
A MEDIA CACHING APPROACH
UTILIZING SOCIAL GROUPS

INFORMATION IN 5G EDGE NETWORKS

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

computer engineering

By

Afra Dömeke

March 2021

A MEDIA CACHING APPROACH UTILIZING SOCIAL GROUPS
INFORMATION IN 5G EDGE NETWORKS
By Afra Dömeke
March 2021

We certify that we have read this thesis and that in our opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Ibrahim Körpeoğlu(Advisor)

Ozgıir Ulusoy Ö

Approved for the Graduate School of Engineering and Science:

Direcför of the Graduate School
2

ABSTRACT

A MEDIA CACHING APPROACH UTILIZING SOCIAL
GROUPS INFORMATION IN 5G EDGE NETWORKS

Afra Dömeke

M.S. in Computer Engineering

Advisor: İbrahim Körpeoğlu

March 2021

Increased demand for media content by mobile applications has imposed huge

pressure on wireless cellular networks to deliver the content efficiently and ef-

fectively. To keep up with this demand, mobile edge computing (MEC), also

called multi-access edge computing, is introduced to bring cloud computing and

storage capabilities to the edges of the cellular networks, such as 5G, with the

aim of increasing quality of service to applications and reducing network traffic

load. One important application of multi-access edge computing is data caching.

As significant portion of multimedia data traffic is generated from media sharing

and social network services, various mobile edge caching schemes have emerged to

improve the latency performance of these applications. In this thesis, driven from

the fact that social interaction between mobile users has a strong influence on

data delivery patterns in the network, we propose a socially-aware edge caching

system model and methods that consider social groups of users in caching deci-

sions together with storage and transmission capacities of edge servers. Unlike

other studies, where users are manually grouped according to their interests, our

approach is based on user-specified social groups, where users in a group are nei-

ther obligated to share the same interests nor be attentive to the shared content.

Our methods cache content considering locations of members of social groups and

the willingness of these members in using the related applications. We evaluate

the performance of our proposed methods with extensive simulation experiments.

The results show that our methods can significantly reduce user-experienced la-

tency and network load.

Keywords: 5G networks, multi-access edge computing.

3

ÖZET

5G AĞLARINDA SOSYAL GRUP BİLGİLERİNE
DAYALI VERİ ÖNBELLEKLEME YÖNTEMİ

Afra Dömeke

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: İbrahim Körpeoğlu

Mart 2021

Günümüzde mobil uygulamaların yaygınlaşması ve buna bağlı olarak veri

trafiğinin artmasıyla birlikte, bu verileri hızlı ve yüksek kaliteli bir şekilde sun-

mak kablosuz hücresel ağlar için giderek zorlaşmaya başlamıştır. Bu talebi

karşılamak için, çoklu-erişimli uç hesaplama (MEC) olarak adlandırılan, bu-

lut sunucuların bilgi işlem yeteneklerini uç noktalarda da sağlayarak mesaf-

eye dayalı yüksek gecikmeyi ve veri trafiğini azaltma imkanı sunan bir model

oluşturulmuştur. Bu modelin önemli bir uygulaması da, verilerin hızlı dağıtım

amacıyla uç noktalar olarak tanımlanan baz istasyonlarının önbelleklerinde de-

polanması işlemidir. Bu noktada, artan veri trafiğinin özelikle sosyal medya

uygulama kullanıcıları tarafından yaratıldığının görülmesi, bu uygulamaların per-

formansını iyileştirmek için baz istasyonlarında etkili depolama tekniklerinin

araştırılmasına yol açmıştır. Bu tezde, mobil kullanıcılar arasındaki sosyal etk-

ileşimin ağdaki veri dağıtım modelleri üzerinde güçlü bir etkiye sahip olduğu

gerçeğinden hareketle, sosyal gruplara bağlı bir uç önbellekleme sistem mod-

eli önerilmektedir. Kullanıcıların ilgi alanlarına göre manuel olarak grup-

landırıldığı literatürdeki diğer çalışmalardan farklı olarak bu çalışma, sosyal

grupların kullanıcılar tarafından oluşturulduğu ve üyelerin aynı ilgi alanlarını

paylaşmak zorunda olmadığı bir sisteme dayanmaktadır. Bu yöntemle sosyal grup

üyelerinin konumları ve bu üyelerin ilgili uygulamaları kullanma istekliliği göz

önünde bulundurularak, verileri etkili bir şekilde uçlarda depolayıp, kullanıcılar

tarafından deneyimlenen kalitenin arttırılması ve mesafeye dayalı yüksek gecik-

menin azaltılması hedeflenmektedir. Önerdiğimiz yöntemlerin performansları

kapsamlı deneylerlerle değerlendirildiğinde, yöntemlerimizin gecikmeyi ve ağ

yükünü önemli ölçüde azalttığı görülmektedir.

Anahtar sözcükler : 5G ağları, çoklu-erişimli uç hesaplama.

4

Acknowledgement

First of all, I give my deep appreciation to my advisor Prof. Dr. İbrahim

Körpeoğlu. I am very grateful for his continuous support and patience. It

wouldn’t be possible for me to conduct this study without his constant guid-

ance and encouragement.

I would like to thank the members of the committee, Prof. Dr. Özgür Ulu-

soy and Prof. Dr. Ertan Onur, for sparing the time to evaluate this work and

their valuable feedback. I also thank Vodafone and Information and Communi-

cation Technologies Authority of Turkey for supporting this research within the

framework of the 5G and Beyond Joint Graduate Support Programme.

I would like to thank to Osman Emre Deniz who provided a great help for this

work. Without his contribution, this work would not have been completed.

I also would like to thank Ozancan Doğan. I am grateful for his friendship,

support and guidance since high school.

I also thank Canberk Duman for always supporting me and always being by

my side. Without him, keeping up with all the struggles would be a lot harder.

I am also very grateful for his invaluable feedbacks.

Lastly, I owe the most sincere thanks to my parents Hayrullah and Nur, and

my sister Alkım. Their unconditional and endless love and support is always my

motivation to go forward. To them I dedicate this thesis.

5

Contents

1 Introduction 10

2 Related Work 14

3 System Model and Problem Formulation 17

3.1 System Model . 17

3.2 Minimizing Total Latency . 21

3.3 Minimizing Total Network Load 23

3.4 Summary . 25

4 Proposed Algorithms 27

4.1 Preliminaries . 28

4.2 Batch Cache Placement Algorithm 30

4.3 Dynamic Cache Placement Algorithm 32

4.4 Fairness Analysis of Algorithms 34

6

CONTENTS 7

4.5 Summary . 35

5 Experimental Results and Evaluation 37

5.1 Simulation Settings . 37

5.2 Simulation Results . 39

5.2.1 Performance Comparison in a Simple System 39

5.2.2 Impact of Batch Size . 39

5.2.3 Performance Comparison in a Large System 41

5.2.4 Impact of Cache Size . 44

5.2.5 Impact of File Size . 45

5.2.6 Impact of Correlated Parameters 46

5.3 Summary . 49

6 Conclusion 51

List of Figures

3.1 Example system. 19

4.1 Gini index versus number of files. 36

5.1 Performance comparison of the solutions in a simple system. . . . 40

5.2 Total latency versus batch sizes (m). 41

5.3 Performance comparison of the solutions in a large system. 42

5.4 Total latency versus hop-distances between users and centralized

server (H). 43

5.5 Total latency versus cache size. 44

5.6 Cache hit ratio versus cache size. 45

5.7 Total latency versus average file size. 46

5.8 Total latency versus totalCachingCapacity/N 47

5.9 Total latency versus G/U . 48

5.10 Total latency versus F/U . 49

8

List of Tables

3.1 System Parameters. 20

5.1 Parameter values used in numerical results. 38

9

Chapter 1

Introduction

Developments in communication technologies have led to the explosive growth

of mobile connectivity over the past years. Currently more than 60% of the

world’s total population use the Internet while Cisco estimates that this ratio will

increase to 70% by 2023 and the number of mobile connections will grow to 13.1

billion [1, 2]. With the increasing popularity of social media and media sharing

services such as Facebook, Instagram, YouTube, etc., the largest consumer of

global Internet usage become social media users. Studies show that users are

spending more than one-third of their online time on social media platforms with

a daily average of 2.5 hours [3]. Similarly, being one of the most popular social

media platforms, YouTube has over 5 billion videos being watched by 30 million

visitors with an average of 875,000 new users each day in 2019 [4].

This massive interconnection of devices and people creates huge growth in mobile

data traffic, degrading the quality of service (QoS) perceived by the users [5, 6, 7].

The International Data Corporation suggests that, collective sum of the world’s

data traffic will grow from 33ZB to a 175ZB by 2025, for a compounded annual

growth rate of 61 percent [8]. Correspondingly, mobile network operators are

struggling to cope with the significant rise in the data consumption. According

to their statistics, average monthly media consumption on mobile devices exceeds

4GB in the US, with video an ever increasing percentage of that [9]. Such an

10

CHAPTER 1. INTRODUCTION 11

increase in mobile media demand causes 33% of users to face poor streaming

quality and creates a big concern on data collection and storage [10].

To overcome these challenges, European Telecommunications Standards Institute

(ETSI) introduced Multi-access Edge Computing (MEC) at the edges of the wire-

less networks to reduce delay, data and tasks exchange between edge devices and

remote data centers [11]. As serving content from distant servers causes long

delays and decreases quality of experience (QoE), MEC brings communication,

computation, caching, and control closer to mobile users by deploying servers at

the edge of a network, i.e., on base stations (BSs) of a wireless network [12, 13].

Considering the fact that the majority of data traffic consumption is originated

from the requests of different users for the same popular contents, caching can be

also beneficial for MSNs by reducing access latency. However, compared with cen-

tralized cloud computing, MEC servers have limited resources for handling data

at the edges [14]. Therefore, when MEC is used in a network for caching, using

edge server storage efficiently and effectively becomes an important problem.

There are several studies about how MEC should be deployed and used in cellular

networks [6, 15, 16, 17, 18]. A range of concerns such as delay, energy efficiency,

traffic load, or joint optimization of them can be addressed by appropriately

choosing at which servers or data centers to place which piece of data, given a

group of servers or data centers that reside at different locations [15, 16, 17, 18].

The main idea is to place popular content into edge servers so that most of the

requests can be served from local caches of base stations, instead of centralized

servers, which are reached via bandwidth-limited backhaul links [19].

However, there are some critical challenges for placing the data of MSNs over

clouds and servers. In social networks, social connectivity and interaction among

connected users have a huge influence over data delivery patterns. Thus, the

knowledge of social network features can be leveraged to use cache resources effi-

ciently and to provide better quality of experience to users in accessing contents.

In this respect, since the users of MSNs are interconnected, placements of their

data should be interdependent [20, 21, 22, 23]. While choosing the best location

CHAPTER 1. INTRODUCTION 12

for a user’s data, considering the information of that user alone will not be suf-

ficient. We must also consider other users who will access it. Each user is not

independent and therefore cannot be treated separately when it comes to data

placement. This placement strategy is unlike the conventional Internet services

where users may not need to be jointly considered.

Prior socially-aware edge caching strategies for MSNs mainly focus on dividing

users into different communities based on their mutual interests and intimacy.

These studies also assume that users in the same community tend to share data

among each other due to their large interest similarity [24, 25, 26]. Nonethe-

less, in real-life, all users that are part of the same social media group may not

necessarily have a common interest in all subjects. Depending on the content,

their frequency of interaction and communication can vary. In particular, social

media group members’ amount of interaction to a content may not necessarily be

the same, which leads to varying levels of user engagement among the members

of a social media group for the same content. Unlike other studies where users

are manually grouped according to their interests, our approach is based on user-

defined social groups where users in the same group are neither obligated to share

the same interest nor be attentive to the shared content. Consequently, users’

social relationships, their different interests, and locations are jointly considered

in our work.

In this thesis, we propose a socially-aware edge caching system model for MSN

applications considering social groups of users. Our system caches files into base

stations considering the locations of social group members and the willingness

of them in accessing the files. The goal is to reduce latency and network load.

We propose a socially-aware edge caching algorithm where a batch of files are

jointly considered and placed in the base stations in a region. We also propose

a dynamic and incremental algorithm where files are placed one by one as they

arrive. The algorithm uses a replacement based recursive approach to perform

better placement. We conducted extensive simulation experiments to evaluate

the performance of our proposed methods and identify the cases where they are

especially useful. Our results show that our methods are reducing latency and

network load significantly.

CHAPTER 1. INTRODUCTION 13

The remainder of this thesis is organized as follows. In Chapter 2, we present the

related work. In Chapter 3, we formally define the problem as a mathematical

program, and present some preliminaries. Additionally, we present our proposed

algorithms and their bound analysis in detail. In Chapter 5, we report and discuss

the results of our extensive performance experiments. Finally, in Chapter 6, we

give our conclusions.

Chapter 2

Related Work

During the last decade many studies have been carried out to reduce traffic load

on mobile networks and increase QoE for users considering the large data con-

sumption of social networks with respect to the overall traffic. [27] is one of the

first studies on potential performance benefits of edge caches. The objective of

the study was to determine how much of the access traffic is served by edge caches

as opposed to the centralized data center. After tracing the traffic distribution of

Facebook, they revealed that edge caches served more than 89% of requests for

the most popular images. Similarly, [28] surveyed variety of resource allocation

methods in fog radio access networks. A number of valuable findings emerged

from their work including the fact that caching popular social media at the edges

of the network provides high spectral efficiency while maintaining low latency.

[29, 30] worked on caching potentials of YouTube platform. These studies com-

pared serving videos from the centralized and edge data centers and reveal that

about 40% of requests can be delivered from a cache. Similarly, [31] utilized a

caching framework to effectively distribute social media videos and showed that

high levels of requests are served by local edge servers (58.7%) instead of central-

ized servers.

Considering the studies [27, 28, 29, 30, 31], it can be seen that edge caches

14

CHAPTER 2. RELATED WORK 15

can significantly decrease the amount of download traffic and achieve good hit

rates. In this respect, to reduce network load further and improve the hit ratio

of content sharing, effective management of cache resources in MSN applications

is an important research problem.

Leveraging mobility patterns of users in the network, [32] proposed a cooperative

caching mechanism for MSNs. To increase content access rate, this mechanism

placed content only in centralized users who can be easily accessed. However,

this approach increases the caching load of users in these areas and degrades the

network performance significantly. Similar to [32], [33] proposed a proactive edge

caching model where each user can either access the content from BSs or receive

it from the other users via data sharing. As such, content sharing mechanism

relies on the social tie strength between the users. However, as the mechanism in

[33] transmitted the content to a set of users with large numbers of social rela-

tionships and entrust them to share it with others, it may result in an inaccurate

estimation of a users’ willingness to receive the content, leading to a failure to

fully utilize the limited cache resources. Besides, considering the effect of mobility

on data sharing, their mechanism adaptively adjusts the optimal set of users to

deliver the content, which brings extra computational load to the network. These

approaches are significantly different from ours in that they are not considering

virtual communities. It is essential to analyze mobile user behaviors for data

sharing from social perspectives to improve success ratio.

Considering the fact that users with the same or similar interests will frequently

form a social group, some studies provide social group aware caching mechanisms

for MSNs. Based on the close geographical relationship among users, [34] divided

users into different groups where users within the transmission range of each other

can exchange messages. In this mechanism, messages have certain priorities and

they are transferred according to their priority order. However, as users from

different groups can face unstable connections, low priority messages are not

guaranteed to be delivered with this mechanism which affects the success ratio of

content sharing. Besides, users geographically far away from each other are not

able to share contents, which eventually decreases the network performance as

the same content will be cached in several different places. Taking social factors

CHAPTER 2. RELATED WORK 16

into account, [35] analyzed how to cache a part of a video on edge nodes for

efficiently serving multiple social groups in a mobile social network. Because the

cache capacity is limited, the representative mobile users from each social group

compete for the caching space provided by the cache node. The group members,

which have similar hobbies or interest in the same content, are assumed to access

the same video resulting in an inaccurate estimation of a user’s social behavior.

Unfortunately, these studies fail to fully utilize the limited cache capacities as

they neglect the willingness of members in accessing the content.

[36] designed a user cooperative caching mechanism considering various factors

that may affect the content sharing behaviors of users in MSNs, including their

attributes, community, mobility, and social connections. Their work resembles to

ours in consideration of willingness of users in the same community for sharing

and receiving content. However, their content caching algorithm only considers

similar interests groups, neglecting social groups with heterogeneous interests.

Necessary conditions to create a social group are not only shared interests, but

also values, representations, and social bonds. Thus, members of social groups

do not necessarily have similar interests.

In order to increase the hit probability and mitigate network congestion in a

caching system, one must jointly look at heterogeneity of interests in a social

group and willingness of group members in accessing content. Thus, different

from aforementioned studies, we design a socially aware caching mechanism con-

sidering various factors that may affect the content sharing behaviors of users in

MSNs including varying interests within groups, social attributes, and storage

and transmission capacities of edge servers.

Chapter 3

System Model and Problem

Formulation

This thesis proposes a comprehensive socially-aware edge caching framework to

optimize intra-network traffic and QoE in cloud-based MSNs, while ensuring stor-

age and transmission capacities of edge servers.

Without loss of generality, we first define the properties of a wireless edge network

environment for which our solution can be applied. Then, in Section 3.2 and 3.3,

we provide the details of our LP solution.

3.1 System Model

Assuming that servers and MSN users are all geographically distributed, we are

concentrating on caching in one edge network that will be covering a region of

interest, such as a city or town, and the whole mobile cellular network in a country

is a collection of such edge networks. Each user belongs to one or more social

groups, generates files, and wants to share them with his or her social groups.

We expect that members of these social groups would be interested in accessing

17

CHAPTER 3. SYSTEM MODEL AND PROBLEM FORMULATION 18

these files, and therefore, files need to be cached considering the locations of the

members.

An edge network consists of a multi-hop edge-core network and a set of base

stations (BSs). The edge-core network, which we will just call core network in

the rest of the thesis, connects the base stations together. We assume there is a

set of N base stations, denoted with N = {1, 2, ..., N}, connected with the core

network, where n ∈ N represents the n-th base station. We also assume that

there is a set of U user elements (UEs), denoted with U = {1, 2, ..., U}, randomly

located in the area covered by these base stations. The coverage of two base

stations may overlap. Each base station is connected to the core network and

the core network is connected to the rest of the mobile cellular network, which

includes centralized data centers. We assume that base stations can store and

serve content, i.e., act as cache nodes.

A user is connected to only one base station at a time. A base station can only

serve the users who are connected to it. Let C = [cun], u ∈ U , n ∈ N , be a binary

matrix which denotes whether user u is connected to base station n or not.

There is a set of F files, denoted with F = {1, 2, ..., F}, generated by users and

that can be cached. Each file f ∈ F can be cached in one base station at most.

The size of a file f (f ∈ F) is denoted by sf .

An example system is provided in Figure 3.1.

We assume that each user belongs to at least one social group and groups can

have multiple common members. Let G = {1, 2, ..., G} be the set of all social

groups. The binary matrix Sg = [sgug], u ∈ U , g ∈ G denotes whether user u

belongs to social group g. This information can be provided to the edge caching

system by the social media application service provider. We assume that the

relation between the files, their creators, and their corresponding social groups is

also provided to the edge caching system by the service provider. The information

that a file f being created by a user u and wanted to be sent to a social group

g is known and denoted by [bfug]. A binary-valued 3D matrix B = [bfug], where

CHAPTER 3. SYSTEM MODEL AND PROBLEM FORMULATION 19

Figure 3.1: Example system.

f ∈ F , u ∈ U , and g ∈ G, gives this information for all files, users, and groups.

Our goal is to decide which base station n should cache the file f so that for the

participants of the selected group g, both latency and network load are minimized.

The frequency of the MSN application usage of each user is also important. If the

frequency of application usage of a user is high, then our algorithm will prefer to

place the content in a base station close to that user considering the high access

rate of the user for the content. Thus, the frequency of application usage of users

is taken into account while placing content on the base stations. Let au be the

frequency of application usage of user u and let A = [au] u ∈ U , be a vector that

represents the frequency of application usage for all users.

Let D = [dnm], n,m ∈ N , be a symmetric matrix denoting the hop-distance

between base stations n and m. Given two base stations n and m, the shortest hop

distance between them is calculated and assigned to the corresponding element

of the D matrix. The diagonal elements of the D matrix are always 0.

When a file is not cached, it is stored in the centralized server of the social media

application provider, outside of the edge network. Hence, when a user requests a

CHAPTER 3. SYSTEM MODEL AND PROBLEM FORMULATION 20

file that is not in the cache, the file has to be downloaded from the center. This

will cause more delays compared to downloading from a caching base station

inside the edge network. We will represent this delay again with the number of

hops of the download path. Let H be the number of hops between a user and the

central server of the MSN application. We assume that H > Dmax, that means

H > dnm for all n,m ∈ N . For simplicity, we assume all users in the edge network

will experience the same delay H if the file is downloaded from the center.

We use a boolean decision variable xfn, f ∈ F and n ∈ N , to present the file

caching status as:

xfn

1 if file f is cached in base station n

0 otherwise
(3.1)

Let Nc = [ncn], n ∈ N denotes the caching capacity of base station n. If a file f

is placed in base station n, then ncn will decrease by the size of that file, namely

sf .

All parameters of our system model are presented in Table 3.1.

Table 3.1: System Parameters.

Symbol Description

F Total number of files
U Total number of users
N Total number of BSs
G Total number of groups
sf Size of file f
sgug 1 if user u is a member of social group g, 0 otherwise
bfug 1 if file f is generated by user u and to be sent social group g, 0 otherwise
cun 1 if user u is connected to BS n, 0 otherwise
au Frequency of application usage of user u
dnm Hop-distance between BS n and BS m (hop-distance per unit traffic load)
ncn Storage capacity of BS n
H Hop-distance between a user and centralized server
xfn 1 if file f is cached in BS n, 0 otherwise

CHAPTER 3. SYSTEM MODEL AND PROBLEM FORMULATION 21

3.2 Minimizing Total Latency

Taking the parameters defined in Section 3.1 into consideration, we denote the

latency (L) as follows:

L =

 bfug sgkgakckmdnmxfn ∀f ∈ F , g ∈ G, n ∈ Nu, k ∈ U

H bfugsgkgak
∏

n(1− xfn) ∀f ∈ F , (u, k) ∈ U , g ∈ G, n ∈ Nu, k ∈ U
(3.2)

The first line of (3.2) corresponds to the case when a file could be cached in one

of the base stations and accessed from this cache. More specifically, it gives the

latency when a file f generated by user u to be sent to social group g, is cached

in BS n and is requested by a user k who is connected to BS m in the same social

group g. The terms of this part of the equation are:

• bfug parameter shows that a file f owned by user u is sent to social group

g,

• xfn is the caching status of file f in BS n,

• sgkg shows user k in the same social group g, who might request f ,

• ckm is user k’s base station m,

• dnm is the hop-distance between BS m and BS n, and

• ak is the frequency of application usage of user k.

The second line of (3.2) corresponds to the case when a file f could not be cached

in any of the base stations and therefore retrieved from the center. The terms of

this part of the equation are:

• H is the hop-distance between a user and the centralized server,

CHAPTER 3. SYSTEM MODEL AND PROBLEM FORMULATION 22

• bfug shows that a file f owned by user u is sent to social group g,

• sgkg shows user k in the same social group g, who might request f ,

• ak is the frequency of application usage of user k, and

•
∏

n(1− xfn) ensures that file f is not cached in any of the BSs and should

be downloaded from the centralized server.

Then, total latency (Ltotal) is given by:

Ltotal =
∑
f

∑
g

∑
u

[∑
k

(bfugsgkgakckmdnmxfn) (3.3)

+
∑
k

(
Hbfugsgkgak

∏
n

(1− xfn)
)]

Thus, the social-aware caching optimization problem with latency costs can be

defined as:

min Ltotal (3.4)

subject to
∑
n

xfn ≤ 1 ∀f ∈ F . (3.5)∑
f

xfnsf ≤ ncn ∀n ∈ N . (3.6)

xfn is binary ∀f ∈ F , n ∈ N (3.7)

The objective function (3.4) represents the total latency experienced by all users.

The constraint in (3.5) ensures that content can be stored only in one place. The

constraint in (3.6) imposes cache storage capacities.

CHAPTER 3. SYSTEM MODEL AND PROBLEM FORMULATION 23

3.3 Minimizing Total Network Load

Similar to social-aware caching optimization problem with latency costs, assuming

that traffic overhead occurred while establishing a link is very small and can be

neglected, the social-aware caching optimization problem with load costs can be

formulated as follows.

1. The network load incurred while bringing a requested content from base

station n to base station m is given by:

NL1 =
∑
f

∑
g

∑
u

∑
k

bfugxfnsgkgakckmdnm (3.8)

2. The network load incurred while bringing the requested content from the

centralized server, which occurs when content is not cached in any of base

stations, is given by:

NL2 =
∑
f

∑
g

∑
u

∑
k

Hbfugsgkgak
∏
n

(1− xfn) (3.9)

In Equation (3.9), H represents the expected load per request when content is

retrieved from the center. Like delay, the load is also assumed to be proportional

to the number of hops between the content requester and centralized server.

Therefore, we use H, i.e., the number of hops between the requester and center,

to model the load incurred on the network per request. We assume that H > dnm

for all n,m ∈ N . That means H > Dmax.

Then, total network load can be expressed as follows:

CHAPTER 3. SYSTEM MODEL AND PROBLEM FORMULATION 24

NLtotal = NL1 + NL2

=
∑
f

∑
g

∑
u

∑
k

(
bfugxfnsgkgakckmdnm

+ Hbfugsgkgak
∏
n

(1− xfn)

)

Thus, we can formulate the social-aware caching optimization problem with load

costs as:

min NLtotal (3.10)

subject to
∑
n

xfn ≤ 1 ∀f ∈ F (3.11)∑
f

xfnsf ≤ ncn ∀n ∈ N (3.12)

xfn is binary ∀f ∈ F , n ∈ N (3.13)

Both of the social-aware caching optimization problems are NP-hard which can

be shown using a reduction from the minimum vertex cover problem. We next

present the proof for the NP-hardness of our problems.

Theorem 1. The SOCIAL-AWARE CACHING OPTIMIZATION PROBLEM

is NP-hard.

Proof. The proof uses a reduction from the minimum vertex cover problem. Given

an undirected graph G = (V,E), where V is the set of vertices and E is the set

of edges, a vertex cover is a subset S ⊆ V in which each edge in G has at least

one endpoint in S. The minimum vertex cover problem is to find the minimum

size of the vertex cover in a graph [37].

We give a reduction from the minimum vertex cover problem as follows. Without

the loss of generality, suppose that for each content f ∈ F , we have a weighted

CHAPTER 3. SYSTEM MODEL AND PROBLEM FORMULATION 25

undirected graph G = (V,E,W), where V is the set formed by the elements of

recipient users A ⊆ U and their affiliated BSs B ⊆ N , and E is the set of the

links among vi, vj ∈ V with a weight of wevi,vj
. To be more clear, (A,B) ⊆ V , E

→{evi,vj |((vi, vj) ∈ B2 and i 6= j) or (vi ∈ A and vj ∈ B)} and W →{wevi,vj
|dvi,vj

if (vi, vj) ∈ B2 or avi if vi ∈ A and vj ∈ B}.

The social-aware caching optimization problems tries to determine the optimal

caching strategy with a minimal cost. That is, for each f , it determines a vertex

set S ⊂ V where S = B and calculate the total cost for each element of S using

edge weights. Then, it processes the obtained costs for all files concurrently to

be able to detect feasible and optimal caching for the whole system with the

minimum total cost. When we consider these steps, it is not hard to see that

calculating total cost for each element of S takes linear time in the size of the

graph, i.e. O(|E|) time. Similarly, processing the obtained costs for all files takes

O(|V |+ |E|) time. We also observe that subset S is indeed the minimum vertex

cover of G. Thus, since the minimum vertex cover problem is NP-hard [38], the

social-aware caching optimization problems are also NP-hard.

3.4 Summary

In this chapter, we have presented a linear programming solution for our social-

aware caching optimization problem.

Assuming that servers and MSN users are all geographically distributed, we are

concentrating on an edge network system consisting of a multi-hop edge-core net-

work and a set of base stations. In that system, each user belongs to one or

more social groups, generates files, and wants to share them with his or her social

groups. By using the available storage resources of BSs, we want to decrease

both storage and load burdens on centralized data centers. To do that, we for-

mulate two caching optimization problems, one optimizing latency and the other

CHAPTER 3. SYSTEM MODEL AND PROBLEM FORMULATION 26

optimizing network load.

We also show that both of these social-aware caching optimization problems are

NP-hard. We prove this by using a reduction from the minimum vertex cover

problem.

Chapter 4

Proposed Algorithms

Finding an optimal solution using the linear programs (3.4) and (3.10) is very

difficult and time-consuming for large parameter values. Therefore, we propose

a heuristic algorithm to solve the social-aware caching optimization problem.

Since a set of files are jointly considered, we call this algorithm as Batch Cache

Placement Algorithm (BCPA).

We also propose a dynamic and incremental heuristic algorithm, where incoming

files are treated on an individual basis and placed one by one as they arrive.

While placing a file into the cache system, we may remove an existing file in a

candidate base station to make space, if this would decrease total latency. We

use a similar strategy to place the removed file. We call this recursive algorithm

as Dynamic Cache Placement Algorithm (DCPA).

In Section 4.1, we provide some preliminaries for our algorithms. In Section 4.2

and 4.3, we present our heuristic algorithms, BCPA and DCPA, and their bound

analysis. In the subsequent section, Section 4.4, we provide fairness analysis of

the algorithms.

27

CHAPTER 4. PROPOSED ALGORITHMS 28

4.1 Preliminaries

As will be shown later, a new matrix W = [wgn], g ∈ G and n ∈ N , is introduced

for the suggested algorithms. For a file f that can be cached in a base station,

the matrix W denotes total latency experienced by the members of each social

group. Specifically, wgn shows the total propagation delay when the content is

being served from a base station n to social group g. The necessary steps to

construct the W matrix and a numerical example is provided below.

Assume that U = 6, N = 4, G = 3, and A, Sg, C, and D matrices are as follows:

A =

1

2

3

4

5

6

Sg =

1 0 0

0 1 0

1 0 0

1 1 0

1 1 1

0 0 1

C =

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

D =

0 2 3 4

2 0 1 2

3 2 0 2

4 3 2 0

1. Firstly, we perform an element-wise multiplication of A and Sg matrices

and construct a weighted SaU×G matrix representing user-social group as-

sociations as well as their application usages. The elements of the resulting

matrix are nonzero if user u belongs to social group g. Each nonzero sau,g

element denotes the frequency of application usage of user u. An example

for this step is provided below.

CHAPTER 4. PROPOSED ALGORITHMS 29

A� Sg = Sa

1

2

3

4

5

6

�

1 0 0

0 1 0

1 0 0

1 1 0

1 1 1

0 0 1

=

1 0 0

0 2 0

3 0 0

4 4 0

5 5 5

0 0 6

2. Then, we multiply the transpose of Sa matrix obtained above with C ma-

trix. The result is ScG×N matrix which is a weighted association of social

groups and base stations showing the total application usages of group

members who are connected to base station n. An example for this step is

provided below.

SaTC = Sc

1 0 3 4 5 0

0 2 0 4 5 0

0 0 0 0 5 6

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

=

1 3 9 0

2 0 9 0

0 0 5 6

3. Lastly, we multiply Sc and D matrices and construct WG×N matrix. Each

element in this matrix shows total delay experienced by the members of

social group g when the content is cached in base station n. For multiple

social groups receiving the same content, respective columns of W matrix

will be summed. An example for this step is provided below.

ScD = W

CHAPTER 4. PROPOSED ALGORITHMS 30

1 3 9 0

2 0 9 0

0 0 5 6

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

 =

21 10 5 18

18 11 4 15

28 17 6 5

It is important to understand the above steps before proceeding further. Given

the receiving social groups, we search wgn values and select an available base

station with the smallest possible latency. For example, in the above example,

caching in BS3 for social group1, BS3 for social group2 and BS4 for social group3

will give the smallest latency. Then, total latency Ltotal will be the sum of these

selected wgn values and delay for files that are stored in the centralized servers.

During this process, if enough storage is not available on the BS giving the lowest

latency, a new BS with the second lowest latency will be selected.

As pointed out before, we assume that common members of multiple social groups

will request the same file multiple times since our model is not relying on mobile

devices to cache the accessed files. For that case, we sum respective columns of

W and count the latency experienced by common members multiple times to find

Ltotal. For example, in the above example, if only social group1 and group2 will

receive the content, caching in BS1, BS2, BS3 and BS4 have a total latency of

39, 21, 9 and 33, respectively.

Time complexity of the above steps is O(UN), if GN ≤ U , and O(GN2), other-

wise.

4.2 Batch Cache Placement Algorithm

To achieve a low-complexity solution, we propose an iterative heuristic algorithm

called Batch Cache Placement Algorithm (BCPA).

Let m ≤ F be the batch size, i.e., the number of files in each set. The objective

of BCPA is to cache files in batches. To do that, we group consecutive files

CHAPTER 4. PROPOSED ALGORITHMS 31

together into batches of size m. Then, we sort files in each batches into priority

order by their number of recipients. This is because, we aim to place them by

their potential number of accesses, i.e, to be able to cache files with the highest

requests first. Compared with an arrival order based caching, this method utilizes

the limited storage capacity of BSs and reduces total latency. Specifically, sorting

can be done by using one of two criteria: i) total number of recipient groups, ii)

total number of recipient users. The performance comparison of these two criteria

is given in Section 5.2.

The algorithm follows an iterative placement strategy. In the Algorithm 1, shown

below, files are divided into batches and sorted by their number of recipients.

Then for each file in a batch, Algorithm 2 selects an available base station that

gives the smallest latency using the W matrix. That is, for each file, Algorithm 2

finds and returns an available base station with the lowest latency. To do that,

it first sorts the rows of W matrix in ascending order based on access latency

and returns the sorted elements as W ∗ matrix. Then, starting from the first

element of W ∗ matrix, it checks the availability of base stations and returns the

first available base station which gives also the lowest latency. When there is

not enough space in the system to cache the given file, it will be stored in the

centralized server of the social media application provider.

After returning from Algorithm 2, Algorithm 1 calculates the total latency by

summing up the obtained latency and previous latency values and decreases the

storage capacity of the respective BS.

The above steps are repeated for each batch. Thus, time complexity of BCPA

algorithm is O(F (logF +G+U +N logN)). The pseudo-code of BCPA is given

in algorithm 1 and Algorithm 2.

Note that BCPA algorithm does not need to have all files arrived at the time

of placement. It waits until a batch of files to arrive and then starts placement.

After a batch is placed, it waits for the next batch to arrive, and so on.

Clearly, BCPA’s efficiency in caching content greatly depends on the batch size

CHAPTER 4. PROPOSED ALGORITHMS 32

Algorithm 1 BCPA (m,F,A,NC,W, S,H,D)

1: Q: Split F into batches of size m sequentially
2: for each batch q ∈ Q do
3: Sort q in descending order with respect to their total number of recipient

groups/users
4: for each file f ∈ q do
5: if all BSs are full in capacity, i.e, f can not be cached then
6: Ltotal+ = auH
7: else
8: w∗, i = SelectBS(NC, W)
9: nci− = sf

10: Ltotal+ = w∗

11: end if
12: end for
13: end for

Algorithm 2 SelectBS (Nc,W): Finds a base station with minimum cost

Ensure: w∗
i ,i

1: i = 1
2: W ∗

1XN ←− Sort W matrix
3: while i < N do
4: if BS i has enough capacity for caching then
5: Return total cost and index of BS i by w∗

i ,i
6:

7: end if
8: i++
9: end while

and the arrival order of files. That is, whether the popular contents are arrived

earlier or not is an important issue for the performance of BCPA. To overcome

these drawbacks of BCPA, we propose another algorithm called Dynamic Cache

Placement Algorithm where a replacement based recursive approach is used.

4.3 Dynamic Cache Placement Algorithm

We also propose Dynamic Cache Placement Algorithm (DCPA) where incoming

files are treated on an individual basis and cached as soon as they arrive. With this

CHAPTER 4. PROPOSED ALGORITHMS 33

algorithm, we provide a replacement based recursive solution, where a previously

placed file may be replaced if that would result in lower latency. The pseudocode

of DCPA is given in Algorithm 3 and Algorithm 4.

In Algorithm 3, we build an W ∗
1×N matrix. This matrix is obtained from W matrix

and denotes the sorted total latency of the file for each BS. This step is necessary

for simplification, and obtained matrix will be used by the replacement algorithm.

After sorting W ∗ in ascending latency order, we provide it to Algorithm 4.

In Algorithm 4, we recursively search for optimal base station (i.e., the base

station that has minimum latency in W ∗). If the best possible base station for

file f is not available, existing files in that base station will be investigated. If any

of these previously placed files fp has a lower number of recipient social groups

than file f , we replace these two files. That is, we may remove an existing file

fp in a candidate base station to make space for file f , if this would decrease

total latency. Then, similarly, a best possible base station for fp is searched

using algorithm 3. Here, we ignore the delay and network load incurred due to

replacement.

The time complexity of the DCPA algorithm is O(N logN + FN).

Algorithm 3 DCPA (f , W , Ltotal, A,H,N,NC, S)

Ensure: Ltotal

1: Build W ∗
1×N matrix from number of recipients

2: W ∗
1XN , I1xN ←− Sorted W ∗ matrix and BS index array

3: PlacementRec(f , I,W,W ∗, i=1, Ltotal, A,H,N,NC, S)

Compared to BCPA method, DCPA approach imposes additional computational

burden on the server, especially for the large number of BSs and files. One ap-

proach to deal with this burden is to use coded caching where several requests

can be satisfied with a single transmission [39, 40]. This results in lower compu-

tational load at the expense of higher rates over the shared link.

CHAPTER 4. PROPOSED ALGORITHMS 34

Algorithm 4 PlacementRec(f, I,W,W ∗i, Ltotal, A,H,NC,N, S): Recursive Al-
gorithm to find best possible BS

Ensure: Ltotal

1: If all BSs are checked:
2: if i==N then
3: File can not be cached and find total latency by Ltotal+ = auH
4: else
5: if nci ≥ sf then
6: nci = nci − sf
7: Ltotal+ = w∗

i

8: else
9: Find minFile

10: if minFile! = f then
11: Remove minFile from BS i and place f :
12: nci = nci -sf+sminFile

13: Ltotal+ = w∗
i

14: Search another BS for minFile:
15: DCPA(minFile, W , Ltotal, A,H,N,NC, S)
16: else
17: Search another BS for f
18: PlacementRec(f , I,W ∗, i + 1, Ltotal, A,H,NC,N, S)
19: end if
20: end if
21: end if

4.4 Fairness Analysis of Algorithms

Besides optimizing the latency, traffic load and capacity usge of the network,

achieving fairness is another important issue which should be considered in

caching systems [41]. The basic idea is to design a system where users in the

same network have the same chance to access contents they are interested in.

Thus, a key question is how to fairly allocate the cache storage resource among

different requests.

While there exists different criteria on the fair allocation, in this thesis, we refer

to fairness as equal share of the resource being allocated to social groups in our

caching strategy [42]. We investigate our proposed algorithms on request-based

fairness, associating how many requests of each social group can be served from

CHAPTER 4. PROPOSED ALGORITHMS 35

caches of BSs. That is, if a social group has much better access performance than

others, it will violate the fairness of the system. To measure the fairness among

social groups, we use Gini index method [43, 44]:

Igini =
1

2n2x∗

∑
i

∑
j

|xi − xj| (4.1)

where n is the total number of social groups, xi is the caching ratio of the requests

of social group i, and x∗ is the average performance of all groups. The index is

in the range from 0 to 1, where smaller values imply a more fair system.

Figure 4.1 shows the fairness metrics for BCPA and DCPA. As can be seen from

the figure, BCPA performs more fair than DCPA. This is because, in DCPA

method, only the contents with the highest requests are cached which leads to

users requesting less popular contents have poor accessibility performance than

others. In this way, it is hard to ensure the fairness among social groups. However,

BCPA’s fairness performance is well maintained due to its poor performance

in caching. Since BCPA method may not necessarily cache the most popular

contents, the fairness among social groups is better preserved.

4.5 Summary

In this chapter, we have presented two heuristic algorithms for caching, since

finding an optimal solution to our linear programming formulation is very difficult

and time-consuming for large parameter values.

The first algorithm is called Batch Cache Placement Algorithm (BCPA) where a

set of files are jointly considered. In this method, consecutive files are grouped

together into batches of m. Due to this design, BCPA’s efficiency in caching

content greatly depends on the batch size and the arrival order of files.

We also proposed a dynamic and incremental heuristic algorithm, where incoming

CHAPTER 4. PROPOSED ALGORITHMS 36

100200 500 1000 2000 3000

Number of Files

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

G
in

i
In

d
e

x

BCPA

DCPA

Figure 4.1: Gini index versus number of files.

files are placed one by one as they arrive. In this method, while placing a file into

the cache system, we may remove an existing file in a candidate base station to

make space, if this would decrease total latency. We use a similar strategy to place

the removed file. We call this recursive algorithm as Dynamic Cache Placement

Algorithm (DCPA). However, this algorithm imposes additional computational

burden on the servers, especially for large number of BSs and files.

In this chapter, we also investigate request-based fairness of the algorithms using

Gini index method. We conclude that BCPA performs more fair than DCPA.

Chapter 5

Experimental Results and

Evaluation

In this chapter, we present the results of the simulation experiments that we

have conducted to evaluate our methods. We characterize the performance im-

provements offered by our methods over random placement, where files are placed

without considering the social groups of users. We use FICO Xpress 8.8 64 bit

and MATLAB R2019a 64 bit for the implementations of our linear programming

(LP) solution and heuristic algorithms, respectively.

In Section 5.1, we introduce our simulation setup. In Section 5.2, we present our

results and compare our methods with each other and with random placement.

5.1 Simulation Settings

We evaluate the performance of our methods under different system model pa-

rameters, including the total number of files, total number of base stations, total

number of users, total number of social groups, and the total capacity of caches.

37

CHAPTER 5. EXPERIMENTAL RESULTS AND EVALUATION 38

To increase the reliability of our simulation results, we repeat each simulation ex-

periment 20 times and report the average. The simulation parameters are listed

in Table 5.1.

Table 5.1: Parameter values used in numerical results.

Parameter Value
Simple System Large System

F 60 1000
U 10 300
N 3 50
G 3 60
H 8 hops 20 hops
m 5 files 250 files
dnm 4 hops 10 hops
sf 100 MB
ncn 1.5 GB
sgug randomly generated
bfug randomly generated
cun randomly generated
au randomly generated btw 1-10
dnm randomly generated btw 1-10

Frequency of MSN application usage for some users can be higher than the others.

To simulate this fact, we analyze the usage statistics of WhatsApp, one of the

most popular mobile social network applications. 54% of WhatsApp users tend

to use the application regularly, whereas 38% and 8% of them use it occasionally

and rarely. Thus, we right-skewed the values of the A matrix, representing the

frequency of usage for different users, in our simulations [45]. Also, the number

of users in each social group and the number of files generated by each user are

not deterministic; they are randomly generated.

CHAPTER 5. EXPERIMENTAL RESULTS AND EVALUATION 39

5.2 Simulation Results

In this section we present the results and evaluate our approach. First, we com-

pare the performance of LP formulation, BCPA algorithm, and random place-

ment. For that, we use a simple system with small parameter values. This is be-

cause LP formulation takes too much time for large parameter values. Then, we

analyze a more complex system with larger parameter values for BCPA, DCPA,

and random placement algorithms.

5.2.1 Performance Comparison in a Simple System

The Figure 5.1 shows the delay performance of LP formulation, two versions

of our BCPA algorithm (each using one of the two sorting criteria), and ran-

dom placement, with various values of F , U , G, N . As can be seen from the

sub-figures, LP formulation provides the lowest total latency and random the

highest. Both versions of the BCPA method provide better network latency than

random placement, while approaching to LP formulation in some cases. This is

an expected result since LP method makes placement decisions by considering all

content together whereas BCPA considers them in separate groups.

While sharp differences between two methods of BCPA in Figure 5.1a and Fig-

ure 5.1c indicate that sorting files by total number of recipient groups is better

when placing the content into caches, differences in Figure 5.1d and Figure 5.1b

indicate the opposite. Thus, we can not immediately declare a suitable sorting

criteria for BCPA from these experiments.

5.2.2 Impact of Batch Size

Since BCPA processes a batch of files at a time, we believe that batch size, i.e.,

the number of files that will be passed through to the network at one time, is an

important parameter for delay performance of BCPA method.

CHAPTER 5. EXPERIMENTAL RESULTS AND EVALUATION 40

20 40 60 70 80

Number of files

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
T

o
ta

l
la

te
n
c
y
 (

s
)

Random Placement

BCPA (sorted by U)

BCPA (sorted by G)

LP

(a) Total latency versus number of files.

5 10 15 20

Number of users

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

T
o
ta

l
la

te
n
c
y
 (

s
)

Random Placement

BCPA (sorted by U)

BCPA (sorted by G)

LP

(b) Total latency versus number of users.

2 3 5 8

Number of base stations

3

4

5

6

7

8

9

10

11

12

13

T
o
ta

l
la

te
n
c
y
 (

s
)

10
-3

Random Placement

BCPA (sorted by U)

BCPA (sorted by G)

LP

(c) Total latency versus number of base
stations.

2 3 4 5 6

Number of social groups

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

T
o
ta

l
la

te
n
c
y
 (

s
)

10
-3

Random Placement

BCPA (sorted by U)

BCPA (sorted by G)

LP

(d) Total latency versus number of social
groups.

Figure 5.1: Performance comparison of the solutions in a simple system.

Figure 5.2 shows the results of this experiment conducted with file size of 1000

and different batch size values. As can be seen, larger batch size yields lower

delay. This is because when the batch size increases, the algorithm is able to see

and compare more files before deciding what to cache and therefore ensures more

popular items are cached before the storage capacity is filled.

We can also observe that sorting files by their total number of recipient users

consistently outperform sorting them by number of recipient social groups. But

interestingly, total latency gap between two sorting methods is the largest for

batch size of 500. The sharp increase in the gap for large batch sizes indicates that

sorting files by groups performs unsatisfactorily. Such high delay performance

CHAPTER 5. EXPERIMENTAL RESULTS AND EVALUATION 41

difference between two methods is not acceptable for edge caching scheme to be

usable in practice. Therefore, we conclude that sorting files by their total number

of recipient groups does not perform well and therefore we exclude that method

from the rest of our experiments.

10 50 100 250 500 1000

Batch size (files)

30

35

40

45

50

55

T
o

ta
l
la

te
n

c
y
 (

s
)

BCPA (sorted by G)

BCPA (sorted by U)

Figure 5.2: Total latency versus batch sizes (m).

5.2.3 Performance Comparison in a Large System

Figure 5.3 shows the behavior of our methods when large parameter values are

used. The benefits of DCPA method can be seen clearly from the figure. For all

sub-figures, the sharp difference in total latency with DCPA is observed. This

is an expected result since towards an optimal solution, DCPA may replace the

existing files by repeatedly checking edge caches to see if the total latency can be

reduced further by replacing the existing content. From this we can conclude that

DCPA method improves the system’s delay performance significantly. However,

it may incure more overhead on servers.

While discussing the BCPA method, we have mentioned that performance of

BCPA greatly depends on the batch size used. As can be seen from the figure,

CHAPTER 5. EXPERIMENTAL RESULTS AND EVALUATION 42

BCPA performs close to random placement, even for a large batch size like 250.

Such a high delay is not desirable. This means BCPA is prone to place unpopular

contents in edge caches.

250 500 1000 2000 3000

Number of files

0

50

100

150

200

250

T
o

ta
l
la

te
n

c
y
 (

s
)

Random Placement

BCPA

DCPA

(a) Total latency versus number of files.

100 200 300 500 1000

Number of users

0

50

100

150

200

250

T
o

ta
l
la

te
n

c
y
 (

s
)

Random Placement

BCPA

DCPA

(b) Total latency versus number of users.

10 30 50 75 100

Number of base stations

20

30

40

50

60

70

80

90

100

T
o

ta
l
la

te
n

c
y
 (

s
)

Random Placement

BCPA

DCPA

(c) Total latency versus number of base
stations.

10 30 60 80 100

Number of social groups

10

15

20

25

30

35

40

45

50

55

60

T
o

ta
l
la

te
n

c
y
 (

s
)

Random Placement

BCPA

DCPA

(d) Total latency versus number of social
group.

Figure 5.3: Performance comparison of the solutions in a large system.

It is important to notice that the graphs in Figure 5.2.3 has a similar pattern as

of the Figure 5.2.1. With large file numbers, total latency significantly increases.

This is because when the number of files to be cached exceeds total storage

capacity of base stations, more files have to be downloaded from the centralized

server. The same characteristic applies to Figure 5.3b due to growing demand

for files. The total latency, however, is inversely proportional to an increase in

CHAPTER 5. EXPERIMENTAL RESULTS AND EVALUATION 43

N due to growing total caching capacity of the system. But we notice a different

performance trend for parameter G. We can explain this inversely proportional

pattern as the more is the number of social groups there is a great chance of

having the less number of users per social group, which leads to a decrease in

demand for files and decreases the total latency.

But this behavior is not necessarily the case at all times. That is, increased G

does not necessarily mean decreased number of users per social group. However

Figure 5.3d indicates a direct relationship, where increasing G increases the la-

tency. We can explain this behavior as the affect of number of users on total

latency is so dominant that changes in G becomes insignificant. Compared to

Figure 5.1d, Figure 5.3d has 3000% more users which may minimize the effect of

G, and eventually increases the total latency. Thus, this contrary behaviour of

Figure 5.3d may indicate the dominant effect of U parameter.

10 15 20 25 30

Hop-distance between a user and centralized server (hops)

20

25

30

35

40

45

50

55

60

65

T
o

ta
l
L

a
te

n
c
y
 (

s
)

Random Placement

BCPA

DCPA

Figure 5.4: Total latency versus hop-distances between users and centralized
server (H).

Figure 5.4 evaluates the delay performance of methods with 95% confidence in-

tervals for different hop-distances between users and the centralized server. The

values used for H are 10, 15, 20, 25, and 30. For BCPA and random placement

CHAPTER 5. EXPERIMENTAL RESULTS AND EVALUATION 44

methods, as H increases the total latency increases significantly. With large H

values the increase is much sharper. But interestingly, increasing H does not

have a significant effect on delay performance of DCPA. Therefore, we can say

that performance of DCPA method is near optimal as it stores the least popular

content in central servers preventing undesirable increase in total latency with

large hop-distances.

5.2.4 Impact of Cache Size

20 40 60 80 100

Cache Size (%)

0

5

10

15

20

25

T
o

ta
l
L

a
te

n
c
y
(s

)

Random Placement

BCPA

DCPA

Figure 5.5: Total latency versus cache size.

In Figure 5.5, we analyze the impact of various caching capacity ratios on total la-

tency. We define the caching capacity ratio as the proportion of cached content to

all content, and evaluate 95% confidence intervals. As expected, DCPA provides

the best delay performance while random being the worst. BCPA is consistently

outperformed by DCPA and operates very close to random placement for limited

storage capacities. When the cache size is decreased from 100% (everything is

cached) to 20%, performance of all methods decreases. Nevertheless, we observe

a sharp increase in total latency for BCPA with lower cache sizes, indicating that

CHAPTER 5. EXPERIMENTAL RESULTS AND EVALUATION 45

25 40 50 60 75 80 90

Cache Size (%)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

C
a

c
h

e
 H

it
 R

a
ti
o

Random Placement

BCPA

DCPA

Figure 5.6: Cache hit ratio versus cache size.

BCPA is not able to cache files with potentially more requests due to its batch

size limitations and absence of replacement policy. Therefore, we conclude that

BCPA is not suitable when caching capacities are limited.

In Figure 5.6, we observe cache hit ratio of the system, i.e, the ratio between the

total number of requests and the number of requests satisfied from caches, with

various cache sizes. We see that with cache size equal to 90%, for both DCPA

and BCPA, almost all the requested content are satisfied from the edge caches

indicating a hit ratio of 100%. This is an expected result since with higher cache

sizes, the algorithms are able to cache more content. When the cache size is low,

the hit ratio gap between BCPA and DCPA is large which can be explained by

poor performance of BCPA compared to DCPA.

5.2.5 Impact of File Size

In real life, not all files have the same size. Distinguishing different file sizes may

enable us to increase efficiency further. Therefore, we performed experiments by

CHAPTER 5. EXPERIMENTAL RESULTS AND EVALUATION 46

assigning different sizes to files. We use weighted random distribution where the

size of each file is chosen among five different sizes: 50 MB, 100 MB, 200 MB,

500 MB and 1 GB.

Figure 5.7 shows the behavior of algorithms with various average file size. As

can be seen from the figure, when the average file size increases total latency

increases. This is because we are able to cache less files with larger file size.

When we compare performance of the random algorithm and others, we notice

that smaller file size causes the better performance. Being able to cache more

files with a lower delay clearly shows that our proposed algorithms work better.

117 208 325 369 584 626

Average File Size (MB)

30

40

50

60

70

80

90

100

T
o

ta
l
la

te
n

c
y
 (

s
)

Random Placement

BCPA

DCPA

Figure 5.7: Total latency versus average file size.

5.2.6 Impact of Correlated Parameters

Considering the fact that some parameters can also affect each other, we study

parameter correlations and their effect on total latency. Doing that, we aim to

detect an optimal ratio for correlated parameters whose value will also partially

CHAPTER 5. EXPERIMENTAL RESULTS AND EVALUATION 47

determine the value of other parameters and maximize the delay performance of

proposed algorithms.

For these experiments, if F , U , G, N , Nc values do not change during the exper-

iments, they will be set to 1000, 100, 50, 50, and 2 GB, respectively.

0.5 2 8 12.5 50

Caching capacity / Number of base stations (MB)

5

10

15

20

T
o
ta

l
la

te
n
c
y
 (

s
)

Random Placement

BCPA

DCPA

Figure 5.8: Total latency versus totalCachingCapacity/N .

As our first correlated parameters, we discuss the effect of total caching capacity

and the number of base stations (N). We believe that these two parameters

are correlated with each other since total caching capacity directly affects the

caching capacity of each base station N . As can be seen from the figure 5.8,

having more base stations with limited caching capacity performs better than

fewer base stations with greater capacity. This behavior can be explained by the

fact that the higher is the N value, the lower is the hop-distances between base

stations (D), yielding lower total latency.

Secondly, considering the effect of users per social group on the total number

of requests, we observe the effect of number of social groups and users on each

other. Figure 5.9 compares the effect of G/U ratio on the total latency. When

CHAPTER 5. EXPERIMENTAL RESULTS AND EVALUATION 48

0.05 0.25 0.5 0.75 1

Number of social groups / Number of users

0

2

4

6

8

10

12

14

16

18

20

T
o

ta
l
la

te
n

c
y
 (

s
)

Random Placement

BCPA

DCPA

Figure 5.9: Total latency versus G/U .

G Is equal to U , i.e, G/U is 1, the total latency is significantly low for all meth-

ods. This corresponds to a case where there are exactly two members in each

social group resulting in a significant decrease in the total number of recipient

users and hence in total latency. However, we expect these parameters to be not

equal. In that case, both BCPA and DCPA perform adequately without a sig-

nificant improvement in total latency and without changing the system’s overall

performance significantly.

We also observe the relation between the number of files and users. As one

of them determines the total requested contents and the other determines the

total requests, we believe there might be a correlation between them. By looking

to Figure 5.10, we can say that they are definitely correlated. When we vary

F/U ratio from 20 to 100 while keeping the cache size constant, total latency

decreases indicating that having more content with less requests leads to higher

delay compared to having less content with more requests. It is also important to

notice that BCPA operates very close to random placement for all F/U values.

CHAPTER 5. EXPERIMENTAL RESULTS AND EVALUATION 49

20 25 40 50 100

Number of files / Number of users

0

1

2

3

4

5

6

7

8

T
o
ta

l
la

te
n
c
y
 (

s
)

Random Placement

BCPA

DCPA

Figure 5.10: Total latency versus F/U .

5.3 Summary

In this chapter, we presented different simulation results and evaluate the perfor-

mance of our linear model together with our heuristic algorithms. To do that, we

compared the performance improvements offered by our methods over random

placement, where caching decisions are made randomly.

We first compared two different sorting criteria for BCPA and tried to select the

best performing one to be used for the rest of experiments. We observed that

sorting files by their total number of recipient groups does not perform well and

therefore we excluded that method from the rest of our experiments.

We then analyzed the performance of methods for large parameter values. DCPA

provides the best delay performance while random being the worst. BCPA is

consistently outperformed by DCPA and operates very close to random placement

for most of the experiments. This is because BCPA is not able to cache files

with potentially more requests due to batch size limitations and absence of a

replacement policy. As DCPA is able to replace existing files if the total latency

can be reduced further, it improves the delay performance significantly. Thus, we

CHAPTER 5. EXPERIMENTAL RESULTS AND EVALUATION 50

concluded that BCPA is not suitable especially for limited caching capacities.

BCPA’s efficiency in caching content greatly depends on the batch size and the

arrival order of files. DCPA performs very close to the optimal solution.

Chapter 6

Conclusion

In this thesis we addressed the problem of increased data traffic and latency within

the mobile social networks. To overcome this problem, we proposed a socially-

aware edge caching system model and approach considering user-specified social

groups in caching decisions together with storage and transmission capacities of

edge servers.

As already mentioned in several studies, social interactions among users dictate

the traffic pattern of social network applications. Therefore, identifying users’

attitudes toward different content is very important to ensure good user experi-

ence in these networks. One of the main contributions of our work is a system

where users do not engage with all contents shared by their social groups. Users

may have different social groups including their family, friends, acquaintances,

neighbors where they are neither obligated to share the same interests nor be

attentive to the shared content.

Keeping this in mind and aiming reduced access latency to content, a new ap-

proach that prioritizes users’ social relationships and their preferences towards

files was introduced for solving the social-aware caching optimization problem.

We showed that social-aware cache content placement is an NP-hard problem.

Therefore, we proposed a heuristic algorithm, called batch placement caching

51

CHAPTER 6. CONCLUSION 52

algorithm (BCPA), where a set of files are placed in the base stations at a time.

The method divides the files into several batches based on their arrival orders

and places them accordingly. After conducting extensive simulation experiments,

we observed that this method reduces network traffic and latency while receiving

content. However, its efficiency in caching content greatly relies on the batch size

and the arrival order of files.

We also proposed another heuristic algorithm, called dynamic cache placement

algorithm (DCPA). This methods places the files one by one into base stations

as they arrive. The algorithm uses a replacement based recursive approach to

perform better placement. The main difference of the scheme presented from

batch placement is that it continuously checks all the edge caches in order to

achieve an optimal solution. This contribution allows us to solve edge caching

problem with higher complexity. We also verified this fact, i.e., DCPA being the

best performing algorithm, through our simulations. Our simulation results also

indicate that although DCPA method improves the system’s delay performance

significantly, it lowers the computational performance of the servers due to infinite

run of algorithm for updating the data and edge caches.

We think that our findings can be important for real-life modelling. However,

many different adaptations, tests, and experiments have been left for the future

due to lack of time. Future work concerns deeper analysis of particular mecha-

nisms, new proposals to try different methods, or simply curiosity. In this respect,

the following ideas could be tested.

To reduce the latency further, caching the same content in different BSs by en-

abling collaboration between edge servers can be performed. This approach is

called collaborative caching where total latency can be lowered in the expense

of storage capabilities. Currently, there are some studies where MEC servers

are collaborating for executing computation tasks and data caching [46]. This

method decreases the delay and makes backhaul links to not suffering from huge

data exchange between users and remote clouds.

Coded caching approach may also substantially lower network latency and load.

CHAPTER 6. CONCLUSION 53

The idea behind the coded caching scheme is to design an edge caching mechanism

where multi-casting is enabled [39, 40]. In this way, when multiple users request

different files, their requests can be satisfied with a single coded transmission.

This results in a significantly better performance compared to uncoded schemes.

That is, by jointly optimizing both the placement and delivery phases, different

demands can satisfied with a single multicast transmission.

To ensure system security, two main approaches can be tested. These approaches

are called prevention based, i.e., authentication and encryption and detection

based, i.e., intrusion detection [47] approaches. However, both approaches are

based on trust relationships between users. Thus, adding a new parameter to

our model thay represents the social trust level between users may enhance the

security of our system.

Bibliography

[1] GSMA, “The state of mobile internet connectivity report 2020 - mobile for

development,” 2020. (accessed Dec 1, 2020).

[2] Cisco, “Cisco annual internet report (2018–2023) white paper,” 2020. (ac-

cessed Dec 15, 2020).

[3] H. Currey, S. Cox, and S. Kemp, “Digital 2020: 3.8 billion people use social

media,” 2020. (accessed Jan 1, 2021).

[4] YouTube, “Youtube statistics,” 2021. (accessed Jan 1, 2021).

[5] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50,

no. 1, pp. 30–39, 2017.

[6] J. Nakazato, M. Nakamura, Y. Tao, G. K. Tran, and K. Sakaguchi, “Benefits

of mec in 5g cellular networks from telecom operator’s view points,” in IEEE

Global Communications Conference (GLOBECOM), pp. 1–7, 2019.

[7] J. Davis and P. Shih, “State of the edge report 2020,” 2020. (accessed Dec

1, 2020).

[8] A. Patrizio, “Idc: Expect 175 zettabytes of data worldwide by 2025,” 2018.

(accessed Dec 8, 2020).

[9] Communications-Today, “Mobile operators struggling to cope with rise in

data consumption,” 2020.(accessed Feb 1, 2021).

[10] Bitmovin, “Quality of experience: Where quality means doing it right when

no one is watching (yet),” 2020. (accessed Feb 3, 2021).

54

BIBLIOGRAPHY 55

[11] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge

computing—a key technology towards 5g,” European Telecommunications

Standard Institute white paper, vol. 11, no. 11, pp. 1–16, 2015.

[12] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, et al.,

“Mobile-edge computing introductory technical white paper,” White paper,

mobile-edge computing (MEC) industry initiative, vol. 29, pp. 854–864, 2014.

[13] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On

multi-access edge computing: A survey of the emerging 5g network edge

cloud architecture and orchestration,” IEEE Communications Surveys Tu-

torials, vol. 19, no. 3, pp. 1657–1681, 2017.

[14] E. Ahmed and M. H. Rehmani, “Mobile edge computing: opportunities,

solutions, and challenges,” Future Generation Computer Systems, 2017.

[15] T. X. Tran and D. Pompili, “Octopus: A cooperative hierarchical caching

strategy for cloud radio access networks,” in IEEE 13th International Con-

ference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 154–162, 2016.

[16] Y. Cui, W. He, C. Ni, C. Guo, and Z. Liu, “Energy-efficient resource alloca-

tion for cache-assisted mobile edge computing,” 2017 IEEE 42nd Conference

on Local Computer Networks (LCN), 2017.

[17] X. Li, X. Wang, and V. C. M. Leung, “Weighted network traffic offloading in

cache-enabled heterogeneous networks,” in IEEE International Conference

on Communications (ICC), pp. 1–6, 2016.

[18] Y. Wang, X. Tao, X. Zhang, and G. Mao, “Joint caching placement and

user association for minimizing user download delay,” IEEE Access, vol. 4,

pp. 8625–8633, 2016.

[19] C. Yen, F. Chien, and M. Chang, “Cooperative online caching in small cell

networks with limited cache size and unknown content popularity,” in 3rd

International Conference on Computer and Communications (ICC), pp. 173–

177, 2018.

BIBLIOGRAPHY 56

[20] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,

“Volley: Automated data placement for geo-distributed cloud services,” Net-

worked Systems Design and Implementation (NSDI), pp. 17–32, 2010.

[21] C. Curino, Y. Zhang, E. Jones, and S. Madden, “Schism: a workload-driven

approach to database replication and partitioning,” PVLDB, vol. 3, pp. 48–

57, 2010.

[22] Q. Duong, S. Goel, J. Hofman, and S. Vassilvitskii, “Sharding social net-

works,” pp. 223–232, 2013.

[23] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,

and P. Rodriguez, “The little engine(s) that could: Scaling online social

networks,” IEEE/ACM Transactions on Networking, vol. 20, no. 4, pp. 1162–

1175, 2012.

[24] X. Jiang, T. Zhang, and Z. Zeng, “Content clustering and popularity pre-

diction based caching strategy in content centric networking,” in 2017 IEEE

85th Vehicular Technology Conference (VTC Spring), pp. 1–5, 2017.

[25] M. Gregori, J. Gómez-Vilardebó, J. Matamoros, and D. Gündüz, “Wireless

content caching for small cell and d2d networks,” IEEE Journal on Selected

Areas in Communications, vol. 34, no. 5, pp. 1222–1234, 2016.

[26] A. M. Vegni and V. Loscŕı, “A survey on vehicular social networks,” IEEE

Communications Surveys Tutorials, vol. 17, no. 4, pp. 2397–2419, 2015.

[27] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C.

Li, “An analysis of facebook photo caching,” in Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles, p. 167–181, 2013.

[28] M. Peng and K. Zhang, “Recent advances in fog radio access networks:

Performance analysis and radio resource allocation,” IEEE Access, vol. 4,

pp. 5003–5009, 2016.

BIBLIOGRAPHY 57

[29] L. Braun, A. Klein, G. Carle, H. Reiser, and J. Eisl, “Analyzing caching

benefits for youtube traffic in edge networks — a measurement-based evalu-

ation,” in IEEE Network Operations and Management Symposium, pp. 311–

318, 2012.

[30] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Watch global, cache local: Youtube

network traffic at a campus network - measurements and implications,”

Proceedings of The International Society for Optical Engineering (SPIE),

vol. 6818, 2008.

[31] Z. Wang, L. Sun, X. Chen, W. Zhu, J. Liu, M. Chen, and S. Yang,

“Propagation-based social-aware replication for social video contents,” in

Proceedings of the 20th ACM International Conference on Multimedia, MM

’12, p. 29–38, 2012.

[32] W. Gao, G. Cao, A. Iyengar, and M. Srivatsa, “Cooperative caching for

efficient data access in disruption tolerant networks,” IEEE Transactions on

Mobile Computing, vol. 13, no. 3, pp. 611–625, 2014.

[33] X. Wang, S. Leng, and K. Yang, “Social-aware edge caching in fog radio

access networks,” IEEE Access, vol. 5, pp. 8492–8501, 2017.

[34] H. Chen and W. Lou, “Gar: Group aware cooperative routing protocol

for resource-constraint opportunistic networks,” Computer Communications,

vol. 48, pp. 20 – 29, 2014.

[35] Z. Su, Q. Xu, F. Hou, Q. Yang, and Q. Qi, “Edge caching for layered

video contents in mobile social networks,” IEEE Transactions on Multime-

dia, vol. 19, no. 10, pp. 2210–2221, 2017.

[36] D. Wu, B. Liu, Q. Yang, and R. Wang, “Social-aware cooperative caching

mechanism in mobile social networks,” Journal of Network and Computer

Applications, vol. 149, p. 102457, 2020.

[37] W. Luzhi, S. hu, M. Li, and J. Zhou, “An exact algorithm for minimum

vertex cover problem,” Mathematics, vol. 7, p. 603, 2019.

BIBLIOGRAPHY 58

[38] R. Karp, “Reducibility among combinatorial problems,” vol. 40, pp. 85–103,

1972.

[39] U. Niesen and M. Maddah-Ali, “Coded caching with nonuniform demands,”

Proceedings - IEEE INFOCOM, 2013.

[40] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE

Transactions on Information Theory, vol. 60, 2012.

[41] R. Jain, D. M. Chiu, and H. WR, “A quantitative measure of fairness and

discrimination for resource allocation in shared computer systems,” Com-

puting Research Repository (CoRR), 1998.

[42] Y. Le, L. Ma, W. Cheng, X. Cheng, and B. Chen, “A time fairness-based mac

algorithm for throughput maximization in 802.11 networks,” IEEE Trans-

actions on Computers, vol. 64, no. 1, pp. 19–31, 2015.

[43] D. Wei, K. Zhu, and X. Wang, “Fairness-aware cooperative caching scheme

for mobile social networks,” in 2014 IEEE International Conference on Com-

munications (ICC), pp. 2484–2489, 2014.

[44] M. Dianati, X. Shen, and S. Naik, “A new fairness index for radio resource

allocation in wireless networks,” in IEEE Wireless Communications and Net-

working Conference, 2005, vol. 2, pp. 712–717 Vol. 2, 2005.

[45] N. Kumar and S. Sharma, “Survey analysis on the usage and impact of what-

sapp messenger,” Global Journal of Enterprise Information System, vol. 8,

p. 52, 2017.

[46] A. Ndikumana, S. Ullah, T. LeAnh, N. H. Tran, and C. S. Hong, “Collabora-

tive cache allocation and computation offloading in mobile edge computing,”

in 2017 19th Asia-Pacific Network Operations and Management Symposium

(APNOMS), pp. 366–369, 2017.

[47] Y. He, F. R. Yu, N. Zhao, and H. Yin, “Secure social networks in 5g sys-

tems with mobile edge computing, caching, and device-to-device communi-

cations,” IEEE Wireless Communications, vol. 25, no. 3, pp. 103–109, 2018.

	202103221356 copy

