plant model inside the transfer

function of the filter as in Smith-predictor based controller in [72].

Alternatively, it is possible to design a Smith predictor based position controller

without a velocity control. In this case, closed loop feedback system includes
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Figure 3.4: Smith predictor based position controller designed via direct ap-
proach.

only a single position loop. To this end, let P1(s) be the delay free plant transfer

function. Then, using direct approach described in [61], a Smith predictor based

position controller is designed such that

Cp(s) =
C0p(s)

1 + C0p(s)P1(s)
(

1−e−Tds
s

) . (3.31)

Then closed loop transfer function becomes as below

Tp(s) =
C0p(s)P1(s)

s+ C0p(s)P1(s)
e−Tds. (3.32)

Here, C0p(s) can be determined by appropriately chosen Q(s) to satisfy design

requirements and as a result general block diagram of the controller can be ob-

tained as in Figure 3.4. For example, if it is desired that closed loop system

consisting of (Cp(s), P1/s) can track step input without any steady state error,

then we can simply choose Q(s) = 0, since the system already has a pole at

s = 0. What is more, in order to guarantee the stability of the feedback system,

the internal controller C0p must stabilize the P1(s)/s and the set of all stabiliz-

ing controllers can be found again by using controller parametrization method.

Lastly, an indirect controller design approach can be utilized to design a position

controller in a hierarchical feedback system as in Figure 1.2. In this case, after

velocity controller is designed, a position controller can be designed considering

P1(s) = T0v(s), see [61] for details.
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Chapter 4

Simulation Results

We begin our simulations by considering different inspiring and comprehensive

studies for delay free systems under LuGre friction from the literature. In these

case studies, we use Matlab ode4 (Runge-Kutta) solver with 0.00001 step size.

We first recognize one degree of freedom rotary system without any elastic

modes presented in [1]. For this study, required parameters are identified as

given in Table 4.1. Mainly, [1], performs experiments and simulations in order to

investigate the system responses to low-velocity sinusoidal position input, high-

velocity sinusoidal position input and step position input. In all these experiments

and simulations, model based friction compensation is utilized through feedback

or feedback by considering different friction models. We repeat the simulations in

Table 4.1: Parameters used in [1]

Parameter Notation value Unit

Stribeck velocity vs 0.01 rad/s
Stiffness coefficient σ0 3.5x104 N.m/rad
Damping coefficient σ1 0.1 N.m.s/rad
Coulomb friction Fc 0.285 N.m
Stick friction Fs 0.335 N.m
Viscous friction Fv 0.018 N.m.s/rad
Total inertia J 3.8623x10−4 kg.m2
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[1], using Friedland-Park type and new observer instead of using fixed model based

friction compensation through feedback. For this study, the position transfer

function of the plant without friction can be written as below.

P (s) =
1

Js2
. (4.1)

According to [1], PD controller parameters can be computed as follows,

Kp = Jw2
n, Kd = 2Jζwn. (4.2)

where wn corresponds to the desired bandwidth of the closed loop control system

and ζ is the damping coefficient. Similarly, coefficients of a PID controller can

be obtained as below

Kp = Jw2
n(1 + 2ζ), Kd = 2Jwn(1 + 2ζ), Ki = Jw3

n. (4.3)

Then, aiming at low velocity sinusoidal input tracking for ζ = 1 and wn = 36 Hz

PI and PID position controllers are designed as follows

CPD(s) = 19.7612 + 0.1747s, (4.4)

CPID(s) =
0.2621s2 + 59.2836s+ 4469.9

s
. (4.5)

In Figure 4.1, tracking performance of the controllers is presented when a

reference input such that θd(t) = 0.01(1 − cos(0.8πt)) is applied. For the ob-

server, we again consider same design parameters ζ = 1 and wn = 36 Hz and

computed K = 72 and L = 1296 by using (2.73) and (2.74). It is clear that

without any friction compensation, CPD(s) cannot track the reference input. On

the other hand, although CPID(s) has the same bandwidth with CPD(s), it man-

ages to follow reference with some distortion. This behavior is called hunting

and introduced by integral term of the controller which aggravates stick slip [9].

Furthermore, we investigate the effects of fixed torque compensation when static

parameters i.e. stiction and Columb friction are identified erroneously. To this

end, we positively perturbed these terms in feedback compensation such that

F̂c = 1.05Fc and F̂s = 1.05Fs for %5 perturbation and F̂c = 1.1Fc and F̂s = 1.1Fs

for %10 perturbation. In these cases, tracking performance of both CPD(s) and
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CPID(s) deteriorate and show oscillatory response at the steady state as in Fig-

ure 4.1 B and D since there are mismatches among actual and identified friction

coefficients. In fact, amplitude of these oscillations is increased for CPID(s) com-

pared to CPD(s). Alternatively, when an adaptive observer is employed instead

of fixed torque friction compensation, both of the controllers can track the refer-

ence smoothly as in Figure 4.1 A and C. Note that fixed friction compensation

is a model based technique and require a precise friction parameter identification

which may not always be possible. Hence, utilizing such an adaptive observer

can be advantageous since it does not require a friction model and parameter

identification.

Similarly, following position controllers are utilized to track a high-velocity

sinusoidal position input such that θd(t) = 0.5(1− cos(0.2πt)) for the plant given

in (4.1) with ζ = 0.85 and wn = 10 Hz. Then using (4.2) and (4.3), PD and PID

controllers acquired as below :

CPD(s) = 1.5248 + 0.0413s, (4.6)

CPID(s) =
0.0655s2 + 4.1169s+ 95.8049

s
. (4.7)

Note that from (2.73) and (2.74), we compute K = 17 and L = 100 for this case.

As it can be seen in Figure 4.2, without any friction cancellation PD controller

exhibit the worst tracking performance and PID controller leads to hunting at the

position reversals. Furthermore, for low velocity sinusoidal position input case,

fixed friction compensation with perturbed static parameters results in oscilla-

tions at position reversals. Once more, adaptive observers enhance the tracking

performance for both CPD(s) and CPID(s).

Thirdly, [1] designs following controllers for square wave position tracking when

ζ = 0.9 and wn = 35 Hz. By using (4.2) and (4.3), the designed PD and PID

controllers are as given below :

CPD(s) = 18.6786 + 0.1529s, (4.8)

CPID(s) =
0.2378s2 + 52.3001s+ 4107.6

s
. (4.9)
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and CPID(s). (A): Adaptive Friction compensation with CPD(s). (B): LuGre
Model based fixed torque compensation with CPD(s). (C): Adaptive Friction
compensation with CPID(s). (D): LuGre Model based fixed torque compensation
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Table 4.2: Parameters used in [2]

Parameter Notation value Unit

Stribeck velocity vs 0.001 m/s
Stiffness coefficient σ0 105 N/m

Damping coefficient σ1
√

105 N.s/m
Coulomb friction Fc 1 N
Stick friction Fs 1.5 N
Viscous friction Fv 0.4 N.s/m
Total mass m 1 kg

Moreover, we employ the following reference filter H(s), which is a simple low-

pass filter indeed, in order to make sharp edges of the input smooth and improve

the tracking performance.

H(s) =
5

s+ 5
. (4.10)

As it can be seen in Figure 4.3, a position control system including CPD(s)

provides a poor tracking performance without any friction compensation. Fur-

thermore, as in previous cases, CPID(S) can track the square wave position input;

however, at steady state, hunting is again observed. Also, CPID(S) having the

same bandwidth with CPD is more sensitive to perturbations in static parame-

ters when model based fix torque friction compensation is applied. Consequently,

adaptive observers improve the closed loop feedback system performance by elim-

inating friction in all three cases.

In our second case study, we consider the servo problem given in [2]. Related

parameters with this study are presented in Table 4.2. Again, in our simulations,

we utilize Friedland-Park type and new observer designs instead of the proposed

observer in [2] and to make a fair comparison, we employ the same PID controller

with Kp = 3, Kd = 6 and Ki = 4. Note that in this paper, an arbitrary PID

controller is employed. Therefore, when there is no friction compensation, the

hunting becomes evident at the steady state as in Figure 4.4. On the other

hand, promoting adaptive observers with a poorly designed controller improves

the tracking performances as expected.
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Figure 4.4: Position response of the servo system.

In our third and last case study, we consider the research presented in [3, 73].

Using the parameters given in Table 4.3, we investigate the relation between limit

cycle behavior due to hunting and controller bandwidth.To this end, we perform

simulation for two different PID position controllers namely C1
PID(s) and C2

PID(s).

In [73], transfer functions of these controllers are given as

C1
PID(s) =

0.01196s2 + 0.1656s+ 0.4968

s
(4.11)

C2
PID(s) =

0.1909s2 + 6.21s+ 62.1

s
. (4.12)
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Table 4.3: Parameters used in [3]

Parameter Notation value Unit

Stribeck velocity vs 0.1 rad/s
Stiffness coefficient σ0 280 N.m/rad
Damping coefficient σ1 1 N.m.s/rad
Coulomb friction Fc N.m

along + direction 0.30
along − direction 0.15

Stick friction Fs N.m
along + direction 0.45
along − direction 0.35

Viscous friction Fv 0.017 N.m.s/rad
Total inertia J 0.0023 kg.m2
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Figure 4.5: Position response of the system. (A): C1
PID(s) is utilized. (B):

C2
PID(s) is utilized.
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Note that both C1
PID(s) and C2

PID(s) are ITAE index based optimal posi-

tion controllers. However, based on Figure 4.5, we can conclude that controller

bandwidth should be large enough in order to prevent hunting when there is no

friction compensation. Especially in this case, adaptive observers are required to

track desired input. If controller bandwidth is large enough, the usage of such

an adaptive observer apparently does not improve the performance significantly.

However, note that one may not always employ a controller with a large band-

width due to design constraints. Furthermore, we compare the total actuation

torque of these two PID controllers delivered to the plant. As it is shown in Fig-

ure 4.6 A, since C1
PID(s) has a lower bandwidth, peak torque is lower compared

to torque generated by C2
PID(s). What is more, without a friction compensation,

there are oscillations at the steady state on the generated torque, which cause

hunting in position response. On the other hand, at the transient, all torque char-

acteristics are similar. Likewise, in Figure 4.6 B, transient responses are similar.

However, compared to C1
PID(s), peak torque generated by C2

PID(s) is larger. In

practice, this can cause some performance problems, such as saturation. Also,

without a friction compensation, generated torque at the steady state is larger.

On the other hand, when friction compensation generated torque is around zero.

These observations show that proposed observers improve the tracking perfor-

mance without causing torque generation problems.

Next, we focus on friction cancellation in the presence of measurement delay.

For this purpose, we consider Coulomb friction in the first set of simulations

and then LuGre friction model. The parameter set used in these simulations is

presented in Table 4.4. For these set of simulations, cascaded Smith predictor

based velocity and position controllers described in Section 3.2.1 and 3.2.2 are

utilized.
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Table 4.4: Parameters used in measurement delay simulations

Parameter Notation value

Stribeck velocity vs 0.001 m/s
Stiffness coefficient σ0 105 N/m

Damping coefficient σ1
√

105 Ns/m
Coulomb friction Fc 4 N
Stick friction Fs 4.7 N
Viscous friction Fv 0.4 Ns/m
Total mass M 5 kg

Position controller design parameter Kp

Triangular wave tracking 4
Square wave tracking 5

Velocity controller design parameter Kv

Triangular wave tracking 20
Square wave tracking 15

Dead time Td 0.1 s

Reference filter cutoff freq. wpc 3 rad/s
Derivative filter coefficient N 100

Observer estimation function g(v̂) k.ln (cosh(v̂))
g′(v̂) k.tanh(v̂)
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Figure 4.7: Friction estimation error, e, for unit step position tracking response
with 1st order inverse Pade approximant velocity prediction and Friedland-Park
type observer under Coulomb Friction.
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To see the efficiency of Friedland-Park type friction observer with g(v) =

k.ln (cosh(v̂)) and velocity estimator, we first considered position tracking re-

sponse for unit step input when first order Pade approximant based velocity

estimator is employed. In Figure 4.7, it is clear that when the actual velocity

is known, the friction parameter estimation error e, converges to 0 for the ob-

server gain k = 5 or k = 10 . Note that this behavior is in agreement with

the conclusions given in Lemma 1 and Remark 2. Also, note that when actual

velocity measurement is available, increasing the observer gain k leads friction

estimation to converge actual friction faster. In fact, this observation is also in

agreement with Remark 3. On the other hand, the friction estimation error may

not converge to zero within a reasonable duration when the observer gain is too

low.

For the same observer gains, when proposed first order Pade approximant

velocity predictor has adopted friction estimation under measurement delay be-

comes similar to the case in which the actual velocity is available. Although the

velocity predictor provides a similar e(t) response at the steady-state behavior

as in delay free case, it may also exhibit some relatively large overshoots at the

transient (e.g., for t < 1.5 sec), especially when the observer gain is increased.

Likewise, the effect of observer gain k on the velocity prediction error ev is pre-

sented in Figure 4.8. Again we can observe that there might be relatively large

overshoots at the transient (e.g., for t < 1.5 sec) while ev converges to zero at the

steady-state. Again these oscillations may not be nonnegligible for large observer

gains. In fact, when the actual velocity is not known and should be estimated,

we observe that initial fluctuations on the velocity prediction errors may cause

some undesired transient effects on the friction estimation error for large gains

(see Figure 4.7). Furthermore, the last observation may also apply to the case of

large time delays, since naturally, one expects a decrease in the velocity predic-

tion performance. Hence, the selection of optimal observer gain appears to be an

important problem that requires further investigation. In this respect, we also

observed that decreasing N, the cut-off frequency of the low-pass filtered deriva-

tive in velocity prediction block, may also improve the transient response even

for relatively large observer gains. Therefore, it may enhance both friction and
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Figure 4.8: Velocity loop error, evl, for unit step position tracking response with
1st order inverse Pade approximant velocity prediction and Friedland-Park type
observer under Coulomb Friction.

velocity estimation performances. This approach may also be beneficial under

the presence of dynamic friction (see e.g. the results given in Tables 4.5 and 4.6).

To this end, the relation between k and N may be worth further investigation.
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Table 4.5: Comparison of the different velocity prediction approaches in
Friedland-Park type observer for Td = 0.1/0.2/0.3 sec. under Coulomb Friction
modelling (N = 100 in general except • : N = 1)

Rise time (sec.) Settling time (sec.) Steady state value

No friction exists 0.57 0.57 0.60 1.18 1.18 1.23 1 1 1
No friction cancellation 0.61 0.62 0.66 0.67 2.19 1.47 0.97 0.94 0.89

Observer gain k = 1
Cancellation with exactly known v(t) 0.60 0.62 0.70 1.68 1.74 1.44 0.99 0.97 0.95
Cancellation without prediction 0.68 0.83 1.10 1.83 2.00 2.18 0.98 0.93 0.85
Euler approximation 0.65 0.74 1.10 12.04 3.05 3.72 0.98 0.95 0.92
1st order Pade inverse 0.69 0.76 0.72• 1.84 2.28 3.31• 0.98 0.94 0.89•

Heun’s method 0.60 0.71 1.36• 1.70 4.33 3.34• 0.99 0.96 0.94•

2nd order Pade inverse 0.60 0.71 1.36• 1.71 4.33 3.34• 0.99 0.95 0.94•

Observer gain k = 5
Cancellation with exactly known v(t) 0.60 0.58 0.59 1.57 1.19 1.31 1 1 1
Cancellation without prediction 0.74 1.06 1.34 1.82 1.66 2.10 1 0.97 0.95
Euler approximation 0.60 1.06 0.94 1.67 2.02 4.56• 1 1 1•

1st order Pade inverse 0.66 0.85 1.45• 1.50 1.68 2.24• 1 0.99 0.98•

Heun’s method 0.57 1.22• 1.48• 2.35 1.95• 2.25• 1 1• 0.98•

2nd order Pade inverse 0.57 1.22• 1.47• 2.35 1.95• 2.24• 1 1• 0.98•

Additionally, square and triangular wave input tracking performances of the

system are investigated in Figures 4.9 and 4.10 again with first order Pade ap-

proximant based velocity prediction and Coulomb friction model with Fc = 4.

Exclusively, the reference filter can be removed for ramp input tracking case to

enhance the rise time and settling time performances since velocity dynamics

change slowly enough already. Position responses show that Friedland-Park type

observer based cancellation improves the performance for k = 5 and time de-

lay is Td = 0.1 as shown in Figures 4.9 and 4.10. Thus, it can be concluded

that deployed adaptive observer and velocity predictor can eliminate the friction

adequately and ensure a comparable performance to no friction case. Other-

wise, Smith predictor-based controllers can partially extinguish the position er-

ror; therefore, a steady state error occurs. Besides, Coulomb friction cancellation

performances of different velocity prediction schemes for different time delays are

presented in Table 4.5 for unit step tracking. From the table, it can be observed

that in all cases, closed loop performances increase with the Friedland-Park type

observer and proposed velocity predictors, as expected.
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Figure 4.9: The system response for unit square wave input is applied to position
control system including a 1st order inverse Pade approximant based velocity
predictor and a Friedland-Park type observer with k = 5 for Td = 0.1. Without
Coulomb friction compensation, steady state values for positive and negative
position response are x+ss = 0.968 and x−ss = −0.968 respectively. (A) Position
tracking performance. (B) Position tracking error.
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Also, in [26], it is claimed that the original observer design is able to estimate

friction terms which are not hindered to Coulomb coefficient that is why we per-

formed additional simulations considering LuGre friction model whose parameters

are given in Table 4.4. Clearly, for a fixed observer gain k, it is required to apply

filtering with lower cut-off frequencies to obtain similar position tracking errors

when either observer gain or delay increases. Indeed, in all cases, Friedland-

Park type adaptive observer combined with velocity predictor structure improves

system performance. Among these experiments, the best estimation is achieved

when actual velocity can be instantaneously measured; however, this scenario

again is presented just to clarify that if we can predict velocity values so close to

actual velocity values then, we can obtain friction cancellation similar to delay

free measurement. Certainly, it is unreachable when there is a measurement delay

within the system. From the results, it is obvious that when there is no friction

compensation, the system suffers from performance degradation gradually as de-

lay increases. It seems that all prediction methods can enhance setpoint responses

to some extend. Second order methods, both Pade and Heun, provide similar re-

sults and outperform the first order approximations for the same observer gains.

However, when there exists considerable time delay, they become more sensitive

to velocity changes than Euler and inverse first order Pade approximant that is

why it is necessary to design a derivative filter with a lower cut-off to obtain ap-

propriate responses. As a last observation, it can be said that although they have

similar structures (see Figure 2.11), Euler approximation provides faster friction

but more gain sensitive estimation compared to inverse first order Pade approx-

imant for same observer gain. This is simply due to derivative term dependent

prediction coefficient c1. Since Euler approximation updates velocity prediction

with a higher c1 (see Figure 2.11). As a result, it estimates friction better in low

gains and is less sensitive to velocity changes, which may occur for high observer

gains. It seems that Friedland-Park adaptive observer and designed Smith pre-

dictor based controllers for both step and ramp input tracking exhibit desired

performances when both time delay and dynamic friction simultaneously exist.

Lastly, we replace Friedland-Park type observer with the recently developed

new observer design and repeat square position input tracking simulation again
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Table 4.6: Comparison of the different velocity prediction approaches in
Friedland-Park type observer for s sec. under LuGre Friction modeling (N = 100
in general except ? : N = 10, • : N = 1 and † : N = 0.3)

Rise time (sec.) Settling time (sec.) Steady state value

No friction exists 0.57 0.57 0.60 1.18 1.18 1.23 1 1 1
No friction cancellation 0.59 0.62 0.66 1.55 1.32 1.28 0.96 0.93 0.87

Observer gain k = 1
Cancellation with exactly known v(t) 0.63 0.69 0.84 1.90 7.79 16.38 1 1 1
Cancellation without prediction 0.67 1.08 1.45 1.70 23.48 26.99 0.98 0.96 0.90
Euler approximation 0.66 0.81 1.71 2.30 16.69 31.48 1 0.98 0.96
1st order Pade inverse 0.69 0.78 1.80? 4.37 2.22 27.48? 1 0.95 0.96?

Heun’s method 0.63 0.78 1.51• 1.98 16.96 29.91• 1 0.98 0.96•

2nd order Pade inverse 0.63 0.78 1.51• 1.98 16.96 29.91• 1 0.98 0.96•

Observer gain k = 3
Cancellation with exactly known v(t) 0.60 0.63 0.71 1.59 1.29 1.41 1 1 1
Cancellation without prediction 0.76 1.06 1.81 1.79 14.07 32.05 1 0.98 0.95
Euler approximation 0.62 0.95? 2† 1.52 14.81? 7.07† 1 0.99? 1†

1st order Pade inverse 0.69 0.87 2.03† 1.71 16.96 24.18† 1 0.98 0.99†

Heun’s method 0.59 1.09? 2.04† 1.59 4.97? 22.59† 1 1? 1†

2nd order Pade inverse 0.59 1.09? 2† 1.59 4.97? 5.55† 1 1? 1†

based on the parameters given in Table 4.4. As shown in Figure 4.11, whenK = 6,

L = 10 and Td = 0.1, the new proposed observer exhibit similar performances

with and without Euler method based velocity predictor and enhance the tracking

performance. This is a reasonable result since the observer itself includes velocity

error dynamics already. Thus, it can show a promising performance as if actual

velocity can be measured. Note that K is a parameter directly related to ev.

Therefore, when we use K = 3 and L = 10 without a separate velocity predictor,

observer friction estimation performance deteriorates for Td = 0.1 and exhibits

some oscillations due to poor prediction of velocities as in Figure 4.12. In this

case, employing a separate Euler method based predictor improves the position

tracking performance. Furthermore, for K = 6, L = 10 and slightly larger time

delay such that Td = 0.15, the new observer has a reduced transient performance

as shown in Figure 4.13 when there is no separate velocity predictor. To conclude,

although the proposed new observer improves the performance compared to the

no compensation case, a separate velocity predictor may be required to obtain

a good estimation performance, especially for significant measurement delays.

Likewise, when parameter K is not large enough, friction estimation performance

degrades in the presence of measurement delay. Also, in Figure 4.14, we compare

total force delivered to the plant (controller input+observer estimation). For this
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figure, total force does not change noticeably when an adaptive friction observer

is adopted with a first order inverse Pade approximant velocity predictor. On the

other hand, without these structures, there is a steady state error for position

tracking.
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0 5 10 15 20 25 30 35

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

No cancellat�on

K=3 L=10 no veloc�ty pred�ctor

K=3 L=10 Euler pred�ctor

K=3 L=10 w�th actual veloc�ty

Figure 4.12: The position response for unit square wave input with and with-
out Euler Method based velocity prediction when the new friction observer is
employed with K = 3, L = 10 for Td = 0.1.

76



0 10 20 30

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

No cancellat�on

K=6 L=10 no veloc�ty pred�ctor

K=6 L=10 Euler pred�ctor

K=6 L=10 w�th actual veloc�ty

35

Figure 4.13: The position response for unit square wave input with and with-
out Euler Method based velocity prediction when the new friction observer is
employed with K = 6, L = 10 for Td = 0.15.
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Chapter 5

Experimental Results

For our experiments, we utilized an Arduino based DC motor control platform

described in [74, 75]. As it can be seen in Figure 5.1, our setup simply consists of

an Arduino Uno microcontroller with DC motor shield and a DC motor by Pololu,

whose datasheet parameters are given in Table 5.1. As Arduino Uno Board has

a limited memory capacity (32 Kbytes of Flash and 2 Kbytes of SRAM), we

designed a direct position controller aiming at step input tracking instead of a

hierarchical control system for simplicity. In the experiments we performed, ode3

(Bogacki-Shampine) solver with step size 0.01 is used. For the rest of Simulink

settings, please refer to Appendix B.

To begin with, a second order voltage (V ) to angular speed (rad/s) transfer

function of a simple motor model denoted by G(s) can be obtained as below [59].

G(s) =
Km

(Ra + Las)(Js+ b) +KbKm

(5.1)
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Table 5.1: Parameters of a 37Dx70L mm metal gearmotor with a quadrature
encoder by Pololu.

Parameter Notation Data Sheet Value Unit

Motor Torque τ - Nm
Motor Current i - A
Stall Torque τstall 21 kg.cm
Stall current@12V istall 5.5 A
No load current@12V inl 0.2 A
Torque Constant Km - Nm/A
Back Emf Constant Kb - V.s/rad
Input Voltage Vin - V
Back Emf Voltage Vb - V
Terminal Resistance Ra - Ω
Terminal Inductance La - H
Viscous Friction b - N.m.s/rad
No load Inertia J - kg.m2

No load speed @12V wmax 21 rad/s
Encoder Counts Per Revolution CPR 3200 -

Generally, time constant due to terminal inductance is negligible; therefore, ig-

noring La, (5.1) is further simplified to a first order transfer function such that

G(s) =
Km

RaJs+Rab+KbKm

(5.2)

=
Km

Rab+KbKm
RaJ

Rab+KbKm
s+ 1

(5.3)

=
K1

τ1s+ 1
(5.4)

where K1 and τ1 are some positive constants. Unfortunately, the parameters of

these type of motors can vary from production to production and some of them are

not listed in the datasheets specifically. To overcome this issue, it is mandatory

to perform a system identification method in open loop before designing a closed

loop feedback. After applying a step reference voltage, we find K1 = 1.6 and

τ1 = 0.12. The missing parameters in Table 5.1 can be obtained using physical
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Figure 5.1: The Arduino Uno controlled DC motor platform used in experiments.

relations stated below.

Km = τstall/istall, (5.5)

Ra = 12V/istall, (5.6)

12V −Kbwmax = Rainl, (5.7)

K1 =
Km

bRa +KbKm

, (5.8)

J =
τ1(bRa +KbKm)

Ra

. (5.9)

As a result, missing parameters become Km = 0.38 Nm/A, Ra = 2.2 Ω, Kb =

0.55 V s/rad, and J = 0.01328 kgm2.

Referring to Figure 2.1, adaptive observers require control input as torque

command in Nm and velocity in rad/s for friction estimation. However, Arduino

motor shield generates pulse width modulation (PWM) signals to drive the DC

motor. In other words, it takes control input, u in volt as the desired voltage

level and produces a square wave signal, whose mean equals to desired voltage

level, by turning motor drive circuitry on and off repetitively. Hence, this square

wave has a peak amplitude equal to supply voltage, 12 V in our case, and a

switching frequency depending on u. Therefore, voltage-to-torque and torque-to-

voltage conversions are required to utilize proposed friction cancellation schemes.
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Figure 5.2: MATLAB linear curve fitting is applied to characterize velocity-torque
map for friction parameter identification of DC motor.

Based on simple physics, the torque generated by a DC motor can be formulated

τ = Km.i. Assuming that the motor driver circuit is ideal and there is no or low

loss, this relationship can be written below.

τ = Km
Vin −Kbw

Ra

(5.10)

where Vin is the voltage produced by motor driver. Then, using previously found

motor parameters and angular velocity w, the relationship between torque and

voltage can be stated as follows.

τ =
0.38

2.2
(Vin − 0.55w). (5.11)

Before designing a position controller, we have conducted constant speed tests

on Arduino platform to identify friction parameters. Simply, in these tests, con-

trol input u becomes equal to friction torque since ẇ = 0. To this end, we first

design a PI controller with Kp = 1.25 and Ki = 6.25 to obtain a zero velocity

error at the steady state. Then, the total current delivered to the motor by the

Arduino motor shield is measured by an onboard ADC for different velocity ref-

erences. Finally, filtered ADC measurements are multiplied with Km and linear

curve fitting is applied on Matlab in order to identify friction torque. As a result,
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Figure 5.3: The block diagram of the DC motor position control system driven
by Arduino Uno.

we can determine the parameters of Coulomb+Viscous friction model as in Fig-

ure 5.2. Note that parameters for negative and positive velocities are different.

Furthermore, deadzone is a common occurrence in such kinds of motors. Inside

deadzone regime, the system does not respond to the given input until the input

signal reaches a particular level. Hence, starting 0.2 V, we have applied voltage

to open loop system and gradually increased the level of the reference until mo-

tor shaft starts to rotate. Consequently, we comprehend that the platform has a

deadzone until 1.2V approximately. Lastly, note that there is a sampling delay of

10 ms due to discrete time implementation with 100 Hz sampling for frequency

ode3 solver. We simply ignore this microcontroller processing delay since it has a

negligible effect on system dynamics. When we consider this delay, other nonlin-

earities become dominant and system response is degraded. Therefore, we keep

our model as simple as possible, considering the computation power of Ardunio

microcontroller. Based on these facts, we also did MATLAB simulations using

the system model in Figure 5.3 to compare the response of Arduino Uno platform.

For our experiments, we design an optimum PID for step input position track-

ing based on ITAE performance index using Table 3.1. Note that (3.5) becomes

slightly different for identified DC motor plant since DC motor has a pole dif-

ferent than zero. Using (5.4), we can find a new closed loop position transfer

function as below.

T (s) =

K1Kd
τ1

s2 + K1Kp
τ1

s+ K1Ki
τ1

s2(τ1s+ 1) + K1Kd
τ1

s2 + K1Kp
τ1

s+ K1Ki
τ1

. (5.12)
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Then, (3.6)-(3.8) can be rewritten as below for this new transfer function.

7.75 =
K1

τ1
Kd, (5.13)

2.15w2
n =

K1

τ1
Kp, (5.14)

w3
n =

K1

τ1
Ki. (5.15)

We have already identified constants in plant transfer function such that K1 =

1.6 and τ1 = 0.12 that is why new controller parameters can be computed as

Kp = 1.975, Kd = 0.384 and Ki = 3.216 for wn = 3.5. As a result, position

controller, Cp(s) and corresponding reference filter given in (3.9) can be obtained

as below.

Cp(s) =
0.384s2 + 1.975s+ 3.216

s
, (5.16)

H(s) =
3.216

0.384s2 + 1.975s+ 3.216
. (5.17)

Then, we obtain tracking response with and without Friedland-Park observer

as in Figure 5.4. It can be seen that Arduino application and Simulink results

coincide pretty well.

For the same controller parameters, we also conduct experiments with the new

observer. As it is shown in Figure 5.5, new observer provide a similar improve-

ment at steady state. Compared to the Friedland-Park observer case, the new

observer has similar trends in Simulink and Arduino again; however, settling time

decreased this time. This may be due to the effect of velocity estimation in the

new design. In both figures, there are some mismatches between the results of

Arduino experiments and simulations. Possibly, these mismatches are the prod-

ucts of some unmodeled dynamics such as velocity noise, encoder resolution, etc.

Consequently, friction cancellation using both new observer and Friedland-Park

observer improve the position tracking performance for the ITAE index based

PID with relatively low wn.

Similarly, we performed experiments with another PID whose bandwidth was

higher compared to the previous one. To this end, we determine wn = 5 and
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Figure 5.6: The position response comparison of Simulations and experiments
with and without friction compensation when wn = 5.

computed controller parameters as Kp = 4.03, Kd = 0.5812 and Ki = 9.375. For

this case, new Cp and H(s) become as below.

Cp(s) =
0.581s2 + 4.031s+ 9.375

s
, (5.18)

H(s) =
9.375

0.581s2 + 4.031s+ 9.375
. (5.19)

In Figure 5.6, it seems that compared to previous case, PID with higher wn

can track reference step position with a smaller steady state error even there is

no friction cancellation. In this sense, observer usage slightly improves steady

state response. In this sense, it becomes useless to some extent; however, it still

improves transient response in both experiments and simulations.

Remark 9. We note that the Coulomb friction is modeled by discontinuous sign

85



function, which is frequently utilized in sliding mode control. Although this ap-

proach theoretically helps one to design control systems with many advantages,

its practical implementations may exhibit an undesired behavior called chatter-

ing. This behavior is basically an undesired oscillation with finite frequency and

amplitude, which is mainly caused by unmodeled dynamics or implementation of

control laws in discrete time, see e.g. [76]. In Coulomb friction case, this may

occur if velocity exhibits oscillations around zero. However, in our simulations

with the parameters given in Table 4.4, we did not encounter chattering. This

may be most likely because in our theoretical framework, we did not assume any

unmodeled dynamics. Nevertheless, since the numerical simulation is basically a

discretization, it may still be possible to encounter chattering due to numerical

errors. Furthermore, although we did not observe chattering in our experiments,

some other physical systems can exhibit chattering in mechanical implementa-

tions. Literature is quite rich on the subject of chattering elimination, and in

such a case, suitable chattering suppression techniques should be utilized along

with the methodologies presented here, see e.g. [76, 77].
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Chapter 6

Conclusions

Position control of simple mechanical systems in the presence of friction is con-

sidered throughout this dissertation. Firstly, we consider a delay free system

and enlarge the set of estimation functions used in well known Friedland-Park

observer. To this end, we give some stability results for the extended adaptive

observer structure based on standard Lyapunov stability theory. Although the

primary purpose of these observers is to estimate Coulomb friction, previous stud-

ies have shown that it is also capable of more complicated friction components.

Provided that actual velocity is known, one can use this estimation in order to

cancel the effects of existing friction within the system and control position with

a simple linear controller. To see the effectiveness of the proposed position con-

trol system, we consider some benchmark examples from the literature. Using

their system parameters, we show that adaptive friction cancellation improves

the position response, especially for controllers with low bandwidths. In these

simulations, we also realized that PID controllers designed by using ITAE per-

formance index could overcome PD controllers even if their bandwidths are the

same.

On the other hand, if the velocity measurements are delayed, then a velocity

estimator might be required to achieve a tracking performance as in a delay free

system. To achieve this, we proposed various schemes and considered their effect
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on the performance of the proposed control structure. Moreover, we showed that

if the velocity prediction error is small, the friction parameter estimation is also

small. This also shows that the proposed structure is robust to such uncertainties.

Once the effect of friction is eliminated, the resulting system could be considered a

linear time-invariant system with a known delay and can be controlled by utilizing

classical control techniques. For such a delayed system, we provide design steps

for Smith predictor based velocity and position controllers.

For velocity estimation, we considered various schemes. Consequently, it is in-

ferred that the proposed position tracking system can be fairly utilized as long as

the velocity is predicted in a small neighborhood of actual velocities. Especially

when observer gain or time delay is relatively large, friction estimation is hindered

due to poor velocity prediction. To overcome abrupt changes in states, reference

and derivative filters are utilized to improve the prediction and estimation per-

formances. Furthermore, we develop a new observer design as an alternative to

Friedland-Park. In this new structure, we also consider the velocity error dynam-

ics for friction estimation. It may seem to be a redundant property when the

information of actual velocity is completely available. However, when there is an

uncertainty or time delay on velocity measurements, it may improve the system

performance without any precaution. Certainly, the proposed velocity predictor

can still be utilized, especially for large time delays as well. Comparing the re-

sults of these two observers, we observe that they provide similar improvements

for the position control systems not only in delay free case but also there is delay

related to measurements. For the proposed new observer design, we also make

a dwell time analysis. According to this analysis, velocity switching frequency

should be finite such that tk+1− tk ≥ τD > 0 in order to obtain a stable observer.

To summarize, the main contributions of this thesis may be listed as follows:

� We propose two different adaptive observer schemes for friction cancellation

in simple mechanical systems with and without time delay. First, we extend

the update rule of the well known Friedland-Park observer to a larger set.

Then, we develop a novel observer which considers velocity error for friction

estimation.
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� For simplicity, we design adaptive observers for a delay free system first.

These observers require accurate velocity information; therefore, we also

consider measurement delay and propose velocity predictors in order to

improve friction estimation and position tracking responses of the system.

To this end, we are inspired by different single step numerical differential

equation solvers. Alternatively, we consider a rational function, which is

similar to well known Pade approximation, to characterize the time delay.

Using the inverse of this function, we develop a scheme to predict the actual

value of velocity using delayed measurements.

� We provide stability analysis for both observers. Using the standard Lya-

punov stability analysis, we provide necessary conditions for estimation

function g(v) in Friedland-Park type observers to achieve asymptotic sta-

bility. For the new observer design, we consider it as a switching system.

Under certain regularity and assumptions regarding to switching signal, we

apply LaSalle’s Invariance Principle to show asymptotic stability. Further-

more, using Linear Matrix Inequalities (LMIs), we develop a Matlab code

to compute the minimum dwell time and show the stability of the observer

numerically as well.

� We show that proposed structures can work with different observer designs.

We simply consider PD and PID controllers designed according to damping

and bandwidth parameters for the delay free case. We optimize the pa-

rameters of the controller based on ITAE index. When the system includes

time delay, we utilize Smith predictor based controllers.

� In addition to computer simulations, we conduct some experiments in a

real application based on an Arduino Uno microcontroller and a simple DC

motor. Although this is a very limited test setup and has a low computation

power, acquired results seem to be compatible with theoretical simulation

results.

As a future extension, it may be beneficial to consider other mechanical systems

which exhibit more complex friction behaviors and time delay. Another possible
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future research directive may be related to the properties of existing measure-

ment delay. When the delay is not known, is time varying or is known with

a mismatch both velocity prediction and the design of controllers that achieve

closed-loop stability become challenging. What is more, in this study, we con-

sider ITAE index based PID controllers and Smith Predictor based controllers;

however, other controller designs can be utilized for position control with pro-

posed adaptive observers. Especially, the design of repetitive controllers might

be an exciting study since they regulate the system to track periodic references or

reject periodic disturbances. To this end, interested readers may refer to [78, 79]

and the references therein. Note that, in repetitive control, the disturbance or

reference signal can be anything as long as it has a periodic characteristic. Lastly,

a Kalman filter might be incorporated with a state observer in order to improve

the friction estimation performance. An inspiring study for such an approach is

presented in [80].
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[79] V. Yücesoy, Robustly and strongly stabilizing low order controller design for

infinite dimensional systems. PhD thesis, Bilkent University, 2018.

98



[80] W. Lee, C.-Y. Lee, Y. H. Jeong, and B.-K. Min, “Friction compensation

controller for load varying machine tool feed drive,” International Journal

of Machine Tools and Manufacture, vol. 96, pp. 47–54, 2015.

99



Appendix A

LMI code for a dwell time

analysis

A.1: Dwell time main.m

1 clear all;

2 clc;

3

4 filename='test.mat';

5 m = matfile(filename, 'Writable', true); %File keeping ...

simulation results

6

7 K=1:10000; % K vector

8 L=1:10000;% L vector

9 row=0; %Save each iteration result to a row in specified file

10 for i=1:length(K)

11 for j=1:length(L)

12 row=row+1;

13 A1= [-1*K(i) -1;L(j) 0]; %Define Subsystem1

14 A2= [-1*K(i) 1;-1*L(j) 0]; %Define Subsystem2

15 [Tdmin]=find dwell(A1,A2); %Find Td for corresponding ...

iteration

16 out = [K(i) L(j) Tdmin];

17 m.out(row,1:3) = out; %Save Simulation results
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18 end

19 end

A.2: find dwell.m

1 function [Tdmin]=find dwell(A1,A2)

2 % Function Calculating the minimum dwell time for two ...

subsystems A1 and A2

3

4 % min Td (dwell time)

5 %subject to

6 %P {i} > 0 for all i={1,2}
7 %A' {i}*P {i}+A {i}*P {i} < 0 for all i

8 %expm(A' {i}*Td)*P {j}*%expm(A {i}*Td)<P {i} for all i!=j

9

10 I=eye(2);

11 eps =1e-4; % the relative accuracy of the solution

12 Tdmax=50; % the upper limit of the interval

13 Td=Tdmax; % the step size (midpoint)

14 b=Tdmax; % the initial upper limit of the interval

15 a=0; % the initial lower limit of the interval

16 i=0; % iteration index

17

18 while (b-a)>eps % check whether the new interval reached ...

the accuracy

19 Td = a+(b-a)/2; % interval-halving

20 i = i+1;

21

22 setlmis([]); % define the system of LMI-s

23 P1 = lmivar(1, [2, 1]);

24 P2 = lmivar(1, [2, 1]);

25

26 % constructing the system of the LMI-s

27 % for subsystem 1

28 lmiterm([1, 1, 1, P1], 1, A1, 's');

29 % LMI #1: A' {1}*P {1} + P {1}*A {1}
30 lmiterm([2, 1, 1, P2], expm(Td*A1)', expm(Td*A1));

31 % LMI #2: expm(Td*A' {1})*P {2}*expm(Td*A {1})
32 lmiterm([2, 1, 1, P1], -1, 1);
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33 % LMI #2: P {1}
34

35 % for subsystem 2

36 lmiterm([3, 1, 1, P2], 1, A2, 's');

37 % LMI #3: A' {2}*P {2} + P {2}*A {2}
38 lmiterm([4, 1, 1, P1], expm(Td*A2)', expm(Td*A2));

39 % LMI #4: expm(Td*A' {2})*P {1}*expm(Td*A {2})
40 lmiterm([4, 1, 1, P2], -1, 1);

41 % LMI #2: P {2}
42

43 %for P {i}>0
44 lmiterm([-5, 1, 1, P1], 1, 1);

45 lmiterm([-6, 1, 1, P2], 1, 1);

46

47 lmiterm([-7, 1, 1, P1], -1, 1); % LMI #2: -Zj

48 lmiterm([-7, 1, 1, 0], P2); % LMI #2: Yq

49

50 lmis = getlmis; % obtaining the system of LMI

51 [tmin,xfeas] = feasp(lmis); % calling function of feasibiliy.

52

53 Ps1 = dec2mat(lmis,xfeas,P1);

54 Ps2 = dec2mat(lmis,xfeas,P2);

55 % decision vector xfeas since tmin < 0

56 % checking constraints of feasibility. That is that if % tmin ...

< 0.

57 if tmin ≥ 0

58 a = Td; % the minimum is changed to the Td

59 else

60 b = Td; % iteration is continued the minimum

61 Tdm = b; % Save Tdmin for this iteration

62 end

63 end

64 Tdmin = Tdm; % Final Tdmin is obtained

65 end
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Appendix B

Simulink settings for the Arduino

Experiments

Port 0

ARDUINO

Transm t to Computer

Mux

RS-232 Ser al Commun cat on��� ������

���
��� ���

Veloc ty (rad/s)

Pos t on (rad)

Current (A)

(Baudrate : 115200 )

Voltage (V)

Pos�t�on (rad)

Veloc�ty (rad/s)

DC Motor Plant

���Reference veloc ty

Controller

���

Pos�t�on

 (rad/s)

 (Nm)(Nm)

���

ARDUINO

P n: 1 Data Type Convers on

On Board ADC

s ngle 0.1

s + 0.1

Low-Pass F lter������

���

 (rad/s)

 (Nm)
 (V)

 (rad/s)

 (Nm)

Fr�ct�on Observer Voltage to TorqueTorque to Voltage
Convers�on Convers�on

 (V)

Figure B.1: An example for closed loop feedback system runnig on Arduino Uno
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Voltage (V)

In1

Motorpwm

sfcn_encoder pos

Encoder
K Ts

z-1

CPR

3200

rad x sampl�ng frequency

2*p�*100

s�ngle

+12V Saturat�on block

1

1

2

Pos�t�on (rad)

Veloc�ty (rad/s)

Figure B.2: Sublock diagram of DC Motor Plant

Figure B.3: The S-Function block settings for the encoder.

104



ARDUINO

ARDUINO

Brake

ARDUINO

1

+12V Saturat�on block

P�n 8

D�rect�on

P�n 13

P�n: 11

0 V �s appl�ed

hardl�m

255/12

Figure B.4: The Matlab Simulink Pulse width modulation (PWM) implemena-
tion on Arduino.

Figure B.5: The Matlab Simulink serial port reading settings.
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