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ABSTRACT

PREDICTING HUMAN BEHAVIOR USING STATIC
AND DYNAMIC MODELS

Berat Mert Albaba
M.S. in Mechanical Engineering

Advisor: Yıldıray Yıldız
August 2021

Modeling human behavior is a challenging problem and it is necessary for the safe
integration of autonomous systems into daily life. This thesis focuses on modeling
human behavior through static and dynamic models. The first contribution of this
thesis is a stochastic modeling framework, which is a synergistic combination of a
static iterated reasoning approach and deep reinforcement learning. Using statistical
goodness of fit tests, the proposed approach is shown to accurately predict human
driver behavior in highway scenarios. Although human driver behavior are modeled
successfully with the static model, the scope of interactions that can be modeled with
this approach is limited to short duration interactions. For interactions that are long
enough to induce adaptive behavior, we need models that incorporate learning. The
second contribution of this thesis is a learning model for time extended human-human
interactions. Through a hierarchical reasoning solution approach, equilibrium concepts
are combined with Gaussian Processes to predict the learning behavior. As a result, a
novel bounded rational learning model is proposed.

Keywords: Reinforcement Learning, Game Theory, Autonomous Vehicles.
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ÖZET

STATIK VE DINAMIK MODELLER ILE INSAN
DAVRANIŞININ TAHMINI

Berat Mert Albaba
Makine Mühendisliği, Yüksek Lisans

Tez Danışmanı: Yıldıray Yıldız
Ağustos 2021

İnsan davranışını modellemek, otonom sistemlerin günlük hayata güvenli entegrasy-
onu için gerekli olan zor bir problemdir. Bu tez, insan davranışlarını statik ve di-
namik modeller aracılığıyla modellemeye odaklanmaktadır. Bu tezin ilk katkısı,
statik yinelenen akıl yürütme yaklaşımı ile pekiştirmeli öğrenmenin sinerjik bir
birleşimi olan stokastik bir modelleme çerçevesidir. Önerilen yaklaşım, otoyol senary-
olarında insan sürücü davranışlarını başarılı bir şekilde modellemektedir ve otonom
araçların entegrasyon senaryolarının doğrulanması için kullanılabilir. Her ne kadar
insan sürücü davranışları statik bir modelle başarılı bir şekilde modellense de, statik
modeller, ajanların etkileşimler sırasında inançlarını/varsayımlarını güncelleyebilecek-
lerini hesaba katmamaktadır. Bu tezin ikinci katkısı, zamana yayılan insan-insan
etkileşimleri için yeni bir öğrenme modelidir. Hiyerarşik bir akıl yürütme çözüm
kavramı aracılığıyla, denge kavramları, Gaus süreçleri ile birleştirilirmiştir. Sonuç
olarak, özgün ve sınırlı rasyonel bir öğrenme yaklaşımı önerilmiştir.

Anahtar sözcükler: Pekiştirmeli Öğrenme, Oyun Teorisi, Otonom Araçlar.
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Chapter 1

Introduction

In multi-agent games, each agent aims to reach the optimal policy in order to optimize
his/her payoff. Since there is more than one strategic agent in the environment, an-
alyzing games in these environments is challenging. Game theory is mostly focused
on the equilibrium analysis [1] [2], such as finding Nash equilibrium [3]. Equilibrium
concepts forecast the converged state of the game; however, as explained in [4], such
concepts fail to predict player behaviors in complex games and the early stages of
games. Thus, in order to model initial actions in games, hierarchical reasoning solu-
tion concepts named Level-k reasoning and Cognitive Hierarchy Theory are proposed
in [5], [6], and [7], where players move based on their initial assumptions about others
during the game.

In this thesis, first of all, level-k reasoning is combined with deep reinforcement
learning in order to develop driver models. High-fidelity driver models are required
to accelerate the validation of autonomous vehicle (AV) technology. Safety concerns
exist about the integration of AV into daily traffic, and these concerns should be ad-
dressed before their integration. Simulated traffic scenarios can be utilized to accel-
erate the validation of AV and introduce a rich variety of traffic scenarios which may
take several million driving hours to encounter in real life [8], [9], [10], [11]. However,
for reliable results, human driver models in simulations should have high-fidelity, i.e.,
should behave like human drivers.
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Several approaches are proposed in the open literature to obtain high-fidelity human
driver models. Markov Dynamic Models (MDMs) are utilized for the prediction and
recognition of the driver maneuvers, such as steering or braking, in [12]. An approach
named SITRAS (Simulation of Intelligent Transport Systems) is proposed in [13] for
modeling lane changing and merging behaviors. Dynamic Bayesian Networks (DBNs)
are presented in [14] for recognition of acceleration or lane changing actions. In [15]
adaptive predictive control is proposed for modeling drivers’ lateral actions. The cog-
nitive architecture method, which is a framework that specifies computational behav-
ioral models of human cognition, is presented in [16] for steering and lateral position
modeling. A combination of cognitive psychology and artificial intelligence methods
is utilized in [17] for predicting behaviors of human drivers at signalized and unsignal-
ized intersections. In [18], a support vector machine (SVM) with a Bayesian filter is
utilized for predicting lane change intentions of drivers. In [19], and [20], Gaussian
Process Regression is employed to predict driver behaviors and detect behavioral pat-
terns. For the estimation of driver decisions at intersections, a framework that models
vehicle dynamics and driver behaviors as a hybrid-state system is proposed in [21].
In order to obtain driving styles from vehicle trajectories, inverse reinforcement learn-
ing is used in [22]. Hidden Markov Model-based driver models are derived in [23].
In [24], SVMs are used to model driving patterns. A neural network-based method,
which utilizes recurrent neural networks, is presented in [25] for probabilistic driv-
ing modeling. An SVM-based model is given in [26] for predicting driving behavior
at roundabouts. For modeling human highway driving behavior, Generative Adver-
sarial Imitation Learning is proposed in [27]. Human drivers’ stopping behaviors are
modeled in [28]. Also, in [29], an optimal control theory-based approach is presented
to model stopping behavior. Gaussian mixture model and hidden Markov model are
combined in [30] for the prediction of lateral trajectories. A car-following driver model
imitating human driving is proposed in [31], using a neural network-based modeling
approach. In [32], interactions between an autonomous vehicle and a human driver are
modeled. Apart from individual driver models, traffic flow models are also studied.
Some examples can be found in [33], [34] and [35].

In the first part of this thesis, an iterated reasoning concept is combined with a deep
reinforcement learning method. A stochastic modeling approach is proposed to model
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human driver behaviors.

Although iterated reasoning concepts model initial human behaviors better, it
misses the point that players may alter their assumptions during interactions, and it
is unlikely to reach equilibrium by introspection [4]. Further, analyzing the process of
going to equilibrium is avoided in most of the history [36].

Learning models try to explain how players learn. Learning models are widely used
as alternatives to equilibrium models [37]. These models are categorized into two
categories [37]: 1. reinforcement learning models and 2. belief-based learning mod-
els. In reinforcement learning models, strategies receive reinforcement based on their
payoffs, and players adjust their strategies to the ones that offer higher payoffs [37].
Belief-based learning models are the models in which agents in a dynamic game op-
timize their actions based on their beliefs/predictions about others in the environment,
using history of previous actions [38]. Best response dynamics proposed in [39] is one
of the oldest approaches in belief learning. In [39], players assume that others would
repeat their action in the previous time and respond best based on this assumption. One
of the most popular belief learning approaches is fictitious play, which is first proposed
in [40] and [41]. In modern fictitious play variants, as explained in [42], players first
form a belief in other agents’ action probabilities, observe the taken actions, and up-
dates the initial probability with the frequency of actions. In the fictitious play, players
best respond based on their beliefs. Because of the assumption that agents behaves op-
timally based on their beliefs, fictitious play may not be realistic [43]. Thus, a weighted
fictitious play, or stochastic fictitious play, is proposed in [44]. In weighted fictitious
play and its variants, past observations are weighted, i.e., considers the amount of time
passed after taken actions. Further, based on this weighted belief, players choose the
response probabilistically by calculating the effect of each action on the payoff based
on the belief. Besides, Bayesian learning approaches also exist, in which beliefs are
probability distributions over possible strategies of other agents [42]. As presented
in [45], in naive Bayesian learning, beliefs over future action sequences are updated
directly through observations with Bayes’ theorem, and agents best respond to their be-
liefs. In sophisticated Bayesian learning, beliefs on future action sequences are derived
from prior beliefs on other players’ payoff functions [45]. Reinforcement learning and
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belief learning approaches are combined in [46] to use the payoff guide of reinforce-
ment learning in belief learning. Experimental studies also exist for belief learning. In
[47], weighted fictitious play is studied empirically, and subjects are classified by their
fictitious play type. In [48], beliefs about the environment and the previous ego action
choices are combined to model human behavior. In [49], Bayesian learning is studied
empirically. It is presented that when there is a unique equilibrium of pure strategies,
equilibrium play is attained. However, when there are multiple equilibria, the play
failed to converge the predicted equilibrium.

With the developments in single-agent reinforcement learning, multi-agent rein-
forcement learning (MARL) field is experiencing rapid progress [50]. However, in
multi-agent settings, if the agent ignores how other agents behave, and optimizes its
policy, the policy being trained may fail to converge [50], [51], [52]. Thus, introduc-
ing beliefs into MARL is widespread, which allows predicting the behaviors of other
agents. In [53] and [54], hierarchical beliefs are utilized in multi-agent settings. In
[55], an approach to respond well against sophisticated agents is built over [53] and
uses Bayesian learning. Bayesian learning is also used in [56] for the cooperative par-
tially observable multi-agent games. Interactive partially observable Markov decision
process (I-POMPD), which extends POMDPs to multi-agent settings, is proposed in
[57] and also utilizes belief learning. The work presented in [58] builds on I-POMDPs
to predict other agents’ intentions by using Bayesian learning. In [59], Bayesian learn-
ing is also used to infer the intents of other agents. In [60], a framework is presented
for MARL which also includes belief learning.

Although belief learning approaches are generally used in multi-agent reinforce-
ment learning today and improved the field significantly, belief learning models are
computationally complex in multi-agent settings. There are also naive belief learning
approaches that can be considered efficient, such as weighted fictitious play. However,
in these models, players are myopic, i.e., do not consider future expected rewards.

In the second part of this thesis, a hierarchical solution concept, level-k thinking,
belief learning, and equilibrium concepts are combined. A new learning model for the
time extended human-human interactions is proposed.
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1.1 Contributions

1.1.1 Stochastic Modeling Approach

What distinguishes our method from existing studies is that all the drivers in a
multi-move scenario make strategic decisions simultaneously, instead of modeling the
ego driver as a decision-maker and assuming predetermined actions for the rest of
the drivers. This is achieved by combining a hierarchical game-theoretical concept
named level-k reasoning with a reinforcement learning method called Deep Q-learning

(DQN) [61]. There exist earlier studies that also use reinforcement learning and game
theory in modeling driver behavior, such as [62], [63] [8], [64] and [65]. The contribu-
tion of this work over these earlier results can be listed as

1. The proposed method can successfully model a dramatically larger class of sce-
narios which was not possible earlier.

2. The driver crash rates in the simulations are reduced to realistic levels by elimi-
nating the driver blind spots with an enlarged observation space;

3. Developed driver models are compared with two different sets of traffic data,
and a significantly larger percentage of human driver behaviors are successfully
modeled.

4. The proposed models are compared with the baseline models, IDM [66], MO-
BIL [67], and the models in the previous work [62]. Comparisons showed that
the proposed models predict human driver behaviors better than the existing ap-
proaches.

1.1.2 Learning Model for the Time Extended Human-Human In-
teractions

In this model, agents in the environment behave according to continuous level-k poli-
cies [68]. The initial and the endpoint policies are assumed to be known by the player.
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Through level-k reasoning, the level-k agent assumes that other players’ level is (k-1)
initially, which provides the initial point. Further, it is assumed that the endpoint (end
of learning) is known, which may be converged equilibrium points such as Nash equi-
librium. It is noted that the endpoint type is not important in the proposed approach
since finding equilibrium is not the purpose of this work. Any converged point may be
utilized. To exemplify, the converged point of a MARL approach may be utilized as the
endpoint when a MARL agent is placed in a test environment. The proposed learning
model utilizes Gaussian processes to form and update predictions about players during
the game. The contribution of the proposed learning model over the existing literature
is four-fold:

1. Efficient in complex environments since agents do not consider the effect of their
actions on others’ future actions

2. The initial and end-points make the model farsighted and prevents deviating
from the existing policy based on some irrational observations,

3. The level-k component in the model offers bounded rationality during the whole
game,

4. Gaussian processes allow introducing uncertainty to each observation easily.

1.2 Organization

Stochastic modeling framework for modeling human driver behaviors is explained in
Chapter II. Methods utilized to build the framework, details of the traffic scenario,
and the simulations are described in detail. The proposed human driver models are
validated with real data, which is discussed at the end of Chapter II. The learning model
for modeling the time extended human-human interactions is explained in Chapter III.
Sensitivity analysis of the learning model is presented at the end of Chapter III. In
Chapter IV, a conclusion is made.
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Chapter 2

Modeling Driver Behaviors via
Reinforcement Learning and Game
Theory

A synergistic combination of deep reinforcement learning and hierarchical game the-
ory is proposed as a modeling framework for the behavioral modeling of drivers in
highway driving scenarios. The primary motivation behind this work is the need for a
modeling framework that can address multiple human-human and human-automation
interactions, where all the agents can be modeled as decision-makers simultaneously.
The modeling framework presented in this paper may be used in a high-fidelity traffic
simulator consisting of multiple human decision-makers to reduce the time and effort
spent for testing by allowing safe and quick assessment of self-driving algorithms. To
demonstrate the fidelity of the proposed modeling framework, game-theoretical driver
models are compared with real human driver behavior patterns extracted from two dif-
ferent sets of traffic data. Statistical goodness of fit tests are used for the comparisons.
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2.1 Methods

2.1.1 Level-k Reasoning

In order to model strategic decision making process of human drivers, a game-
theoretical concept named level-k reasoning is used [7], [6], [69]. The level-k ap-
proach is a hierarchical decision-making concept and presumes that different levels of
reasoning exist for different humans. The lowest level of reasoning in this concept is
called level-0 reasoning. A level-0 agent is a non-strategic/naive agent since his/her
decisions are not based on other agents’ possible actions but consist of predetermined
moves, which may or may not be stochastic. A strategic level-1 agent exists one level
higher, who determines his/her actions by assuming that the other agents’ reasoning
levels are level-0. Hence, the actions of a level-1 agent are the best responses to level-
0 actions. Similarly, a level-2 agent considers other agents as level-1 and makes his/her
decisions according to this prediction. This process continues following the same logic
for higher levels. In Fig. 2.1 the general architecture of level-k thinking is presented.
The figure shows a population consisting of level-0 (gray), level-1(blue), and level-
2(yellow) agents. In this population, level-0’s are non-strategic, meaning that they do
not consider other agents’ possible actions before making their move. Strategic level-1
and level-2 agents, on the other hand, assume that everyone else is level-0 and level-1,
respectively, and act accordingly. In some experiments, humans are observed to have
at most level-3 reasoning [70], which may, of course, depend on the type of the game
being played. To generalize, all level-k agents, except level-0, presume that the rest
of the agents are level-(k-1) and make their decisions based on this belief. Since this
belief may not always hold true, the agents have bounded rationality.

8



Level-1 Agent

Level-2 AgentLevel-0 Agent

No
Belief

Action Action Action

Figure 2.1: A level-0 agent (grey) does not consider other agents’ possible moves
before making a decision; a level-1 agent (blue) assumes that all other agents are level-
0 and takes action based on this assumption; a level-2 agent (yellow) believes that other
agents are level-1 and acts accordingly.

2.1.2 Deep Q-Learning

In the previous section, the exploitation of level-k reasoning to model strategic
decision-making is explained. In time-extended scenarios, where the agents make a
series of decisions before an episode is completed, such as the traffic scenarios focused
on in this paper, level-k reasoning can not be used alone. To obtain driver models that
provide the best responses to the other agents’ alleged actions in a multi-move setting,
we utilize Deep Q-Learning (DQN) together with level-k reasoning. The main reason
for the employment of DQN is the large state space that becomes infeasible to handle
with other reinforcement learning (RL) methods used in earlier studies [62], [8], [64],
[65]. In this section, a brief description of DQN tailored for the task at hand is given.
More detailed expositions of DQN can be found at [61], [71] and [72].
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RL is a learning process through reward and punishment [73]. At each step of learn-
ing, or training, the trained agent observes a state st 2 S (state s at time t), selects an
action at 2 A (action a at time t), and as a result, transitions into a new state st+1 2 S

with a certain probability. The sets S and A represent observation and action spaces,
respectively. After the transition, the agent receives a reward based on a reward func-
tion, which is a mathematical expression of the agent’s preferences. This process, i.e.,
observation, action, transition, and reward accumulation, continues until the average
reward converges to a certain value. The process is depicted in Fig. 2.2. The main goal
of the agent is selecting actions that maximize the total obtained rewards, where future
rewards may have decreasing levels of importance in the agent’s decision making and
thus, can be “discounted”. In other words, the agent tries to find a policy p : S �! A, a
mapping from states to actions, which maximizes the expected discounted cumulative
reward. This policy is called the optimal policy: p⇤. In RL, value function V (s) esti-
mates the cumulative reward starting from state s. It is a measure of the value of being
in state s. Action value function, Q(s,a), estimates the cumulative reward obtained by
the agent by starting with action a in state s. It represents how valuable selecting action
a in state s is.

Figure 2.2: Reinforcement learning process diagram

An agent’s value function, or expected cumulative discounted reward when starting
from state s, and following a policy p is defined as

10



V p(s) = E(Â
t�0

g t rt), (2.1)

for all s 2 S, where g represents a discount factor, rt represents the reward at time-step
t, and s represents the observed state. The corresponding optimal value function is
given as

V ⇤(s) = max
p

V p(s). (2.2)

The optimal value function is related to the optimal Q-function, Q⇤, as

V ⇤(s) = max
a

Q⇤(s,a). (2.3)

Moreover, the optimal policy can be defined in terms of the optimal Q-function as

p⇤(s) = argmax
a

Q⇤(s,a). (2.4)

Bellman equation provides a relationship between the value of a state-action pair (s,a)

and its successor pairs through

Q(s,a) = E[rt+1 + g max
a0

Q(st+1,a
0
) | st = s,at = a], (2.5)

where E represents the expected value and (st+1,a
0
) is the next state-action pair. Q-

learning algorithm provides a method, based on the Bellman Equation (2.5), to update
action values iteratively, which is given by

Qt+1(st ,at) = Qt(st ,at)+a(rt+1+

g max
a

Qt(st+1,a)�Qt(st ,at)),
(2.6)
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Figure 2.3: A deep neural network consisting of 4 layers is utilized to approximate the
Q-function.

where a is a learning rate and g is the discount factor. Q-learning is guaranteed to
converge if each state-action pairs are visited infinitely many times during training
[73].
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Keeping a table containing action values for all state-action pairs may be infea-
sible for large state spaces. In these cases, a neural network function approxima-
tor with a weight vector q can be used to approximate the action-value function
Q(s,a) ⇡ Q(s,a;q) [71]. In Deep Q-Learning (DQN), values of Q-function are ap-
proximated with a deep neural network, which proves useful, especially for large state
spaces. The neural network architecture utilized in this work is given in Fig. 2.3.

DQN stores last N experiences in memory D. Each experience is a four-tuple:
(s,a,s

0
,r), where a is the action made in state s, s

0
is the transitioned state after taking

the action a, and r is the obtained reward. In the first ns steps of training, network
weights are not updated. Starting from the nst

s+1 step, at each step, a mini-batch of the
stored four-tuples is randomly sampled from memory D, and the Q-function is updated
through network weight updates.
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Algorithm 1 Deep Q-Learning
1: Initialize the memory D to capacity N

2: Initialize the main network and the target network, QN and
QNT , with weights sampled from a uniform distribution of range

[�
s

6
ninput +nout put

,

s
6

ninput +nout put
], where ninput and nout put are number

of input and output neurons, respectively [74].
3: Set T = 50
4: for episode = 1 to M do
5: for t = 1 to K do
6: Sample action at using the probability values Pt(ai) =

eQNt(ai)/T

Ân�1
j=0 eQNt(a j)/T , i =

1,2, ...,size(ActionSpace)

7: Execute action at and observe the reward rt and the transitioned state st+1

8: Store the experience (st ,at ,rt ,st+1) in D

9: if size(D) � ns then
10: Sample a random batch of experiences, consisting of P four-tuples

(s j,a j,r j,s j+1)

11: for j = 1 to P do
12: Set y j = r j + g maxa0 QNT (s j+1,a

0
;W )

13: if s j+1 is terminal, i.e. ego driver crashes, then
14: Set y j = r j

15: end if
16: Perform a gradient descent step using the cost function(y j �

NN(s j+1,a j;W ))2 with respect to weight matrix W

17: end for
18: end if
19: if st+1 is terminal, i.e. ego driver crashes, then
20: break
21: end if
22: end for
23: if T > 1 then
24: Update Boltzmann Temperature T = T c, c < 1
25: end if
26: end for
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Boltzmann exploration, i.e., softmax, with an initial temperature of T = 50, which
decreases exponentially to 1 during the training process, is used to obtain a stochastic
neural network instead of a deterministic one. In Boltzmann exploration, during train-
ing, probabilities of actions are calculated with the Boltzmann distribution, and actions
are taken probabilistically. At time-step t, probability of taking action a is

Pt(a) =
eQt(a)/T

Ân�1
i=0 eQt(ai)/T

, (2.7)

where T is the temperature, and n represents the number of actions [75]. When the
temperature is high, the probabilities of the actions are closer to each other. When the
temperature is low, the probability of the action with the highest Q-value is higher than
the rest of the actions.

Algorithm pseudo-code for DQN is given in Algorithm 1, where M is the total num-
ber of training episodes, K is the number of steps within an episode, P is the number
of four-tuples in a mini-batch, and T is the temperature in Boltzmann distribution.

2.1.3 Combining Level-k Reasoning with Deep Q Learning

To generate agents with different levels of reasoning for modeling multi-move strate-
gic decision-making in traffic scenarios, the learning capability offered by DQN is
combined with the level-k reasoning approach.

In the proposed combined approach, the predetermined, non-strategic level-0 pol-
icy is the anchoring policy from which all the higher levels are derived using Deep
Q-learning (DQN). For example, in order to obtain the level-1 policy, a traffic sce-
nario is created where all drivers are level-0 agents except the ego driver, who is to be
trained via DQN to learn how to best respond to the level-0 policy. The details of this
training are given in Section II-B. Once the training is over, the ego driver becomes
a level-1 agent. The procedure for obtaining the level-1 policy through the proposed
combination of level-k reasoning and DQN is explained in Algorithm 2, where nd is
the number of drivers.
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Algorithm 2 Obtaining the level-1 policy by combining DQN and Level-k Reasoning

1: Load the predetermined level-0 policy, p0

2: Set the reasoning levels of all agents in the environment, pi, to level-0: ppi = p0,

i = 1,2,3, ...,nd

3: Initialize the ego driver’s policy to a uniform action probability distribution over
all states: pego = puni f orm

4: Train the ego driver using DQN
5: At the end of the training, ego driver learns to best respond to p0, and therefore

the resulting policy is the level-1 policy, p1.

The level-2 policy can be obtained similarly: A level-2 player assumes that all other
players in the environment are level-1 and takes actions based on this assumption.
Therefore his/her actions are the best responses to level-1 players. For the training
of the level-2 agent, a traffic scenario where all the agents, except the ego driver, are
assigned the previously obtained level-1 policy. Using DQN, the ego driver is trained
to give the best responses to level-1 drivers. Hence the resulting policy becomes the
level-2 policy. This process is given in Algorithm 3

Algorithm 3 Training of the level-2 agent by combining DQN and Level-k Reasoning

1: Load the previously obtained level-1 policy, p1 (see Algorithm 2)
2: Set the agents in the environment, pi, as level-1 agents: ppi = p1, i = 1,2,3, ...,nd

3: Initialize the ego driver’s policy to a uniform action probability distribution over
all states: pego = puni f orm

4: Train the ego driver using DQN
5: At the end of the training, ego driver learns to best respond to level-1 policy, p1.

Thus, the resulting policy is the level-2 policy, p2.
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Algorithm 4 Training of the level-k agent by combining RL and Level-k Reasoning
1: Load the level-(k-1) policy, pk�1

2: Assign level-(k-1) policy to the agents in the environment, pi, as: ppi = pk�1

3: Place level-(k-1) agents in the environment
4: Set empty policy to the learning agent: pego = pempty

5: Train the learning agent with DQN
6: At the end trained agent learns best responses to the level-(k-1), so save the result-

ing policy as the level-k policy, pk

Higher-level policies can also be obtained in a similar way if desired. The train-
ing process for obtaining a level-k policy is described in Algorithm 4. It is noted that
the hierarchical learning process explained above decreases the computational cost
since, at each stage of learning, the agents other than the ego agent use previously
trained policies and hence become parts of the environment. This helps to obtain traf-
fic scenarios containing a mixture of different levels where all the agents simultane-
ously make strategic decisions. This framework sharply contrasts conventional driver
decision-making approaches in heavy traffic, where one or two drivers are strategic
decision-makers, and the rest are assigned predefined policies that satisfy certain kine-
matic constraints. In this work, the highest level is set to level-3, following [70]. A
visual representation of the process of combining level-k reasoning and DQN is given
in Fig. 2.4

Figure 2.4: Combination of Level-k reasoning and reinforcement learning.
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2.2 Traffic Scenario

The traffic scenario used to train and test driving policies comprises a five-lane high-
way and multiple vehicles. The lane width of the highway is 3.7m, and the size of each
vehicle is 5m x 2m. The vehicles have continuous dynamics. In the following sub-
sections, the elements of the traffic scenario are explained. Specific numerical values
needed to create the traffic scenario, such as observation and action space parameters,
are determined based on one of the two sets of traffic data. Therefore, we first explain
how data is processed before providing the scenario details. It is noted that in this sec-
tion, we only describe data processing for use in determining specific traffic scenario
parameters. Processing of the data to obtain real human driver policies is explained
later in Section IV.

2.2.1 Traffic Data Processing

In this work, two sets of traffic data, collected on US101 and I80 highways [76], [77],
are used for model validation. Among these two, the US101 set is employed to de-
termine the observation and action space parameter values. These data sets consist
of time and vehicle ID stamped position, velocity and acceleration values. Before
employing the data, firstly, inconsistencies in the acceleration and velocity values are
addressed: A careful analysis demonstrates some contradictions in acceleration values
and large velocity jumps over consecutive time steps in the traffic data. The problem
of large velocity jumps is solved by applying a linear curve fitting. To exemplify, if
among the velocity values vi�5, vi�4, ..., vi, vi+1, vi+2, ..., vi+5, where the subscripts
denote the time steps, the values vi+1 and vi+2 showed impossible jumps, these values

are replaced with appropriate values vi+1 = vi+
vi+3 � vi

3
and vi+2 = vi+

2(vi+3 � vi)

3
.

Once unreasonable velocity jumps were eliminated, acceleration values are obtained
by using the five-point stencil method [78], [79] given as
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ai =
�vi+2d i +8vi+d i

12d i

+
�8vi�d i + vi�2d i

12d i
.

(2.8)

Since vi+2d i, vi+d i, vi�d i and vi�2d i do not exist for the first and the last two time-
steps for each car, 5-point finite difference method is used to calculate the acceleration
values for these points. Using this method, the first and last time step accelerations are
calculated as

ai =
�25vi +48vi+d i �36vi+2d i

12d i

+
16vi+3d i �3vi+4d i

12d i

(2.9)

ai =
3vi�4d i �16vi�3d i +36vi�2d i

12d i

+
�48vi�d i +25vi

12d i
,

(2.10)

respectively. Similarly, for the second and second-to-last time steps, the accelerations
are calculated as

ai =
�3vi�d i �10vi +18vi+d i

12d i

+
�6vi+2d i + vi+3d i

12d i

(2.11)

ai =
�vi�3d i +6vi�2d i �18vi�d i

12d i

+
10vi +3vi+d i

12d i
,

(2.12)

respectively.
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Both US101 Data and I80 Data consist of more than five lanes. Because of that, in
order to make them comparable to our model, which is for a five-lane road, we have
decreased the number of lanes by considering cars on lanes, which are right to the 5th,
as on 5th lane.

2.2.2 Driver Observation Space

In traffic, drivers cannot observe all the cars on the road but observe the cars around
their vicinity. This work assumes that a driver on lane l observes the closest front
and rear cars on lanes l � 2, l � 1, l + 1 and l + 2 along with the front car on lane l.
Therefore, up to 9 surrounding cars are observable by the driver. Observations are
coded as relative positions and velocities. Specifically, a driver on lane l can detect

• Relative position and velocity of the car in front on the same lane (lane l).

• Relative position and velocity of the car in front on the left lane (lane l +1).

• Relative position and velocity of the car in rear on the left lane (lane l +1).

• Relative position and velocity of the car in front on the right lane (lane l �1).

• Relative position and velocity of the car in rear on the right lane (lane l �1).

• Relative position and velocity of the car in front on two left lane (lane l +2).

• Relative position and velocity of the car in rear on two left lane of (lane l +2).

• Relative position and velocity of the car in front on two right lane (lane l �2).

• Relative position and velocity of the car in rear on two right lane (lane l �2).

• Own lane number (l).

In this work, both continuous and discrete observation spaces are used for modeling,
separately. When we use the discrete observation space, we name the method as regular
DQN. When we use continuous observation space we name the method c-DQN. We
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provide data validation results for both of the cases. It is noted that regular DQN is
computationally less expensive, but c-DQN is more accurate than DQN. Below we
provide the details of both DQN and c-DQN.

2.2.2.1 DQN

Human driver observations, consisting of relative positions, dx, and velocities, dv,
of the surrounding vehicles, are quantized into different sets: Relative positions are
binned as close, nominal and far, while the bins used for relative velocities are stable,
approaching and moving away. In order to determine the contents of these bins, the
raw US101 traffic data [76] is processed. Below, we explain how the relative position
and relative velocity bins are determined.

The distribution of distances between vehicles, obtained by processing US101 traf-
fic data, is shown in Fig. 2.5. It is seen that around 50% of the time, the dis-
tance between vehicles stays between 11m and 27m. Based on this observation,
the driver relative position observations are binned as close, if dx < 11m, nominal

if 11m < dx < 27m, and far if dx > 27m.

Figure 2.5: Distribution of distances between consecutive vehicles presented as a prob-
ability density function.
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Drivers also observe the changes in distances to cars around them, which can be
thought in terms of relative velocities, dv. In DQN, we bin the relative velocities as
approaching if dv < �0.1m/s, stable if �0.1m/s < dv < 0.1m/s and moving away if
dv > 0.1m/s.

As a result, the ego driver observation bins for a single surrounding vehicle consist
of 3 relative position bins and three relative velocity bins. Furthermore, he/she can
observe his/her lane number (1-5). Considering nine surrounding vehicles, the size
of the observation space equals 39395 = 3185 = 1937102445, which approximately
equals 2 billion. Hence, even after binning the observations, the resulting observation
space size is quite large.

It is noted that in earlier studies [62], [8], [64], [65], at most 5 surrounding vehicles
were included in the observation space, which made its size at most 295245. In this
work, thanks to the DQN method, which was not employed earlier, a dramatically
larger observation space can be handled.

2.2.2.2 c-DQN

The main motivation behind using binned observations, which is the case for regular
DQN explained above, is simplifying the learning process without introducing unrea-
sonable assumptions. However, reduced observation resolution may result in inaccu-
rate decisions in critical conditions. To address this problem, we tested the c-DQN
approach, where continuous observations are used without any binning. This approach
provides an accurate view of the surrounding vehicles to the learning process but makes
the observation space infinitely large.
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Figure 2.6: The ego vehicle (red, center) and the vehicles the ego driver can observe.
Lane numbers are shown on the right.

2.2.3 Driver Action Space

Drivers have two action types: changing lane and changing acceleration. For lane
change, two actions are defined: moving to the left lane and moving to the right lane.
In order to determine acceleration changing actions, the distribution of vehicle ac-
celerations, obtained by processing the US101 data, is used. Figure 2.7 presents the
acceleration distribution. In the figure, five regions are identified and approximated by
known continuous distributions shown in red color and superimposed on the original
figure. Based on this acceleration data analysis, the driver actions in terms of acceler-
ations are defined as

1. Maintain: acceleration is sampled from normal distribution with µ = 0,s =

0.0075m/s2.

2. Accelerate: acceleration is sampled from a uniform distribution between
0.5m/s2,2.5m/s2.

3. Decelerate: acceleration is sampled from a uniform distribution between
�0.5m/s2,�2.5m/s2.
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4. Hard Accelerate: acceleration is sampled from a inverse half normal distribution
with µ = 3.5m/s2,s = 0.3m/s2.

5. Hard Decelerate: acceleration is sampled from a half normal distribution with
µ =�3.5m/s2,s = 0.3m/s2.

Figure 2.7: Acceleration distribution is approximated with five different distributions:
a normal distribution with 0 mean and 0.075 standard deviation, a uniform distribution
between 0.5 m/s and 2.5 m/s, a uniform distribution between -0.5 m/s and -2.5 m/s, a
half normal distribution with 3.5 mean and 0.3 standard deviation and a half normal
distribution with -3.5 mean and 0.3 standard deviation. x-axis shows the accelerations
in m/s2 and y-axis presents the values of the probability density function.

Distributions superimposed on the histogram in Fig. 2.7 are continuous. Therefore,
all driver actions are sampled from continuous distributions.

2.2.4 Physical Model of Vehicles

As explained before, drivers can take lane changing or acceleration changing actions.
It is assumed that changing the lane takes 1 second.
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In Fig. 2.6, the variable x is used to represent the longitudinal position and y rep-
resents the lateral position. Similarly, vx and vy represent the longitudinal and lateral
velocities, respectively. The equations of motion for the vehicles in the traffic are given
by

x(t0 + t) = x(t0)+ vx(t0)+
1
2

a(t0)(t � t0)2 (2.13)

y(t0 + t) = y(t0)+ vy(t0) (2.14)

vx(t0 + t) = vx(t0)+a(t0)(t � t0), (2.15)

where t0 is the initial time-step, and a is the acceleration.

2.2.5 Vehicle Placements

At the beginning of the training and simulations, vehicles are randomly placed on a
600m endless circular road segment. Initial distances between vehicles are constrained
to be larger than, or equal to, 11m, the upper limit of close. Initial velocities are
selected to prevent impossible-to-handle cases at the beginning of the training or sim-
ulation: A driver who is in close proximity to the vehicle in front should be able to
prevent a crash using the hard decelerate action.

2.2.6 Reward Function

Rewards are collected based on a reward function, which represents the goals of the
driver. In traffic, drivers try to avoid crashing and getting too close to other cars.
Furthermore, minimizing the travel time with minimal effort is desired. In the reward
function, a variable is defined for each of these goals, and the weights are assigned to
these variables to emphasize their relative importance. The reward function is defined
as

R = w1c+w2s+w3d +w4e, (2.16)

where wi are the weights. The terms of the reward function are defined below.
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c: Equals to -1 if a crash occurs and 0, otherwise. Penalizes the driver if an accident
occurs. Getting out of the road boundaries is also considered a crash.

s: Equals to the difference between the speed of the driver and the mean speed
normalized by the maximum speed. Thus, higher velocities are rewarded to improve
performance. The formula to calculate this term is

s =
v(t)� vmax+vmin

2
vmax

. (2.17)

d: Equals to -1 if the distance to the car in front is close, 0 if the distance to the
car in front is nominal, and 1, otherwise. Rewards keeping the headway large and
penalizes small headways.

e: Equals to 0 if the action of the driver is maintain, -0.25 if the action is accelerate

or decelerate, -0.5 if the action is hardaccelerate or harddecelerate and -1 if the
action is movele f t or moveright. Penalizes the effort consumed for the action taken.

It is noted that the nominal velocity is selected as 12.29m/s (27.49mph), and the
maximum allowed velocity is selected as two times of the nominal velocity, 24.59m/s
(55mph), which is the speed limit at US101 for the selected road section. Nominal
velocity is not the desired velocity. In fact, as shown in (17), drivers take positive
rewards as they approach the maximum velocity and be penalized for velocities smaller
than the nominal velocity.

2.3 Training and Simulation

For the training of the driver policies, two separate reinforcement learning (RL) meth-
ods, Deep Q-Learning (DQN) and its continuous version, c-DQN, are used together
with the level-k reasoning approach. The advantages of these RL methods over each
other are discussed in the previous section. The training environment is a five-lane
road, where a training episode is defined by a fixed number of simulation steps. When
a crash occurs, the existing episode ends a new one is initialized.
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During the training of a level-k driver, 125 level-(k-1) vehicles are placed on the
road, together with the ego vehicle. This number of vehicles makes the density of
the cars approximately equal to the average car density in the US101 data [76]. The
number of cars is decreased to 100 at the end of the 1300th episode and increased to
125 again at the end of the 3800th episode, to increase the number of states that the
drivers are exposed to during training.

Both DQN and c-DQN algorithms are implemented using the Phyton library Keras
[80], together with the stochastic optimizer Adam [81]. The initial learning rate is
selected as 0.005, the discount factor g is selected as 0.975, and the memory capacity
N is selected as 2000.

2.3.1 Level-0 Policy

The non-strategic level-0 policy must be determined first before obtaining other levels.
A level-0 policy can be defined by using several different approaches. For instance, a
uniformly random selection of actions can be defined as level-0 policy [82]. In earlier
studies, where approaches similar to the one proposed in this paper, level-0 policies
are set as a single persisting action regardless of the state being observed [83], [84],
[85], or as a conditional logic based on experience [86]. The level-0 policy used in this
study is defined as

1. hard decelerate if the car in front is close and approaching;

2. decelerate if the car in front is close and stable or nominal and approaching;

3. accelerate if the car in front is nominal and movingaway or f ar and

4. maintain otherwise.
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2.3.2 Training Performance

Fig. 2.8 and Fig. 2.9, show the evolution of the average rewards during training for
DQN and c-DQN methods, respectively. The rewards monotonically increase and
eventually converge for both of the methods. c-DQN rewards tend to have a more
uniform structure within different levels compared to the regular DQN. The main rea-
son for this behavior is that c-DQN learns and converges faster, and reward curves look
more uniform when plotted with the same scale.

Figure 2.8: Average rewards during level-1, level-2 and level-3 policy training for Deep
Q-Learning.

Figure 2.9: Average rewards during level-1, level-2 and level-3 policy training for
continuous Deep Q-Learning.
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2.3.3 Simulation Performance

The following scenarios are simulated

• Level-1 driver is placed on a traffic environment consisting nd �1 level-0 drivers
on a 600m road segment

• Level-2 driver is placed on a traffic environment consisting nd �1 level-1 drivers
on a 600m road segment

• Level-3 driver is placed on a traffic environment consisting nd �1 level-2 drivers
on a 600m road segment,

where nd corresponds to the total number of drivers on the road. Simulations are per-
formed for nd = 75,80,85,90,95,100,105,110,115,120 and 125, for each scenario.
In all of the above scenarios, simulations are run for 100 episodes, each covering a
100s simulation. Simulation results, in terms of crash rates, for DQN and c-DQN are
presented in Fig. 2.10 and 2.11, respectively.

Figure 2.10: Crash rates for level-k vs level-(k-1) scenarios for different number of
cars on a circular 600m road for policies trained with DQN.
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Figure 2.11: Crash rates for level-k vs level-(k-1) scenarios for different number of
cars on a circular 600m road for policies trained with c-DQN.

When compared with previous studies, [8] and [63], in terms of crash rates, policies
proposed in this paper show more realistic driving behavior, since the average crash
rate is 2 per million miles driven nationally [87].

2.4 Validation with Traffic Data

In order to compare the proposed policies, i.e., driver models, with the policies ob-
tained by processing the real traffic data, Kolmogorov Smirnov Goodness of Fit Test
(K-S Test) is employed. This test is one of the most commonly used non-parametric
goodness of fit tests [53]. Since the policies consist of discrete probability distribu-
tions, K-S Test for Discontinuous Distributions [88] is used. The test is explained
briefly in the following section, and a more detailed description can be found in [88].
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2.4.1 Kolmogorov-Smirnov Test for Discontinious Distributions

For an unknown discrete probability distribution function (pdf) F(x) and a hypothe-
sized pdf H(x), the null hypothesis of the K-S Test is

H0 : F(x) = H(x) for all x. (2.18)

To test the null hypothesis, first, empirical cumulative pdf of observed data, Sn(x), and
hypothesized cumulative pdf, Hc(x), are calculated. Secondly, the test statistics, which
are measures of the difference between Sn(x) and Hc(x), are calculated as

D = supx|Hc(x)�Sn(x)| (2.19)

D� = supx(Hc(x)�Sn(x)) (2.20)

D+ = supx(Sn(x)�Hc(x)), (2.21)

where D is the two sided, and D� and D+ are one sided test statistics. Thirdly, critical

levels of D� and D+, P(D�  d�) and P(D+  d+), are calculated using Algorithm
5-6, respectively, where n denotes the sample size, and d� and d+ denote the observed
values of D� and D+.
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Algorithm 5 Calculation of the critical value of D�

1: for i = 1 to n(1�d�) do
2: On the graph of Hc(x), draw a horizontal line with ordinate d�+ i/n

3: if this line intersects with the graph of Hc(x) at a jump (a discontinuity), then
4: Set ci = 1�Hc(x). If the intersection occurs exactly at the left limit of the

discontinuity, use the left limit value for Hc(x). Otherwise use the right limit.
5: else
6: Set ci = 1�d�� i/n

7: end if
8: end for
9: Set b0 = 1

10: for i = 1 to n(1�d�) do
11: if ci > 0 then
12: Set bi = 1�Âi�1

j=0C(i, j)ci� j
j bi

13: end if
14: end for
15: Calculate the critical level as:
16: P(D� � d�) = Ân(1�d�)

i=0 C(n, i)cn�i
i bi
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Algorithm 6 Calculation of the critical value of D+

1: for i = 1 to n(1�d+) do
2: On the graph of Hc(x), draw a horizontal line with ordinate 1�d+� i/n

3: if This line intersects with the graph of Hc(x) at a jump (a discontinuity), then
4: Set ci = 1�Hc(x). If the intersection occurs exactly at the right limit of the

discontinuity, use the right limit value for Hc(x). Otherwise use the left limit.
5: else
6: Set fi = 1�d+� i/n

7: end if
8: end for
9: Set e0 = 1

10: for i = 1 to n(1�d+) do
11: if fi > 0 then
12: Set ei = 1�Âi�1

j=0C(i, j) f i� j
j ei

13: end if
14: end for
15: Calculate the critical level as:
16: P(D+ � d+) = Ân(1�d+)

i=0 C(n, i) f n�i
i ei

Finally, the critical value for the two-sided test statistic is determined as

P(D � d) .
= P(D+ � d)+P(D� � d), (2.22)

where d is the observed value of D. It is noted that this critical value describes the
percentage of data samples, whose test statistics are larger than or equal to d, given
that the null hypothesis is true. Thus, the probability of observation (data point) being
sampled from the hypothesized model, H(x), or, equivalently, the probability of the
null hypothesis being true, increases with the increase in the critical value. The null
hypothesis is rejected if the critical value is smaller than a certain threshold called the
significance value a , which is selected as 0.05 and 0.10 in this work.

Remark 1 When the null hypothesis can not be rejected, it means that there is not

enough data-based evidence that the investigated model is not representative of the
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real data. This leads to retaining the null hypothesis. Therefore, in the rest of the

paper, we call a data-modal comparison “successful” when the null hypothesis is not

rejected.

2.4.2 Comparing game theoretical models with traffic data

Obtaining game-theoretical (GT) policies, which are stochastic maps from observa-
tions to actions, is explained in previous sections. To obtain the data-based driver
policies, the traffic data, [77] and [76], are processed, and for each vehicle, action
probability distributions over all visited states are generated. The probabilities are cal-
culated by the frequencies of the actions taken by the drivers for a given state. Action
probabilities that are lower than 0.01 are replaced with 0.01 with re-normalizations
in order to eliminate close-to-zero probabilities for both the GT policies and the ones
obtained from the data.

GT and the data-based policies are compared for each driver: For a given vehicle,
whose states and actions are captured in the traffic data, first, the vehicle driver’s fre-
quency of actions for each visited state is calculated. These frequencies are converted
to probability distributions over actions for each state. The probability distributions are
called the policies of the driver. Once the driver policies are determined from the data,
these policies are compared with the GT policies, using the K-S test for each state.
Finally, success rate of the GT policies, for the individual driver being investigated, is
defined as the ratio of the states whose corresponding policies are successfully mod-
eled by the GT policies over all the visited states. For example, the result may state
that “70% of the states visited by Driver-1 are successfully modeled by the GT policies,
therefore the success rate is 70%”. The process of comparison for each driver is given
in Algorithm 7, where nstate defines the number of states that are visited by the driver,
ni

visit�driver defines the number of times the state i is visited by the driver. Furthermore,
ncomparisons and nsuccess are the total number of states whose policies are compared and
the number of successful comparisons, respectively. Since the K-S test works best for
large sample sizes, the comparisons are conducted for states that are visited more than
a certain number, which we call nlimit .
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Algorithm 7 Comparing GT models with traffic data, for an individual driver
1: for i = 1 to nstate do
2: if ni

visit�driver � nlimit then
3: ncomparisons+= 1
4: Set pi to the GT policy (pdf).
5: Set ki to the data-based policy (pdf).
6: Set Hc to the cumulative pdf obtained from pi.
7: Set Sn to the cumulative pdf obtained from ki.
8: Test the null hypothesis (18) using K-S test.
9: if Null hypothesis is not rejected then

10: nsuccess+= 1
11: end if
12: end if
13: end for
14: Percentage of successfully modeled states (for this specific driver) = 100 nsuccess

ncomparisons

Data-based policies of each individual driver are compared with the proposed GT
policies using Algorithm 7 and the success rates for each driver are found and plotted.

It is noted that the proposed GT models are pdfs over the action space defined in
Chapter III. To compare the performance of these models with an alternative model,
the alternative model should have the same stochastic map structure where the pdfs
are given over the same action space. If this requirement is not satisfied, i.e., the
alternative model is not stochastic or does not have the same action space, it becomes
unclear how to conduct a systematic comparison. Furthermore, in the case that the
domain of the stochastic map (action space) is not the same, then the traffic data needs
to be reprocessed to obtain policies that have the same structure of the alternative
model, which is a nontrivial task. A commonly used method in these circumstances is
creating a benchmark model, which is used a minimum performance threshold for the
tested model. In this study, we used a model that has uniform pdf over the action space
as the benchmark, and the success rates (see Algorithm 7) of the benchmark model are
also provided for comparison purposes.
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2.4.3 Results

For the validation of the proposed game theoretical (GT) driver models, two different
sets of traffic data, obtained from the highways US101 [76], and I80 [77], are used.

The following definitions are employed when reporting the validation results.

Definition 1 Given two discrete probability distribution functions (pdf) p and q, the

Mean Absolute Error (MAE) between p and q is defined as

MAE = 1/n
n

Â
i=1

|p(xi)�q(xi)|, (2.23)

where xis are random variables.

Definition 2 aMAE is the average of the MAE js between the GT policies and the

data-based policies, for which the null hypothesis is not rejected. Therefore, aMAE is

calculated as

aMAE = 1/M
m

Â
j=1

MAE j, (2.24)

where M is the number of comparisons for which the null hypothesis is not rejected.

Definition 3 rMAE is the average of the MAEks between the GT policies and the data-

based policies, for which the null hypothesis is rejected. Therefore, rMAE is calculated

as

rMAE = 1/K
m

Â
k=1

MAEk, (2.25)

where K is the number of comparisons for which the null hypothesis is rejected.

To compare the proposed models with existing approaches, which are policies in
the previous work [62] (pGT), IDM [66], and MOBIL [67] , first of all, the existing
approaches are reformatted as the same stochastic map structure of the proposed mod-
els. The rear vehicle on the lane of the ego car is included in the observation space of
MOBIL. However, since the observation space utilized in this work does not include
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this vehicle, the rear vehicle on the ego lane is omitted. Two different MOBIL policies,
M � 0 and M � 1, are generated for politeness values (p) 0 and 1, respectively. After
generating the policies of MOBIL and IDM, to obtain the stochastic map structure of
these policies, 100 random samples are created for each state, and action probability
distributions of IDM and MOBIL are generated.

Model vs data comparisons are made for two different nlimit values, specifically
for nlimit = 3 and nlimit = 5. As explained earlier, nlimit is the minimum number of
state visits in the traffic data for the corresponding policy to be considered in the
K-S test. When a state is visited a small number of times, the probability of the re-
sulting driver policy for this state being sampled from a Uniform action-probability-
Distribution (UD) increases, which means that the policy for the given state does not
have a “structure” that is distinguishable from a UD. It is observed that the minimum
number of state visits is approximately equal to 3 for the K-S test to acknowledge
that the policy is sampled from a non-uniform distribution, with a significance value
of 0.05. Therefore we report the results for nlimit = 3. Moreover, we also report the
results for nlimit = 5 to demonstrate the effect of this variable on the test outcomes. Fi-
nally, we state the RLmethod in the results, which is the reinforcement learning method,
either DQN or c-DQN, used in the tests.

2.4.3.1 Model validation using US-101 Data

In this section, we give comparison results between the policies obtained by processing
the raw US-101 Data and the GT policies. The data are collected between 7.50-8.05
AM, and consists of 2168 different drivers [76].

a)RLmethod :DQN, nlimit = 3

For this model-data comparison, aMAE = 0.07 and rMAE = 0.22.
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(a) Percentages of successfully modeled

states by the GT policies obtained through

DQN, for each driver. Each vertical line

belongs to an individual driver.

(b) Percentages of successfully modeled

states by the UD policy, for each driver.

Each vertical line belongs to an individual

driver..

(c) Differences in the percentages of the

successfully modeled states of each driver,

between the DQN-based GT policies and

the UD policy.

(d) Color map showing the number of

drivers whose x% of the visited states are

successfully modeled by the UD policy

and y% by the DQN-based GT policy. x

and y percentages are given in the horizon-

tal and vertical axes, respectively.

Figure 2.12: Comparison results for nlimit = 3 and RLmethod = DQN (US101)

Fig. 2.12a and 2.12b show the performances of the proposed GT policies and the
uniform distribution (UD) policy in terms of modeling human driver behaviors. In
these figures, the x-axis shows driver IDs, which start from 1 and end at 2168; and the
y-axis shows the percentages of the successfully modeled states for each driver. The
differences between the percentages of successfully modeled states, for each driver, by
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the GT policies and the UD policy are presented in 2.12c. Overall, Figs. 2.12a-c show
that the performance (success rate) of the GT policies are better than the UD policy in
general. However, the difference is not large. Fig. 2.12d shows the difference between
the performances of the GT policies and the UD policy using a different visualization
method: In the figure, the x and y axes (horizontal and vertical) show the percentages
of the successfully modeled states by the UD and GT policies, respectively. The colors
on the figure represent the number of drivers. For example, the figure shows that there
are around 75 drivers, whose 50% of the states’ policies could be successfully modeled
by the GT policy while only 30% could be modeled by the UD policy. The colored
cluster being above the x=y line shows that GT performs better than the UD policy, in
general.

b)RLmethod :DQN, nlimit = 5

For this model-data comparison, aMAE = 0.06 and rMAE = 0.22.
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(a) Percentages of successfully modeled

states by the GT policies obtained through

DQN, for each driver. Each vertical line

belongs to an individual driver.

(b) Percentages of successfully modeled

states by the UD policy, for each driver.

Each vertical line belongs to an individual

driver..

(c) Differences in the percentages of the

successfully modeled states of each driver,

between the DQN-based GT policies and

the UD policy.

(d) Color map showing the number of

drivers whose x% of the visited states are

successfully modeled by the UD policy

and y% by the DQN-based GT policy. x

and y percentages are given in the horizon-

tal and vertical axes, respectively.

Figure 2.13: Comparison results for nlimit = 5 and RLmethod = DQN (US101)

Performance of the GT and UD policies are shown in Figs. 2.13a and 2.13b, respec-
tively. The difference between these policies, in terms of successfully modeled state
percentages, is given in Fig 2.13c. When compared with Fig. 2.12c, Fig. 2.13c shows
that the positive performance difference between the GT policies and the UD policy
increases with the increase in nlimit value. The main reason behind this is that with
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the increase of nlimit , the K-S test power increases. Therefore the test can make better
decisions in terms of determining whether or not the observed data is sampled from
the hypothesized probability distribution function (pdf). The color map created earlier
and presented in Fig. 2.12d is also created here but this time for nlimit = 5, which is
given in Fig. 2.13d. Compared to Fig. 2.12d, it is seen that the color cluster’s distance
from the x=y line is increased, corresponding to increased performance improvement
of the GT policies over UD policy.

c) RLmethod :c-DQN, nlimit = 3

aMAE = 0.10 and rMAE = 0.22, for this model-data comparison.
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(a) Percentages of successfully modeled

states by the GT policies obtained through

c-DQN, for each driver. Each vertical line

belongs to an individual driver.

(b) Percentages of successfully modeled

states by the UD policy, for each driver.

Each vertical line belongs to an individual

driver..

(c) Differences in the percentages of the

successfully modeled states of each driver,

between the c-DQN-based GT policies and

the UD policy.

(d) Color map showing the number of

drivers whose x% of the visited states are

successfully modeled by the UD policy

and y% by the c-DQN-based GT policy. x

and y percentages are given in the horizon-

tal and vertical axes, respectively.

Figure 2.14: Comparison results for nlimit = 3 and RLmethod = c�DQN (US101)

Performance of the GT policies, based on c-DQN, in terms of modeling drive be-
havior, and the difference between the GT and UD policy performances are given in
Fig. 2.14a and 2.14c, respectively. The dramatic improvement in modeling percent-
ages compared to the previous two cases, presented in subsections a) and b), is a result
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of continuous, instead of discrete, observations. A color map similar to the one pre-
sented in Fig. 2.12d, but for the case where c-DQN is employed, instead of DQN, is
also created and shown in Fig. 2.14d. Compared to Fig. 2.12d, the color cluster is
further away from the x=y line, which also emphasizes the dramatic improvement over
the positive performance difference of GT policies over the UD policy.

d) RLmethod :c-DQN, nlimit = 5

aMAE = 0.08 and rMAE = 0.20, for this model-data comparison.
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(a) Percentages of successfully modeled

states by the GT policies obtained through

c-DQN, for each driver. Each vertical line

belongs to an individual driver.

(b) Percentages of successfully modeled

states by the UD policy, for each driver.

Each vertical line belongs to an individual

driver..

(c) Differences in the percentages of the

successfully modeled states of each driver,

between the c-DQN-based GT policies and

the UD policy.

(d) Color map showing the number of

drivers whose x% of the visited states are

successfully modeled by the UD policy

and y% by the c-DQN-based GT policy. x

and y percentages are given in the horizon-

tal and vertical axes, respectively.

Figure 2.15: Comparison results for nlimit = 5 and RLmethod = c�DQN (US101)

Fig. 2.15a shows the percentages of successfully modeled driver behavior, for each
of the 2168 drivers, by the c-DQN-based GT policies. Moreover, Fig. 2.15c shows the
difference between the successfully modeled visited state percentages of each driver by
the GT policies and the UD policy. Fig. 2.15d presents a color map similar to the one
given in Fig. 2.14d, but this time for the case of nlimit = 5. Compared to the previous
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case, presented in subsection c), these figures, Figs. 2.15a-c, show that the positive
performance difference between the GT and UD policies improved. The main reason
for this improvement is the increase nlimit value, which corresponds to an increased
K-S test power.

2.4.3.2 Model Validation with I-80 Data

In addition to US101, highway I-80 data [77] is also used to test the validity of the
proposed GT policies. For this test, I-80 data collected between 5.00-5.15 PM is used,
which contains 1835 drivers.

a)RLmethod :DQN, nlimit = 3

For this model-data comparison, aMAE = 0.04 and rMAE = 0.23.
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(a) Percentages of successfully modeled

states by the GT policies obtained through

DQN, for each driver. Each vertical line

belongs to an individual driver.

(b) Percentages of successfully modeled

states by the UD policy, for each driver.

Each vertical line belongs to an individual

driver..

(c) Differences in the percentages of the

successfully modeled states of each driver,

between the DQN-based GT policies and

the UD policy.

(d) Color map showing the number of

drivers whose x% of the visited states are

successfully modeled by the UD policy

and y% by the DQN-based GT policy. x

and y percentages are given in the horizon-

tal and vertical axes, respectively.

Figure 2.16: Comparison results for nlimit = 3 and RLmethod = DQN (I80)

For every 1835 human drivers in the dataset, percentages of visited states whose
policies are successfully modeled by GT and UD policies are presented in Figs. 2.16a
and 2.16b, respectively. These figures show that the GT policies model human drivers
considerably better than the UD policies. The difference between the percentages of
the successfully modeled policies by the GT policies and the UD policy is given in
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Fig. 2.16c. When compared with Fig. 2.12c, Fig. 2.16c shows that the proposed GT
policies have a higher percentage of success rate in modeling drivers in I80 compared
to the ones in US101. In Fig. 2.16d x and y axes (horizontal and vertical) show the per-
centages of the successfully modeled states by the UD and GT policies, respectively.
The color cluster in Fig. 2.16d being above the x=y line shows that the GT policies
perform better than the UD policy. Compared to Fig. 2.12d, Fig. 2.16d shows that the
positive performance difference between the GT and UD policies is larger for I80 data
compared to that of US101.

b)RLmethod :DQN, nlimit = 5

aMAE = 0.03 and rMAE = 0.23, for this model-data comparison.
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(a) Percentages of successfully modeled

states by the GT policies obtained through

DQN, for each driver. Each vertical line

belongs to an individual driver.

(b) Percentages of successfully modeled

states by the UD policy, for each driver.

Each vertical line belongs to an individual

driver..

(c) Differences in the percentages of the

successfully modeled states of each driver,

between the DQN-based GT policies and

the UD policy.

(d) Color map showing the number of

drivers whose x% of the visited states are

successfully modeled by the UD policy

and y% by the DQN-based GT policy. x

and y percentages are given in the horizon-

tal and vertical axes, respectively.

Figure 2.17: Comparison results for nlimit = 5 and RLmethod = DQN (I80)

Driver behavior modeling performance of the GT and UD policies are given in
Fig. 2.17a and 2.17b, respectively. The difference between these policies, in terms of
successfully modeled state percentages, is given in Fig 2.17c. A color map, similar to
Fig. 2.13d, is also shown in Fig. 2.17d. Compared to Figs. 2.16a-d, Figs. 2.17a-d
show that with the increase in the nlimit value, i.e., with the increase in the test power,
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the difference between the GT and the UD policies becomes more clear in terms of
human driver behavior modeling performance.

c) RLmethod :c-DQN, nlimit = 3

aMAE = 0.09 and rMAE = 0.22, for this model-data comparison.

(a) Percentages of successfully modeled

states by the GT policies obtained through

c-DQN, for each driver. Each vertical line

belongs to an individual driver.

(b) Percentages of successfully modeled

states by the UD policy, for each driver.

Each vertical line belongs to an individual

driver..

(c) Differences in the percentages of the

successfully modeled states of each driver,

between the c-DQN-based GT policies and

the UD policy.

(d) Color map showing the number of

drivers whose x% of the visited states are

successfully modeled by the UD policy

and y% by the c-DQN-based GT policy. x

and y percentages are given in the horizon-

tal and vertical axes, respectively.

Figure 2.18: Comparison results for nlimit = 3 and RLmethod = c�DQN (I80)
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In Fig. 2.18a, the performance of the GT policies in terms of modeling driver
performance is shown, and in Fig. 2.18c, the difference between the percentage of
states whose policies are successfully modeled by the GT policies and by the UD policy
is given. Fig. 2.18d shows a color map similar to the one presented in Fig. 2.16d, but
for the case where c-DQN, instead of DQN, is employed. Compared to the previous
two cases, the results of which are provided in Figs. 2.16a-d and 2.17a-d, Figs. 2.18a-c
show a dramatic improvement in the modeling capability of the GT policies, thanks to
the continuous observation space. Furthermore, a comparison between Fig. 2.14a-c
and Fig. 2.18a-c shows that proposed GT policies’ performance advantage over UD is
more pronounced for I80 compared to US101.

d) RLmethod :c-DQN, nlimit = 5

For this model-data comparison, aMAE = 0.07 and rMAE = 0.21.
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(a) Percentages of successfully modeled

states by the GT policies obtained through

c-DQN, for each driver. Each vertical line

belongs to an individual driver.

(b) Percentages of successfully modeled

states by the UD policy, for each driver.

Each vertical line belongs to an individual

driver..

(c) Differences in the percentages of the

successfully modeled states of each driver,

between the c-DQN-based GT policies and

the UD policy.

(d) Color map showing the number of

drivers whose x% of the visited states are

successfully modeled by the UD policy

and y% by the c-DQN-based GT policy. x

and y percentages are given in the horizon-

tal and vertical axes, respectively.

Figure 2.19: Comparison results for nlimit = 5 and RLmethod = c�DQN (I80)

Performance of the GT policies in terms of modeling human driver behavior is
presented in Fig. 2.19a. Furthermore, for each of the 1835 drivers, the difference
between percentages of successfully modeled states by the GT policies and the UD
policy is shown in Fig. 2.19c. A color map, similar to the one presented in Fig.
2.18d is given in Fig. 2.19d. Compared to Figs. 2.18a-c, Figs. 2.19a-c show that
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the increase in nlimit , which increases the K-S test power, demonstrates the positive
difference between the modeling capability of the GT and UD policies more clearly.

Remark 2 US101 data is used only to determine the observation and action set

boundaries. It is not used to train the GT driver models. Therefore, the GT policies are

not obtained by fitting the model parameters to the data. However, since this data is

used to set the observation-action space boundaries, it still affected, albeit indirectly,

the obtained models. To test the resulting GT policies with data that is not used in any

way to obtain these policies, additional model-validation tests are conducted with the

I80 data. To summarize, although the US101 data is not used to train the models, and

therefore overfitting is not a concern, additional validation tests are conducted with

the I80 data for further assurance of the validity of the GT models.

2.4.3.3 Summary of Results

Table I and Table II are given for the clear presentation of the statistical analysis results,
which provide a summary of each K-S test conducted with different parameters. c-
DQN policies are referred to as cGT, and DQN policies are referred to as dGT in the
results.

Table I presents the results obtained using US101 data for the proposed GT policies
and the existing approaches. Average mean errors for the policies that passed the K-S
test, aMAE, and for the ones that failed to pass the test, rMAE, are provided in the
table. Results present that the proposed GT policies, cGT, model human behaviors
better than the existing approaches. It is noted that in the previous work [62], data
filtering is utilized since a traditional RL approach is used. Thus, comparisons are
made with a limited portion of the data in [62]. On the other hand, no data filtration is
done in this work. Although much larger data is utilized, cGT performs significantly
better than pGT policies.

Table 3 presents the performances of the proposed GT policies and baseline models
for I80 data. This table also shows that proposed GT policies overperformed baseline
methods, IDM and MOBIL, in terms of modeling human drivers. Besides, again, the
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Table 2.1: Driver modeling performances of the proposed GT policies and the existing
approaches for US101 data.

nstate = 3 nstate= 5
a

=
0.

05
Mean % modeled by cGT policies 76.73% 72.69%
Mean % modeled by pGT policies 60.92% 54.34%
Mean % modeled by dGT policies 40.26% 34.76%
Mean % modeled by IDM 17.74% 8.76%
Mean % modeled by M-0 6.09% 2.80%
Mean % modeled by M-1 1.34% 0.66%
Mean % difference: %cGT - %pGT 15.81% 18.35%
Mean % difference: %cGT - %dGT 36.47% 37.93%
Mean % difference: %cGT - %IDM 58.99% 63.93%
Mean % difference: %cGT - %M-0 70.64% 69.89%
Mean % difference: %cGT - %M-1 75.39% 72.03%
aMAE 0.10 0.08
rMAE 0.22 0.20

a
=

0.
10

Mean % modeled by cGT policies 68.22% 64.28%
Mean % modeled by pGT policies 52.48% 45.73%
Mean % modeled by dGT policies 31.88% 30.10%
Mean % modeled by IDM 11.73% 5.31%
Mean % modeled by M-0 3.77% 1.23%
Mean % modeled by M-1 0.89% 0.41%
Mean % difference: %cGT - %pGT 15.74% 18.55%
Mean % difference: %cGT - %dGT 36.34% 34.18%
Mean % difference: %cGT - %IDM 56.49% 58.97%
Mean % difference: %cGT - %M-0 64.45% 63.05%
Mean % difference: %cGT - %M-1 67.33% 63.87%
aMAE 0.09 0.08
rMAE 0.21 0.19

performances of the proposed policies are significantly better than the policies in the
previous work.

Statistical analysis summary for the I80 data is provided similarly in Table 2. Sim-
ilar conclusions can be drawn from the results shown in Table 2. The proposed GT
policies overperformed the existing approaches. The main difference is that the power
of the proposed GT policies is more pronounced here compared to the US101 data.
The difference does not stem from a dramatic improvement in the success of the GT
policies but a large drop in the predictive power of the existing policies for this dataset.
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Table 2.2: Driver modeling performances of the proposed GT policies and the existing
approaches for I80 data.

nstate = 3 nstate= 5
a

=
0.

05
Mean % modeled by cGT policies 71.42% 64.37%
Mean % modeled by pGT policies 35.97% 30.66%
Mean % modeled by dGT policies 46.43% 41.83%
Mean % modeled by IDM 4.56% 2.46%
Mean % modeled by M-0 1.86% 0.96%
Mean % modeled by M-1 0.15% 0.05%
Mean % difference: %cGT - %pGT 35.45% 33.71%
Mean % difference: %cGT - %dGT 24.99% 22.54%
Mean % difference: %cGT - %IDM 66.86% 61.91%
Mean % difference: %cGT - %M-0 69.56% 63.41%
Mean % difference: %cGT - %M-1 71.27% 64.32%
aMAE 0.09 0.07
rMAE 0.22 0.21

a
=

0.
10

Mean % modeled by cGT policies 63.04% 56.37%
Mean % modeled by pGT policies 28.73% 24.24%
Mean % modeled by dGT policies 41.15% 38.70%
Mean % modeled by IDM 3.31% 1.43%
Mean % modeled by M-0 1.15% 0.44%
Mean % modeled by M-1 0.08% 0.03%
Mean % difference: %cGT - %pGT 34.31% 32.13%
Mean % difference: %cGT - %dGT 21.89% 17.67%
Mean % difference: %cGT - %IDM 59.73% 54.94%
Mean % difference: %cGT - %M-0 61.89% 55.93%
Mean % difference: %cGT - %M-1 62.96% 56.34%
aMAE 0.08 0.06
rMAE 0.21 0.20

One conclusion is that the driver reactions given in I80 dataset are much harder to
model than US101.
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Chapter 3

GP-k: Learning Model for
Time-Extended Human-Human
Interactions

A new learning model for time extended human-human interactions is proposed in this
work. Game theory is mainly focused on equilibrium concepts, which fails to infer
human behavior in some cases, especially when how to reach the equilibrium becomes
important. Learning models imitate the human learning process without any equilib-
rium assumptions. In this work, through a hierarchical reasoning solution concept,
equilibrium concepts are combined with Gaussian Processes to predict the learning
behavior. As a result, a novel bounded rational learning approach is developed.

3.1 Building Blocks

The building blocks of the GP-k are presented in this section. Level-k reasoning, rein-
forcement learning, and Gaussian processes are these building blocks. A brief expla-
nation for each is given below.
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3.1.1 Level-k Reasoning

Level-k reasoning is a hierarchical solution concept first proposed in [5], [6] and [89].
In level-k reasoning, level-0 agents do not hold any belief about others and behave
non-strategically. Level-1 players best responds based on their assumption that all
other players in the environment are level-0. At one step higher, in a similar manner to
level-1, level-2 agents believes that other players are level-1 and responds best to this
belief. In short, level-k responds best based on the assumption that all other agents are
level-(k-1). Thus, level-k reasoning is a iterated best response approach. More detailed
explanations of level-k are presented in [62].

3.1.2 Reinforcement Learning

Reinforcement learning is a learning representation through reward and punishment. In
short, agents observe the environment, take action, transition into a new environment
setting, and receive a reward. The goal of the agents are to maximize the weighted
cumulative reward. More detailed explanation of reinforcement learning can be found
in [90] and [62]. In this work, an approximate reinforcement learning approach, deep
Q-learning (DQN), presented in [91] is utilized.

3.1.3 Combination of RL with Level-k

Level-k reasoning and reinforcement learning is combined in order to obtain level-k
policies. The main idea is to train the ego player’s level-k policy using reinforcement
learning, while assigning level-(k-1) policies to the other players. A detailed explana-
tion of this approach is given in the previous chapter, and [62]. In this work, instead
of discrete level-k policies, i.e. {level�0, level�1, . . ., level�k}, continuous level-k
policies, , where k is a non-negative real number, are utilized.

56



3.1.4 Gaussian Process

Gaussian process is a stochastic process, where any finite number of random variables
follow a multivariate Gaussian distribution. A function is expressed by a Gaussian
process as

f (x) ⇠ GP(m(x),k(x,x0)) (3.1)

where m(x) is the mean function and k(x,x0) is the kernel, i.e. covariance function.
Mean function and kernel are defined as

m(x) = E[ f (x)] (3.2)

k(x,x0) = E[( f (x)�m(x))( f (x0)�m(x0))] (3.3)

A detailed explanation of Gaussian processes can be found in [92].

3.2 GP-k

In an environment consisting of two players, the learning curve of a player is repre-
sented by a function f (t) : t ! L, where t is the time, and L is the level space, i.e.,
consists of all possible levels. It is predicted that a player starts with a policy of a prior
level, pp, and evolves to an end policy, i.e., the reasoning level, p f , at the converged
game at t f .

For the learning curve of an agent, a Gaussian process is defined as distributions
over f (t) such that GP(m(t),k(t, t 0)), where m(t) is the mean function and k(t, t 0) is
the kernel as defined previously. In the proposed approach, for levels from 0 to the
maximum level x, l0, . . . , lx, L contains l0, l1, . . . , lx�1, lx. In this work, the kernel is
selected as

k(ti, t j) =
1

s2
f

e
�1
l2 (ti�t j)T (ti�t j)

(3.4)
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(a) Learning curve at the ini-
tial game.

(b) Learning curve after 5 ob-
servations.

(c) Learning curve after 10 ob-
servations.

Figure 3.1: Evaluation of a learning curve of an agent

where s f and l are the design parameters.

At the beginning of the game, only two points are known.

f (0) = pp and f (t f ) = p f (3.5)

Thus,

T 0 =

"
t0
t f

#
, f 0 =

"
pp

p f

#
and K(T,T ) =

"
k(t0, t0) k(t0, t f )

k(t f , t0) k(t f , t f )

#
(3.6)

At time-step 1, t1, the action taken by the agent is observed as a1. The probability
density function of possible levels for this is calculated as F(l), l 2 [l0, lx, ] and the
parameters of the closest Gaussian distribution over levels is obtained from optimizing
1-Wasserstein distance as

minimize
a1,b1

Z

L
| F(l)�N (a1,b 2

1 ) | dl (3.7)

This observation, T 1
⇤ = [t1] and f 1

⇤ = [pa1 ] with Gaussian noise N (0,b 2
1 ), is utilized

to update the learning curve by using the relations
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"
f 0

f 1
⇤

#
= N

 
0

"
K(T 0,T 0) K(T 0,T 1

⇤ )

K(T 1
⇤ ,T 0) K(T 1

⇤ ,T 1
⇤ )

#!
(3.8)

K(T 1
⇤ ,T

0) = K(T 0,T 1
⇤ )

T =

"
k(t1, t0)

k(t1, t f )

#
. (3.9)

From this, the curve is updated as

µ1
⇤ = K(T 1

⇤ ,T
0)K(T 0,T 0) f 0 (3.10)

S1
⇤ = K(T 1

⇤ ,T
1
⇤ )�K(T 1

⇤ ,T
0)K(T 0,T 0)�1K(T 0,T 1

⇤ ) (3.11)

T 1 =

2

664

t0
t1
t f

3

775 (3.12)

f 1 =

2

664

p0

pa1

p f

3

775 (3.13)

Similarly, at time-step i, initially, it is known that

T i�1 =

2

66666664

t0
t1
...

ti�1

t f

3

77777775

, f i�1 =

2

66666664

pp

pa1
...

pai�1

p f

3

77777775

(3.14)

K(T i�1,T i�1) =

2

66666664

k(t0, t0) k(t0, t1) · · · k(t0, ti�1) k(t0, t f )

k(t1, t0) k(t1, t1)+b 2
1 · · · k(t1, ti�1) k(t1, t f )

...
... . . . ...

...
k(ti�1, t0) k(ti�1, t1) · · · k(ti�1, ti�1)+b 2

i�1 k(ti�1, t f )

k(t f , t0) k(t f , t1) · · · k(t f , ti�1) k(t f , t f )

3

77777775

(3.15)
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The probability density function of levels corresponding to the observed action is
estimated as F2(l), l 2 [l0, lx], and the closest Gaussian distribution parameters are
found as

minimize
ai,bi

Z

L
| Fi(l)�N (ai,b 2

i ) | dl (3.16)

From this observation, T i
⇤ =

h
ti
i

and f i
⇤ =

h
pai

i
with Gaussian noise N (0,b 2

i ), the
learning curve is updated by using the relations

"
f i�1

f 1
⇤

#
= N

 
0

"
K(T i�1,T i�1) K(T i�1,T i

⇤)

K(T i
⇤,T i�1) K(T i

⇤,T i
⇤)

#!
(3.17)

K(T i
⇤,T

i�1) = K(T i�1,T i
⇤)

T =

2

66666664

k(ti, t0)

k(ti, t1)
...

k(ti, ti�1)

k(ti, t f )

3

77777775

. (3.18)

as
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µ i
⇤ = K(T i

⇤,T
i�1)K(T i�1,T i�1) f i�1

Si
⇤ = K(T i

⇤,T
i
⇤)�K(T i

⇤,T
i�1)K(T i�1,T i�1)�1K(T i�1,T i

⇤)

T i =

2

66666664

t0
t1
...
ti
t f

3

77777775

f 1 =

2

66666664

p0

po1
...

poi

p f

3

77777775

.

This process shapes the learning curve as time passes and continues until t f , where
pa f = p f .

In this work, the constrained Gaussian processes approach presented in [93] is uti-
lized in order to set an upper and lower limit for the reasoning levels.

The proposed approach is explained visually in Fig. 1-a, 1-b, and 1-c. Although
these are the design parameters, s f is selected as x/2 to cover all the level range, and l

is selected as 10. The learning curve of an agent at the initial game is presented in Fig.
1-a. After five observations, the evolved learning curve is given in Fig. 1-b. After five
more observations, the obtained learning curve is given in Fig. 1-c.
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3.3 Applications

3.3.1 Optimal Behavior via Level Inference

At the beginning, for each li, i 2 Z⇤, learning curves are formed and trained. For in-
stance, GPi presents the distribution of learning curve functions if the initial assumption
on the level of the opponent is i. A level-k agent utilizes the GPk�1 for the predictions
about the opponent.

When a level-k agent is placed in an environment, first of all, from the first two ac-
tion observations of the opponent a0,a1, the agent predicts the corresponding observed
level set such that

(o0,o1) = (argmax
i

(p(a0|pi),argmax
j

(p(a1|p j)), such that pi,p j 2 P (3.19)

where P is the policy set contains all possible policies corresponding to all levels, i.e.,
p0, . . . ,px. In addition, the second possible set is obtained as

(o
0
0,o

0
1) = (argmax

i
(p(a0|pi),argmax

j
(p(a1|p j)), such thatpip j 2 {P

0 �po0 �po1}.

(3.20)

Then, for (o0,o1) corresponding time sets are calculated as

(t0, t1) = (argmin
i

(K(i,T )K(T,T ) f �o0),argmin
j

(K( j,T )K(T,T ) f �o1). (3.21)

Similarly, time sets (t
0
0, t1), (t0, t

0
1) and (t

0
0, t

0
1) are calculated for each combined set,

(o
0
0,o1), (o0,o

0
1) and (o

0
0,o

0
1). Then, the most possible level observation is assumed to
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be the one for which the difference between the predicted time-steps are minimum. In
other words

(t⇤0 , t
⇤
1) = argmin

i
d(i) such thati 2 H. (3.22)

where H : {(t0, t1),(t
0
0, t1),(t0, t

0
1),(t

0
0, t

0
1)} and d(u) = u1 �u0.

As a result, the level of the opponent in each future time ti may be calculated as the
mean of the Gaussian process at t⇤0 + ti(t⇤1 � t⇤0) as

lti = K(t⇤0 + ti(t⇤1 � t⇤0),T )K(T,T ) f +
x
2
. (3.23)

3.4 Sensitivity Analysis

In order to show the effects of the model parameters on the performance of the model, a
sensitivity analysis is conducted. The analyzed parameter is the variance of the kernel,
s f . For three different values of s f , 0.5, 1, and 1.5, the modeling performance of the
learning model is analyzed.

In order to analyze the modeling performance, two merging scenarios are extracted
from reconstructed I-80 data [77]. In these cases, the level of the non-merging car is
predicted. First of all, in order to obtain the predicted equilibrium point, two agents
are trained in a merging scenario following a multi-agent learning approach, friend
Q-learning [94]. The training environment is the same as the one explained in [95].
At the end of the training, two policies are obtained: merging car policy, pFoF

merging, and
non-merging car policy, pFoF

normal . The level of the non-merging car policy is estimated
as

l = argmax
i

KS(pFoF
normal,pi) (3.24)

where KS(p j,pk) is the function that calculates the mean critical value of the K-S test
explained in Chapter 2 over all states. The initial point is also found from the first
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observation following the Eqn. 3.7. Then for each time-step, the action of the driver
is predicted. For this, first, the level is predicted as explained in Chapter 3.2, and the
action in that state is taken as the most probable action of the predicted level at that
state. After the prediction, the driver’s action is observed for the next prediction, and
GP-k is updated. This process is followed until the end of the scenario. After predicting
actions in each step, the predicted trajectory is generated as the resulting trajectory if
the driver starts from his/her initial point and follows the predicted actions.

The mean percentage of the correctly predicted actions and the mean absolute tra-
jectory deviations are calculated for each variable set to evaluate the performance. The
results are presented in Figure 3.2. With the increase in the variance of the kernel,
the modeling performance increases, and the trajectory deviation decreases. The main
reason behind this is that higher variance allows more model elasticity and better fit to
the observations.

Figure 3.2: Performance of the learning model with varying variance parameter.
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Chapter 4

Conclusion

This thesis proposes a stochastic modeling framework for modeling human driver be-
haviors and a learning model for modeling the time extended human-human inter-
actions. The modeling framework is built by combining a static iterated reasoning
approach, level-k reasoning, and a deep reinforcement learning method, DQN. The
proposed approach covers a dramatically larger class of scenarios compared to similar
approaches in the literature. Proposed driver models are validated with real data, and
the modeling performance is compared with the existing approaches. It is presented
that the proposed policies perform significantly better than the existing approaches in
terms of modeling human behavior.

Secondly, a dynamic learning model for time-extended human-human interactions
is proposed by combining reinforcement learning, level-k reasoning, and Gaussian
processes. The proposed approach offers a novel bounded rational learning model. A
sensitivity analysis of the proposed approach is presented in order to show the effects
of model parameters on the modeling performance.
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