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Abstract—For a foreseeable future, autonomous vehicles (AVs)
will operate in traffic together with human-driven vehicles.
Their planning and control systems need extensive testing,
including early-stage testing in simulations where the interac-
tions among autonomous/human-driven vehicles are represented.
Motivated by the need for such simulation tools, we propose
a game-theoretic approach to modeling vehicle interactions,
in particular, for urban traffic environments with unsignalized
intersections. We develop traffic models with heterogeneous (in
terms of their driving styles) and interactive vehicles based on our
proposed approach, and use them for virtual testing, evaluation,
and calibration of AV control systems. For illustration, we con-
sider two AV control approaches, analyze their characteristics
and performance based on the simulation results with our devel-
oped traffic models, and optimize the parameters of one of them.

Index Terms— Autonomous vehicles, decision making, game
theory, human factors, multi-agent systems, system testing.

I. INTRODUCTION

UTONOMOUS driving technologies have greatly

advanced in recent years with the promise of
providing safer, more efficient, environment-friendly,
and easily accessible transportation [1]-[3]. To fulfill such
a commitment requires developing advanced planning and
control algorithms to navigate autonomous vehicles (AVs),
as well as comprehensive testing procedures to verify their
safety and performance characteristics [4]-[6]. It is estimated
based on the collision fatalities rate that to confidently verify
an AV control system, hundreds of millions of miles need
to be driven [4], which can be highly time and resource
consuming if these driving tests are all conducted in the
physical world. Therefore, an alternative solution is to use
simulation tools to conduct early-stage testing and evaluation
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in a virtual world so that the overall verification process can
be accelerated [7], [8]. The work of this paper is motivated
by the need for virtual testing of AV control systems.

In the near to medium term, AVs are expected to operate
in traffic together with human-driven vehicles. Therefore,
accounting for the interactions among autonomous/human-
driven vehicles is important to achieve safe and efficient
driving behavior of an AV.

Control strategies for AVs that account for vehicle interac-
tions include the ones based on Markov decision processes
[9]-[12], model predictive control [13], [14], game-theoretic
models [15]-[18], [18], [19], as well as data-driven approaches
[20], [21]. To evaluate the effectiveness of these algorithms
requires simulation environments that can represent the inter-
actions among autonomous/human-driven vehicles.

In our previous work [22], we exploited a game-theoretic
approach to modeling vehicle interactions in highway traffic.
Compared to highway traffic, urban traffic environments
with intersections are considered to be more challenging
for both human drivers and AVs, as they involve more
extensive and complex interactions among vehicles. For
instance, almost 40% of traffic accidents in the U.S. are
intersection-related [23].

In this paper, we extend the game-theoretic approach of [22]
to modeling vehicle interactions in urban traffic. In particular,
we consider urban traffic environments with unsignalized inter-
sections. Firstly, unsignalized intersections may be even more
challenging than signalized intersections because, due to the
lack of guidance from traffic signals, a driver/automation needs
to decide on its own, whether, when and how to enter and
drive through the intersection. According to the U.S. Federal
Highway Administration’s report, almost 70% of fatalities due
to intersection-related traffic accidents happened at unsignal-
ized intersections [24]. Thus, well-verified autonomous driving
systems for unsignalized intersections may deliver significant
safety benefits. Indeed, many previous works in the literature
on AV control for intersections, including [19], [25]-[28], deal
with unsignalized intersections, although they do not always
explicitly point this out.

Our approach formulates the decision-making processes
of drivers/vehicles as a dynamic game, where each vehicle
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interacts with other vehicles by observing their states, predict-
ing their future actions, and then planning its own actions.
In addition to the difference in traffic scenarios being consid-
ered (i.e., urban traffic in this paper versus highway traffic in
[22]), this paper contains the following methodological contri-
bution compared to [22]: Due to the much larger state space
for urban traffic environments with intersections compared to
that for highway traffic, the reinforcement learning approach
used in [22] to solve for control policies is computationally
prohibitive. Therefore, we develop in this paper an alternative
approach that uniquely integrates a game-theoretic formalism,
receding-horizon optimization, and an imitation learning algo-
rithm to obtain control policies. This new approach is shown
to be computationally effective for the large state space of
urban traffic.

Our model representing vehicle interactions falls in-between
macroscopic traffic models and microscopic driver behavior
models. On the one hand, macroscopic traffic models typi-
cally assume a large number (e.g., hundreds to thousands) of
vehicles and study the average or statistical properties of traffic
flow, such as traffic flux (vehicles/hour) versus traffic density
(vehicles/km) [29]-[31]. Individual vehicle behavior is usually
not represented in such models. On the other hand, micro-
scopic driver behavior models typically focus on modeling
the decision-making as well as control processes of individual
drivers [32]-[34], such as the responses of a human driver
to various traffic situations. The interactions among multiple
vehicles are usually not incorporated in such models. Con-
sequently, neither models are particularly suitable for virtual
testing of AV control systems. In contrast, our game-theoretic
model represents the interactive decision-making processes
of multiple drivers/vehicles, where each individual vehicle’s
behavior is represented using a kinematic vehicle model. This
way, we can model traffic scenes with a medium number
(e.g., dozens) of interacting vehicles, suitable as test scenarios
for AV control systems.

In [35], we modeled the interactions among vehicles at
unsignalized intersections, but using a different game-theoretic
approach from the one used in this paper. Specifically, in [35],
we modeled vehicle interactions based on a formulation of a
leader-follower game; while in this paper, we consider the
application of level-k game theory [36], [37]. The control
strategies of all interacting vehicles modeled using the frame-
work of [35] are homogeneous; while the control strategies of
different vehicles modeled using the scheme of this paper are
heterogeneous, differentiated by their level-k control policies
with different k = 0,1,2,... This heterogeneity can be
used to represent the different driving styles among different
drivers, e.g., aggressive driving versus cautious/conservative
driving. In addition, [35] models a single intersection with
up to 10 interacting vehicles; while in this paper, thanks
to the effective application of the aforementioned solution
approach integrating game theory, receding-horizon optimiza-
tion, and imitation learning to obtain control policies, the
scheme of this paper can be used to model much larger
road systems involving many intersections and many vehicles
with manageable online computational effort. This enables
the investigation into driving characteristics that are exhibited
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when a vehicle drives through multiple road segments, such as
overall travel time, fuel consumption, etc. A road system with
15 intersections and 30 vehicles is illustrated as an example in
Section IV. Furthermore, application of the developed traffic
models to verification and validation of AV control systems is
comprehensively discussed in this paper, but not in [35].

Preliminary results of this paper have been reported in the
conference papers [38] and [39]. The results modeling the
interactions between two vehicles at a four-way intersection
are reported in [38] and those for two vehicles at a roundabout
intersection are in [39]. This paper generalizes the methodol-
ogy to modeling the interactions among multiple (more than
two) vehicles and to an additional intersection type — T-shaped
intersection. Constructing larger road systems based on the
models of these three intersections is reported for the first time
in this paper. This paper also demonstrates how the developed
traffic models can be used for virtual testing, evaluation, and
calibration of AV control systems, which is not provided in
[38] and [39].

In summary, the contributions of this paper are: 1) We
describe an approach based on level-k game theory to mod-
eling the interactions among vehicles in urban traffic envi-
ronments with unsignalized intersections. 2) We propose an
algorithm based on imitation learning to obtain level-k control
policies so that our approach to modeling vehicle interactions
is scalable — able to model traffic scenes with many inter-
sections and many vehicles. In particular, this new imitation
learning approach is compared with the supervised learning
approach used in our previous work [39] and is shown to pro-
vide better results. 3) We demonstrate the use of the developed
traffic models for virtual testing, evaluation, and calibration
of AV control systems. For illustration purposes, we consider
two AV control approaches, analyze their characteristics and
performance based on the simulation results with our traffic
models, and optimize the parameters of one of them.

This paper is organized as follows: The models representing
vehicle kinematics and driver decision-making processes are
introduced in Section II. The game-theoretic model represent-
ing vehicle interactions and obtaining its explicit approxima-
tion via imitation learning are discussed in Section III. The
procedure to construct traffic models of larger road systems
based on the models of three basic intersection scenarios is
described in Section IV. We then propose two AV control
approaches in Section V, used as case studies to illustrate
the application of our developed traffic models to AV control
verification and validation. Simulation results are reported in
Section VI, and finally, the paper is concluded in Section VII.

II. TRAFFIC DYNAMICS AND DRIVER DECISION-MAKING
MODELING
In this section, we describe our models to represent the traf-
fic dynamics and the decision-making processes of interacting
drivers.

A. Traffic Dynamics

Firstly, we describe the evolution of a traffic scenario using
a discrete-time model as follows:

St+1 = f(sfﬂut)ﬂ

ey
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where s = (s!, 52, ..., s™) denotes the traffic state, composed states and actions of the other vehicles j € M, j # i, ie.,
P _ . . —i —i ] . :

of t'he sta.ltes s, i € /\/l = {1,2,1. . .z,m}, of all interacting Sep = (51|;)je/\/l.,j;éi and u = (”r\z)jEM,j#i’ R is arewgrd

vehicles in the scenario, uw = (u',u”,...,u") denotes the function depending on the states and actions of all interacting

collection of all vehicles’ actions u‘, and the subscript ¢
represents the discrete-time instant. In particular, the state of
a vehicle is composed of two parts, s' = (s!,s%?). The
first part s! = (x!, y', v?, #") represents the state of vehicle
kinematics, modeled using the following unicycle model:

x,’:+1 x! 4ol cos (6)) At

y! i yi 4ol sin (0F) At

e = ey = | )
U ¢ L

0,4, 0} + w; At

where (xi, yi), vi, and 0! represent, respectively, the vehi-
cle’s position in the ground-fixed frame, its speed, and its
heading angle, the inputs ¢’ and ' represent, respectively,
the vehicle’s acceleration and heading angle rate, while At
is the sampling period for decision-making. The second part
§h2 = (ri,fi) contains additional information related to the
vehicle’s decision-making objective, including r' = (ri, r;',),
representing a target/reference position to go, and &', a feature
vector containing key information about the road layout and
geometry such as the road width, the angle of intersection,
and etc [35]. When vehicle i is driving toward, in the middle
of, or exiting a specific intersection, s»> stays constant with r’
being a point located in the center of the vehicle’s target lane;
52 gets updated after the vehicle has returned to straight road
and is driving toward the next intersection.

We remark that the unicycle model (2) is suitable for our
purpose of modeling the interactive decision-making processes
and the resulting dynamic behavior of multiple vehicles in
intersection traffic scenarios. This model is simple while it
can sufficiently accurately represent vehicle kinematics at low
to medium vehicle speeds and involving turning behavior [16],
[40]. In Section VI we show that 1) driving behaviors planned
based on the model (2) can be accurately executed by vehicle
systems with lower-level control, and 2) vehicle trajectories
extracted from real-world traffic data can be satisfactorily
reproduced by simulating the model (2) along with the deci-
sion logic developed following our approach.

B. Driver Decision-Making

An action u' is a pair of values of the inputs (ai, a)i), i.e.,
u' = (a', w'). We assume that the drivers of the vehicles make
sequential decisions based on receding-horizon optimization as
follows: At each discrete-time instant ¢, the driver of vehicle
i solves for

I\* I \k I \k i *
(w)* = {(ug)", @), Gy )"}
N—1
1S argmaxzl’R(s;‘,,sT_l’t,u’T‘,,u;"t), 3)
weldVN o
where uf = {uf)lt, ”il\t’ R ulf'Vfl\l‘} represents a sequence of
predicted actions of vehicle i, with “lﬂ , denoting the predicted
action for time step 7+t and taking values in a finite action set
U; the notations s’ —} and uT_’t represent, respectively, the

S
T|t? Pt
predicted state of vehicle i, and the collections of predicted

vehicles, which will be introduced in detail in the following
section; and 4 € (0, 1] is a factor discounting future reward.

Once an optimal action sequence (ul)* is determined,
vehicle i applies the first element (uf)lt)* for one time step,

ie., u§ = (uf)‘t)*. After the states of all vehicles have been
updated, vehicle i repeats this procedure at ¢t + 1.

The fact that R depends not only on the ego vehicle’s
state and action but also on those of the other vehicles deter-
mines the interactive nature of the drivers’ decision-making
processes in a multi-yehicle trafﬁc scenario. Note that, due
to the unknowns “r_|lt and sr_‘lt forr = 0,1,...,N — 1,
the problem (3) has not been well-defined yet and cannot
be solved. To be able to solve for (u))*, we will exploit a
game-theoretic approach in Section III to predict the values of
u,; and s .

C. Reward Function

We use the reward function R in (3) to represent vehicles’
decision-making objectives in traffic. In this paper, we consider
R defined as follows:

i —i i —iy _ i J . o
R(s710>Sppe Uz)>Ug)) = WT(D(ST+1\Z" (Sr+1|t)/€M,/¢z)» “)

where © = [¢1, @2, . ..
is the weight vector. Note that siH‘t = f(s{‘t, uilt) for all
Jj € M based on the kinematic vehicle model (2).

The features ¢1, @2, . . ., ¢ are designed to encode common
considerations in driving, such as safety, comfort, travel time,
etc. They are defined as follows.

The feature ¢ characterizes the collision status of the
vehicle. In particular, we over-bound the geometric contour of
each vehicle by a rectangle, referred to as the collision-zone
(c-zone). Then, ¢; = —1 if vehicle i’s c-zone at the predicted

state s e overlaps with any of the other vehicles’ c-zones

at their predicted states si e which indicates a danger of
collision; and ¢ = 0 otherwise. The c-zone over-bounds the
vehicle’s geometric contour by a small margin to compensate
for the effect of perception errors. Note that the size of these
perception errors is small at low to medium vehicle speeds
when compared to the resolution of the actions.

The feature ¢, characterizes the on-road status of the
vehicle, taking —1 if vehicle i’s c-zone crosses any of the road
boundaries, and 0 otherwise. And similarly, ¢3 characterizes
the in-lane status of the vehicle. If vehicle i’s c-zone crosses
a lane marking that separates the traffic of opposite directions
or enters a lane different from its target lane when exiting an
intersection, then ¢3 = —1; ¢3 = 0 otherwise.

To characterize the status of maintaining a safe and com-
fortable separation between vehicles, we further define a
separation-zone (s-zone) for each vehicle, which over-bounds
the vehicle’s c-zone with a separation margin. The feature
¢a takes —1 if vehicle i’s s-zone overlaps with any of the
other vehicles’ s-zones at their predicted states, and takes O
otherwise.

, P6]T is the feature vector and w € ]Ri
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The features ¢s and ¢ characterize the vehicle’s sta-
tus of driving toward its target lane. They are defined as
¢5 = — |r)’; —xi| = |r; — y/| and ¢ = ', so that the vehicle
is encouraged to approach the reference point ! in its target
lane as quickly as it can.

The above reward function design reflects common driving
objectives in traffic. The weight vector w can be tuned to
achieve reasonable driving behavior, or be calibrated using
traffic data and approaches such as inverse reinforcement
learning [41], [42].

III. GAME-THEORETIC DECISION-MAKING AND EXPLICIT
REALIZATION VIA IMITATION LEARNING

Game theory is a useful tool for modeling intelligent agents’
strategic interactions. In this paper, we exploit the level-k
game theory [36], [37] to model vehicles’ interactive decision-
making.

A. Level-k Reasoning and Decision-Making

In level-k game theory, it is assumed that players make
decisions based on finite depths of reasoning, called “level,”
and different players may have different reasoning lev-
els. In particular, a level-0 player makes non-strategic
decisions — decisions without regard to the other players’
decisions. Then, a level-k, k > 1, player makes strategic
decisions by assuming that all of the other players are level-
(k—1), predicting their decisions based on such an assumption,
and optimally responding to their predicted decisions. It is
verified by experimental results from cognitive science that
such a level-k reasoning process can model human interactions
with higher accuracy than traditional analytic methods in many
cases [37].

To incorporate level-k reasoning in our decision-making
model (3), we start with defining a level-0 decision rule.
According to the non-strategic assumption on level-0 players,
we let a level-0 decision of a vehicle i, i € M, depend
only on the traffic state s, i_ncluding its own state st" and
the other vehicl_es’ states s, ', but not on the other vehi-
cles” actions u; . In this paper, a level-0 decision, (uf)0 =
{(ué‘t)o, (“li|z)0""»(“§V—1|t)O}’ is a sequence of predicted
actions that maximizes the cumulative reward in (3) with
treating all of the other vehicles as stationary obstacles over
the planning horizon, i.e., vilt =0, a)ilt = 0 for all j # i,
7 = 0,1,..., N. This way, a level-0 vehicle represents an
aggressive vehicle which assumes that all of the other vehicles
will yield the right of way to it.

On the basis of the formulated level-O decision rule, the
level-k decisions of the vehicles are obtained based on

ik i \k i \k i k
(u;) = {(”6|;) 5 (”l1|t) seees (”le”,) }
N—1
S i1
€ argmax z /ITR(S;“, sﬂ’t, ”lz|z’ (uﬂ’t) ), (5)
weldVN o
for every i € M, and for every k = 1,2,..., kmax through
sequential, iterated computations, where (u;"t)k’l denotes the
level-(k — 1) decisions of the other vehicles j # i, which have
been determined either in the previous iteration or based on
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the level-0 decision rule (for k = 1), and kpmax is the highest
reasoning level for computation.

Given a finite action set U/, the problem (5) for every i € M
and k = 1,2, ..., knax can be solved with exhaustive search,
e.g., based on a tree structure [43].

B. Explicit Level-k Decision-Making via Imitation Learning

A level-k vehicle drives in traffic by applying ul = (uém)k
at every time step, where (uf)‘t)k is determined according to
(5) with the current state as the initial condition, i.e., Sén = s,i
and sal; = s,_i.

On the one hand, the problem (5) needs to be numerically
solved. The required computational effort to solve (5) grows
for larger k and larger numbers of interacting vehicles, because
in order to compute the level-k decision of vehicle i, the
level-(k — 1) decisions of all other vehicles j # i need
to be determined first, which, in turn, need the prerequisite
determination of level-(k — 2) decisions for £ > 2, and
etc. On the other hand, for virtual testing of AV control
systems, fast simulations are desired so that a large number
of test scenarios can be covered within a short period of real
time. To achieve fast simulations, we exploit machine learning
techniques to move the computational tasks associated with (5)
offline and obtain explicit level-k decision policies for online
use.

In particular, we define a policy as a map from a triple of
the ego vehicle’s state s/, the other vehicles’ states s; ', and
the ego vehicle’s reasoning level k to the level-k action of the
ego vehicle, i.e.

mx: (shs k) e (k. (6)

This map is algorithmically determined by solving the problem
(5) and letting (ui)k = (”6|t)k~ In what follows, we pursue an
explicit approximation of 7y, denoted by 7k, exploiting the
approach called “imitation learning.”

Imitation learning is an approach for an autonomous agent
to learn a control policy from expert demonstrations to imitate
expert’s behavior. The expert can be a human expert [44] or a
well-behaved artificial intelligence [45]. In this paper, we treat
the algorithmically determined map 7y as the expert.

Imitation learning can be formulated as a standard super-
vised learning problem, in which case it is also commonly
referred to as “behavioral cloning,” where the learning objec-
tive is to obtain a policy from a pre-collected dataset of expert
demonstrations that best approximates the expert’s behavior at
the states contained in the dataset. Such a procedure can be
described as

i € argmin Eg p(|z [L(Tk(5), 19 (5)) ], 7
L)

where S denotes the triple (si,s_i,k), 7k denotes the
expert policy (6), mp denotes a policy parameterized by 6
(e.g., the weights of a neural network) that is being evalu-
ated and optimized, £ is a loss function, and the notation
Es~pG|) () is defined as

Egpm () = / () dPGImo). ®)
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We remark that a key feature of the procedure (7) is that
the expectation is with respect to the probability distribution
P(s|zx) of the data § determined by the expert policy 7y, which
is essentially the empirical distribution of § in the pre-collected
dataset.

In our previous work [39], we have explored the procedure
(7) to obtain an explicit policy that imitates level-k decisions
for an autonomous vehicle to drive through a roundabout
intersection.

Using (7) to train the policy 7k has a drawback in that
only the states that can be reached by executing the expert
policy my will be included in the dataset, and such a sampling
bias may cause the error between 7y and 7k to propagate
in time. In particular, a small error may cause the vehicle to
reach a state that is not exactly included in the dataset and,
consequently, a large error may occur at the next time step.

Therefore, in this paper we consider an alternative approach,
based on the “Dataset Aggregation” (DAgger) algorithm,
to train the policy 7x. DAgger is an iterative algorithm that
optimizes the policy under its induced state distribution [46].
The learning objective of DAgger can be described as

iy € argmin Eg pG|z,)[L(7x(5), 70 (5))], Q)
L)

Ey-rnn () = [ (PG, (10)
where the distinguishing feature from (7) is that the expec-
tation is with respect to the probability distribution P(S|7g)
induced from the policy 7y that is being evaluated and
optimized. DAgger can effectively resolve the aforementioned
issue with regard to the propagation of error in time, since
there will be data points (S, 7k(s)) for states § reached by
executing 7.

The procedure to obtain explicit level-k decision policies
based on an improved version of DAgger algorithm [45] is
presented as Algorithm 1. In Algorithm 1, np,x denotes the
maximum number of simulation episodes and #,x represents
the length of a simulation episode. By “initialize the simulation
environment,” we mean constructing a traffic scene, including
specifying the road layout and geometry as well as the number
of vehicles. By “initialize vehicle i,” we mean putting the
vehicle in a lane entering the scene while satisfying a min-
imum separation distance constraint from the other vehicles,
and specifying a sequence of target lanes for the vehicle to
traverse and finally leave the scene. By “vehicle i fails,” we
mean the occurrence of 1) vehicle i’s c-zone overlapping with
any of the other vehicles’ c-zones, 2) crossing any of the road
boundaries, or 3) crossing a lane marking that separates the
traffic of opposite directions. And, by “vehicle i succeeds,”
we mean vehicle i gets to the last target lane in its target
lane sequence so that it can leave the scene without further
interactions with the other vehicles.

IV. TRAFFIC IN UNSIGNALIZED INTERSECTION NETWORK

We model urban traffic where the road system is composed
of straight roads and three most common types of unsignalized
intersections: four-way, T-shaped, and roundabout [47]. Such
traffic models can be used as simulation environments for

Algorithm 1 Imitation Learning Algorithm to Obtain

Explicit Level-k Decision Policies

1 Initialize 7Z'k to an arbitrary policy;
2 Initialize dataset D < (J;
3forn =1:nmix do

4 | Initialize the simulation environment;

5 | fori e M do

6 | Initialize vehicle i;

7 end for

8 | fort =0:tnax — 1 do

9 for i €¢ M do

10 if vehicle i fails or succeeds then

11 | Re-initialize vehicle i;

12 end if

13 for k =1 : kpax do

14 if 20 (st,s,7, k) ;é_nk(sti,s;i,k) then
15 | D DU ((si,s " k), mi(st, s, k)
16 end if

17 end for

18 Randomly generate k; € {1, ..., kmax};

19 Sty = = f(si, 720~ Ysi,s k,))

20 end for

21 end for

22 | Train classifier 7}' on D;

23 end for
24 Output 7 = 7™

(@ ' )

e - o

-

- .- =2 |- @ - Q -2
1
:

s
H N\ /

11 t

81 1 e

Fig. 1. Unsignalized intersections to be modeled: (a) four-way, (b) T-shaped,
and (c) roundabout.

virtual testing of AV control systems, which will be introduced
in Section V.

The three unsignalized intersections to be modeled are illus-
trated in Fig. 1. A vehicle can come from any of the entrance
lanes (marked by green arrows) to enter an intersection and
go to any of the exit lanes (marked by red arrows) to leave it,
except that U-turns are not allowed for four-way and T-shaped
intersections.

When training the level-k policy 7k using Algorithm 1,
we treat these three unsignalized intersections separately.
Specifically, when initializing the simulation environment in
step 4, we select one of these three unsignalized intersec-
tions as the traffic scene for the current simulation episode.
In addition, since in this paper we only consider these three
unsignalized intersections, their layout and geometry features
can be characterized and distinguished using a label ¢ €
{1,2,3), i.e., the state & of vehicle i takes the value 1 when
vehicle i operates in the area of the four-way intersection,
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Fig. 2. An urban traffic scenario with 15 level-1 cars (yellow) and 15 level-2
cars (red).

2 for the T-shaped intersection, and 3 for the roundabout.
For more intersection types with various layout and geometry
features, a higher dimensional vector ¢ may be used (e.g., see
the intersection model in [35]).

Once the policy 7x for each of these three unsignalized
intersections has been obtained, we can model larger road
systems using these three unsignalized intersections as mod-
ules and assembling them in arbitrary ways. Fig. 2 shows
an example of assembly. When a vehicle operates at/nearest
to a specific intersection, it uses a local coordinate system,
accounts for its interactions with only the vehicles in an
immediate vicinity, and applies the 7k corresponding to this
intersection.

To model the heterogeneity in driving styles of different
drivers, we let different vehicles be of different reasoning
levels. Specifically, a level-k vehicle is controlled by the
policy:

Ak = k(s k) o (s, s7) e bk, (11)
For instance, in Fig. 2 the 15 yellow cars are level-1 and the
15 red cars are level-2.

V. AUTONOMOUS VEHICLE CONTROL APPROACHES

In this section, we describe two AV control approaches
for urban traffic environments with unsignalized intersections.
These approaches will be tested and calibrated using our traffic
model, thereby demonstrating its utility for verification and
validation.

A. Adaptive Control Based on Level-k Models

In this approach, the autonomous ego vehicle treats the other
drivers as level-k drivers. As different drivers may behave
corresponding to different reasoning levels, the ego vehicle
estimates their levels and adapts its own control strategy based
on the estimation results.

The control strategy of the autonomous ego vehicle, i, can
be described as: At each discrete-time instant ¢, vehicle i
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solves for
(ui)a = {(Mé\;)aa (Ma\t)a, 5 (M§V_1|;)a}
N-1 y
€ argmalei R(s ﬂt, Sopro U ,|,,(ur‘,)k), (12)
ueldN g
where (ur|t)k ((u r‘t) ) . denotes the collection of

predicted actlons of the other Vehlcles In particular, the actions
of vehicle j, u r‘t, 7 = 0,1,...,N — 1, are predicted by
modeling vehicle j as level-lgtj and are solved for according
to (5), where 12,] is determined according to the following
maximum likelihood principle:

lg,j € argmax P/ (k/ = k|r),
kel

13)

in which P! (k/ = k|t) represents vehicle i’s belief at time ¢ in
that vehicle j can be modeled as level-k, with k taking values
in a model set K. The beliefs P/ (k/ = k|t) get updated after
each time step according to the following algorithm: If there
exist k, k' € K such that my(s/, s, 7, k) # nx(s],s; 7, k'), then

pi(k! = k|t +1)
Zk’E}C pl(kj - k/|t + l)’

o — AP (k] = if :]gj
pik =klt4+1) = [I(P’li(kfﬂikit) kity+p if k=kj,

Pk = k|t +1) =

otherwise,
(14)

where £ € [0, 1] represents an update step size, and

]}tf € argmin dlst(ut, (ut) )
kelC

= J @ — @R+ - @) as)
if m(s],s; 7, k) = mx(s],s; k') for all k,k’ € K, then
Pl (k) = k|t + 1) = Pi(k/ = k|t) for all k € K.

The level estimation algorithm (13)-(15) has the following
three features: 1) If the actions predicted by all of the models
in KC are the same, then the autonomous ego vehicle has
no information to distinguish their relative accuracy and thus
maintains its previous beliefs. 2) Otherwise, the ego vehicle
identifies the model(s) in K whose prediction (u] )¥ matches
vehicle j’s actually applied action u{ for time ¢ with the
highest accuracy. 3) The ego vehicle improves its belief(s)
in that model(s) from its previous beliefs. This way, it takes
into account both its previous estimates and the current, latest
estimate.

Similar to (6) defined by (5), we can define a policy to
represent the control determined by (12) as follows:

ma: (5087 KT e (b4, (16)
where l~(f P = (12{ )jeM, j=i denotes the collection of level esti-
mates of the other vehicles and (u}) = (uf)lt)“ is determined
by (12). Furthermore, we can train an explicit approximation
Ta to 7, using a similar imitation learning procedure as that
for training the explicit approximation 7y to mk. This way,
together with replacing 7y with 7 in the level estimation
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Fig. 3. Reference paths for the autonomous ego vehicle to drive through
(a) four-way, (b) T-shaped, and (c) roundabout intersections.

algorithm (13)-(15), we can move the major computational
tasks involved in this adaptive control approach (12)-(15)
offline, and thus, render its online computational feasibility.
The algorithm to train 7, using DAgger with 7, as the
expert policy is similar to Algorithm 1 and is omitted.

B. Rule-Based control

The second AV control approach that we consider is a
rule-based solution. Compared to many other approaches,
rule-based control has the advantage of interpretability and can
often be calibrated by tuning a small number of parameters.

In this approach, the autonomous ego vehicle drives by
following a pre-planned reference path and accounts for its
interactions with other vehicles by adjusting its speed along
the path correspondingly. Examples of reference paths for
the autonomous ego vehicle to drive through intersections are
illustrated by the green dotted curves in Fig. 3.

The basic control rules can be explained as follows: The
autonomous ego vehicle pursues a higher speed along the
reference path if there is no other vehicle in conflict with
it. If there are other vehicles in conflict with it, then the
autonomous ego vehicle yields to them by maximizing dis-
tances from them. Specifically, at each discrete-time instant z,
the autonomous ego vehicle, i, selects and applies for one time
step an acceleration value from a finite set of accelerations,
A, according to Algorithm 2.

Algorithm 2 Rule-Based Autonomous Vehicle Control
Algorithm

1 Initialize M, < @;
2for je M, j#ido
3 | if the estimated future path of j intersects with i’s
future path and dist((xti, v, &}, vl )) < R, then
| Mo <= M UL
end if
end for
if M, # ( then
(@) =
arg max,c 4 [minjEMc diSt((xi\t’ yi\t)’ (x{|t’ y{|t))];
9 else
10 | (a))" =max{a € A};
11 end if
Output (a!)".

w N e

o=
~

In Algorithm 2, M, represents the set of vehicles that are
in conflict with the ego vehicle. In particular, the ego vehicle
estimates each of the other vehicles’ future paths based on their
current positions and their target lanes and using the same path
planning algorithm that is used by the ego vehicle to create its
own path. If the estimated future path of a vehicle j intersects
with the ego vehicle’s own future path and the current distance
between these two vehicles is smaller than a threshold value
R., then vehicle j is identified as a vehicle in conflict, i.e.,
J € M. In particular, the distance function dist(-, -) measures
the Euclidean distance.

If there are vehicles in conflict, M, # @, then the
ego vehicle maximizes the minimum among the predicted
distances from these vehicles to improve safety. In step 8,
(xilt, y{ ‘t) represents the predicted position of the ego vehicle
i by driving along its reference path for one step with the speed
after applying the acceleration a, and (x{ I> y{ | ;) represents the
predicted position of vehicle j by driving along its current
heading direction with its current speed. If there is no vehicle
in conflict, M. = ¥, then the ego vehicle maximizes its speed.

Note that the key parameter for this rule-based control
approach is the threshold value R.. It determines both whether
a vehicle will be identified as in conflict with the ego vehicle
and the separation distance that the ego vehicle tries to keep
from other vehicles. We will utilize our traffic model to
calibrate R, in Section VI-C.

VI. RESULTS

In this section, we show simulation results of our level-k
game theory-based vehicle interaction model, and illustrate its
application to the verification, validation and calibration of AV
control systems.

A. Level-k Vehicle Models

We consider a sampling period At = 0.25[s] and an
action set U consisting of 6 actions representing common
driving maneuvers in urban traffic, listed in Table 1. The
weight vector, the planning horizon, and the discount factor for
the reward function (4) are w = [1000, 500, 50, 100, 5, 1]T,
N = 4, and 4 = 0.8. When evaluating the features ¢; and
¢4, we consider the c-zone of a vehicle as a 5[m] x 2[m]
rectangle centered at the vehicle’s position (x, y) and stretched
along its heading direction 6, and the s-zone of a vehicle as
a rectangle concentric with its c-zone and 8[m] x 2.4[m] in
size. Furthermore, we consider a speed range [Omin, Umax] =
[0, 5][m/s]. When the speed calculated based on the model
(2) gets outside [Umin, Omax], it 1s saturated to this range. We
note that [Umin, Omax] = [0, 5][m/s] is a reasonable range
to represent common speeds for vehicles to drive through
unsignalized intersections. For instance, in California it is
suggested to maintain the vehicle speed below 15[mph] when
traversing an uncontrolled highway intersection [48].

Experimental studies [37], [49] suggest that humans are
most commonly level-1 and -2 reasoners in their interactions.
Therefore, we model vehicles in traffic using level-1 and -2
policies in this paper. In particular, on the basis of our level-0
decision rule (see Section III-A), a level-1 vehicle represents a
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TABLE I
ACTION SETU

action u a [m/s?]  w [rad/s]
maintain (u1) 0 0
accelerate (u2) 2.5 0
decelerate (u3) -2.5 0
hard brake (u4) -5 0
turn left (us) 0 /4
turn right (ug) 0 —7/4
Conv1 (32 filters) Conv2 (64 filters) ~ Conv3 (32 filters)
g — -— — — i == output

softmax

8 fully connected layers

Fig. 4. Architecture of the neural network.

cautious/conservative vehicle and a level-2 vehicle represents
an aggressive vehicle. Indeed, as level-0 and level-2 vehicles
both represent aggressive vehicles, they behave similarly in
many situations.

We use a neural network with the architecture shown in
Fig. 4 to represent a policy 7y and train its weights 6 using
Algorithm 1 to obtain an explicit approximation 7 to the
level-k policy my, which is algorithmically determined based
on (5). The accuracy of the obtained 7k in terms of matching
mk on the training dataset is 98.3%. Then, we generate 30%
more data points of ((s!,s;", k), m(s!,s; ", k)) for testing.
The accuracy of 7y in terms of matching 7k on the test
dataset is 97.8%. As has been discussed at the beginning of
Section III-B, the reason for generating 7k is to move the
numerical computations for determining the level-k decisions
through (5) offline. With 7y, the interactive decision-making
processes of vehicles are reduced to function evaluations (here,
the function is expressed as a neural network). This way, the
online simulations of traffic scenarios, used as environments
for virtual testing of AV control systems, can be significantly
accelerated.

To show the advantage of using the DAgger algorithm
(9) over using a standard supervised learning procedure (7)
to obtain the policy 7y, we show a case observed in our
simulations where the policy trained using standard supervised
learning fails but the one trained using DAgger succeeds.
In Fig. 5(a-3), the blue vehicle controlled by 7 trained using
standard supervised learning fails in making an adequate right
turn to get around the central island. This is due to a significant
error of 7y from my at certain states encountered by the
blue vehicle when entering the roundabout, and the encounter
with such states results from the issue of error propagation
in time that has been discussed in Section III-B. In contrast,
the blue vehicle in Fig. 5(b-3) controlled by 7y trained using
DAgger succeeds in making a proper right turn, illustrating
the effectiveness of DAgger in avoiding such an issue.
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(a-1)

(a-3)

- O

(b-3)

Fig. 5. (a-1)-(a-3) show three sequential steps in a simulation where the blue
vehicle controlled by 7y trained using standard supervised learning fails in
making an adequate right turn to get around the central island of a roundabout;
(b-1)-(b-3) show steps in a similar simulation where the blue vehicle controlled
by 7k trained using DAgger succeeds in making a proper right turn.
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Fig. 6. Interactions of level-k vehicles at the four-way intersection. (a-1)-(a-3)
show three sequential steps in a simulation where three level-1 vehicles
interact with each other; (b-1)-(b-3) show steps of three level-2 vehicles
interacting with each other; (c-1)-(c-3) show steps of a level-2 vehicle (blue)
interacting with two level-1 vehicles (yellow and red); v, v and v3 are the
speeds of the blue, yellow and red vehicles, respectively.

In what follows we show the interactions between level-k
vehicles at the four-way, T-shaped, and roundabout intersec-
tions. In particular, we let three vehicles be controlled by
different level-k policies and show how the traffic scenarios
evolve differently depending on the different combinations of
level-k policies.

It can be observed from Figs. 6-8 that, in general, when
level-1 and level-2 vehicles interact with each other, the
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(b-1)

(c-D

Fig. 7. Interactions of level-k vehicles at the T-shaped intersection. (a-1)-(a-3)
show three sequential steps in a simulation where three level-1 vehicles
interact with each other; (b-1)-(b-3) show steps of three level-2 vehicles
interacting with each other; (c-1)-(c-3) show steps of a level-2 vehicle (blue)
interacting with two level-1 vehicles (yellow and red); v, v and v3 are the
speeds of the blue, yellow and red vehicles, respectively.

conflicts between them can be resolved. This is expected since
level-1 vehicles, representing cautious/conservative vehicles,
will yield the right of way and level-2 vehicles, representing
aggressive vehicles, will proceed ahead. In contrast, when
level-1 vehicles interact with level-1 vehicles, deadlocks may
occur, such as the one being observed in the T-shaped inter-
section in Fig. 7(a), because everyone yields to the others.
When level-2 vehicles interact with level-2 vehicles, collisions
may occur, such as the ones being observed in panel (b) of
Figs. 6-8, because everyone assumes the others would yield.

We remark that deadlocks (collisions) do not always occur
in level-1 (level-2) interactions. The initial conditions of
Figs. 6-8 are chosen to show such situations. For randomized
initial conditions, the rates of success, defined as the pro-
portion of 2000 simulation episodes where neither deadlocks
nor collisions occur to the ego vehicle, for different numbers
of interacting vehicles and different combinations of level-k
policies at the three intersections are shown in Fig. 9. In Fig. 9,
“L-k car in L-k" Env.” shows the rate of success of a level-k
ego vehicle interacting with other vehicles that are all level-k’;
“L-k car in Mix Env.” shows the rate of success of a level-
k ego vehicle interacting with other vehicles whose control
policies are randomly chosen between level-1 and level-2 with
equal probability.

The following observations can be made: 1) As the number
of interacting vehicles increases, the rate of success decreases
for all the cases. This is reasonable since a larger number of
interacting vehicles represents a more complex traffic scenario.
2) The rates of success of a level-2 ego vehicle interacting
with other vehicles that are also level-2 are the lowest among
the results of all combinations of level-k policies. This is
also reasonable since when all the vehicles are aggressive
and assume the others would yield, traffic accidents are more
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Fig. 8.  Interactions of level-k vehicles at the roundabout intersection.
(a-1)-(a-3) show three sequential steps in a simulation where three level-1
vehicles interact with each other; (b-1)-(b-3) show steps of three level-2
vehicles interacting with each other; (c-1)-(c-3) show steps of a level-2

vehicle (blue) interacting with two level-1 vehicles (yellow and red); vy, vp
and v3 are the speeds of the blue, yellow and red vehicles, respectively.

likely to occur. 3) Among the results of the three intersection
types, the rates of success for the roundabout intersection
are the highest. This illustrates the effective functionality of
roundabouts in reducing traffic conflicts.

We further remark that although the high rates of failure of
“level-2 versus level-2” are not desired in real-world traffic,
it is important for a simulation environment for AV control
testing to include such cases that represent rational interactions
between aggressive vehicles. Note that a level-2 vehicle is
a rational decision maker that behaves aggressively, which
is fundamentally different from a driver/vehicle model that
acts aggressively but in an irrational way, e.g., taking actions
randomly. The cases of level-2 vehicle interactions provide
challenging test scenarios for AV control systems, which can
be more realistic than those provided by some worst-case
(i.e., not necessarily rational) models [50].

B. Model Validation

We validate our level-k vehicle models before illustrating
how to use them for AV control testing.

1) Feasibility Validation: The unicycle model (2) has been
used to represent vehicle kinematics and the action set U/ in
Table I has been used to represent common driving maneuvers.
We now show that the trajectories generated by (2) with
actions from U are feasible trajectories for vehicle systems.
For this, we use a hybrid kinematic/dynamic bicycle model
with the brush tire model [51] to represent high-fidelity vehicle
dynamics, and we use a PID-based controller [52] to control
the vehicle dynamics to execute the trajectory generated by (2)
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Fig. 9. The rates of success of level-k policies. (a-1)-(a-3) show the rates
of success of a level-1 ego vehicle operating in various traffic environments
(various in the numbers and policies of interacting vehicles) at the four-way,
T-shaped, and roundabout intersections; (b-1)-(b-3) show those of a level-2
ego vehicle; the bars in dark color represent the rates of success.

and U. Specifically, at each discrete-time instant ¢ the level-
k decision policy selects an action from U/, which defines a
desired state s;41 for the vehicle system through the unicycle
model (2). Then, over the continuous-time interval from ¢ to
t + 1, the PID-based controller controls the vehicle dynamics
to track the desired state s;1.

Two examples of tracking results for the T-shaped and the
roundabout intersections are shown in Fig. 10, where the
red solid curves represent the trajectories generated by (2)
(referred to as “reference trajectories”) and the black dotted
curves represent the tracking trajectories. It can be observed
that the tracking trajectories closely match the reference tra-
jectories. This justifies the feasibility of trajectories generated
by the unicycle model (2) and the action set U.

2) Comparison to Traffic Data: We next validate our level-k
vehicle models using real-world traffic data.

In Fig. 11, we show two traffic scenarios at a T-shaped
intersection extracted from the INTERACTION dataset [53]
and their reproduction by simulating our level-k vehicle mod-
els. Specifically, we initialize the states of our level-k vehicle
models according to the initial scene of the scenario, and
compare the evolution of the scenario simulated by our models
to the actual one from data. It can be seen that the simulated
evolution accurately matches the actual evolution for both
cases.

We also compare the average speeds of our level-k vehicle
models and of actual vehicles in the dataset when traversing
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Fig. 10. Feasibility validation of the unicycle model (2) and the action set /.
(a-1)-(a-2) show an example of path and speed tracking result at a T-shaped
intersection; (b-1)-(b-2) show that at a roundabout intersection.

T-shaped intersections. The average speeds versus the numbers
of interacting vehicles are plotted in Fig. 12, where the 95%
confidence intervals of data are indicated by the vertical error
bars. It can be seen that the average speeds of our level-k
vehicle models are lower than the average speeds of actual
vehicles. This is because some vehicles in the dataset drive at a
speed that is higher than the speed upper bound vmax = S[m/s]
of our models, and is also due to some differences in the road
layout and geometry (e.g., three-lane versus two-lane on the
left, see Fig. 11). Also, only 56 scenarios at this T-shaped
intersection are contained in the dataset and used to compute
the average speed results of the red curve. This causes the
relatively large error bars. In contrast, we run 2000 simulation
episodes with randomized level-k policy combinations and
initial conditions to compute the average speed results of the
blue curve. So the error bars are relatively small. In summary,
similar trends of average speeds versus numbers of interacting
vehicles are exhibited between the simulation results of our
level-k vehicle models and the traffic data. Also note that the
95% confidence intervals of our models are contained in the
95% confidence intervals of the traffic data.

C. Evaluation and Calibration of Autonomous Vehicle
Control Approaches

We test the two AV control approaches described in
Section V using a simulation environment constructed based
on level-k vehicle models.

For the first approach of adaptive control based on level-
k models, we use the same sampling period Af, action set
U, reward function including the weight vector w, planning
horizon N, and discount factor 4 as those used for the level-k
vehicle models. In the level estimation algorithm (13)-(15),
we consider the model set K = {1, 2} and the update step size
S =0.6.

When training the explicit approximation 7, to the policy 7,
that is algorithmically determined by (12), we use the same
neural network architecture shown in Fig. 4. The accuracy
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Fig. 11. Reproduction of real-world traffic scenarios using our level-k vehicle
models. (a-1)-(a-3) visualize a traffic scenario with two interacting vehicles
extracted from the dataset [53] at three sequential time instants; (a-4)-(a-6)
show the simulation results of a level-2 vehicle (blue) interacting with a level-1
vehicle (yellow) in a similar scenario. (b-1)-(b-3) visualize a traffic scenario
with three interacting vehicles extracted from the same dataset; (b-4)-(b-6)
show the simulation results of a level-2 vehicle (blue) interacting with two
level-1 vehicles (yellow and red) in a similar scenario.
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Fig. 12. Average speeds versus numbers of interacting vehicles for traversing
T-shaped intersections of level-k vehicle models and traffic data.

of the obtained 7, in terms of matching 7, is 98.8% on
the training dataset and is 98.6% on a test dataset of 30%
additional data points that are not used for training.

Firstly, we simulate similar scenarios as those shown in
Figs. 6-8, but let the autonomous ego vehicle (blue) be
controlled by the adaptive control approach instead of level-k
policies. Figs. 13-15 show snapshots of the simulations. It can
be observed that the autonomous ego vehicle can resolve
the conflicts with the other two vehicles and safely drive
through the intersections although the other two vehicles are
controlled by varying policies. The bottom panels show the
level estimation histories of the simulations. It can be observed
that the autonomous ego vehicle can resolve the conflicts
because it successfully identifies the level-k models of the
other two vehicles. Recall that vehicle j is identified as level-1
(level-2) when P(k/ =2) < 0.5 (P(k/ =2) > 0.5).

The success of the adaptive control approach in situations
where level-k control policies with fixed k fail suggests the
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Fig. 13. Interactions of the autonomous ego vehicle (blue) controlled by the

adaptive control approach with level-k vehicles at the four-way intersection.
(a-1)-(a-3) show three sequential steps in a simulation where the autonomous
ego vehicle interacts with two level-1 vehicles, and (a-4) shows the time
histories of the two vehicles’ level estimates where P(2) = P(k = 2) denotes
the ego vehicle’s belief in the level-2 model; (b-1)-(b-4) show those of the
autonomous ego vehicle interacting with two level-2 vehicles; (c-1)-(c-4) show
those of the autonomous ego vehicle interacting with a level-1 vehicle (red)
and a level-2 vehicle (yellow); v1, v2 and v3 are the speeds of the blue, yellow
and red vehicles, respectively.

significance in AV control of intention recognition and action
prediction for the other vehicles. Note that these two steps are
achieved in our adaptive control approach through the level
estimates and the level-k models of the other vehicles.

We then statistically evaluate and compare the two AV con-
trol approaches. For the second approach of rule-based control,
we consider an acceleration set A = {—5, —2.5, 0, 2.5}[m/s2]
and an initial design of the threshold value R, = 14[m)].

In order to cover a rich set of scenarios, we construct a larger
traffic scene shown in Fig. 16, which models the road system
of an urban area in Los Angeles and consists of one four-way
intersection, one roundabout, and two T-shaped intersections.
We let an autonomous ego vehicle controlled by the adaptive
control approach or the rule-based control approach drive
through this traffic scene. Apart from the autonomous ego
vehicle, we also put multiple other vehicles controlled by
level-k policies in the scene and let them drive through the
scene repeatedly. Their initial positions, lanes entering the
scene, and sequences of target lanes to traverse the scene are
all randomly chosen.
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Fig. 14. Interactions of the autonomous ego vehicle (blue) controlled by the
adaptive control approach with level-k vehicles at the T-shaped intersection.
(a-1)-(a-3) show three sequential steps in a simulation where the autonomous
ego vehicle interacts with two level-1 vehicles, and (a-4) shows the time
histories of the two vehicles’ level estimates where P(2) = P(k = 2) denotes
the ego vehicle’s belief in the level-2 model; (b-1)-(b-4) show those of the
autonomous ego vehicle interacting with two level-2 vehicles; (c-1)-(c-4) show
those of the autonomous ego vehicle interacting with a level-1 vehicle (red)
and a level-2 vehicle (yellow); v1, v2 and v3 are the speeds of the blue, yellow
and red vehicles, respectively.

We evaluate the two control approaches based on two
statistical metrics: the rate of collision (CR) and the rate
of deadlock (DR). The rate of collision is defined as the
proportion of 2000 simulation episodes where the autonomous
ego vehicle collides with another vehicle or with the road
boundaries. The rate of deadlock is defined as the proportion
of 2000 simulation episodes where no collision occurs to
the autonomous ego vehicle but it fails to drive through the
scene in 300[s] of simulation time. We consider three traffic
models: 1) all of the other vehicles are level-1, called a “level-1
environment,” 2) all of the other vehicles are level-2, called a
“level-2 environment,” and 3) the control policy of each of the
other vehicles is randomly chosen between level-1 and level-2
with equal probability, called a “mixed environment.”

The CR and DR results of the adaptive control approach
and the rule-based control approach for different numbers of
other vehicles in the scene are shown in Figs. 17 and 18.
The number of other vehicles, n,, represents traffic density,
roughly, 2.87n, [vehicles/mile] (the total length of the roads
is about 560 [m]).

From Fig. 17 it can be observed that, for the adaptive
control approach, the CR and DR increase as the traffic density
increases, which is reasonable. In particular, the increase in CR
slows down as the number of other vehicles goes beyond 20.
Among the results for different traffic models, the CR and DR
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Fig. 15. Interactions of the autonomous ego vehicle (blue) controlled by the
adaptive control approach with level-k vehicles at the roundabout intersection.
(a-1)-(a-3) show three sequential steps in a simulation where the autonomous
ego vehicle interacts with two level-1 vehicles, and (a-4) shows the time
histories of the two vehicles’ level estimates where P(2) = P(k = 2) denotes
the ego vehicle’s belief in the level-2 model; (b-1)-(b-4) show those of the
autonomous ego vehicle interacting with two level-2 vehicles; (c-1)-(c-4) show
those of the autonomous ego vehicle interacting with a level-1 vehicle (red)
and a level-2 vehicle (yellow); v1, v2 and v3 are the speeds of the blue, yellow
and red vehicles, respectively.

(a) (b)

Fig. 16. Traffic scene for evaluating autonomous vehicle control approaches.

(a) shows an urban area in Los Angeles (provided by Google Maps) and
(b) shows the model of the road system in (a).

for the level-1 environment are the lowest and those for the
level-2 environment are the highest. This is also reasonable
since the level-1 environment, composed of level-1 vehicles,
represents a cautious/conservative traffic model, the level-2
environment represents an aggressive traffic model and is thus
most challenging for the autonomous ego vehicle, while the
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Fig. 17. Evaluation results of the adaptive control approach: (a) the rate of

collision (CR) and (b) the rate of deadlock (DR) versus different numbers of
environmental vehicles and different traffic models.
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Fig. 18. Evaluation results of the rule-based control approach with R, =

14 [m]: (a) the rate of collision (CR) and (b) the rate of deadlock (DR) versus
different numbers of environmental vehicles and different traffic models.

mixed environment lies in between. Furthermore, the results
for the adaptive control approach are less sensitive to changes
in traffic models than those for level-k policies with fixed k
shown in Fig. 9. This shows again the significance of adap-
tation of AV control strategy to other vehicles’ intentions and
actions. Note that the rate of success for a single intersection
of the adaptive control approach, if estimated as 1 — M,
is close to that of “L-1 car in L-2 Env.” and that of “L-2 car
in L-1 Env.,” which represent the best performance of level-k
policies.

For the rule-based control approach, it can be observed
from Fig. 18 that as the traffic density increases, the CR first
increases and then decreases, while the DR keeps increasing.
The decrease in CR when the traffic becomes very dense is
due to the constant yielding of the autonomous ego vehicle to
other vehicles, which causes the dramatic increase in DR.

Comparing the results of the two approaches, the adaptive
control approach performs better than the rule-based control
approach in the above experiments. This is attributed to the
more sophisticated and complicated algorithm behind the
adaptive control approach. However, the rule-based control is
more interpretable (e.g., the reason for the decrease in CR is
easily understood), and is easier to calibrate.

In Fig. 19, we show two informative cases observed in our
simulations. In the first case in Fig. 19(a), the autonomous
ego vehicle (blue) controlled by the adaptive control approach
and the level-1 vehicle (yellow) on its left both yield to
the other and cause a deadlock. Note that a level-1 vehicle
represents a vehicle with a cautious/conservative driver, and
accordingly, yields to the autonomous ego vehicle. Although
the autonomous ego vehicle eventually decides to proceed
ahead and successfully drives through the roundabout, it takes
too long for such a conflict to be resolved, and thus this
scenario falls into our DR category. To avoid such deadlock
scenarios, the autonomous ego vehicle may need to identify
the driving style of the opponent vehicle faster, which may be

Fig. 19. Failure cases. (a) shows a scenario where the autonomous ego
vehicle (blue) controlled by the adaptive control approach gets stuck at the
entrance of the roundabout due to the level-1 vehicle (yellow) on its left.
(b) shows a scenario where the autonomous ego vehicle (blue) controlled by
the rule-based control approach gets hit by the level-2 vehicle (red) on its
left.

achieved through a larger update step size f. In the second
case in Fig. 19(b), the autonomous ego vehicle controlled by
the rule-based control approach stops in the roundabout to
yield to the yellow vehicle on its right and within the critical
distance R, (marked by the red dashed circle). However,
because the gap between the autonomous ego vehicle and the
yellow vehicle is still quite large, the red vehicle on the left of
the autonomous ego vehicle expects it to proceed and thus does
not slow down, which causes a collision. This scenario shows
that a larger critical distance R. may not always correspond to
a safer driving behavior. We remark that failure/corner cases
identified by our simulations, such as the above two cases,
can also inform the design of specific test trajectories for AV
control systems.

We now optimize the threshold value R, in the rule-based
control approach to achieve better performance defined by a
performance index as follows:

L s (Sn)
J = P ; (wc¢c(8n) + wada(Sn) + wy m),
(17)

where S, denotes the nth simulation episode; the ¢.(S,),
¢a(S,), and ¢4(S,) are indicator functions, taking 1 if]
respectively, a collision occurs to the autonomous ego vehi-
cle, no collision but a deadlock occurs to the autonomous
ego vehicle, and neither collision nor deadlock occur and
the autonomous ego vehicle successfully drives through the
scene in 300[s] of simulation time in the nth simulation
episode, and taking 0 otherwise; 0(S,) is the average speed
of the autonomous ego vehicle in the nth simulation episode;
we, Wy, w, > 0 are weighting factors, and € > 0 is a constant
to adjust the shape of the function with respect to the average
speed 0(S,;) and to avoid the denominator being 0.

The performance index function (17) imposes penalties for
collisions and deadlocks through the first two terms, and
rewards higher average speeds through the last term. Note
that the last term is designed in such a way that the penalty
increases fast for decrease in speed values that are already
very low, and decreases slowly for increase in speed values
that are already very high. In obtaining the following results,
we run simulations in the same scene shown in Fig. 16 with
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Fig. 20. Performance index J as function of R, of the rule-based control

approach with different traffic models.

15 other vehicles, and we use w, = 10, wy =5, w, = 1, and
e =0.1.

We plot the values of (17) for different values of R, in
Fig. 20. Specifically, for each value of R., we run nmax = 2000
simulation episodes and calculate the value of (17) based on
the simulation results. Lower values of (17) represent better
performance in terms of having less collisions, less deadlocks,
and higher average travel speeds.

In Fig. 20, the blue curve represents the result when the
autonomous ego vehicle operates in the level-1 environment.
It can be observed that the performance is good when R,
takes very small values, i.e., in the range of [6,7.5][m].
This is because small R. corresponds to aggressive behav-
ior and the level-1 environment represents a conservative
traffic model, thus, the other vehicles almost always yield
to the autonomous ego vehicle when there is a conflict.
Since the autonomous ego vehicle proceeds ahead while the
other vehicles yield, collisions and deadlocks are avoided.
However, when operating in the level-2 or mixed environment,
small R. leads to poor performance. This is because both
the autonomous ego vehicle and the other vehicles behave
aggressively and cause many collisions. When R, takes values
in the range of [7.5, 11][m], the performance is the worst
for all of the three traffic models. This is because such
R. values correspond to behaviors between aggressive and
conservative, which can cause collisions with both aggressive
and conservative interacting vehicles. The range [11.5, 13][m]
is suitable for choosing the value of R, where the performance
is good and insensitive to changes in the traffic models. For
larger R, values, the autonomous ego vehicle becomes overly
conservative and almost always yields to the other vehicles,
which causes it difficulties to enter the intersections and leads
to many deadlocks.

VII. CONCLUSION

In this paper, we described a framework based on level-k
game theory for modeling traffic consisting of heteroge-
neous (in terms of their driving styles) and interactive vehi-
cles in urban environments with unsignalized intersections.
An algorithm integrating the level-k decision-making formal-
ism, receding-horizon optimization, and imitation learning was
proposed and used to solve for level-k control policies.

The developed traffic models are useful as simulation envi-
ronments for verification and validation of autonomous vehicle

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

control systems. In particular, we considered two autonomous
vehicle control approaches as case studies: an adaptive control
approach based on level-k vehicle models and a rule-based
control approach. We analyzed their characteristics and eval-
vated their performance based on their testing results with
our traffic models, and then optimized the parameters of the
rule-based approach based on a performance index.

We envision that traffic models developed using the frame-
work proposed in this paper can also be integrated with urban
traffic/driving simulators with higher-fidelity car dynamics and
environmental representations, such as CARLA [54], using an
approach similar to that of [55], to create more realistic urban
traffic simulations and support autonomous driving system
development.
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